(完整版)二项式定理(习题含答案)
二项式定理高考题(含答案)精选全文
精选全文完整版(可编辑修改)二项式定理高考题(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2二项式定理 高考真题一、选择题1.(2012·四川高考理科·T1)相同7(1)x +的展开式中2x 的系数是( D )(A )42 (B )35 (C )28 (D )212.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B )(A )80 (B )40 (C )20 (D )103.(2012·天津高考理科·T5)在5212x x ⎛⎫- ⎪⎝⎭的二项展开式中,x 的系数为 ( D ) (A)10 (B)-10(C)40 (D)-40 4.(2011.天津高考理科.T5)在6的二项展开式中,2x 的系数为 ( C )(A )154- (B )154(C )38- (D )38 5.(2012·重庆高考理科·T4)821⎪⎭⎫ ⎝⎛+x x 的展开式中常数项为( B ) (A)1635 (B)835 (C)435 (D)105 6.(2012·重庆高考文科·T4)5)31(x -的展开式中3x 的系数为( A )(A)270- (B)90- (C)90 (D)2707. (2013·大纲版全国卷高考理科·T7)()()8411++x y 的展开式中22x y 的系数是 ( D )A.56B.84C.112D.1688.(2011·新课标全国高考理科·T8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( D ) (A )-40 (B )-20 (C )20(D )409. (2011·重庆高考理科·T4)n x )31(+(其中n N ∈且6≥n )的展开式中5x 与6x 的系数相等,则=n ( B ) (A)6 (B)7 (C)8(D)93 10.(2011·陕西高考理科·T4)6(42)x x --(x ∈R )展开式中的常数项是 (C )(A )20- (B )15- (C )15 (D )20二、填空题11. (2013·天津高考理科·T10)6x ⎛- ⎝ 的二项展开式中的常数项为 15 . 12.(2011·湖北高考理科·T11)18x ⎛ ⎝的展开式中含15x 的项的系数为 17 .13.(2011·全国高考理科·T13)20的二项展开式中,x 的系数与x 9的系数之差为 0 .14.(2011·四川高考文科·T13)91)x +(的展开式中3x 的系数是 84 (用数字作答).15.(2011·重庆高考文科·T11)6)21(x +的展开式中4x 的系数是 240 . 16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x ++++=- (,则1110a a += 0 .17.(2011·广东高考理科·T10)72()x x x-的展开式中,4x 的系数是___84___ (用数字作答)18.(2011·山东高考理科·T14)若62x x ⎛- ⎝⎭的展开式的常数项为60,则常数a 的值为 4 .19.(2012·大纲版全国卷高考理科·T15)若n xx )1(+的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为__56_____. 20.(2013·安徽高考理科·T11)若8⎛+ ⎝x 的展开式中4x 的系数为7,则实数a ____12_____。
(完整版)二项式定理测试题及答案
二项式定理测试题及答案1.有多少个整数n 能使(n+i)4成为整数(B ) A.0 B.1 C.2 D.3 2. ()82x -展开式中不含..4x 项的系数的和为(B )A.-1B.0C.1D.23.若S=123100123100A A A A ++++L L ,则S 的个位数字是(C )A 0B 3C 5D 8 4.已知(x -xa )8展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( C ) A.28B.38C.1或38D.1或285.在3100(25)+的展开式中,有理项的个数是( D ) A.15个B.33个C.17个 D.16个6.在2431⎪⎪⎭⎫ ⎝⎛+x x 的展开式中,x 的幂指数是整数的项共有(C ) A .3项 B .4项C .5项D .6项7.在(1-x)5-(1-x)6的展开式中,含x 3的项的系数是( C )A 、-5B 、 5C 、10D 、-10 8.35)1()1(x x +⋅-的展开式中3x 的系数为( A )A .6B .-6C .9D .-9 9.若x=21,则(3+2x)10的展开式中最大的项为(B ) A.第一项 B.第三项 C.第六项 D.第八项 10.二项式431(2)3nx x-的展开式中含有非零常数项,则正整数n 的最小值为( A ) A .7B .12C .14D .511.设函数,)21()(10x x f -=则导函数)(x f '的展开式2x 项的系数为(C )A .1440B .-1440C .-2880D .2880 12.在51(1)x x+-的展开式中,常数项为( B ) (A )51 (B )-51 (C )-11 (D )1113.若32(1)1()n n x x ax bx n *+=+++++∈N L L ,且:3:1a b =,则n 的值为( C ) A.9B.10C.11D.1214.若多项式102x x +=10109910)1()1()1(++++⋅⋅⋅+++x a x a x a a ,则=9a ( )(A ) 9 (B )10 (C )9- (D )10- 解:根据左边x10的系数为1,易知110=a ,左边x 9的系数为0,右边x 9的系数为0109910109=+=+a C a a ,∴109-=a故选D 。
2021版新高考数学:节二项式定理含答案
A .6B .-6C .24D .-24A [(1-2x )4展开式中第3项的二项式系数为C 24=6.故选A.]2.二项式⎝ ⎛⎭⎪⎫12x -2y 5的展开式中x 3y 2的系数是( ) A .5 B .-20 C .20 D .-5A [二项式⎝ ⎛⎭⎪⎫12x -2y 5的通项为T r +1=C r 5(12x )5-r (-2y )r .根据题意、得⎩⎨⎧5-r =3,r =2,解得r =2.所以x 3y 2的系数是C 25⎝ ⎛⎭⎪⎫123×(-2)2=5.故选A.] 3.C 02 019+C 12 019+C 2 019+…+C 2 019C 02 020+C 2 020+C 42 020+…+C 2 020的值为( ) A .1 B .2C .2 019D .2 019×2 020A [原式=22 01922 020-1=22 01922 019=1.故选A.]4.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4、则a 0+a 2+a 4的值为________. 8 [令x =1、则a 0+a 1+a 2+a 3+a 4=0、令x =-1、 则a 0-a 1+a 2-a 3+a 4=16、 两式相加得a 0+a 2+a 4=8.](对应学生用书第188页)考点1 二项式展开式的通项公式的应用(x 2+x +y )5为5个x 2+x +y 之积、其中有两个取y 、两个取x 2、一个取x 即可、所以x 5y 2的系数为C 25C 23C 1=30.故选C.]2.(x -13x-y )6的展开式中含xy 的项的系数为( )A .30B .60C .90D .120 B [展开式中含xy 的项来自C 16(-y )1(x -13x)5、(x -13x)5展开式通项为T r +1=(-1)rC r 5x 5-43r 、令5-43r =1⇒r =3、(x -13x)5展开式中x 的系数为(-1)3C 35、 所以(x -13x-y )6的展开式中含xy 的项的系数为C 16(-1)C 35(-1)3=60、故选B.]考点2 二项式系数的和与各项的系数和问题赋值法在求各项系数和中的应用(1)对形如(ax +b )n 、(ax 2+bx +c )m (a 、b 、c ∈R )的式子求其展开式的各项系数之和、常用赋值法.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n 、则f (x )展开式中各项系数之和为f (1)、奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2、偶数项系数之和为a 1+a 3-128[在(1-x)(1+x)4的展开式中、含x2项的系数是b、则b=C24-C14=2.在(2-2x)7=a0+a1x+…+a7x7中、令x=0得a0=27、令x=1、得a0+a1+a2+…+a7=0.∴a1+a2+…+a7=0-27=-128.]3.(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32、则a=________.3[设(a+x)(1+x)4=a0+a1x+a2x2+a3x3+a4x4+a5x5、令x=1、得16(a+1)=a0+a1+a2+a3+a4+a5、①令x=-1、得0=a0-a1+a2-a3+a4-a5.②①-②、得16(a+1)=2(a1+a3+a5)、即展开式中x的奇数次幂项的系数之和为a1+a3+a5=8(a+1)、所以8(a+1)=32、解得a=3.]考点3二项式系数的性质二项式系数的最值问题。
完整版二项式定理高考题带答案
1.2018 年全国卷Ⅲ理】的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】分析:写出,然后可得结果详解:由题可得,令, 则,所以故选 C.2. 【2018 年浙江卷】二项式的展开式的常数项是___________..【答案】7【解析】分析: 先根据二项式展开式的通项公式写出第r +1 项,再根据项的次数为零解得r ,代入即得结果.详解:二项式的展开式的通项公式为,令得,故所求的常数项为3. 【2018 年理数天津卷】在的展开式中,的系数为____________.【答案】决问题的关键.4.【山西省两市2018 届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为()A. 2B.C.D.【答案】B5.【安徽省宿州市2018 届三模】的展开式中项的系数为__________..【答案】-132【解析】分析:由题意结合二项式展开式的通项公式首先写出展开式,然后结合展开式整理计算即可求得最终结果. 详解:的展开式为:,当,时,,当,时,,据此可得:展开式中项的系数为.6.【2017 课标1,理6】(11 6 展开式中 2的系数为x 2 )(1 x) xA.15 B.20C.30D.35【答案】 C【解析】试题分析:因为(112 )(1x)6 1 (1 x)612 (1 x)6,则(1 x)6展开式中含x2的项为xx1 C62x215 x2,12(1 x) 6展开式中含x2的项为12C64 x4 15x2,故x2前系数为xx15 15 30 ,选 C.情况,尤其是两个二项式展开式中的r 不同.7. 【2017 课标3,理4】x y 2x5y的展开式中x 3y3的系数为A.80B.40C.40D.80【答案】 C【解析】8. 【2017 浙江,13 】已知多项式x 13x 2 2= x5 a1x4a2 x3a3x2a4 x1a5,则a4=________,a5=________..【答案计数.9.【2017 山东,理11】已知 1 3x n254 ,则n.的展开式中含有x 项的系数是【答案】 4C nr rC nr 3r x r,令r2 得:【解析】试题分析:由二项式定理的通项公式r 1 3xC n232 54 ,解得n 4【考点】二项式定理10.【2015 高考陕西,理4】二项式( x1)n (n N ) 的展开式中x2的系数为15,则n()A.4B.5C.6D.7【答案C【解析】二项式x1 n的展开式的通项是r 1C rn x r,令r2 得x2的系数是C 2n,因x2的系数为15,所以C 2n15 ,即n2n 300 ,解得:n6 或n5 ,因为n,所以n6 ,故选C.【考点定位】二项式定理.【名师点晴】本题主要考查的是二项式定理,属于容易题.解题时一定要抓住重要条件“n”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式 a b n的展开式的通项是k 1C nk a n k b k .11.【2015 高考新课标1,理10】( x2 x y)5的展开式中,x5 y2的系数为( ) (A)10 (B)20(C)30(D)60【答案】C12.【2015 高考湖北,理3】已知(1x) n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为() A. 212B.211 C.210D.29【答案】D【解析】因为(1 x)n的展开式中第4 项与第8 项的二项式系数相等,所以C n3 C n7,解得n 10 ,所以二项式(1x)10中奇数项的二项式系数和为121029.21513.【2015 高考重庆,理12】x3x 的展开式中x8的系数是________(用数2【答案】52C5k (x3) 5 k ( 1 )k15 7 k【解析】二项展开式通项为T k1( 1 )k C5k x2,令15 7k 8 ,2 x 22解得k 2 ,因此x8的系数为(1)2C52 5 .22 【高考广东,理】在( x 1) 4的展开式中,x 的系数为.14. 2015 9.4 r4 rC4rr C4rr,令4r【解析】由题可知T r 1x1x 21解得r2 , 12所以展开式中x 的系数为C42 26 ,故应填入61【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.1615.【2015 高考天津,理12】在x的展开式中,x2的系数为.4 x【答案】15166 r r【解析】x1 展开式的通项为T r 1 C6r x6 r11 C6r x62 r,由4x4 x41 215 x2,所以该项系数为15 .6 2r 2 得r2 ,所以TC 2 x234 616 1616.【2015 高考新课标2,理15】( a x)(1 x)4的展开式中x 的奇数次幂项的系数之和为32,则 a __________..【答案】3【解析】由已知得(1 x)4 1 4x 6x2 4 x3x4,故(a x)(1 x) 4的展开式中x的奇数次幂项分别为4ax ,4ax 3,x , 3 ,5,其系数之和为4a 4a 1+6+1=32,6x x解得a3 .【考点定位】二项式定理.a5317.【2015 高考湖南,理6】已知x的展开式中含x 2的项的系数为30,x则 a ()A.3B. 3C.6D-6【答案】D.11018.【2015 高考上海,理11】在 1x 的展开式中,x2项的系数为x2015(结果用数值表示).【答案】451101 10C101 (1 x)9 1【解析】因为 1 x(1 x)(1 x)10L,x2015 x 2015 x2015所以x2项只能在(1 x)10展开式中,即为C108 x2,系数为C10845.19.(2016 年北京高考)在(12x) 6的展开式中,x2的系数为__________________.(用数字作答)【答案】60.20.(2016 年山东高考)若(ax2+1)5的展开式中x5的系数是—80,则实数a=_______.x21.(2016 年上海高考)在 3x2 xn的二项式中,所有项的二项式系数之和为256,则常数项等于_________【答案】11222.(2016 年四川高考)设i 为虚数单位,则(xi) 6的展开式中含x4的项为(A )-15x4 (B )15x4 (C)-20i x4 (D )20i x4【答案】 A23.(2016年天津高考)( x21 )8的展开式中x2的系数为__________.(用数字作答) x24.(2016年全国I 高考)(2 xx )5的展开式中,x3的系数是.(用数字填写答案)【答案】10。
二项式定理习题(带答案)
(A)-540
(B)-162
(C)162
(D)540
33、A 解析:令 x=1,得 2n=64,得 n=6.设常数项为 Tr+1= Cr6(3 )6-r·(- )r
=Cr636-r·(-1)r·x3-r 令 3-r=0 得 r=3.∴常数项 T4=-540.
36、在
的二项展开式中,若只有 的系数最大,则
6、C7、C8、A9、A
16、3.若
的展开式中 的系数是(
A.14 )A
B.-14
B
C
C.42 D
D.-42
17、在
的展开式中 的系数是 ( )A.-14 B.14 C.-28 D.28
16、B 解析:(x-1)(x+1)8=(x-1)(1+x)8,∴含 x5 的项为 x·C x4+(-1)C x5=14x5,∴x5 的系数是 14,故选 B. 17、B 解析:(x-1)(x+1)8=(x-1)(1+x)8,∴含 x5 的项为 x·C x4+(-1)C x5=14x5,∴x5 的系数是 14,故选 B.
(3)二项式系数的和:
C
0 n
C1 nCຫໍສະໝຸດ 2 nCk n
C
n n
2n
奇数项的二项式系数的和等于偶数项的二项式系数和.即
C0n +C2n +
=C1n +C3n +
=2n-1
对称性 (2)二项式系数的三个性质 增减性和最值
二项式系数和
基本题型
(一)通项公式的应用
1、 (2x 1 )6 的展开式中第三项的二项式系数为________;第三项的系数为_______; x
(完整版)二项式定理高考题(带答案)
1.2018年全国卷Ⅲ理】的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】分析:写出,然后可得结果详解:由题可得,令,则,所以故选C.2.【2018年浙江卷】二项式的展开式的常数项是___________.【答案】7【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果.详解:二项式的展开式的通项公式为,令得,故所求的常数项为3.【2018年理数天津卷】在的展开式中,的系数为____________. 【答案】决问题的关键.4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为( )A. 2B.C.D. 【答案】B5.【安徽省宿州市2018届三模】的展开式中项的系数为__________.【答案】-132【解析】【解析】分析:分析:由题意结合二项式展开式的通项公式首先写出展开式,由题意结合二项式展开式的通项公式首先写出展开式,然后结合然后结合展开式整理计算即可求得最终结果.详解:的展开式为:,当,时,,当,时,,据此可得:展开式中项的系数为.6.【2017课标1,理6】621(1)(1)x x++展开式中2x 的系数为的系数为 A .15 B .20 C .30 D .35 【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为44262115C x x x⋅=,故2x 前系数为151530+=,选C. 情况,尤其是两个二项式展开式中的r 不同. 7.7.【【2017课标3,理4】()()52x y x y +-的展开式中x 3y 3的系数为的系数为A .80- B .40-C .40 D .80【答案】C 【解析】8.【2017浙江,13】已知多项式()1x +3()2x +2=5432112345xa x a x a x a x a +++++,则4a =________,5a =________.【答案计数. 9.【2017山东,理1111】】已知()13nx +的展开式中含有2x 项的系数是54,则n = . 【答案】4【解析】试题分析:由二项式定理的通项公式()1C3C 3rrr r rr nnx x +T ==⋅⋅,令2r =得:22C 354n⋅=,解得4n =.【考点】二项式定理10.【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C rr r nx +T=,令2r =得2x 的系数是2C n,因为2x 的系数为15,所以2C 15n=,即2300n n --=,解得:6n =或5n =-,因为n +∈N ,所以6n =,故选C . 【考点定位】二项式定理.【名师点晴】【名师点晴】本题主要考查的是二项式定理,本题主要考查的是二项式定理,本题主要考查的是二项式定理,属于容易题.属于容易题.属于容易题.解题时一定要抓住重解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C kn kkk n ab -+T =.11.【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C12.【2015高考湖北,理3】已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A.122 B.112 C .102D .92【答案】D【解析】因为(1)nx +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n ,所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯.13.【2015高考重庆,理12】5312xx ⎛⎫+ ⎪⎝⎭的展开式中8x 的系数是________(用数字作答). 【答案】52【解析】二项展开式通项为71535215511()()()22k k kkkk k T C x C xx--+==,令71582k -=,解得2k =,因此8x 的系数为22515()22C =.14.【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 . 【答案】6.【解析】由题可知()()()44214411r rr rrr r T CxC x--+=-=-,令412r-=解得2r =,所以展开式中x 的系数为()22416C -=,故应填入6.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.15.【2015高考天津,理12】在614xx ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 . 【答案】1516【解析】614xx ⎛⎫- ⎪⎝⎭展开式的通项为6621661144r rr r r rr T C x C x x --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由622r -=得2r =,所以222236115416T C x x ⎛⎫=-=⎪⎝⎭,所以该项系数为1516. 16.【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.【考点定位】二项式定理.17.【2015高考湖南,理6】已知5ax x ⎛⎫- ⎪⎝⎭的展开式中含32x 的项的系数为30,则a =( )A.3B.3-C.6 D-6 【答案】D.18.【2015高考上海,理11】在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示). 【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭L ,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C =19.(2016年北京高考)在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答)字作答)【答案】60.20.(2016年山东高考)若(a x2+1x)5的展开式中x5的系数是—80,则实数a=_______. 【答案】-221.(2016年上海高考)在nxx⎪⎭⎫⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________ 【答案】11222.(2016年四川高考)设i为虚数单位,则6(i)x+的展开式中含x4的项为的项为(A)-15x4(B)15x4(C)-20i x4(D)20i x4【答案】A23.(2016年天津高考)281()xx-的展开式中x2的系数为__________.(用数字作答)【答案】56-24.(2016年全国I高考)5(2)x x+的展开式中,x3的系数是的系数是 .(用数字填写答案)案) 【答案】10。
二项式定理练习题及答案解析
二项式定理练习题及答案解析一、选择题1.二项式(a+b)2n的展开式的项数是()A.2n B.2n+1C.2n-1D.2(n+1)[答案] B2.(x-y)n的二项展开式中,第r项的系数是()A.Crn B.Cr+1nC.Cr-1n D.(-1)r-1Cr-1n[答案] D3.在(x-3)10的展开式中,x6的系数是()A.-27C610 B.27C410C.-9C610 D.9C410[答案] D[解析]∵Tr+1=Cr10x10-r(-3)r.令10-r=6,解得r=4.∴系数为(-3)4C410=9C410.4.(2010•全国Ⅰ理,5)(1+2x)3(1-3x)5的展开式中x的系数是() A.-4 B.-2C.2 D.4[答案] C[解析](1+2x)3(1-3x)5=(1+6x+12x+8xx)(1-3x)5,故(1+2x)3(1-3x)5的展开式中含x的项为1×C35(-3x)3+12xC05=-10x+12x=2x,所以x的系数为2.5.在2x3+1x2n(n∈N*)的展开式中,若存在常数项,则n的最小值是()A.3 B.5C.8 D.10[答案] B[解析]Tr+1=Crn(2x3)n-r1x2r=2n-r•Crnx3n-5r.令3n-5r=0,∵0≤r≤n,r、n∈Z.∴n的最小值为5.6.在(1-x3)(1+x)10的展开式中x5的系数是()A.-297 B.-252C.297 D.207[答案] D[解析]x5应是(1+x)10中含x5项与含x2项.∴其系数为C510+C210(-1)=207.7.(2009•北京)在x2-1xn的展开式中,常数项为15,则n的一个值可以是()A.3 B.4C.5 D.6[答案] D[解析]通项Tr+1=Cr10(x2)n-r(-1x)r=(-1)rCrnx2n-3r,常数项是15,则2n=3r,且Crn=15,验证n=6时,r=4合题意,故选D.8.(2010•陕西理,4)(x+ax)5(x∈R)展开式中x3的系数为10,则实数a等于()A.-1 B.12C.1 D.2[答案] D[解析]Cr5•xr(ax)5-r=Cr5•a5-rx2r-5,令2r-5=3,∴r=4,由C45•a=10,得a=2.9.若(1+2x)6的展开式中的第2项大于它的相邻两项,则x的取值范围是()A.112<x<15B.16<x<15C.112<x<23D.16<x<25[答案] A[解析]由T2>T1T2>T3得C162x>1C162x>C26(2x)2∴112<x<15. 10.在32x-1220的展开式中,系数是有理数的项共有()A.4项B.5项C.6项D.7项[答案] A[解析]Tr+1=Cr20(32x)20-r-12r=-22r•(32)20-rCr20•x20-r,∵系数为有理数,∴(2)r与220-r3均为有理数,∴r能被2整除,且20-r能被3整除,故r为偶数,20-r是3的倍数,0≤r≤20.∴r=2,8,14,20.二、填空题11.(1+x+x2)•(1-x)10的展开式中,x5的系数为____________.[答案]-16212.(1+x)2(1-x)5的展开式中x3的系数为________.[答案] 5[解析]解法一:先变形(1+x)2(1-x)5=(1-x)3•(1-x2)2=(1-x)3(1+x4-2x2),展开式中x3的系数为-1+(-2)•C13(-1)=5;解法二:C35(-1)3+C12•C25(-1)2+C22C15(-1)=5.13.若x2+1ax6的二项展开式中x3的系数为52,则a=________(用数字作答).[答案] 2[解析]C36(x2)3•1ax3=20a3x3=52x3,∴a=2.14.(2010•辽宁理,13)(1+x+x2)(x-1x)6的展开式中的常数项为________.[答案]-5[解析](1+x+x2)x-1x6=x-1x6+xx-1x6+x2x-1x6,∴要找出x-1x6中的常数项,1x项的系数,1x2项的系数,Tr+1=Cr6x6-r(-1)rx-r=Cr6(-1)rx6-2r,令6-2r=0,∴r=3,令6-2r=-1,无解.令6-2r=-2,∴r=4.∴常数项为-C36+C46=-5.三、解答题15.求二项式(a+2b)4的展开式.[解析]根据二项式定理(a+b)n=C0nan+C1nan-1b+…+Cknan-kbk+…+Cnnbnn得(a+2b)4=C04a4+C14a3(2b)+C24a2(2b)2+C34a(2b)3+C44(2b)4=a4+8a3b+24a2b2+32ab3+16b4.16.m、n∈N*,f(x)=(1+x)m+(1+x)n展开式中x的系数为19,求x2的系数的最小值及此时展开式中x7的系数.[解析]由题设m+n=19,∵m,n∈N*.∴m=1n=18,m=2n=17,…,m=18n=1.x2的系数C2m+C2n=12(m2-m)+12(n2-n)=m2-19m+171.∴当m=9或10时,x2的系数取最小值81,此时x7的系数为C79+C710=156.17.已知在(3x-123x)n的展开式中,第6项为常数项.(1)求n;(2)求含x2的项的系数;(3)求展开式中所有的有理项.[解析](1)Tr+1=Crn•(3x)n-r•(-123x)r=Crn•(x13)n-r•(-12•x-13)r=(-12)r•Crn•xn-2r3.∵第6项为常数项,∴r=5时有n-2r3=0,∴n=10.(2)令n-2r3=2,得r=12(n-6)=2,∴所求的系数为C210(-12)2=454.(3)根据通项公式,由题意得:10-2r3∈Z0≤r≤10r∈Z令10-2r3=k(k∈Z),则10-2r=3k,即r=10-3k2=5-32k.∵r∈Z,∴k应为偶数,∴k可取2,0,-2,∴r=2,5,8,∴第3项、第6项与第9项为有理项.它们分别为C210•(-12)2•x2,C510(-12)5,C810•(-12)8•x-2.18.若x+124xn展开式中前三项系数成等差数列.求:展开式中系数最大的项.[解析]通项为:Tr+1=Crn•(x)n-r•124xr.由已知条件知:C0n+C2n•122=2C1n•12,解得:n=8.记第r项的系数为tr,设第k项系数最大,则有:tk≥tk+1且tk≥tk-1.又tr=Cr-18•2-r+1,于是有:Ck-18•2-k+1≥Ck8•2-kCk-18•2-k+1≥Ck-28•2-k+2即8!(k-1)!•(9-k)!×2≥8!k!(8-k)!,8!(k-1)!•(9-k)!≥8!(k-2)!•(10-k)!×2.∴29-k≥1k,1k-1≥210-k.解得3≤k≤4.∴系数最大项为第3项T3=7•x35和第4项T4=7•x74.。
(完整版)二项式定理典型例题解析
二项式定理 概念篇【例1】求二项式(a — 2b)4的展开式. 分析:直接利用二项式定理展开•解:根据二项式定理得 (a — 2b)4=c 0 a 4+c 4 a 3( — 2b)+C 4 a 2( — 2b)2+C 3 a( — 2b)3+C 4 (— 2b)4=a 4 — 8a 3b+24a 2b 2— 32ab 3+i6b 4.说明:运用二项式定理时要注意对号入座,本题易误把— 2b 中的符号“―”忽略【例2】展开(2x -2代2x分析一:直接用二项式定理展开式•解法一:(2x - 32)5=C °(2x)5+c l (2x)4(— q )+C ;(2x)3( — q )2+c 5(2x)2(—与)3+2x2x 2x 2xC 5 (2x)( — 2)4+C ;( — 2)52x 2 2x 2分析二:对较繁杂的式子,先化简再用二项式定理展开解法二:35--和件[C 5 (4x 3)5+C 1 (4x 3)4(— 3)+C 5 (4x 3)3(— 3)2+C 3 (4x 3)2( — 3)3+C 4 (4x 3)( — 3)4 + C 5( — 3)5]荷(1024x 15— 3840x 12+5760x 9— 4320x 6+l620x 3— 243) 32x 10说明:记准、记熟二项式(a+b)n 的展开式是解答好与二项式定理有关问题的前提条件对较复杂的二项式,有时先化简再展开会更简便【例3】在(x — ■ 3)10的展开式中,x 6的系数是 ________ . 解法一:根据二项式定理可知x 6的系数是c 4°.解法二:(x —,3)10 的展开式的通项是 T r+1=C ;0X 10—r ( — 3 )r .令10— r=6,即r=4,由通项公式可知含 x 6项为第5项,即T 4+1=C :0x 6( — . 3 )4=9C 40x 6. ••• x 6的系数为9C :0.上面的解法一与解法二显然不同,那么哪一个是正确的呢?问题要求的是求含 x 6这一项系数,而不是求含 x 6的二项式系数,所以应是解法二正确 如果问题改为求含 x 6的二项式系数,解法一就正确了,也即是C :0.说明:要注意区分二项式系数与指定某一项的系数的差异 二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项=32x 5— 12Ox 2+180 x135 405+87243 10 .32x=327°=32x 5— 120x 2+180 x 135 405x 4 +8x 7243 32x 10 .式无关,后者与二项式、二项式的指数及项数均有关【例4】已知二项式(3 . x — —)10,3x(1) 求其展开式第四项的二项式系数; (2) 求其展开式第四项的系数; (3) 求其第四项.分析:直接用二项式定理展开式•解:(3..X — -2)10 的展开式的通项是 T r+i =C ;o (3.、x )10—r ( — 2)r (r=o , 1,…,10).3x3x•••第9项为常数项,其值为256说明:二项式的展开式的某一项为常数项, 就是这项不含“变元”,一般采用令通项T r+1中的变元的指数为零的方法求得常数项.【例6】(1)求(1+2x)7展开式中系数最大项; (2)求(1 — 2x)7展开式中系数最大项.分析:利用展开式的通项公式, 可得系数的表达式, 列出相邻两项系数之间关系的不等 式,进而求出其最大值.7!2r7! 2r 1即 r!(7r)!(r 1)!(7 r 1)!7! 2r7! 2r 1r !(7 r)!(r 1)!(7 r 1)!(1)展开式的第 4项的二项式系数为 C ?0=120.(2)展开式的第 (3)展开式的第 2 4 项的系数为 C ;037(— — )3= — 77760.34 项为—77760( x )7十,即一77760 • x .z\.(3 .. x — —)10写成]3 x +(— A): 10,从而凑成二项式定理的形式3x 3x【例5】求二项式(x 2+ 1 )10的展开式中的常数项.2丘说明:注意把 分析:展开式中第r+1项为C ;0(x 2)10—r ( 1)r ,要使得它是常数项,必须使2Jxx ”的指数为零,依据是X 0=1 , x M 0.解:设第r+1项为常数项,则 Eg 2)102053r 1 r人 52(一)r (r=0, 1,…,10),令 20 —r=0,2 2••• T9=C 80(1)8=45 256解:(1)设第r+1项系数最大,则有C 72r (C r 1?r 1 C 72r ( C r 1?r 1系数最大项为 T 6=C 7 25X 5=672X 5.(2)解:展开式中共有 8项,系数最大项必为正项,即在第一、三、五、七这四项中取得•又因(1 - 2x)7括号内的两项中后两项系数的绝对值大于前项系数的绝对值, 故系数最大值 必在中间或偏右,故只需比较C 4( 2)4C 3T 5和T 7两项系数的大小即可-C6( 2)6 =4C >1, 所以系数最大项为第五项,即 T 5=560X 4.说明:本例中(1)的解法是求系数最大项的一般解法, (2)的解法是通过对展开式多项分析,使解题过程得到简化,比较简洁 .【例7】(1+2x)n 的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大 的项和系数最大的项.分析:根据已知条件可求出n ,再根据n 的奇偶性确定二项式系数最大的项.解:T 6=C ;j (2x)5, T 7=C 6 (2X )6,依题意有。
二项式定理-高考题(含答案)精选全文
3.(2012·天津高考理科·T5)在 2x2-⎪的二项展开式中,x的系数为(D)5.(2012·重庆高考理科·T4)⎛x+1⎫⎪的展开式中常数项为(B)(A)35精选全文完整版(可编辑修改)学习好资料欢迎下载二项式定理高考真题一、选择题1.(2012·四川高考理科·T1)相同(1+x)7的展开式中x2的系数是(D)(A)42(B)35(C)28(D)212.(2011·福建卷理科·T6)(1+2x)5的展开式中,x2的系数等于(B)(A)80(B)40(C)20(D)10⎛1⎫5⎝x⎭(A)10(B)-10(C)40(D)-404.(2011.天津高考理科.T5)在(x-2)6的二项展开式中,x2的系数为(C)2x(A)-15153(B)(C)-(D)448388⎝2x⎭3535(B)(C)(D)10516846.(2012·重庆高考文科·T4)(1-3x)5的展开式中x3的系数为(A)(A)-270(B)-90(C)90(D)2707.(2013·大纲版全国卷高考理科·T7)(1+x)8(1+y)4的展开式中x2y2的系数是(D)8.(2011·新课标全国高考理科·T8)⎛ x + a ⎫⎪⎛ 2x - 1 ⎫⎪的展开式中各项系数的和为 2,则该展开式中常 ( 12.(2011·湖北高考理科·T11) x - ⎪ 的展开式中含 x 15的项的系数为 17 .)16.(2011·安徽高考理科·T12)设(x - 1)21 = a + a x + a x 2 + + a x 21 ,则17.(2011·广东高考理科·T10) x( x - )7的展开式中, x 4 的系数是___84___ (用数字作答)A.56B.84C.112D.1685 ⎝x ⎭⎝ x ⎭数项为( D )(A )-40 (B )-20 (C )20 (D )409. (2011·重庆高考理科·T4) (1 + 3x) n (其中 n ∈ N 且 n ≥ 6 )的展开式中 x 5 与 x 6 的系数相等,则 n =( B)(A) 6 (B) 7 (C) 8 (D) 910. 2011·陕西高考理科·T4) (4 x - 2- x )6 ( x ∈ R )展开式中的常数项是 (C )(A ) -20(B ) -15(C )15 (D )20二、填空题11. ⎛ 1 ⎫6(2013·天津高考理科·T10) x - ⎪ 的二项展开式中的常数项为 15 .⎝ x ⎭⎛ 1 ⎫18⎝ 3 x ⎭13.(2011·全国高考理科·T13)(1- x )20 的二项展开式中,x 的系数与 x 9 的系数之差为0 .14.(2011·四川高考文科·T13 (x + 1)9 的展开式中 x 3的系数是 84 (用数字作答).15.(2011·重庆高考文科·T11) (1 + 2 x) 6的展开式中 x 4 的系数是240 .0 1 2 21a +a =0 .10112x18.(2011·山东高考理科·T14)若 x-x2⎪⎭19.(2012·大纲版全国卷高考理科·T15)若(x+)n的展开式中第3项与第7项的二项式系数相等,120.(2013·安徽高考理科·T11)若 x+3x⎭x4的系数为7,则实数a=_________。
二项式定理训练题(含答案)
⼆项式定理训练题(含答案)⼆项式定理训练题⼀、单选题(共4题;共8分)1.若⼆项式的展开式中各项的系数和为243,则该展开式中含x项的系数为()A. 1B. 5C. 10D. 202.已知⼆项式的展开式中第2项与第3项的⼆项式系数之⽐是2︰5,则的系数为()A. 14B.C. 240D.3.若,则的值为()A. B. C. D.4.在(x2﹣x﹣2)5的展开式中,x3的系数为()A. ﹣40B. 160C. 120D. 200⼆、填空题(共13题;共15分)5.⼆项式的展开式中常数项为________.6.展开式中常数项为________.7.的展开式中,x3的系数为________.8.已知的展开式中各项系数和为2,则其展开式中常数项是________.9.的⼆项展开式中,含项的系数为________.10.若,则的展开式的第4项的系数为________.(⽤数字作答)11.⼆项式的展开式的各项系数之和为________,的系数为________.12.已知的展开式中的系数为108,则实数________.13.的展开式中,的系数是20,则________.14.展开式中的系数是15,则展开式的常数项为________,展开式中有理项的⼆项式系数和为________.15.在的展开式中,的系数是________.16.的展开式中的系数为________.17.在的展开式中,的系数为15,则实数________.三、解答题(共3题;共25分)18.已知展开式中各项系数和⽐它的⼆项式系数和⼤992,其中.(Ⅰ)求的值;(Ⅱ)求其展开式中的有理项.19.设.(1)求;(2)求及关于的表达式.20.已知⼆项式的⼆项展开式中所有奇数项的⼆项式系数之和为128.(1)求的展开式中的常数项;(2)在(1+x)+(1+x)2+(1+x)3+(1+x)4+…+(1+x) 的展开式中,求项的系数.(结果⽤数字作答)答案解析部分⼀、单选题1.【答案】C【解析】【解答】由令得,解得,⼆项式展开式的通项公式为,令,解得,故展开式中含x项的系数为.故答案为:C.【分析】令,结合展开式中各项的系数和为234列⽅程,求得n的值,再利⽤⼆项式展开式的通项公式,即可求得含x项的系数.2.【答案】C【解析】【解答】⼆项展开式的第项的通项公式为由展开式中第2项与第3项的⼆项式系数之⽐是2︰5,可得:.解得:.所以令,解得:,所以的系数为故答案为:C【分析】由⼆项展开式的通项公式为及展开式中第2项与第3项的⼆项式系数之⽐是2︰5可得:,令展开式通项中x的指数为3,即可求得,问题得解.3.【答案】C【解析】【解答】展开式的通项为:,故,,根据对称性知:.故答案为:C.【分析】计算,根据⼆项式系数的对称性即可得到答案.4.【答案】C【解析】【解答】∵(x2﹣x﹣2)5=(x+1)5(x﹣2)5,∴x3的系数为.故答案为:C.【分析】先把(x2﹣x﹣2)5变形为(x+1)5(x﹣2)5,再利⽤⼆项式定理中的通项公式求出结果.⼆、填空题5.【答案】60【解析】【解答】⼆项式的展开式的通项公式为,令,解得,所以该⼆项式展开式中常数项为,故答案为:60。
二项式定理经典习题与答案
二项式定理1. 求(X ? 一丄)9展开式的:2x(1 )第6项的二项式系数; (2) 第3项的系数; (3)X 9的系数。
分析:(1)由二项式定理及展开式的通项公式易得:第6项的二项式系数为 C9 = 126 ;(2)T 3 (x 2)7 •(一丄)2 =9x 12,故第 3 项的系数为 9;2x(3)1=C ; (x 2)9」(-丄)r =(-丄)「C ;伙1…,令 18-3r =9,故 r = 3,所2x2求系数是(-丄)3C3 - -212 22. 求证:5151 -1能被7整除。
分析:5151 _1 =(49 +2)51 _1=C 5I 4951 +C5/ 950・2半…+c 5;49 ”250 + C ;;251 — 1 ,除CH 251 -1以外各项都能被7整除。
又 c ;; 251 -1 = (23)17 一1 =(7 +1)17 -1 =昭717 +c ;7716卄+砖7 + 硝 一1 显然能被7整除,所以5151 -1能被7整除。
3. 求9192除以100的余数。
分析:9192 = (90 +1)92=C 929092 +C 929091 半一+c9290 +c 9;由此可见,除后两项外均能被 100整除,而C 9290 + C 9; =8281 =82汉100+81 故9192除以100的余数为81。
4. (2009北京卷文)若(V 2)^a b. 2(a, b 为有理数),则a b -A . 33B . 29C . 23D . 19答案】Bw析】本题主要考查二项式定理及其展开式•属于基础知识 ' 基本运算的考查•41234•••( 1+Q +c4(V 2 丨 +c :(T 2) +c :W 2) +c :(T 2)=1 4.212 8 .2 4=1712& ,由已知,得 17 1^. 2 = a b.2 ,••• a - b=17 '12 = 29 •故选 B.5. ( 2009 北京卷理)若(1 • '.2)5 =a • b',2(a,b 为有理数),贝U a b = ( )A . 45B . 55C . 70D . 80答案】C解析】本题主要考查二项式定理及其展开式•属于基础知识、基本运算的考查5 0 1 2 3 4 51 =C5 .2 C5 ,2 C5 .2 C5 .2 C5 ,2 C5 ,2=1 20 2^2 20 4、、2 =45 29.2 ,由已知,得41 29.2 = a ^.2 ,二a • b = 41 • 29 二70•故选 C.16.已知(仮-一)n的展开式中,前三项系数的绝对值依次成等差数列2vx(1)证明展开式中没有常数项;(2)求展开式中所有的有理项分析:依条件可得关于n的方程求出n ,然后写出通项T r d ,讨论常数项和有理项对r 的限制。
(完整版)二项式定理(习题含答案)
二项式定理一、求展开式中特定项1、在30的展开式中,x 的幂指数是整数的共有( )A .4项 B .5项 C .6项 D .7项【答案】C【解析】()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=,30......2,1,0=r ,若要是幂指数是整数,所以=r 0,6,12,18,24,30,所以共6项,故选C . 3、若2531()x x +展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令1x =,可得展示式中各项的系数的和为32,所以232n =,解得5n =,所以2531()x x +展开式的通项为10515r r r T C x -+=,当2r =时,常数项为2510C =,4、二项式82x的展开式中的常数项为 .【答案】112【解析】由二项式通项可得,3488838122rrr r rr r x C xx C --+-=-=)()()(T (r=0,1,,8),显然当2=r 时,1123=T ,故二项式展开式中的常数项为112.5、41(23)x x--的展开式中常数项等于________.【答案】14.【解析】因为41(2)(13)x x--中4(13)x -的展开式通项为4C (3)r r x -,当第一项取2时,04C 1=,此时的展开式中常数为2;当第一项取1x-时,14C (3)12x -=-,此时的展开式中常数为12;所以原式的展开式中常数项等于14,故应填14.6、设20sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰,则()622x ⎛-⋅+ ⎝的展开式中常数项是 .【答案】332=-332()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰,6(=6的展开式的通项为663166((1)2r r rr r r r r T C C x ---+==-⋅⋅,所以所求常数项为3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-.二、求特定项系数或系数和7、8()x -的展开式中62x y 项的系数是( )A .56B .56-C .28D .28-【答案】A【解析】由通式r r r y x C )2(88--,令2=r ,则展开式中62x y 项的系数是56)2(228=-C .8、在x (1+x )6的展开式中,含x 3项的系数是 .【答案】15【解】()61x +的通项16r rr T C x +=,令2r =可得2615C =.则()61x x +中3x 的系数为15.9、在6(1)(2)x x -⋅-的展开式中含3x 的项的系数是 .【解析】6(1)(2)x x -⋅-的展开式中3x 项由336)(2x C -和226)(x -x C -⋅)(两部分组成,所以3x 的项的系数为552-2636-=-C C .10、已知dx x n 16e 1⎰=,那么nxx (3-展开式中含2x 项的系数为 .【答案】135【解析】根据题意,66e111ln |6e n dx x x=⎰==,则n x x )(3-中,由二项式定理的通项公式1r n r rr n T C a b -+=,可设含2x 项的项是616(3)r r r r T C x -+=-,可知2r =,所以系数为269135C ⨯=.11、已知()()()()10210012101111x a a x a x a x +=+-+-++-L ,则8a 等于( )A .-5B .5C .90D .180【答案】D 因为1010(1)(21)x x +=-+-,所以8a 等于8210(2)454180.C -=⨯=选D.12、在二项式1)2nx -的展开式中,只有第5项的二项式系数最大,则=n ________;展开式中的第4项=_______.【答案】8,1937x -.【解析】由二项式定理展开通项公式21()(2)33111()()22n r n r r r r r rr nn T C x x C x -++=-⋅=-,由题意得,当且仅当4n =时,rn C 取最大值,∴8n =,第4项为1193)333381()72C x x +-=-.13、如果7270127(12)x a a x a x a x -=++++ ,那么017a a a +++ 的值等于( )(A )-1 (B )-2 (C )0 (D )2【解析】令1x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70127(12)1a a a a -=++++=- ,令0x =,代入二项式7270127(12)x a a x a x a x -=++++ ,得70(10)1a -==,所以12711a a a ++++=- ,即1272a a a +++=- ,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1,15、(x﹣2)(x﹣1)5的展开式中所有项的系数和等于 【答案】0解:在(x﹣2)(x﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0,所以展开式中所有项的系数和等于0.16、在*3)()n n N ∈的展开式中,所有项的系数和为32-,则1x 的系数等于.【答案】270-【解析】当1=x 时,()322--=n,解得5=n ,那么含x1的项就是()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯,所以系数是-270.17、设0(sin cos )k x x dx π=-⎰,若8822108)1(x a x a x a a kx ++++=- ,则1238a a a a +++⋅⋅⋅+= .【答案】0.【解析】由0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰(cos sin )(cos 0sin 0)2ππ=-----=,令1x =得:80128(121)a a a a -⨯=++++ ,即01281a a a a ++++= 再令0x =得:80128(120)000a a a a -⨯=+⨯+⨯++⨯ ,即01a =所以12380a a a a +++⋅⋅⋅+=18、设(5x﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M﹣N=240,则展开式中x 的系数为 .【答案】150解:由于(5x﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0.解得 2n =16,或 2n =﹣15(舍去),∴n=4.(5x﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r?54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r?54﹣r =1×6×25=150,19、设8877108)1(x a x a x a a x ++++=- ,则178a a a +++= .【答案】255【解析】178a a a +++= 87654321a a a a a a a a +-+-+-+-,所以令1-=x ,得到=82876543210a a a a a a a a a +-+-+-+-,所以2551256-20887654321=-==+-+-+-+-a a a a a a a a a 三、求参数问题20、若n的展开式中第四项为常数项,则n =( )A .4B .5C .6D .7【答案】B【解析】根据二项式展开公式有第四项为2533333342)21()(---==n nn nxC xx C T ,第四项为常数,则必有025=-n ,即5=n ,所以正确选项为B.21、二项式)()1(*N n x n ∈+的展开式中2x 的系数为15,则=n ( )A 、5 B 、 6 C 、8 D 、10【答案】B【解析】二项式)()1(*N n x n ∈+的展开式中的通项为k n kn k x C T -+⋅=1,令2=-k n ,得2-=n k ,所以2x 的系数为152)1(22=-==-n n C C n n n ,解得6=n ;故选B .22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵4r+14T =C r r r a x -,∴当43r -=,即1r =时,133324T =C 48,2ax ax x a ==∴=.23、若()()411x ax ++的展开式中2x 的系数为10,则实数a =( )A1 B .53-或1 C .2或53- D. 【答案】B.【解析】由题意得4(1)ax +的一次性与二次项系数之和为14,其二项展开通项公式14r r rr T C a x +=,∴22144101C a C a a +=⇒=或53-,故选B .24、设23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+,当012254n a a a a +++⋅⋅⋅+=时,n 等于( )A .5B .6C .7D .8【答案】C. 【解析】令1x =,则可得2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-,故选C .四、其他相关问题25、20152015除以8的余数为( )【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数.试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,。
(完整版)二项式定理练习题(含答案)
二项式定理单选题(x+1)4的展开式中x的系数为A.2B. 4C. 6D.8答案B解析分析:根据题意,(x+1)4的展开式为T r+1=C4r x r;分析可得,r=1时,有x的项,将r=1代入可得答案.解答:根据题意,(x+1)4的展开式为T r+1=C4r x r;当r=1时,有T2=C41( x)1=4x;故答案为:4.故选B.点评:本题考查二项式系数的性质,特别要注意对x系数的化简.2 (x+2)6的展开式中x3的系数是A.20B.40C.80D. 160答案D解析分析:利用二项展开式的通项公式求出通项,令x的指数为3求出展开式中x3的系数.解答:设含x3的为第r+1,则Tr+1=C6rx6-r•2r,令6-r=3,得r=3,故展开式中x3的系数为C63•23=160.故选D.点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具3在(1+数学公式)4的展开式中,x的系数为A.4B.6C.8D.10答案B解析分析:根据题意,数学公式的展开式为Tr+1=C4r(数学公式)r;分析可得,r=2时,有x的项,将x=2代入可得答案.解答:根据题意,数学公式的展开式为Tr+1=C4r(数学公式)r;当r=2时,有T3=C42(数学公式)2=6x;故选B.点评:本题考查二项式系数的性质,特别要注意对x系数的化简.4(1+x)7的展开式中x2的系数是A.21B.28C.35D.42答案A解析分析:由题设,二项式(1+x)7,根据二项式定理知,x2项是展开式的第三项,由此得展开式中x2的系数是数学公式,计算出答案即可得出正确选项解答:由题意,二项式(1+x)7的展开式中x2的系数是数学公式=21故选A点评:本题考查二项式定理的通项,熟练掌握二项式的性质是解题的关键4 填空题二项式(2x-1)9的展开式中的第八项为________.答案-144x2解析分析:利用二项展开式的通项公式求出二项展开式的通项,令通项中的x取7,求出展开式中的第八项.解答:二项展开式的通项为Tr+1=(-1)r29-rC9rx9-r令r=7得T8=22C97x2=-144x2故答案为:-144x2点评:求二项展开式的特定项问题常用的工具是二项展开式的通项公式.5 (数学公式-数学公式)6的展开式中常数项是________.答案-160解析分析:据二项展开式的通项公式求得第r+1项,令x的指数为0得常数项.解答:展开式的通项为Tr+1=(-2)rC6rx3-r令3-r=0得r=3所以展开式的常数项为(-2)3C63=-160故答案为:-160.点评:二项展开式的通项公式是解决二项展开式特定项问题的工具.6 数学公式的展开式中x的系数为________.答案数学公式解析分析:由数学公式的展开式中的通项公式即可求得展开式中x的系数.解答:∵数学公式的展开式的通项公式Tr+1=数学公式数学公式,令r=1,得T2=数学公式•数学公式=数学公式x,∴数学公式的展开式中x的系数为数学公式.故答案为:数学公式.点评:本题考查二项式定理的应用,考查二项展开式中的通项公式的应用,属于中档题。
二项式定理练习题-含解析
二项式定理练习题一、单选题
A.252B.426
二、多选题
5.“杨辉三角”是二项式系数在三角形中的一种几何排列,中国南宋数学家杨辉在1261年所著的《详解九章算法》一书中就有出现,比欧洲早393年发现.如图所示,在“杨辉三角”中,除每行两边的数都是1外,其余每个数都是其“肩上”的两个数之和,例如第4行的6为第3行中两个3的和.则下列命题中正确的是()
A .由“在相邻两行中,除1以外的每个数都等于它肩上的两个数字之和”猜想
11C C C r r r n n n
-+=+B .由“第n 行所有数之和为2n ”猜想:012C C C C 2
n n n n n n +++⋅⋅⋅+=C .第20行中,第10个数最大
D .第15行中,第7个数与第8个数的比为7:9。
二项式定理练习(带答案)
1.3.1二项式定理一、选择题1.在(x -12x )10的二项展开式中,x 4的系数为( )A .-120B .120C .-15D .15[答案] C[解析] T r +1=C r 10x 10-r (-12x )r =(-12)r ·C r 10x 10-2r 令10-2r =4,则r =3.∴x 4的系数为(-12)3C 310=-15.2.在(x 2-2x)6的二项展开式中,x 2的系数为( ) A .-154B.154 C .-38 D.38[答案] C[解析] ∵T r +1=C r 6(x 2)6-r ·(-2x )r =C r 6(-1)r 22r -6x 3-r (r =0,1,2,…,6), 令3-r =2得r =1.∴x 2的系数为C 16(-1)1·2-4=-38,故选C. 3.在(2x 2-1x )5的二项展开式中,x 的系数为( )A .10B .-10C .40D .-40[答案] D[解析] 本小题考查二项式展开式的系数求法,考查运算能力.(2x 2-1x )5的展开式的通项为T r +1=C r 5(2x 2)5-r (-1x )r =C r 525-r (-1)r x 10-3r ,令10-3r =1得,r =3,∴T 4=C 3522(-1)3x =-40x .∴x 的系数是-40.[点评] 把二项式系数等同于项的系数是易犯的错误.4.在⎝ ⎛⎭⎪⎫x 2-1x n 的展开式中,常数项为15,则n 的一个值可以是( ) A .3 B .4 C .5 D .6[答案] D[解析] 通项T r +1=C r 10(x 2)n -r (-1x)r =(-1)r C r n x 2n -3r ,常数项是15,则2n =3r ,且C r n =15,验证n =6时,r =4合题意,故选D.5.在⎝⎛⎭⎪⎪⎫32x -1220的展开式中,系数是有理数的项共有( ) A .4项 B .5项 C .6项 D .7项[答案] A [解析] T r +1=C r 20(32x )20-r ⎝ ⎛⎭⎪⎫-12r =⎝ ⎛⎭⎪⎫-22r ·(32)20-r C r 20·x 20-r , ∵系数为有理数,∴(2)r与220-r 3均为有理数, ∴r 能被2整除,且20-r 能被3整除,故r 为偶数,20-r 是3的倍数,0≤r ≤20.∴r =2,8,14,20.二、填空题6. ⎝ ⎛⎭⎪⎪⎫2-13x 6的展开式中的第四项是________.[答案] -160x[解析] ⎝⎛⎭⎪⎪⎫2-13x 6的展开式中第4项为 T 4=C 3623·⎝⎛⎭⎪⎪⎫-13x 3=-160x . 7.x (x -2x )7的展开式中,x 4的系数是________.(用数字作答)[答案] 84[解析] x 4的系数,即(x -2x )7展开式中x 3的系数, T r +1=C r 7·x 7-r ·(-2x )r=(-2)r ·C r 7·x 7-2r , 令7-2r =3得,r =2,∴所求系数为(-2)2C 27=84.8.若(1+2)5=a +b 2(a 、b 为有理数),则a +b 等于________.[答案] 70 [解析] ∵(1+2)5=1+52+20+202+20+42=41+292=a +b 2,又a 、b 为有理数,∴⎩⎨⎧ a =41,b =29.∴a +b =41+29=70.。
二项式定理(习题含答案)
二项式定理一、 求展开式中特定项 1、在的展开式中,的幂指数是整数的共有( ) A .项 B .项 C .项 D .项 【答案】C 【解析】,,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C .3、若展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令,可得展示式中各项的系数的和为32,所以,解得,所以展开式的通项为,当时,常数项为, 4、二项式的展开式中的常数项为 . 【答案】112【解析】由二项式通项可得,(r=0,1,,8),显然当时,,故二项式展开式中的常数项为112.5、的展开式中常数项等于________.【答案】.【解析】因为中的展开式通项为,当第一项取时,,此时的展开式中常数为;当第一项取时,,此时的展开式中常数为;所以原式的展开式中常数项等于,故应填. 6、设,则的展开式中常数项是 .【答案】 332,30x 4567()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=30......2,1,0=r =r 2531()x x+1x =232n =5n =2531()x x+10515r rr T C x -+=2r =2510C=82)x3488838122rrr r rr r x C xx C --+-=-=)()()(T 2=r 1123=T 41(2)(13)x x--1441(2)(13)x x--4(13)x -4C (3)r rx -204C 1=21x-14C (3)12x -=-12141420sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰()622x ⎛⋅+ ⎝332=-()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰的展开式的通项为,所以所求常数项为.二、 求特定项系数或系数和7、的展开式中项的系数是( )A .B .C .D . 【答案】A【解析】由通式,令,则展开式中项的系数是.8、在x (1+x )6的展开式中,含x 3项的系数是 . 【答案】15【解】的通项,令可得.则中的系数为15.9、在的展开式中含的项的系数是 . 【答案】-55【解析】的展开式中项由和两部分组成,所以的项的系数为. 10、已知,那么展开式中含项的系数为 . 【答案】135【解析】根据题意,,则中,由二项式定理的通项公式,可设含项的项是,可知,所以系数为.11、已知,则等于( )A .-5B .5C .90D .180【答案】D 因为,所以等于选D.12、在二项式 的展开式中,只有第5项的二项式系数最大,则________;展开式中的第4项=_______.6(=6663166((1)2r r r r r rr r T C C x ---+==-⋅⋅3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-8()x 62x y 5656-2828-r r r y x C )2(88--2=r 62x y 56)2(228=-C ()61x +16r r r T C x +=2r =2615C =()61x x +3x 6(1)(2)x x -⋅-3x 6(1)(2)x x -⋅-3x 336)(2x C -226)(x -x C -⋅)(3x 552-2636-=-C C dx xn 16e 1⎰=nx x )(3-2x 66e111ln |6e n dx x x=⎰==n x x )(3-1r n r r r n T C a b -+=2x 616(3)r rr r T C x -+=-2r =269135C ⨯=()()()()10210012101111x a a x a x a x +=+-+-++-8a 1010(1)(21)x x +=-+-8a8210(2)454180.C -=⨯=1)2nx =n【答案】,.【解析】由二项式定理展开通项公式,由题意得,当且仅当时,取最大值,∴,第4项为. 13、如果,那么的值等于( )(A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令,代入二项式,得,令,代入二项式,得,所以,即,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1, 15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于 【答案】0 解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0, 所以展开式中所有项的系数和等于0. 16、在的展开式中,所有项的系数和为,则的系数等于 .【答案】【解析】当时,,解得,那么含的项就是,所以系数是-270. 17、设,若,则.【答案】0. 【解析】由81937x -21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-⋅=-4n =r n C 8n =119(163)333381()72C x x +-=-7270127(12)x a a x a x a x -=++++017a a a +++1x =7270127(12)x a a x a x a x -=++++70127(12)1a a a a -=++++=-0x =7270127(12)x a a x a x a x -=++++70(10)1a -==12711a a a ++++=-1272a a a +++=-*3)()n n N -∈32-1x 270-1=x ()322--=n5=n x1()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯0(sin cos )k x x dx π=-⎰8822108)1(x a x a x a a kx ++++=- 1238a a a a +++⋅⋅⋅+=0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰,令得:,即再令得:,即所以18、设(5x ﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0. 解得 2n =16,或 2n =﹣15(舍去),∴n=4. (5x ﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r ?54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r??54﹣r=1×6×25=150,19、设,则 .【答案】 【解析】,所以令,得到, 所以 三、 求参数问题20、若的展开式中第四项为常数项,则( )A .B .C .D .【答案】B【解析】根据二项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B. 21、二项式的展开式中的系数为15,则( )(cos sin )(cos0sin 0)2ππ=-----=1x =80128(121)a a a a -⨯=++++01281a a a a ++++=0x =80128(120)000a a a a -⨯=+⨯+⨯++⨯01a =12380a a a a +++⋅⋅⋅+=8877108)1(x a x a x a a x ++++=- 178a a a +++=255178a a a +++=87654321a a a a a a a a +-+-+-+-1-=x =82876543210a a a a a a a a a +-+-+-+-2551256-20887654321=-==+-+-+-+-a a a a a a a a a nn =45672533333342)21()(---==n nn nxC xx C T 025=-n 5=n )()1(*N n x n ∈+2x =nA 、5B 、 6C 、8D 、10 【答案】B【解析】二项式的展开式中的通项为,令,得,所以的系数为,解得;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵,∴当,即时,. 23、若的展开式中的系数为10,则实数( ) A1 B .或1 C .2或 D . 【答案】B.【解析】由题意得的一次性与二次项系数之和为14,其二项展开通项公式,∴或,故选B . 24、设,当时,等于( )A .5B .6C .7D .8 【答案】C . 【解析】令,则可得,故选C . 四、 其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数. 试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣?20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,)()1(*N n x n ∈+k n kn k x C T -+⋅=12=-k n 2-=n k 2x 152)1(22=-==-n n C C n n n 6=n 4r+14T =C r r r a x-43r -=1r =133324T =C 48,2ax ax x a ==∴=()()411x ax ++2x a =53-53-4(1)ax +14r r rr T C a x +=22144101C a C a a +=⇒=53-23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+012254n a a a a +++⋅⋅⋅+=n 1x =2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-。
高考数学《二项式定理》真题含答案
高考数学《二项式定理》真题含答案一、选择题1.(x +1)6的展开式中的第二项为( )A .6xB .15x 2C .6x 5D .15x 4答案:C2.⎝⎛⎭⎫x 2-2x 3 5 的展开式中的常数项为( ) A .80 B .-80C .40D .-40答案:C解析:由二项展开式通项知T k +1=(-2)k C k 5 ·(x 2)5-k ⎝⎛⎭⎫1x 3 k=(-2)k C k 5 x 10-5k ,令10-5k =0,得k =2.∴常数项为T 3=(-2)2C 25 =40.3.(多选)已知(a +2b )n 的展开式中第6项的二项式系数最大,则n 的值可能为( )A .8B .9C .10D .11答案:BCD4.若(x +2)⎝⎛⎭⎫a x -x 5 展开式中的常数项为80,则a =( )A .-2B .2C .±2D .4答案:B解析:⎝⎛⎭⎫a x -x 5 的展开式的通项公式为T k +1=C k 5 ·(-1)k ·a 5-k ·x 2k -5,显然,2k -5为奇数,故(x +2)⎝⎛⎭⎫a x -x 5 展开式中的常数项为C 25 ·a 3=80,所以a =2. 5.若(x -2y )6的展开式中的二项式系数和为S ,x 2y 4的系数为P ,则P S为( ) A .152 B .154C .120D .240答案:B解析:由题意得S =26=64,P =C 46 (-2)4=15×16=240,∴P S =24064 =154. 6.在二项式⎝⎛⎭⎫x +3x n 的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则展开式中常数项的值为( )A .6B .9C .12D .18答案:B解析:在⎝⎛⎭⎫x +3x n的展开式中令x =1,得A =4n ,各项二项式系数之和为B =2n ,由 4n +2n =72,得n =3,∴⎝⎛⎭⎫x +3x n =⎝⎛⎭⎫x +3x 3 ,其通项为T k +1=C k 3 (x )3-k ⎝⎛⎭⎫3x k =3k C k 3 x 3-3k 2,令3-3k 2=0,得k =1,故展开式的常数项为T 2=3C 13 =9. 7.⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数为( ) A .5 B .10C .15D .20答案:C解析:要求⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数,只要分别求出(x +y )5的展开式中x 2y 3和x 4y 的系数再相加即可,由二项式定理可得(x +y )5的展开式中x 2y 3的系数为C 35 =10,x 4y 的系数为C 15 =5,故⎝⎛⎭⎫x +y 2x (x +y )5的展开式中x 3y 3的系数为10+5=15.故选C. 8.设S =(x -1)4+4(x -1)3+6(x -1)2+4(x -1)+1,则S =( )A .(x -2)4B .(x -1)4C .x 4D .(x +1)4答案:C解析:S =C 04 (x -1)4+C 14 (x -1)3+C 24 (x -1)2+C 34 (x -1)1+C 44 (x -1)0=(x -1+1)4=x 4.9.(多选)已知(2+x )(1-2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则( )A .a 0的值为2B .a 5的值为16C .a 1+a 2+a 3+a 4+a 5+a 6的值为-5D .a 1+a 3+a 5的值为120答案:ABC解析:对于A ,令x =0,得a 0=2×1=2,故A 正确;对于B ,(1-2x )5的展开式的通项T k +1=C k 5 (-2x )k =(-2)k C k 5 x k ,所以a 5=2×(-2)5C 55 +1×(-2)4C 45 =-64+80=16,故B 正确;对于C ,令x =1,得(2+1)(1-2×1)5=a 0+a 1+a 2+a 3+a 4+a 5+a 6 ①,即a 1+a 2+a 3+a 4+a 5+a 6=-3-a 0=-3-2=-5,故C 正确;对于D ,令x =-1,得(2-1)[1-2×(-1)]5=a 0-a 1+a 2-a 3+a 4-a 5+a 6 ②,由①②解得a 1+a 3+a 5=-123,故D 不正确.综上所述,选ABC.二、填空题10.[2024·全国甲卷(理)](13+x )10的展开式中,各项系数中的最大值为______. 答案:5解析:方法一 二项式(13 +x )10的展开式的通项为T k +1=C k 10 (13)10-k x k . 由⎩⎨⎧Ck 10 (13)10-k >C k -110 (13)11-k ,C k 10 (13)10-k >C k +110 (13)9-k ,解得294 <k <334. 又k ∈N *,所以k =8.所以所求系数的最大值为C 810 (13 )2=5.方法二 展开式中系数最大的项一定在下面的5项中:C 510 (13 )5x 5,C 610 (13)4x 6,C 710 (13 )3x 7,C 810 (13 )2x 8,C 910 (13 )1x 9,计算可得,所求系数的最大值为C 810 (13)2=5. 11.在二项式(2 +x )9的展开式中,常数项是________,系数为有理数的项的个数是______________.答案:162 5解析:该二项展开式的第k +1项为T k +1=C k 9 (2 )9-k x k ,当k =0时,第1项为常数项,所以常数项为(2 )9=162 ;当k =1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.12.在(x -1x)7的展开式中,系数最大的是第________项. 答案:5解析:二项式⎝⎛⎭⎫x -1x 7的展开式的通项为T k +1=C k 7 ·x 7-k ·(-1)k x -k =(-1)k C k 7 x 7-2k ,故第k +1项的系数为(-1)k C k 7 ,当k =0,2,4,6时,系数为正,因为C 07 <C 67 <C 27 <C 47 ,所以当k =4时,系数最大,是第5项.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项式定理一、 求展开式中特定项 1、在的展开式中,的幂指数是整数的共有( ) A .项 B .项 C .项 D .项 【答案】C 【解析】,,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C .3、若展开式中的常数项为 .(用数字作答)【答案】10【解】由题意得,令,可得展示式中各项的系数的和为32,所以,解得,所以展开式的通项为,当时,常数项为, 4、二项式的展开式中的常数项为 . 【答案】112【解析】由二项式通项可得,(r=0,1,,8),显然当时,,故二项式展开式中的常数项为112.5、的展开式中常数项等于________.【答案】.【解析】因为中的展开式通项为,当第一项取时,,此时的展开式中常数为;当第一项取时,,此时的展开式中常数为;所以原式的展开式中常数项等于,故应填. 6、设,则的展开式中常数项是 .【答案】 332,30x 4567()r r rrr r x C x x C T 6515303303011--+⋅=⎪⎪⎭⎫ ⎝⎛⋅⋅=30......2,1,0=r =r 2531()x x+1x =232n =5n =2531()x x+10515r rr T C x -+=2r =2510C=82)x3488838122rrr r rr r x C xx C --+-=-=)()()(T 2=r 1123=T 41(2)(13)x x--1441(2)(13)x x--4(13)x -4C (3)r rx -204C 1=21x-14C (3)12x -=-12141420sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰()622x ⎛⋅+ ⎝332=-()200sin 12cos sin cos (cos sin )202x a x dx x x dx x x πππ⎛⎫=-+=+=-+= ⎪⎝⎭⎰⎰的展开式的通项为,所以所求常数项为.二、 求特定项系数或系数和7、的展开式中项的系数是( )A .B .C .D . 【答案】A【解析】由通式,令,则展开式中项的系数是.8、在x (1+x )6的展开式中,含x 3项的系数是 . 【答案】15【解】的通项,令可得.则中的系数为15.9、在的展开式中含的项的系数是 . 【答案】-55【解析】的展开式中项由和两部分组成,所以的项的系数为. 10、已知,那么展开式中含项的系数为 . 【答案】135【解析】根据题意,,则中,由二项式定理的通项公式,可设含项的项是,可知,所以系数为.11、已知,则等于( )A .-5B .5C .90D .180【答案】D 因为,所以等于选D.12、在二项式 的展开式中,只有第5项的二项式系数最大,则________;展开式中的第4项=_______.6(=6663166((1)2r r r r r rr r T C C x ---+==-⋅⋅3633565566(1)22(1)2T C C --=-⋅⋅+-⋅332=-8()x 62x y 5656-2828-r r r y x C )2(88--2=r 62x y 56)2(228=-C ()61x +16r r r T C x +=2r =2615C =()61x x +3x 6(1)(2)x x -⋅-3x 6(1)(2)x x -⋅-3x 336)(2x C -226)(x -x C -⋅)(3x 552-2636-=-C C dx xn 16e 1⎰=nx x )(3-2x 66e111ln |6e n dx x x=⎰==n x x )(3-1r n r r r n T C a b -+=2x 616(3)r rr r T C x -+=-2r =269135C ⨯=()()()()10210012101111x a a x a x a x +=+-+-++-L 8a 1010(1)(21)x x +=-+-8a8210(2)454180.C -=⨯=1)2nx =n【答案】,.【解析】由二项式定理展开通项公式,由题意得,当且仅当时,取最大值,∴,第4项为. 13、如果,那么的值等于( ) (A )-1 (B )-2 (C )0 (D )2 【答案】A【解析】令,代入二项式,得,令,代入二项式,得,所以,即,故选A .14、(﹣2)7展开式中所有项的系数的和为【答案】-1 解:把x=1代入二项式,可得(﹣2)7 =﹣1, 15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于 【答案】0 解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0, 所以展开式中所有项的系数和等于0. 16、在的展开式中,所有项的系数和为,则的系数等于 .【答案】【解析】当时,,解得,那么含的项就是,所以系数是-270. 17、设,若,则.【答案】0. 【解析】由81937x -21()(2)33111()()22n r n r r r r r r r nn T C x x C x -++=-⋅=-4n =r n C 8n =119(163)333381()72C x x +-=-7270127(12)x a a x a x a x -=++++L 017a a a +++L 1x =7270127(12)x a a x a x a x -=++++L 70127(12)1a a a a -=++++=-L 0x =7270127(12)x a a x a x a x -=++++L 70(10)1a -==12711a a a ++++=-L 1272a a a +++=-L *3)()n n N -∈32-1x 270-1=x ()322--=n5=n x1()x x C 1270313225-=-⨯⎪⎪⎭⎫ ⎝⎛⨯0(sin cos )k x x dx π=-⎰8822108)1(x a x a x a a kx ++++=-K 1238a a a a +++⋅⋅⋅+=0(sin cos )(cos sin )k x x dx x x ππ=-=--⎰,令得:,即 再令得:,即 所以18、设(5x ﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .再由二项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0. 解得 2n =16,或 2n =﹣15(舍去),∴n=4. (5x ﹣)n 的展开式的通项公式为 T r+1=?(5x )4﹣r ?(﹣1)r ?=(﹣1)r ??54﹣r ?.令4﹣=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r??54﹣r=1×6×25=150,19、设,则 . 【答案】【解析】, 所以令,得到, 所以 三、 求参数问题20、若的展开式中第四项为常数项,则( )A .B .C .D .【答案】B【解析】根据二项式展开公式有第四项为,第四项为常数,则必有,即,所以正确选项为B. 21、二项式的展开式中的系数为15,则( )(cos sin )(cos0sin 0)2ππ=-----=1x =80128(121)a a a a -⨯=++++K 01281a a a a ++++=K 0x =80128(120)000a a a a -⨯=+⨯+⨯++⨯K 01a =12380a a a a +++⋅⋅⋅+=8877108)1(x a x a x a a x ++++=-Λ178a a a +++=L 255178a a a +++=L 87654321a a a a a a a a +-+-+-+-1-=x =82876543210a a a a a a a a a +-+-+-+-2551256-20887654321=-==+-+-+-+-a a a a a a a a a nn =45672533333342)21()(---==n nn nxC xx C T 025=-n 5=n )()1(*N n x n ∈+2x =nA 、5B 、 6C 、8D 、10 【答案】B【解析】二项式的展开式中的通项为,令,得,所以的系数为,解得;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2【解析】∵,∴当,即时,. 23、若的展开式中的系数为10,则实数( ) A1 B .或1 C .2或 D . 【答案】B.【解析】由题意得的一次性与二次项系数之和为14,其二项展开通项公式,∴或,故选B . 24、设,当时,等于( )A .5B .6C .7D .8 【答案】C . 【解析】令,则可得,故选C . 四、 其他相关问题25、20152015除以8的余数为( ) 【答案】7【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数. 试题解析:解:∵20152015=2015=?20162015﹣?20162014+?20162013﹣?20162012+…+?2016﹣,故20152015除以8的余数为﹣=﹣1,即20152015除以8的余数为7,)()1(*N n x n ∈+k n kn k x C T -+⋅=12=-k n 2-=n k 2x 152)1(22=-==-n n C C n n n 6=n 4r+14T =C r r r a x-43r -=1r =133324T =C 48,2ax ax x a ==∴=()()411x ax ++2x a =53-53-4(1)ax +14r r rr T C a x +=22144101C a C a a +=⇒=53-23(1)(1)(1)(1)n x x x x ++++++⋅⋅⋅++2012n n a a x a x a x =+++⋅⋅⋅+012254n a a a a +++⋅⋅⋅+=n 1x =2312(21)22222225418721n nn n n +-+++⋅⋅⋅+==-=⇒+=⇒=-。