4刚体-例题
大学物理第四章习题解
![大学物理第四章习题解](https://img.taocdn.com/s3/m/16a02b1a3b3567ec112d8a34.png)
第四章 刚体的定轴转动4–1 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动,皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速度转动,在4s 内被动轮的角速度达到π/s 8,则主动轮在这段时间内转过了 圈。
解:被动轮边缘上一点的线速度为πm/s 45.0π8222=⨯==r ωv在4s 内主动轮的角速度为πrad/s 202.0π412111====r r v v ω主动轮的角速度为2011πrad/s 540π2==∆-=tωωα在4s 内主动轮转过圈数为20π520ππ2(π212π212121=⨯==αωN (圈)4–2绕定轴转动的飞轮均匀地减速,t =0时角速度为0ω=5rad/s ,t =20s 时角速度为08.0ωω=,则飞轮的角加速度α= ,t =0到t =100s 时间内飞轮所转过的角度θ= 。
解:由于飞轮作匀变速转动,故飞轮的角加速度为20s /rad 05.020558.0-=-⨯=-=tωωα t =0到t =100s 时间内飞轮所转过的角度为rad 250100)05.0(21100521220=⨯-⨯+⨯=+=t t αωθ4–3 转动惯量是物体 量度,决定刚体的转动惯量的因素有 。
解:转动惯性大小,刚体的形状、质量分布及转轴的位置。
4–4 如图4-1,在轻杆的b 处与3b 处各系质量为2m 和m 的质点,可绕O 轴转动,则质点系的转动惯量为 。
解:由分离质点的转动惯量的定义得221i i i r m J ∆=∑=22)3(2b m mb +=211mb =4–5 一飞轮以600r/min 的转速旋转,转动惯量为·m 2,现加一恒定的制动力矩使飞轮在1s 内停止转动,则该恒定制动力矩的大小M =_________。
解:飞轮的角加速度为20s /rad 20160/π26000-=⨯-=-=tωωα制动力矩的大小为m N π50π)20(5.2⋅-=-⨯==αJ M负号表示力矩为阻力矩。
【大题】工科物理大作业04-刚体定轴转动
![【大题】工科物理大作业04-刚体定轴转动](https://img.taocdn.com/s3/m/5f10729f3b3567ec112d8a1b.png)
【大题】工科物理大作业04-刚体定轴转动 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN0404 刚体定轴转动班号 学号 姓名 成绩一、选择题(在下列各题中,均给出了4个~5个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内)1.某刚体绕定轴作匀变速转动,对刚体上距转轴为r 处的任一质元来说,在下列关于其法向加速度n a 和切向加速度τa 的表述中,正确的是:A .n a 、τa 的大小均随时间变化;B .n a 、τa 的大小均保持不变;C .n a 的大小变化,τa 的大小保持恒定;D .n a 的大小保持恒定,τa 大小变化。
(C )[知识点]刚体匀变速定轴转动特征,角量与线量的关系。
[分析与题解] 刚体中任一质元的法向、切向加速度分别为 r a n 2ω=,r a τβ=当β = 恒量时,t βωω+=0 ,显然r t r a n 202)(βωω+==,其大小随时间而变,ra τβ=的大小恒定不变。
2. 两个均质圆盘A 和B ,密度分别为ρA 和ρB ,且B ρρ>A ,但两圆盘的质量和厚度相同。
若两盘对通过盘心且与盘面垂直的轴的转动惯量分别为A I 和B I ,则 A .B I I >A; B. B I I <A ;C .B I I =A ; D. 不能确定A I 和B I 的相对大小。
(B )[知识点]转动惯量的计算。
[分析与题解] 设A 、B 两盘厚度为d ,半径分别为R A 和R B ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>, 所以22B A R R < 且转动惯量221mR I =,则B A I I <3.在下列关于刚体的表述中,不正确的是:A .刚体作定轴转动时,其上各点的角速度相同,线速度不同;B .刚体定轴转动的转动定律为βI M =,式中β,,I M 均对同一条固定轴而言的,否则该式不成立;C .对给定的刚体而言,它的质量和形状是一定的,则其转动惯量也是唯一确定的;D .刚体的转动动能等于刚体上各质元的动能之和。
理论力学第4章 刚体的平面运动
![理论力学第4章 刚体的平面运动](https://img.taocdn.com/s3/m/3abf059802768e9950e73898.png)
独立的参变量。
2021/7/17
.
13
xAxA(t) yAyA(t) φφ(t)
称为刚体平面运动方程
对于每一瞬时 t ,都可以求出对应的 xA, yA, ,
平面图形S 在该瞬时的位置也就确定了。
2021/7/17
.
14
3.平面运动分解为平移和转动
当平面图形S上的点A不动时,则刚体作定轴转动, 当平面图形S上 的角 不变时,则刚体作平移。
思考: 下列运动是否可能?
V
V
v
V
V
v
V
v
2021/7/17
.
55
2) 加 速 度 投 影 形 式
aBaAaB n A aBA
当 0时aB n A 0
a
BA
a
n B
A
aA
[aB]AB[aA]AB
当 0 时 a B n A 0a B AB.A A a A
有[aB]A B[aA]A B
2021/7/17
车轮相对定系(Oxy)的平面运动(绝对运动)
车厢(动系 A x y ) 相对定系的平移(牵连运动) 车轮相对车厢(动系 A x y )的转动(相对运动)
2021/7/17
.
18
2021/7/17
.
19
转动部分的角度、角速度、角加速度与基点的选择无关。
φ1 φ2
ω1 ω2 1 2
平移部分的轨迹、速度与加速度都与基点的选择有关。
称点A为基点 平面图形的平面运动(绝对运动)可以看成是平面图形 一方面随基点A的平移(牵连运动),另一方面图形又绕 基点的转动(相对运动)的合成运动。
2021/7/17
大学物理第四章 刚体的转动部分的习题及答案
![大学物理第四章 刚体的转动部分的习题及答案](https://img.taocdn.com/s3/m/89f14d2d974bcf84b9d528ea81c758f5f61f29a3.png)
第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。
2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。
表达式为:αJ M =。
3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。
二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。
4_刚体力学习题详解
![4_刚体力学习题详解](https://img.taocdn.com/s3/m/dc5dddae680203d8ce2f24e4.png)
5. 对一绕固定水平轴O匀速转动的转盘,沿图示的同一水平直线从相反方向射入两颗质量相同、速率相等的子弹,并停留在盘中,则子弹射入后转盘的角速度应[ ]
(A) ;(B) ;(C) 不变;(D) ;(E)无法确定。
答案:B
解:
,
所以
6.光滑的桌面上有一长为 ,质量为 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴自由转动,其转动惯量为 ,开始静止。桌面上有质量为 的小球,在杆的一端垂直于杆以速率 与杆相碰,发生完全非弹性碰撞,与杆粘在一起转动,则碰后这一系统的角速度为
习题四
本章习题都是围绕(角)动量守恒以及能量守恒,把过程分析清楚,正确带入公式就可以解决。
一、选择题
1.一根长为 、质量为M的匀质棒自由悬挂于通过其上端的光滑水平轴上。现有一质量为m的子弹以水平速度v0射向棒的中心,并以v0/2的水平速度穿出棒,此后棒的最大偏转角恰为 ,则v0的大小为[ ]
(A) ;(B) ;(C) ;(D) 。
可先求出a,解得
, , ,
将 , 代入,得:
三.计算题
1一物体质量为m=20kg,沿一和水平面成30°角的斜面下滑,如图三1所示,滑动摩擦因数为 ,绳的一端系于物体上,另一端绕在匀质飞轮上,飞轮可绕中心轴转动,质量为M=10kg,半径为0.1m,求:
(1)物体的加速度。
(2) 绳中的张力。
解:对物体:
答案:(1) ;(2) 。
解:以启动前的位置为各势能的零点,启动前后应用机械能守恒定律
(1) 时,得 或
(2) 时
5.长 、质量 的匀质木棒,可绕水平轴O在竖直平面内转动,开始时棒自然竖直悬垂,现有图所示。求:(1)棒开始运动时的角速度;(2)棒的最大偏转角。
(完整版)第一章答案
![(完整版)第一章答案](https://img.taocdn.com/s3/m/db28188755270722192ef7bb.png)
第一章静力学公理和物体的受力分析思考题解答1-21-31-4 刚体上A点受力F作用,如图1-24所示,问能否在B点加一个力使刚体平衡?为什么?答:不能。
1-5 如图l-25所示结构,若力F作用在B点,系统能否平衡?若力F仍作用在B点,但可任意改变力F的方向,F在什么方向上结构能平衡?答:若力F作用在B点,系统不能平衡;F 在指向A方向上结构能平衡。
1-6 将如下问题抽象为力学模型,充分发挥你们的想象、分析和抽象能力,试画出它们的力学简图及受力图。
(1)用两根细绳将日光灯吊挂在天花板上;(2)水面上的一块浮冰;(3)一本打开的书静止于桌面上;(4)一个人坐在一只足球上。
答:(1)(2)(3)(4)1-7 图1-26中力F作用于三铰拱的铰链C处的销钉上,所有物体重量不计。
(1)试分别画出左、右两拱及销钉C的受力图;(2)若销钉C属于AC,分别画出左、右两拱的受力图;(3)若销钉C属于BC,分别画出左、右两拱的受力图。
习题b c g h i j k分离体1.分布载荷在受力分析时,不要用其合力代替2.B点约束?C 点约束?简图太简,表现不出约束类型和构件基本形状1.整体?2.没有C F3.三力汇交没表示AB三力汇交,AD二力杆。
1-31.ACE虽然三力汇交,但C、A点力的方向不确定2.没有A3.搞清楚铰链在与谁一体。
(e)1.AD是二力杆2. A三个杆件铰链3.轮的自重不计4.不一定要用三力汇交,三力汇交只有二个力的方向确定才能确定第三个力的方向。
第四章 刚体转动
![第四章 刚体转动](https://img.taocdn.com/s3/m/4c9acd0eba1aa8114431d957.png)
第四章 刚体的转动 问题4-1 以恒定角速度转动的飞轮上有两个点,一个点在飞轮的边缘,另一个点在转轴与边缘之间的一半处。
试问:在t ∆时间内,哪一个点运动的路程较长?哪一个点转过的角度较大?哪一个点具有较大的线速度、角速度、线加速度和角加速度? 解 在一定时间内,处于边缘的点,运动的路程较长,线速度较大;它们转动的角度、角速度都相等;线加速度、角加速度都为零。
考虑飞轮上任一点P ,它随飞轮绕转轴转动,设角速度为ω,飞轮半径为r 。
在t ∆内,点P 运动的路程为P P l r t ω=∆,对于任意点的角速度ω恒定,所以离轴越远的点(P r 越大)运动的路程越长。
又因为点P 的线速度P P v r ω=,即离轴越远,线速度也越大。
同理,点P 转动的角度P t θω=∆,对于飞轮上任一个点绕轴转动的角速度ω都相等,即在相等的时间内,飞轮上的点转动的角度都相等。
又角速度ω恒定,即线加速度0P Pd a r dtω==,角加速度0P d dtωα==.4-2 如果一个刚体所受合外力为零,其合力矩是否也一定为零?如果刚体所受合外力矩为零,其合外力是否也一定为零?解 不一定。
如图(a )轻杆(杆长为l )在水平面内受力1F 与2F 大小相等方向相反,合力为零,但它们相对垂直平面内通过O 点的固定轴的力矩1M F l =不为零。
如图(b ),一小球在绳拉力作用下在水平面内绕固定轴作圆周运动,小球所受的合外力通过O 点,它所受的力矩为零。
4-3 有两个飞轮,一个是木制的,周围镶上铁制的轮缘,另一个是铁制的,周围镶上木制的轮缘,若这两个飞轮的半径相同,总质量相等,以相同的角速度绕通过飞轮中心的轴转动,哪一个飞轮的动能较大。
1F(a ) (b )解 两飞轮的半径、质量都相同,但木制飞轮的质量重心靠近轮缘,其转动惯量要大于铁制轮缘。
飞轮的动能212k E J ω=,ω相同,转动惯量J 越大,动能越大。
即木制飞轮动能较大。
大学物理第四章-刚体的转动-习题及答案
![大学物理第四章-刚体的转动-习题及答案](https://img.taocdn.com/s3/m/672e8030580216fc700afdbf.png)
1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法 向加速度的大小是否随时间变化?
答:当刚体作匀变速转动时,角加速度 不变。刚体上任一点都作匀变速圆周运动,因此该点速
率在均匀变化,v l ,所以一定有切向加速度 at l ,其大小不变。又因该点速度的方向变化,
ω dr
(1)圆盘上半径为r、宽度为dr的同心圆环所受的摩擦力矩
为
dM
m
(
R2
2 rdr)grBiblioteka 2r 2 mgdr/
R2
负号表示摩擦力矩为阻力矩。对上式沿径向积分得圆盘所受
r dF
的总摩擦力矩大小为
M dM R 2r2mgdrdr 2 mgR
0
R2
3
(2)由于摩擦力矩是一恒力矩,圆盘的转动惯量 I 1 mr2 ,由角动量定理可得圆盘停止的 2
度.
解:碰撞过程满足角动量守恒:
2 3
mv0l
1 2
mv0
2 3
l
I
而
I m( 2 l)2 2m(1 l)2 2 ml2
3
33
所以
mv0l
2 3
ml 2
由此得到: 3v0 2l
2m
1 3
l
O⅓l
1 2
v
0
2 3
l
m
⅓l m v0
⅓l
15. 如图所示,A和B两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 JA=10 kg·m2 和 JB
2
2
22
2
2
1 16
( Ld14
1 2
ad24
第四章刚体的转动习题
![第四章刚体的转动习题](https://img.taocdn.com/s3/m/1703e6db915f804d2a16c1b0.png)
第四章 刚体的转动1. 一质量为m 0 ,长为l 的棒能绕通过O 点的水平轴自由转动.一质量为m ,速率为v 0的子弹从水平方向飞来,击中棒的中点且留在棒内,如图所示。
则棒中点的速度为( ). A .00m m mv +; B .00433m m mv +;C .0023m mv ; D .043m mv 。
2。
一根长为l ,质量为m 的均匀细棒在地上竖立着。
如果让竖立着的棒以下端与地面接触处为轴倒下,则上端到达地面时速率应为( )。
A .gl 6;B .gl 3;C .gl 2;D .lg23. 3. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一个是正确的?( ) A .角速度从小到大,角加速度从大到小 B .角速度从小到大,角加速度从小到大 C .角速度从大到小,角加速度从大到小 D .角速度从大到小,角加速度从小到大4。
一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度ω( ) A .增大 B .不变 C .减小 D .不能确定5。
一静止的均匀细棒,长为L ,质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML 。
一质量为m 速率为v 的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为( )A .ML mvB .ML mv 23C .ML mv 35D .ML mv 476. 在某一瞬时,物体在力矩作用下,则有( )A 、角速度ω可以为零,角加速度α也可以为零;B 、角速度ω不能为零,角加速度α可以为零;C 、角速度ω可以为零,角加速度α不能为零;D 、角速度ω与角加速度α均不能为零。
大学物理-刚体的定轴转动-习题和答案
![大学物理-刚体的定轴转动-习题和答案](https://img.taocdn.com/s3/m/ea57d1796c175f0e7dd13747.png)
第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。
刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。
又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。
2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。
()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====。
既 z M I β=。
所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。
3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。
4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。
第4章刚体的转动习题
![第4章刚体的转动习题](https://img.taocdn.com/s3/m/50f30b7c24c52cc58bd63186bceb19e8b8f6ecf5.png)
第四章刚体的转动习题(一)教材外习题一、选择题:1.关于刚体对轴的转动惯量,下列说法中正确的是(A)只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C)取决于刚体的质量、质量的空间分布和轴的位置。
(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
()2.两个均质圆盘A和B的密度分别为ρA和ρB,若ρA>ρB,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A和J B,则(A)J A>J B(B)J B>J A(C)J A=J B(D)J A、J B哪个大,不能确定()3.花样滑冰运动员绕过自身的竖直轴转动,开始时两臂伸开,转动惯量为J0角速度为ω0,然后她将两臂收回,使转动惯量减少J0/3。
这时她转动的角速度变为(A)ω0/3 (B)(1/3)ω0(C)3ω0(D)3ω0()4.如图所示,一水平刚性轻杆,质量不计,杆长l =20cm,其上穿有两个小球。
初始时,两小球相对杆中心O对称放置,与O的距离d=5cm,二者之间用细线拉紧。
现在让细杆绕通过中心O的竖直固定轴作匀角速的转动,转速为ω0,再烧断细线让两球向杆的两端滑动。
不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为(A)ω0 (B)2ω0(C)ω0/2 (D)ω0/4()二、填空题:1.半径为r =1.5m的飞轮,初角速度ω0=10rad·s-1,角加速度β = -5rad·s-2,则在t=_______ _________时角位移为零,而此时边缘上点的线速度v= _______________________。
2.半径为30cm的飞轮,从静止开始以0.50rad·s-2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240︒时的切向加速度a t =______________,法向加速度a n =_______________。
05-4刚体的角动量定理和角动量守恒定律
![05-4刚体的角动量定理和角动量守恒定律](https://img.taocdn.com/s3/m/10c77061783e0912a2162af6.png)
l
M
m
v0
系统的角动量守恒
mv0l J
1 2 2 J ? Ml ml 3
l
M
棒的转 子弹的转 动惯量 动惯量
m
v0
mv0 M ( m)l 3
例1 一质量为M,长为l 的均质细棒,可绕过其顶端的 水平轴自由转动。当杆静止时,一质量为m的子弹以 水平速度v0射入细杆底端并穿出,穿出后子弹速度损 失3/4,求子弹穿出后棒的角速度
二 定轴转动刚体的角动量定理
根据转 动定律
刚体对定轴的转动惯量不变
d M J J dt
z
k
O
F
r
作用在刚体上的合外力对转轴的力 矩等于刚体对转轴的角动量变化率
两边做积分
d( J ) dL M dt dt
t2
t Mdt L dL L2 L1
L2
1
20
m2 O2 R2
1
2
O2 R2
O1 R1
f
取两圆柱为一系统,该系统受到的合外力矩为零,而 两圆柱相互接触处的摩擦力是内力矩,那么该系统是 否角动量守恒呢?
质点的运动
刚体的定轴转动
角速度 角加速度 转动 J 惯量 力矩
dr 速度 v dt 2 dv d r 2 加速度 a dt dt
O
L
m
m
以单摆和细杆作为系统,在碰撞过程系统所受合 外力矩为零,系统角动量守恒
O
设小球绳长为l, 根据角动量守恒 弹性碰撞, 机械能守恒
mvl J
1 2 1 2 mv J 2 2
1 2 mL 3
L
l
理论力学-刚体静力学专门问题
![理论力学-刚体静力学专门问题](https://img.taocdn.com/s3/m/e65fcf0eba0d4a7303763aac.png)
第四章刚体静力学专门问题一、是非题1 .摩擦力的方向总是和物体运动的方向相反。
()2.摩擦力是未知约束反力,其大小和方向完全可以由平衡方程来确定。
()3.静滑动摩擦系数的正切值等于摩擦角。
()4 .在任何情况下,摩擦力的大小总等于摩擦力系数与正压力的乘积。
()5.当考虑摩擦时,支承面对物体的法向反力 N 和摩擦力F 的合力R 与法线的夹角力称为摩擦角。
6. 只要两物体接触面之间不光滑,并有正压力作用,则接触面处摩擦力一定不为零。
7. 在求解有摩擦的平衡问题(非临界平衡情况)时,静摩擦力的方向可以任意假定,而其大小一般是未知的O8. 滚阻力偶的转向与物体滋动的转向相反。
二、选择题1. 五根等长的细直杆皎接成图示杆系结构,各杆重量不计若R A =P C = P,且垂直 BD 则杆BD 的内力 S BE =① -P (压); ② -V3P (压); ③-J3P/3 (压); ④—J3P /2 (压)。
2. 图示(a )、(b )两结构受相同的荷载作用,若不计各杆自重,则两结构 A 支座反 力, B 支座反务 ,杆 AC 内力,杆 BC 内力。
① 相同; r F②不同。
[入 甲3. 若斜面倾角为a ,物体与斜面间的摩擦系数为 f, -欲使物体能静止在斜面上,则必须满足的条件 些 ______________________ 盐 W_14. 已知杆OA 重W 物块M 重Q 杆与物块间有摩擦,而物体 与地面间的摩擦略去不计。
当水平力 P 增大而物块仍然保持平衡 时,杆对物体M 的正压力。
①由小变大;① tg f ② tg f③ tg④ tgV a ;> a ;a V f ;a > f o② 由大变小; ③ 不变。
5 .物A 重100KN,物B 重25KN A 物与地面的摩擦系数为 0.2 ,滑轮处摩擦不计。
则物体 A 与地面间的摩擦 为① 20KN ; ② 16KN ; ③ 15KN ;④ 12KN 。
第4章 刚体的运动
![第4章 刚体的运动](https://img.taocdn.com/s3/m/b58ed70911a6f524ccbff121dd36a32d7375c727.png)
角动量的时间变化率。
非相对论情况d下L , 转I d动惯量II为常量:
dt dt 所以,经典力学中刚体的转动定理可表示为:
M I
➢当外力矩一定时,转动惯量越大,则角加速度越小。说明 转动惯量I是刚体转动惯性大小的量度。
例题 4-5
设 m1 > m2,定滑轮可看作匀质圆盘,其质量为M 而半径为r 。绳的质量不计且与滑轮无相对滑动,
Li ri pi
对时间求导: dLi
dt
d dt ( ri pi
)
dri dt
pi
ri
dpi dt
vi mivi ri fi ri fi Mi
其中:
fi
dpi dt
Mi ri fi
为第i个质元所受的作用力; 为fi对转轴的力矩。
对整个刚体: dL d
外力矩持续作用一段时间后,刚体的角速度才会改变。
由转动定理: Mdt dL
t2
Mdt
t1
L2dL
L1
L2
L1
I 2
I 1
式中
t2 t1
Mdt
称为合外力矩在
Δt
=
t2-t1内的冲量矩(N·m
·s)。
角动量定理:刚体所受合外力矩的冲量矩等于刚体在同一
时间内角动量的增量。
➢角动量定理对非刚体也成立,此时:
由平行轴定理:
z
I
Ic
Mh 2
1 12
ML2
Mh 2
当h=L/2时,与(1)的情况相同,由上式:
zc h
C
L、M
I 1 ML2 Mh 2 1 ML2 M( 1 L )2 1 ML2
12
12
2
刚体运动学转动惯量定轴转动
![刚体运动学转动惯量定轴转动](https://img.taocdn.com/s3/m/4643ef95a45177232e60a260.png)
(4)刚体运动学、转动惯量、定轴转动
一、刚体、刚体的运动 刚体:在外力作用下,形状和大小都不发生变化的物 体 . (任意两质点间距离保持不变的特殊质点组) 刚体的运动形式:平动(Translation )、转动( rotation)
➢ 平动:若刚体中所有点的运 动轨迹都保持完全相同,或者说 刚体内任意两点间的连线总是平 行于它们的初始位置间的连线
dm
面密 ,度 面: 元 dS :
dV 体密 ,度 体: 元 dV : dm
注意
刚体对轴的转动惯量 J
与刚体总质量有关 与刚体质量分布有关 与转轴的位置有关
只有对于几何形状规则、质量连续且均匀分布 的刚体,才能用积分计算出刚体的转动惯量
(4)刚体运动学、转动惯量、定轴转动
几 种 常 见 刚 体 的 转 动 惯 量
解:取半径为r宽为dr的薄圆环柱为微元
dmdV2rdrl
OR
d Ir2dm 2lr3dr
Id I0 R2 lr 3d r1 2R 4l转动惯量与l无关,
R m 2lI1 2m2 R
实心圆柱对其轴的转 动惯量也是mR2/2
(4)刚体运动学、转动惯量、定轴转动 练习
1.由长 l 的轻杆连接的质点如图所示,求质点系对过 A 垂直于纸面的轴的转动惯量
ct,即
d
ct ,积分
dc
t
tdt
得
dt 1 ct 2
0
0
2
当t=300s 时
18r0 m 0 1 i6 0 nπ 0 r0 a s 1 d
所以
c2 t22 3 62 0 π 0r0 0 a s d 37 πr5a s d 3
(4)刚体运动学、转动惯量、定轴转动
【工程力学 课后习题及答案全解】第4章 刚体静力学专题习题解
![【工程力学 课后习题及答案全解】第4章 刚体静力学专题习题解](https://img.taocdn.com/s3/m/953d3b2fa0116c175e0e488c.png)
工程力学(1)习题全解第4章 刚体静力学专题4-1 塔式桁架如图所示,已知载荷F P 和尺寸d 、l 。
试求杆1、2、3的受力。
解:截面法,受力如图(a ) dl=αtan ,22cos dl d +=α0=∑x F ,0cos 2P =−αF FP 222F dd l F +=(拉) 0=∑AM ,02P 1=⋅−l F d FP 12F dlF =(拉)0=∑y F ,0sin 231=++αF F FP 33F dlF −=(压)4-2 图示构件AE 和EQ 铰接在一起做成一个广告牌。
它承受给定的分布风载。
试求解:(1)先将分布载荷合成于E 点88894.2)7.7402963(8.47.740=×−+×=F N由节点C ,显然 F CQ = 0 (1) (2)截面法,图(a )0=∑D M ,08.4538.4=××+×−QG F F ,F QG = 14815 N (拉) (2)0=∑B M ,F QD = 00=∑y F ,054=+×BC QG F F ,11852−=BC F N (压) (3) (3)截面法,图(b )习题4-3图习题4-4图0=∑E M ,08.04.2)7.7402963(212.14.27.7404.253=××−−××−××−AB F2963−=AB F N (压) (4) (4)节点B ,图(c )0=∑y F ,05454=−−′BQ BC AB F F F ,05411852296354=−+×−BQ F F BQ = 11852 N (拉)(5)0=∑x F ,0)(53=++′BE BQ ABF F F ,0)118522963(53=++−BE F ,5333−=BE F N (压) (6) 又 11852−==BC CD F F N (压)(7)4-3 桁架的载荷和尺寸如图所示。
4_刚体的定轴转动
![4_刚体的定轴转动](https://img.taocdn.com/s3/m/aa5990cc8bd63186bcebbca3.png)
从以上各式即可解得
m2 m1 g M r / r m2 m1 g M / r a
J m 2 m1 2 r 1 m 2 m1 m 2
37
若m=0,Mr=0,则
1 m1 2 m 2 m g M / r 2 T1 m1 g a 1 m 2 m1 m 2 1 m2 2m1 m g+M / r 2 T2 m1 g-a 1 m 2 m1 m 2
物体转动与否不仅与力的方向大小有关还与力作用的位置有关定轴转动的力矩只能引起物体变形对转动无贡献转动平面内a力与转轴平行b力与转轴垂直对转动无贡献仅使物体发生形变只有与转轴垂直的分力产生力矩使物体绕轴转动的垂直距离转轴到力在定轴动问题中如不加说明所说的力矩是指力在转动平面内的分力对转轴的力矩
第三章
刚体的定轴转动
l/2 2
28
(2)建立坐标系,分割质量元
x J x 2 dm l o 2 m x dx dx x 0 l 1 3 2 l 2 1 2 ml J C m ml 12 3 2
J x 2 dm
(3)建立坐标系,分割质量元
x
2
m x dx l / 2 h l 1 2 2 2 ml mh J C mh 12
25
转动惯量
多个质点组成的系统:
J mi ri
i
2
质量连续分布的刚体:
J r dm
2
平动 m 转动 J
v w
a a
mv Jw
dv F ma m dt d M z J J dt
26
小结
• • • • • 刚体的概念 刚体的运动自由度 刚体定轴转动的自由度 刚体定轴转动的运动方程 刚体定律转动定律
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2vc d dt l sin
3(sin 3 sin 2 cos 2 cos ) g ac (1 3 sin 2 ) 2 4 6 cos 3 cos N m( g ac ) m g (1 3 sin 2 ) 2
动平衡
练习14.18(p533):
半径为a的匀质球以速度v沿水平表面作纯滚动的过程中与高度为 h<a的台阶发生非弹性碰撞。求球能翻越台阶的最小速度(假定在 碰撞点没有发生滑动)
解:碰撞前后关于A点角动量守恒:
m v0 (a h) I c0 I A
w0 a
v0
A
0 v0 / a
练习13.7(p528):
镜框紧帖着墙站在粗糙的钉上,稍受扰动就向下倾倒。求镜框跳离钉 子时与墙所作的角。
解:
m glsin I =? m g N m ay
m glsin / I 1 2 I m gl(1 cos ) 2
2
14.10(p413) 半径为r的匀质球体在半径为R的球形碗 内作无滑动的滚动。求球在碗底附近小幅度摆动的周期。
解法二:用能量守恒求解
即
上式求导可得
解法三:关于瞬心角动量定理
14.16(p413)将半径为r的小球轻轻搁在半径为R的静止大 球的顶端,小球就向下滚动。问小球滚到何处将飞离大球。
A点竖直速度为零:
C mg vc N A
l vc sin 2 1 I c ml 2 12
vc
2 l
3gl(1 cos ) sin vc 2 1 3 sin
2 2
dvc d 3gl(1 cos ) sin 2 d 2vc 2 dt d 1 3 sin dt
例6(p341/264):质量为m的小球以速度v在水平冰面 上运动,撞在与小球运动方向垂直的一根横木一端,并 粘附在横木上。设横木的质量为M,长度为l。忽略冰面 摩擦,求解碰撞之后系统的运动情况。刚刚发生碰撞之 后横木上有一点是瞬时静止的,问该点在何处?
解答:
Consider a simple rigid body consisting of two particles m separated by a massless (轻质)rod of length 2l. The midpoint of the rod is attached to a vertical axis(竖直轴) which rotates at angular speed w. The rod is skewed at an angle a as shown in the sketch. Please find the angular momentum of the system and the torque about the midpoint.
I A I c m a2
碰撞后机械能守恒:
h
1 I A 2 mgh 2 2 2mgh ( I c ma ) v0 a0 a I c ma (a h)
例题: 一质量为m,长为l的匀质细杆铅直地放置在光滑
的水平地面上。当杆由静止倒下时,求地面对杆端的支 撑力。
1 1 1 2 解: 2 mg (1 cos ) I c mv c 2 2 2
an y at N
mg 2l
质心加速度:
a l
跳离时,N=0, 得:
m gl2 [2(1 cos ) cos sin 2 ] g I
1 4 2 2 I m(2l ) ml 3 3 得: cos 1 / 3