高中奥数_函数 不等式 数列 极限 数学归纳法
数列极限数学归纳法用数学归纳法证明不等式
数列、极限、数学法·用数学法明不等式教课目1.坚固掌握数学法的明步,熟表达数学法明的程.2.通案例,学生掌握运用数学法明不等式的思想方法.3.培育学生的思能力,运算能力,和剖析、解决的能力.教课要点与点要点:稳固数学法意和有效性的理解,并能正确表达解程,以及掌握利用数学法明不等式的基本思路.点:用数学法明的不一样方法的及解技巧.教课程(一)复回:上一次我已学了数学法以及运用数学法解的步,同学想“多米骨牌”游,出数学法的步?生:数学法是用于明某些与自然数相关的命的一种方法.要命P(n).( 1)明当 n 取第一个 n0,正确,即 P(n0)正确;(2)假 n=k( k∈ N且 k≥n0)正确,明当 n=k+1 ,也正确,即由 P(k)正确推出 P (k+1)正确,依据( 1),( 2),就能够判断命 P(n)于从 n0开始的所有自然数 n 都正确.:演示小黑板或运用投影作.(作的目的是从中一步合适地运用假是数学法的关)作顶用数学法明:2+4+6+8+⋯ +2n=n(n+1).如采纳下边的法,?明:( 1)当 n=1 ,左 =2,右 =2,等式建立.(2)假 n=k ( k∈N,k≥1),等式建立,即2+4+6+⋯+2k=k( k+1).当 n=k+1 ,2+4+6+⋯+2k+(k+1)所以 n=k+1 ,等式也建立.依据( 1)( 2)可知,于随意自然数n,原等式都能建立.生甲:明程正确.生乙:明方法不是数学法,因第二步明,没有用假.:从形式上看此种明方法是数学法,但在要明 n=k+1 正确,未用到假,直接采纳等差数列乞降公式,背了数学法的本特色推性,所以不可以称之数学法.所以告我在运用数学法明,不可以机械套用两个步,在明 n=k+1 命建立,必定要利用假.(堂上作,指出学生作中不当之,有益于稳固旧知,新知的学清阻碍,使学生引以戒,所温故而知新)(二)授新:在明确数学法本的基上,我来共同研究它在不等式明中的用.(板)例 1 已知 x> -1 ,且 x≠0,n∈N,n≥2.求:( 1+x)n>1+nx.:第一 n=2 的状况.(板):( 1)当 n=2 ,左 =(1+x)2=1+2x+x2,右 =1+2x,因 x2> 0,原不等式建立.(在里,必定要之所以左>右,关在于 x2> 0 是由已知条件 x ≠ 0 得,下边明做)(2)假 n=k ( k≥2),不等式建立,即( 1+x)k> 1+kx.:在要的目是(1+x)k+1>1+(k+1)x,同学考.生:因用数学法,在明 n=k+1 命建立,必定要运用假,所以当n=k+1 .结构出假适的条件.所以有:( 1+x)k+1=( 1+x)kk( 1+x),因 x>-1(已知),所以 1+x>0 于是(1+x)(1+x)>(1+kx)(1+x).:将命化成如何明不等式(1+kx)( 1+x)≥ 1+( k+1)x.然,上式中“ =”不建立.故只要:( 1+kx)( 1+x)> 1+(k+1) x.提:明不等式的基本方法有哪些?生甲:明不等式的基本方法有比法、合法、剖析法.(提的目的是使学生明确在第二步明中,合理运用假的同,其本是不等式明,所以明不等式的所有方法、技巧手段都合用)生乙:明不等式( 1+kx)( 1+x)> 1+(k+1)x,可采纳作差比法.(1+kx)( 1+x) -[1+ ( k+1)x]=1+x+kx+kx2-1-kx-x=kx2>0(因 x≠0, x2>0).所以,( 1+kx)( 1+x)> 1+( k+1)x.生丙:也可采纳合法的放技巧.(1+kx)( 1+x) =1+kx+x+lx 2=1+(k+1)x+kx2.因 kx2> 0,所以 1+(k+1) x+kx2> 1+(k+1) x,即( 1+kx)( 1+x)> 1+(1+k)x 建立.生丁:⋯⋯(学生可能有其余多种明方法,培育了学生思品的广性,教及引):些方法,哪一种更便,更合适数学法的写格式?学生丙用放技巧明然更便,利于写.(板)将例 1 的格式完好范.当 n=k+1 时,因为 x> -1 ,所以 1+x> 0,于是左侧 =( 1+x)k+1=( 1+x)k(1+x)>( 1+x)( 1+lx )=1+(k+1)x+kx2;右侧 =1+(k+1)x.因为 kx2> 0,所以左侧>右侧,即( 1+x)k+1>1+(k+1)x.这就是说,原不等式当 n=k+1 时也建立.依据( 1)和( 2),原不等式对任何不小于 2 的自然数 n 都建立.(经过例 1 的解说,明确在第二步证明过程中,固然能够采纳证明不等式的相关方法,但为了书写更流利,逻辑更谨慎,往常经概括假定后,要进行合理放缩,以达到转变的目的)师:下边再举例子,来说明合理放缩的重要性.(板书)例 2 证明: 2n+2>n2,n∈N+.师:( 1)当 n=1 时,左侧 =21 +2=4;右侧 =1,左侧>右侧.所以原不等式成立.(2)假定 n=k 时( k≥1 且 k∈ N)时,不等式建立,即2k +2>k2.此刻,请同学们考虑n=k+1 时,如何论证 2k+1+2>( k+1)2建立.生:利用概括假定2k+1+2=2.2k+2=2(2k+2)-2 > 2· k2-2 .师:将不等式 2k2 -2 >( k+1)2,右侧睁开后得: k2+2k+1,因为转变目的十分明确,所以只要将不等式的左侧向 k2 +2k+1 方向进行转变,即:2k2-2=k 2 +2k+1+k2 -2k-3 .由此不难看出,只要证明k2 -2k-3 ≥0,不等式 2k2-2 > k2 +2k+1 即建立.生:因为 k2-2k-3= ( k-3 )( k+1),而 k∈N,故 k+1>0,但 k-3 ≥ 0 建立的条件是 k≥ 3,所以当 k∈ N时, k-3 ≥ 0 未必建立.师:不建立的条件是什么?生:当 k=1,2 时,不等式 k-3 ≥ 0 不建立.师:因为使不等式不建立的k 值是有限的,只要利用概括法,将其逐个考证原命题建立,所以在证明第一步中,应增补考证n=2 时原命题建立,那么,n=3 时能否也需要论证?生:n=3 需要考证,这是因为数学概括法中的第一步考证是第二步概括假定的基础,而第二步中关于 k 是大于或等于 3 才建立,故在考证时,应考证 n=3 时,命题建立.师:(增补板书)当n=2 时,左=22+2=6,右=22=4,所以左>右;当 n=3 时,左 =23+2=10,右 =32=9,所以左>右.所以当 n=1,2,3 时,不等式建立.(以下请学生板书)(2)假定当 n=k( k≥ 3 且 k∈N)时,不等式建立.即2k+2>k2.因为=k2+2k+1+k2-2k-3=(k2+2k+1)+(k+1)( k-3 )(因 k≥3,则 k-3 ≥0,k+1>0)≥k2+2k+1=(k+1)2.所以 2k+1+2>( k+1)2.故当 n=k+1 时,原不等式也建立.依据( 1)和( 2),原不等式关于任何 n∈N 都建立.师:经过例 2 可知,在证明 n=k+1 时命题建立过程中,针对目标k2+2k+1,采纳减小的手段,可是因为k 的取值范围(k≥1)太大,不便于减小,所以,用增添奠定步骤(把考证n=1.扩大到考证n=1,2,3)的方法,使假定中k 的取值范围合适减小到 k≥3,促进放缩成功,达到目标.(板书)例 3 求证:当 n≥2 时,(由学生自行达成第一步的考证;第二步中的假定,教师应要点解说 n=k 到n=k+1 命题的转变过程)师:当 n=k+1 时,不等式的左侧表达式是如何的?生:当 n=k+1 时,k 项,应是第 2k 项,数列各项分母是连续的自然数,最后一项为哪一项以3k 在 3k 后边还有 3k+1、 3k+2.最后才为 3k+3 即 3( k+1),所以正确(在这里,学生极易出现错误,错误的思想定势以为从n=k 到n=k+1 时,只增添一项,乞降式中最后一项即为第几项的通项,教师在这里要侧重剖析,化解难点.)运算,应针对问题的特色,奇妙合理地利用“放缩技巧”,使问题获取简捷的证明:(板书略)师:设 S(n)表示原式左侧, f (n)表示原式右侧,则由上边的证法可知,从 n=k 到 n=k+1 命题的转变门路是:要注意:这里 S ′( k)不必定是一项,应依据题目状况确立.(三)讲堂小结1.用数学概括法证明,要达成两个步骤,这两个步骤是缺一不行的.但从证题的难易来剖析,证明第二步是难点和要点,要充足利用概括假定,做好命题从 n=k 到 n=k+1 的转变,这个转变要求在变化过程中结构不变.2.用数学概括法证明不等式是较困难的课题,除运用证明不等式的几种基本方法外,常常使用的方法就是放缩法,针对目标,合理放缩,进而达到目标.3.数学概括法也不是全能的,也有不可以解决的问题.错误会法:(2)假定 n=k 时,不等式建立,即当 n=k+1 时,则 n=k+1 时,不等式也建立.依据( 1)( 2),原不等式对 n∈N+都建立.(四)课后作业1.课本 P121: 5, P122: 6.2.证明不等式:(提示:(1)当 n=1 时,不等式建立.(2)假定 n=k 时,不等式建立,即那么,这就是说, n=k+1 时,不等式也建立.依据( 1)( 2)可知不等式对 n∈N+都建立.)3.关于随意大于 1 的自然数 n,求证:(提示:(2)假定 n=k 时,不等式建立,即这就是说, n=k+1 时,原不等式建立.依据( 1),( 2)可知,对随意大于 1 的自然数 n,原不等式都建立.)用数学概括法证明①式:(1)当 n=3 时,①式建立.(2)假定 n=k ( k≥ 3, k∈ N)时,①式建立,即2k> 2k+1.那么 2k+1 =2k·2>2( 2k+1)=2( k+1)+1+(2k-1 )>2(k+1) +1(因 k≥ 3,则 2k-1 ≥5>0).这就是说,当 n=k+1 时,①式也建立.依据( 1)( 2)可知,对全部 n∈N,n≥3①式都建立,即f讲堂教课方案说明1.数归法是以皮亚诺的概括公义作为依照,把概括法与演绎法联合起来的一种完好概括法.数学概括法证明中的两个步骤表现了递推思想.在教课中应使学生明确这两个步骤的关系:第一步是递推的基础;第二步是递推的依照,缺一不行,不然就会致使错误.为了获得优秀的教课成效,不如利用“多米诺骨牌”游戏来加深这两步骤之间的关系的理解,在演示时,应分三种状况:( 1)推倒第一张,接着挨次倒下直至最后一张;( 2)推倒第一张,半途某处停止,最后一张不倒;( 3)第一张不倒,后边不论可否推倒,都不会所有倒下.经过详细生动的模型,帮助学生理解数学概括法的本质.2.用数学概括法证明不等式,宜先比较n=k 与n=k+1 这两个不等式间的差别,以决定 n=k 时不等式做何种变形,一般地只好变出 n=k+1 等式的一边,而后再利用比较、剖析、综合、放缩及不等式的传达性来达成由 n=k 建立推出 n=k+1 不等式建立的证明.数列极限数学概括法用数学概括法证明不等式3.要注意:在证明的第二步中,一定利用“ n=k 时命题建立”这一概括假定,而且由 f (k)到 f (k+1),其实不老是仅增添一项,如例 2,4.要教会学生思想,走开研究解答问题的思想过程几乎是不行能的,所以在平时教课中,特别是解题教课中,一定把教课集中在问题解答者解答问题的整个过程上,培育学生构作问题解答过程的框图,因为用文字、符号或图表简洁地表达解答过程或结果的能力,表达表达自己解题思路的能力,这也是问题解答所必要的.11 / 11。
不等式数列极限数学归纳法复习资料
不等式、数列、极限与数学归纳法湖南省常德市一中曹继元不等式、数列是高中数学的主干知识,也是高考的重点内容之一,每年都有与此相关的大题。
其中,选择题和填空题一般以考查基础知识、基本方法为主,而解答题以考查数学思想方法、思维能力、以及创新意识为主。
总体看来,本节内容对运算能力和逻辑推理能力有较高的要求。
预测今年高考关于这一部分的内容, 仍然是以考能力为主,稳中有变,“小”中有新。
与往年一样,可能出现基本题型、综合题型、应用题型等,个别题型还将会命出新意,把不等式、数列知识和现实生活、市场经济、理化生知识等紧密结合起来,甚至还会出现有较新创意的应用型题目。
因此,我们必须引起高度重视。
1.不等式.1.1 近三年湖南省高考考查情况统计1.2 近三年考查情况分析从近三年的高考湖南卷来看,虽然每年都有几道不等式的题,但大都是将不等式融入其它知识之中。
一般来讲,选择题、填空题主要考查不等式性质、简单不等式的解法、函数最值的运用。
解答题主要考查与不等式有关的基础知识、基本方法,以及运用相关知识去分析问题和解决问题的能力。
不等式作为工具知识,在高中数学的各个分支中都有广泛的应用。
如确定函数的定义域、值域,确定函数的最值,确定集合的子集关系,确定方程的解等,无一不与不等式有着密切的关系。
而不等式中往往蕴含有多种数学思想方法,如等价转化、分类讨论、数形结合、函数方程的思想方法,极易使得不等式与其它知识融会交融,体现“在知识交汇处设计命题”的特点,符合“多考一点想,少考一点算”的命题理念,也能有效的测试考生的“逻辑思维能力、运算能力、以及分析问题和解决问题的能力”。
所以,我们复习时,要以此为重点,强化训练,提高能力。
1.3 今年考情预测①不等式仍将是高考数学的重点内容之一。
选择题、填空题的难度不会增大,重在基础知识、基本方法的考查,但命题角度会有所变化,设问方式会有所创新,考查内容主要分布在不等式的性质、简单不等式的解法、不等式与集合、不等式与函数、不等式与方程等知识点中。
高中数学奥数知识点大汇总
高中数学奥数知识点大汇总一、代数与函数1.1 代数运算•四则运算:加法、减法、乘法和除法,学习运算规则与运算性质。
•指数运算:学习指数的定义、性质和运算法则,包括幂运算、指数函数等。
•根式运算:学习根式的定义、性质和运算法则,包括开方运算、根式化简等。
1.2 多项式与方程•多项式运算:学习多项式的定义、性质和运算法则,学会多项式加减乘除、多项式因式分解等操作。
•一元二次方程:学习一元二次方程的定义、性质和解法,包括因式分解法、配方法、求根公式等。
•不等式与绝对值:学习不等式的定义、性质和解法,包括一元不等式、二元不等式等,同时学会绝对值的运算和解不等式时的应用。
1.3 函数•函数的概念:学习函数的定义和性质,理解函数的自变量、因变量和函数值的概念。
•常用函数:学习常用函数的定义、性质和图像,包括一次函数、二次函数、幂函数、指数函数、对数函数等。
•函数的运算:学习函数的加减乘除、复合运算等,理解函数运算的基本规则。
二、几何与图形2.1 平面几何•基本概念:学习平面几何的基本概念,包括点、直线、线段、角等。
•同位角与对顶角:学习同位角与对顶角的概念和性质,理解它们在几何证明中的应用。
•平行线与三角形:学习平行线的判定定理和平行线与三角形的性质,包括同位角定理、对顶角定理、内错角定理等。
•相似三角形:学习相似三角形的定义和性质,包括相似比例定理、相似三角形的判定定理等。
2.2 空间几何•空间几何基本概念:学习空间几何的基本概念,包括点、直线、平面、立体等。
•空间几何关系:学习空间几何中的关系,包括点与直线的位置关系、直线与平面的位置关系等。
•空间几何性质:学习空间几何中的性质,包括平行关系、垂直关系、垂直平分线等。
2.3 三角函数•三角函数的定义:学习三角函数的定义,包括正弦、余弦、正切等,理解三角函数的周期性和单调性。
•三角函数的性质:学习三角函数的基本性质,包括周期性、对称性、奇偶性等。
•三角函数的运算:学习三角函数的加减乘除、复合运算等,理解三角函数运算的基本规则。
奥数主要知识点总结
奥数主要知识点总结奥数竞赛的主要知识点涉及到了数学的各个方面,包括但不限于代数、几何、数论和组合数学等。
下面我们将对奥数竞赛中的主要知识点进行总结和梳理,以便帮助竞赛学习者更好地准备和参加奥数竞赛。
一、代数代数是奥数竞赛中的一个重要知识点,主要包括方程与不等式、多项式、函数、数列与数学归纳法等内容。
1.方程与不等式奥数竞赛中的方程与不等式题目往往具有较强的抽象性和逻辑性,包括一元一次方程、一元二次方程、多元一次方程、分式方程、绝对值方程、不等式组等。
解题时需要灵活运用代数运算、整理方程和不等式、配方变形等技巧,同时要有一定的数学分析能力和逻辑推理能力。
2.多项式奥数竞赛中的多项式知识点主要包括多项式的基本性质、多项式方程的根与系数之间的关系、多项式的除法算法、多项式的因式分解、多项式方程的解的特殊性质等。
解题时需要熟练掌握多项式的基本概念和运算法则,结合代数知识与数学方法进行问题求解。
3.函数奥数竞赛中的函数知识点主要包括函数的性质与图像、函数的极值、单调性和奇偶性、函数的复合与反函数、函数方程的解法等。
解题时需要通过函数的性质和运算规律,找出规律和方法,根据问题的特点运用函数知识解决问题。
4.数列与数学归纳法奥数竞赛中的数列与数学归纳法知识点主要包括等差数列、等比数列、递推数列、数学归纳法的原理和应用等。
解题时需要熟练掌握数列的性质与变形、数学归纳法的基本思想和方法,通过论证和推理解决问题。
二、几何几何是奥数竞赛中的另一个重要知识点,主要包括平面几何和空间几何两个方面。
1.平面几何奥数竞赛中的平面几何知识点主要包括点、线、面的性质与关系、图形的性质与变形、相似与全等、三角形的性质和判定、多边形的性质与关系等。
解题时需要通过图形的性质和关系,利用几何知识和方法求解问题。
2.空间几何奥数竞赛中的空间几何知识点主要包括空间图形的性质与关系、几何体的视图与投影、空间解析几何、空间立体几何等。
解题时需要熟练掌握几何体的性质与变形、几何图形的视图和投影,结合几何知识解决问题。
全国高中数学竞赛考试范围
全国高中数学竞赛考试范围全国高中数学竞赛考试范围包括但不限于以下内容:1. 代数部分:包括数列、函数、不等式、解析几何等。
2. 几何部分:包括平面几何、立体几何等。
3. 组合数学部分:包括组合数学的基础知识、组合应用等。
4. 概率与统计部分:包括概率论的基础知识、统计应用等。
5. 数学分析部分:包括极限、导数、微积分等。
一、函数与方程1. 函数性质:包括奇偶性、单调性、周期性、对称性等,能够根据函数图像进行判断和分析。
2. 函数方程:了解函数方程的概念,掌握求解方法,如换元法、待定系数法等。
3. 函数不等式:能够根据函数的性质求解不等式,如一元二次不等式、高次不等式等。
二、数列与数学归纳法1. 数列概念:了解数列的定义、分类和表示方法,能够判断数列的类型。
2. 等差数列与等比数列:掌握等差数列和等比数列的通项公式、前n项和公式及其性质。
3. 数列求和:掌握数列求和的方法,如裂项相消法、错位相减法等。
4. 数学归纳法:掌握数学归纳法的原理和步骤,能够证明简单的数学归纳法命题。
三、解析几何1. 直线与圆:掌握直线和圆的方程及其性质,能够求解直线与圆的位置关系。
2. 椭圆、双曲线与抛物线:掌握椭圆、双曲线和抛物线的方程及其性质,能够求解相关的几何问题。
3. 坐标变换:了解坐标变换的概念和方法,能够进行坐标变换的求解问题。
四、立体几何1. 平面几何:掌握平面几何的基本定理和证明方法,能够证明简单的几何命题。
2. 空间几何体:了解空间几何体的结构特征和性质,能够进行相关的计算和证明。
3. 空间位置关系:掌握空间点、线、面之间的位置关系及其性质,能够进行相关的证明和求解。
五、排列组合与概率初步1. 排列组合:掌握排列组合的定义、公式和性质,能够求解相关的计数问题。
2. 概率初步:了解概率的基本概念和计算方法,能够求解随机事件的概率和分布。
3. 统计初步:了解统计的基本概念和方法,如样本均值、标准差等,能够进行简单的数据分析。
高考数学如何利用数学归纳法解决不等式问题
高考数学如何利用数学归纳法解决不等式问题在高考数学中,解决不等式问题是一个重要的考察点。
而数学归纳法作为一种重要的数学证明方法,也可以被应用于解决不等式问题。
本文将探讨如何利用数学归纳法解决不等式问题,并提供一些例子来说明其具体应用。
在介绍利用数学归纳法解决不等式问题之前,我们先来了解一下数学归纳法的基本原理。
数学归纳法是一种数学证明方法,用于证明一些在自然数集上的命题。
它包括两个步骤:基础步骤和归纳步骤。
首先,证明当自然数为一个给定的起始值时命题成立,这称为基础步骤。
接下来,假设当自然数为k时命题成立,然后证明当自然数为k+1时命题也成立,这称为归纳步骤。
通过这个过程,我们可以得出结论:对于所有自然数n,命题都成立。
那么如何将数学归纳法应用于解决不等式问题呢?我们可以通过以下步骤来进行:步骤一:找到适合应用数学归纳法的不等式问题。
通常情况下,我们可以在不等式问题中观察到某种规律或者模式,并可以通过一个起始值开始其中的证明过程。
具体的选择需要根据具体问题来决定。
步骤二:进行基础步骤证明。
根据数学归纳法的原理,我们需要证明当自然数取某个起始值时,不等式成立。
这通常需要运用已知的数学方法或者推论来进行证明。
步骤三:进行归纳步骤证明。
首先,我们假设当自然数为k时,不等式成立。
然后,我们需要证明当自然数为k+1时,不等式依然成立。
这一步骤通常需要运用数学归纳法的思想,通过将k替换为k+1来进行推导和证明。
步骤四:总结证明过程并得出结论。
通过基础步骤证明和归纳步骤证明,我们可以得出结论:对于所有自然数n,不等式成立。
这就解决了原始的不等式问题。
下面,我们通过一个具体的例子来说明如何利用数学归纳法解决不等式问题。
例子:设有一个数列{an},满足以下条件:1. a1 = 1;2. a(k+1) = a(k) + 2k, k ≥ 1。
我们想要证明对于所有的正整数n,不等式an < n^2成立。
解:首先,我们进行基础步骤证明。
奥数题的一些常用解法
奥数题的一些常用解法
1.推理法:通过观察题目中的规律,运用逻辑推理能力进行解题。
这种方法常被运用在数列、排列组合等类型的题目中。
2. 反证法:假设结论不成立,通过推导出矛盾或不符合题目条件的结果来证明所假设的结论是错误的。
这种方法常被运用在几何题型中。
3. 分类讨论法:将问题分成不同的情况进行讨论,找出每种情况的解法,最后合并得出总的解法。
这种方法常被运用在概率、几何、代数题型中。
4. 数学归纳法:通过证明某个命题对于一个确定的整数成立,再证明对于这个整数加1后仍成立,从而证明该命题对于所有整数成立。
这种方法常被运用在数列、不等式等类型的题目中。
5. 递推法:通过寻找问题中的递推式,运用递推关系逐步推导出问题的解法。
这种方法常被运用在数列、组合、几何等题型中。
6. 假设法:假设某个未知量的值,再用已知条件进行计算,最终通过验证假设的值是否符合题目要求来求解未知量。
这种方法常被运用在几何、代数等类型的题目中。
- 1 -。
高中奥数_函数 不等式 数列 极限 数学归纳法
函数 不等式 数列 极限 数学归纳法一 能力培养1,归纳-猜想-证明 2,转化能力 3,运算能力 4,反思能力 二 问题探讨问题1数列{n a }满足112a =,212n n a a a n a ++⋅⋅⋅+=,(n N *∈). (I)求{n a }的通项公式; (II)求1100nn a -的最小值; (III)设函数()f n 是1100nn a -与n 的最大者,求()f n 的最小值.问题2已知定义在R 上的函数()f x 和数列{n a }满足下列条件:1a a =,1()n n a f a -= (n =2,3,4,⋅⋅⋅),21a a ≠,1()()n n f a f a --=1()n n k a a --(n =2,3,4,⋅⋅⋅),其中a 为常数,k 为非零常数.(I)令1n n n b a a +=-(n N *∈),证明数列{}n b 是等比数列; (II)求数列{n a }的通项公式; (III)当1k <时,求lim n n a →∞.问题3已知两点M (1,0)-,N (1,0),且点P 使MP MN ⋅ ,PM PN ⋅ ,NM NP ⋅成公差小于零的等差数列.(I)点P 的轨迹是什么曲线? (II)若点P 坐标为00(,)x y ,记θ为PM 与PN的夹角,求tan θ.三 习题探讨 选择题1数列{}n a 的通项公式2n a n kn =+,若此数列满足1n n a a +<(n N *∈),则k 的取值范围是A,2k >- B,2k ≥- C,3k ≥- D,3k >- 2等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S nT n =+,则n na b = A,23 B,2131n n -- C,2131n n ++ D,2134n n -+ 3已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是A,1(0,2+B,1(2C,1[1,2D,11(22- 4在等差数列{}n a 中,1125a =,第10项开始比1大,记21lim ()n n n a S t n →∞+=,则t 的取值范围是A,475t > B,837525t <≤ C,437550t << D,437550t <≤5设A 11(,)x y ,B 22(,)x y ,C 33(,)x y 是椭圆22221x y a b+=(0a b >>)上三个点,F 为焦点,若,,AF BF CF 成等差数列,则有A,2132x x x =+ B,2132y y y =+ C,213211x x x =+ D,2213x x x =⋅ 6在ABC ∆中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以13为 第三项,9为第六项的等比数列的公比,则这个三角形是A,钝角三角形 B,锐角三角形 C,等腰直角三角形 D,以上都不对 填空7等差数列{}n a 前n (6n >)项和324n S =,且前6项和为36,后6项和为180,则n = .8223323232323236666n nn n S ++++=+++⋅⋅⋅+,则lim n n S →∞= . 9在等比数列{}n a 中,121lim()15n n a a a →∞++⋅⋅⋅+=,则1a 的取值范围是 . 10一个数列{}n a ,当n 为奇数时,51n a n =+;当n 为偶数时,22n n a =.则这个数列的前2m 项之和2m S = .11等差数列{}n a 中,n S 是它的前n 项和且67S S <,78S S >,则①此数列的公差0d <,②96S S <,③7a 是各项中最大的一项,④7S 一定是n S 中的最大项,其中正确的是 . 解答题12已知23123()nn f x a x a x a x a x =+++⋅⋅⋅+,且123,,n a a a a ⋅⋅⋅组成等差数列(n 为正偶数). 又2(1)f n =,(1)f n -=,(I)求数列的通项n a ;(II)试比较1()2f 与3的大小,并说明理由.13已知函数2()31f x x bx =++是偶函数,()5g x x c =+是奇函数,正数数列{}n a 满足11a =,211()()1n n n n n f a a g a a a +++-+=.(I)若{}n a 前n 项的和为n S ,求lim n n S →∞;(II)若12()()n n n b f a g a +=-,求n b 中的项的最大值和最小值.14. 已知等比数列{}n x 的各项不为1的正数,数列{}n y 满足log 2n n x y a ⋅=(0a >且1a ≠),设417y =,711y =.(I)求数列{}n y 的前多少项和最大,最大值是多少? (II)设2n yn b =,123n n S b b b b =+++⋅⋅⋅+,求25lim2nn S →∞的值.(III)试判断,是否存在自然数M,使当n M >时1n x >恒成立,若存在求出相应的M;若不存 在,请说明理由.15设函数()f x 的定义域为全体实数,对于任意不相等的实数1x ,2x ,都有12()()f x f x -12x x <-,且存在0x ,使得00()f x x =,数列{}n a 中,10a x <,1()2()n n n f a a a n N +=-∈,求证:对于任意的自然数n ,有: (I)0n a x <; (II)1n n a x +<.参考答案:问题1解:(I)212n n a a a n a ++⋅⋅⋅+=,得n S =2n n a当2n ≥时,1n n n a S S -=-=2n n a 21(1)n n a ---,有221(1)(1)n n n a n a --=-,即111n n a n a n --=+. 于是3241123112313451n n n a a a a a n a a a a a n --=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅+=2(1)n n +.又112a =,得n a =1(1)n n +. 由于1a 也适合该式,故n a =1(1)n n +.(II)1100nn a -=299n n -=2(49.5)2450.25n -- 所以当49n =或50时,1100nn a -有最小值2450-. (III)因()f n 是1100nn a -与n 的最大者,有(1100)()1100(100)nn n f n n n a ≤≤⎧⎪=⎨-<⎪⎩,有min ()f n =(1)f =1.问题2(I)证明:由1210b a a =-≠,得2322121()()()0b a a f a f a k a a =-=-=-≠. 由数学归纳法可证10n n n b a a +=-≠(n N *∈). 而,当2n ≥时,1111111()()()n n n n n n n n n n n n n n b a a f a f a k a a k b a a a a a a +---------====--- 因此,数列{}n b 是一个公比为k 的等比数列. (II)解:由(I)知,11121()()n n n b kb k a a n N --*==-∈当1k ≠时,112211()(2)1n n k b b b a a n k--++⋅⋅⋅+=-≥-当1k =时,12n b b b ++⋅⋅⋅+=21(1)()n a a --(2n ≥)而12213211()()()(2)n n n n b b b a a a a a a a a n -++⋅⋅⋅+=-+-+⋅⋅⋅+-=-≥,有当1k ≠时,1n a a -= 1211()(2)1n k a a n k---≥-;当1k =时,1n a a -=21(1)()n a a --(2)n ≥.以上两式对1n =时也成立,于是当1k ≠时,11211()1n n k a a a a k --=+--= 11(())1n k a f a a k--=+--当1k =时,121(1)()n a a n a a =+--=(1)(())a n f a a +--.(III)解:当1k <时,11()lim lim[(())]11n n n n k f a aa a f a a a k k-→∞→∞--=+-=+--. 问题3解:(I)设点P(,x y ),由M (1,0)-,N (1,0)得(1,)PM MP x y =-=--- ,(1,)PN NP x y =-=-- ,(2,0)MN NM =-=有2(1)MP MN x ⋅=+ ,221PM PN x y ⋅=+- ,2(1)NM NP x ⋅=- .于是MP MN ⋅ ,PM PN ⋅ ,NM NP ⋅成公差小于零的等差数列等价于 2211[2(1)2(1)]22(1)2(1)0x y x x x x ⎧+-=++-⎪⎨⎪--+<⎩,即2230x y x ⎧+=⎨>⎩ 所以点P 的轨迹是以原点为圆心为半径的右半圆C.(II)设P(00,x y ),则由点P 在半圆C 上知,22001PM PN x y ⋅=+-又PM PN ⋅=,得cos PM PN PM PNθ⋅==⋅又001x <≤,12≤<,有1cos 12θ<≤, 03πθ≤<,sin θ==由此得0tan y θ==. 习题解答:1由1(21)0n n a a n k +-=++>,n N *∈恒成立,有30k +>,得3k >-,选D.21211212112112121(21)22(21)21223(21)131(21)2n n n n n n n n n n a a n a a a a S n n b b b b T n n n ------+-+--======+-+--,选B. 3设三边长分别为2,,a aq aq ,且0,0a q >>①当1q ≥时,由2a aq aq +>,得112q ≤<②当01q <<时,由2aq aq a +>,得112q <<,于是得1122q +<<,选D. 4由10191a a d =+>,且9181a a d =+≤,而21lim ()2n nn da S t n →∞+==, 又1125a =,于是737550t <≤,选D. 5由椭圆第2定义得222132()()22()a a a AF CF x x BF x c c c+=+++==+,选A.6由条件得31444tan ,9tan 3A B =-+=,有tan 2A =,tan 3B =. 得tan tan[()]tan()1C A B A B π=-+=-+=,于是ABC ∆为锐角三角形,选B. 7由12345636a a a a a a +++++=,12345180n n n n n n a a a a a a -----+++++=有12165()()()216n n n a a a a a a --++++⋅⋅⋅++=,即16()n a a +=216,得1n a a +=36,又13242na a n +⨯=,解得18n =. 822111111()()333222n n n S =++⋅⋅⋅++++⋅⋅⋅+,得11332lim 1121132n n S →∞=+=--.9由条件知,公比q 满足01q <<,且11115a q =-,当01q <<时,11015a <<; 当10q -<<时,1121515a <<.于是1a 的取值范围是112(0,)(,)151515. 10当n 为奇数时,相邻两项为n a 与2n a +,由51n a n =+得25(2)1(51)n n a a n n +-=++-+ =10,且16a =.所以{}n a 中的奇数项构成以16a =为首项,公差10d =的等差数列.当n 为偶数时,相邻两项为n a 与2n a +,由n a = 22n ,得2222222n n n na a ++==,且22a = 所以{}n a 中的偶数项构成以22a =为首项,公比2q =的等比数列. 由此得212(1)2(12)610522212m m mm m S m m m +--=+⨯+=++--.11由6778,S S S S <>,得780,0a a ><,有0d <;96S S <;7S 是n S 中的最大值,选①②④. 12解:(I)由12(1)n f a a a =++⋅⋅⋅+=2n ,再依题意有1a +n a =2n ,即12(1)2a n d n +-=① 又121(1)n n f a a a a n --=-+-⋅⋅⋅-+=,(n 为正偶数)得2d =,代入①有21n a n =-. (II)2311111()3()5()(21)()22222n f n =+++⋅⋅⋅+-,2341111111()()3()5()(21)()222222n f n +=+++⋅⋅⋅+- 得2311111111(1)()2()2()2()(21)()2222222n n f n +-=+++⋅⋅⋅+--于是2111()12()(21)3222n f n n-=+---⋅<.13解: (I)可得2()31f x x =+,()5g x x =,由已知211()()1n n n n n f a a g a a a +++-+=,得11(32)()0n n n n a a a a ++-⋅+=,而10n n a a ++≠,有123n n a a +=,于是1lim 3213n n S →∞==-.(II)215832()()6()1854n n n n b f a g a a +=-=-+, 由12()3n n a -=知n b 的最大值为1143b =,最小值为4374243b =.14解: (I)22log log n n a n x y x a==,设11n n x x q -=有1122log 2log 2log log n n n a n a n a x y y x x q a++-==-=,又{}n y 成等差数列.742log 74a y y q d -==-,得2d =-,17(71)(2)23,y y =--⨯-=252n y n =-. 当0n y ≥时,即23(1)(2)0n +-⨯-≥,得252n ≤.于是前12项和最大,其最大值为144.(II)25222ny n n b -==,2312b =,得21124n n b b -+==,23112()4n n b -= 232522lim 1314n n S →∞==-,于是251lim 23n n S →∞=(III)由(I)知当12n >时,0n y <恒成立,由2log n a n y x =,得2n y n x a =.(i)当01a <<且12n >时,有2n y n x a =01a >=,(ii)当1a >且12n >时,1n x <,故当01a <<时,在12M =使n M >时,1n x >恒成立;当1a >时不存在自然数M,使当n M >时1n x >.15证明:用数学归纳法 (I)当1n =时,10a a <命题成立.假设当n k =(k N *∈)时,0k a a <成立,那么当1n k =+时,由1212()()f x f x x x -<-,得00()()k k f x f a x a -<-,又00()f x x =,有00()k k x f a x a -<-, 而0k a x <,得00()k k x f a x a -<-,于是000()k k k a x x f a x a -<-<-,即0()2()k k k ka f a x f a a +<⎧⎨>⎩,又1()2k k k f a a a +=-, 有10(2)2k k k a a a x ++-<,即10k a x +<,于是当1n k =+时,命题也成立. 综上所述,对任意的k N *∈,0n a a <.(II)由1212()()f x f x x x -<-,得00()()n n f x f a x a -<-, 又00()f x x =,得00()n n x f a x a -<-,又0n a a <,得00()n n x f a x a -<-,即000()n n n a x x f a x a -<-<-, 有()n n f a a >,而1()2n n n f a a a +=-,得12n n n a a a +->, 故1n n a a +>.。
奥数总结的知识点
奥数总结的知识点一、代数知识点1. 代数式展开与因式分解代数式展开与因式分解是奥数中常见的题型,学生需要掌握基本的代数运算规则,灵活运用展开公式和分解公式来解题。
2. 多项式的运算与定理奥数中常见的题型有多项式的加减乘除,以及多项式的整除性质和余式定理。
3. 不等式和方程的解法奥数考察的不等式和方程的解法比较灵活,包括一元二次不等式和不等式组的解法,还有一元二次方程、分式方程的解法等。
4. 函数与方程奥数中常考的包括函数的性质、图像、定义域、值域、一些特殊函数,还有方程组的解法等。
二、几何知识点1. 图形的性质在奥数的几何题型中,常考察各种图形的性质,包括角的性质、直线和射线的性质、多边形的性质、圆的性质等。
2. 几何证明奥数中几何证明的题型比较常见,学生需要掌握几何中的各种定理和公式,并能够灵活运用来构造合理的证明过程。
3. 三角形和相似三角形奥数中三角形和相似三角形的题型比较常见,包括三角形的性质、计算三角形的面积和周长、相似三角形的判定和计算等。
4. 圆和圆的性质奥数中还有许多和圆相关的题型,包括圆的切线、切圆、圆周角等。
三、数论知识点1. 整数的性质奥数中常考察整数的性质,包括约数、倍数、质数、合数、质因数分解、最大公约数和最小公倍数等。
2. 数列和数学归纳法奥数中数列和数学归纳法的题型比较常见,学生需要掌握各种数列的求和公式和递推公式,以及能够灵活应用数学归纳法来解决问题。
3. 方程与同余奥数中还常考察方程与同余的题型,包括一次同余方程、二次同余方程、同余方程组等。
四、综合题型在奥数的综合题型中,常常考察学生对各种数学知识点的综合运用能力,包括代数、几何和数论等的综合题型。
奥数的学习需要学生掌握扎实的数学基础知识,具有一定的逻辑思维能力和数学分析能力,还需要具备较强的数学综合运用能力。
除了掌握各种数学知识点外,学生还需要具备良好的数学解题方法和习题技巧。
在奥数的学习过程中,学生应多做练习题,多总结解题方法和思路,不断提高自己的数学解题能力。
小结数列与不等式证明题的四种实用方法
小结数列与不等式证明题的四种实用方法高中数学,当数列与不等式以综合题的形式出现时,难度较大。
怎样在紧张而又急迫的考试中准确的选择合适的方法解决难题并且不浪费时间,这成为众多学者头痛的问题。
笔者在高中自主学习和课堂听课中总结了四种实用的方法。
在这篇文章中,笔者把不等式右边是常数的证明题定义为常数型,把不等式右边是变量的证明题定义为变量型。
有的方法只适合常数型的不等式,而有的方法既适合变量型的不等式,也适合常数型的不等式。
下面笔者分常数型和变量型依次总结。
方法一:GP.放缩法。
(常数型)这种方法的应用比较广泛,同时也是放缩法中较简单的一种方法。
下面我们以例题的形式来说明。
例:求证:2121...915131211n <++++++-。
解析:该题属于和式与和式作比较,将2看成某个数列求和即可。
等比数列中,当公比q ≠1时, q 1q a q 1a q 1q 1a n 11n 1n ---=--=)(S ,若使q1q a n1-随n 的增大而趋向于0,则︳q ︳∈(0,1),观察通项1211n +-,q 取21的可能性较大,则令q=21,2q1a 1=-,解得1a 1=。
所以可以得出目标等比数列1n n 21a -=)(。
证明:因为121n +->1n 2-, 所以1211n +-<1n 21-, 得121...915131211n ++++++-<1n 21...8141211-+++++=1n 212--)(<2,所以原不等式得证。
这种方法的关键点在于找出目标等比数列,当然也有局限性,不适用于变量型不等式。
方法二:数学归纳法。
(常数型和变量型)数学归纳法的应用比较广范,在某些证明题中,数学归纳法常常作为考生首选的方法,它的重要性是毋庸置疑的。
但是,某些题型不适合用数学归纳法证明。
当不等号左边的第一项是某个具体的常数时,直接用数学归纳法就不可以证明,必须选择恰当的中间量方可。
例如:求证:2121...915131211n <++++++-。
高一奥数基本不等式知识点
高一奥数基本不等式知识点不等式是数学中重要的概念,奥数中常涉及的一个主题就是基本不等式。
在高一阶段,学生们开始接触不等式的概念和相关的基本知识。
本文将介绍高一奥数中的基本不等式知识点,包括基本不等式的概念、常见的基本不等式以及解决基本不等式问题的方法。
一、基本不等式的概念基本不等式是指在一定条件下,某个数学不等式在所有情况下都成立的不等式。
在高一奥数中,我们会遇到一些常见的基本不等式。
这些基本不等式是根据数学原理和性质得出的,具有普遍性和重要性。
二、常见的基本不等式1. 等差数列的均值不等式等差数列的均值不等式是指,对于一个等差数列,它的任意n个连续项的平均数大于等于这些项的几何平均数。
具体而言,对于等差数列$a_1, a_2, a_3, ..., a_n$,有以下不等式成立:$\frac{a_1+a_2+a_3+...+a_n}{n} \geq \sqrt[n]{a_1 \cdot a_2 \cdota_3 \cdot ... \cdot a_n}$2. 平均数-均方差不等式平均数-均方差不等式是指,对于任意一组数的平均数和均方差,平均数的平方大于等于这些数减去平均数的差的平方的平均值。
具体而言,对于一组数$x_1, x_2, x_3, ..., x_n$,平均数记作$\overline{x}$,均方差记作$s$,有以下不等式成立:$(\overline{x})^2 \geq \frac{(x_1-\overline{x})^2+(x_2-\overline{x})^2+...+(x_n-\overline{x})^2}{n}$3. 柯西-施瓦茨不等式柯西-施瓦茨不等式是指,对于两个向量的点积,其绝对值小于等于这两个向量的模的乘积。
具体而言,对于两个向量$a=(a_1, a_2, ..., a_n)$和$b=(b_1, b_2, ..., b_n)$,有以下不等式成立:$|a \cdot b| \leq |a| \cdot |b|$4. 三角形不等式三角形不等式是指,三角形的任意两边之和大于第三边。
高中数学如何利用数学归纳法解决数列问题
高中数学如何利用数学归纳法解决数列问题数学归纳法是数学中的一种重要方法,尤其在解决数列问题时发挥重要作用。
本文将详细介绍高中数学如何利用数学归纳法解决数列问题。
一、数学归纳法的概念和原理数学归纳法是一种证明方法,常用于数学中证明一个命题对于一切正整数都成立。
其基本思想是通过以下两个步骤来证明命题的正确性:1.基础步骤(初始情形):证明当n取某个特定的正整数时,命题成立。
2.归纳步骤:假设当n取k(k为任一正整数)时命题成立,然后证明当n取k+1时命题也成立。
二、数学归纳法的应用举例现以具体的数列问题为例,展示高中数学如何利用数学归纳法解决数列问题。
例题:证明斐波那契数列的通项公式。
解答:首先需要明确斐波那契数列的定义:F(1)=1,F(2)=1,F(n)=F(n-1)+F(n-2)(n≥3,n为正整数)。
1.基础步骤:当n=1时,左边F(1) = 1,右边符合定义,因此当n=1时命题成立。
当n=2时,左边F(2) = 1,右边符合定义,因此当n=2时命题成立。
2.归纳步骤:假设当n=k时命题成立,即F(k) = F(k-1) + F(k-2)。
考虑n=k+1时,左边F(k+1),根据斐波那契数列的定义可以得到:F(k+1) = F(k) + F(k-1)。
由归纳假设可知F(k) = F(k-1) + F(k-2),代入上式得到:F(k+1) =F(k-1) + F(k-2) + F(k-1)。
化简可得:F(k+1) = 2F(k-1) + F(k-2)。
又由斐波那契数列的定义可知:F(k+2) = F(k+1) + F(k)。
代入F(k+1) = 2F(k-1) + F(k-2),得到:F(k+2) = 2F(k-1) + F(k-2) +F(k)。
化简可得:F(k+2) = 2(F(k-1) + F(k))。
再利用斐波那契数列的定义F(k) = F(k-1) + F(k-2),可得:F(k+2) =2F(k)。
如何利用数学归纳法证明数列极限
如何利用数学归纳法证明数列极限数学归纳法是一种常用的证明方法,特别适用于证明数列的极限。
通过归纳法可以逐步推理出数列中每一个项的性质,从而得到整个数列的性质。
本文将介绍如何利用数学归纳法来证明数列的极限。
首先,我们需要明确数列极限的定义。
对于一个数列 {an},如果存在一个数 L,使得当 n 足够大时,数列中的任意项与 L 的差的绝对值小于任意给定的正数ε,即 |an - L| < ε,那么我们称 L 是数列 {an} 的极限,记作 lim(an) = L。
这意味着当 n 足够大时,数列中的项将无限接近于 L。
利用数学归纳法证明数列的极限可以分为三个步骤:基础步骤、归纳假设和归纳推理。
第一步是基础步骤。
我们需要证明数列中的某个特定项满足极限的定义。
通常我们选择数列的第一个项作为基础步骤。
假设我们要证明lim(an) = L,那么我们需要证明当 n = 1 时,an 与 L 的差的绝对值小于任意给定的正数ε。
这通常可以通过直接计算或者代入数值来得到。
第二步是归纳假设。
我们假设当 n = k 时,数列中的第 k 项与 L 的差的绝对值小于任意给定的正数ε,即 |ak - L| < ε。
这个假设是我们证明剩下项与 L 的差的绝对值同样小的前提条件。
第三步是归纳推理。
我们需要证明当 n = k+1 时,数列中的第 k+1项与 L 的差的绝对值小于任意给定的正数ε。
根据归纳假设,我们知道|ak - L| < ε。
现在,我们需要利用这个已知条件来推导出 |ak+1 - L| < ε。
在归纳推理的过程中,我们可以利用数列的递推关系式,数学运算和极限的性质等来推导不等式。
具体的推导方法要根据数列的特点和题目给出的条件来确定。
综上所述,通过数学归纳法,我们可以逐步推理出数列中的每一个项与极限的关系,并最终证明数列的极限存在。
这种证明方法在数学的各个领域都有广泛应用,尤其是在数学分析和数学推理中。
数列极限数学归纳法知识点总结
数列极限数学归纳法知识点总结数列是数学中常见的一种数学对象,它由一系列有序的数字组成。
数列极限是数列中最重要的概念之一,描述了数列中随着项数增加而逐渐趋近于某个值的性质。
在数列的研究中,数学归纳法也是一种经常被使用的证明方法。
本文将对数列极限和数学归纳法的知识点进行总结。
一、数列极限的定义和性质1. 定义:给定一个数列{an},当其中的项数n趋近于无穷大时,如果数列的项an也趋近于一个确定的值A,则称数列{an}收敛于A,记作lim(an)=A。
如果数列{an}不存在极限,则称数列{an}发散。
2. 性质:a. 数列极限唯一性:数列的极限值是唯一的,也就是说,如果数列{an}的极限lim(an)存在,则其极限值A是唯一确定的。
b. 夹逼准则:如果数列{an}的每一项都满足a<=an<=b,且lim(a)=lim(b)=L,那么数列{an}的极限lim(an)=L。
c. 有限项数列的极限:一个有限项的数列必定收敛,并且其极限等于最后一项的值。
二、常用的数列极限类型1. 等差数列的极限:对于等差数列{an},它的公差为d,那么当n趋近于无穷大时,数列{an}的极限为lim(an)=a1,即等差数列的极限等于首项的值。
2. 等比数列的极限:对于等比数列{an},它的公比为q,那么当|q|<1时,数列{an}的极限为lim(an)=0;当|q|>1时,数列{an}的极限不存在;当q=-1时,数列{an}的极限在-1和1之间取值;当q=1时,数列{an}的极限为1。
3. 斐波那契数列的极限:斐波那契数列是指以0和1开始,从第三项开始,每一项都等于前两项之和的数列。
斐波那契数列的极限是黄金分割比:lim(an/an-1)=1.618...。
三、数学归纳法的应用数学归纳法是一种常用的证明方法,用于证明与自然数有关的命题。
它由归纳基和归纳步两部分组成,具体步骤如下:1. 归纳基:首先证明当n取某个特定值时,命题成立。
高考数学一轮总复习数列与数列极限的数学归纳法证明步骤
高考数学一轮总复习数列与数列极限的数学归纳法证明步骤高考数学一轮总复习:数列与数列极限的数学归纳法证明步骤数列与数列极限是高中数学中的重要概念,在高考数学考试中也是常见的考点。
本文将介绍数学归纳法证明数列与数列极限的步骤及其应用。
在解题过程中,我们将以具体的例子进行说明,以帮助读者更好地理解和掌握这一重要的数学方法。
一、数学归纳法的基本思想数学归纳法是一种基于数学归纳思想的证明方法,常用于证明一般性陈述在自然数集上成立。
使用数学归纳法证明一个命题通常分为三个步骤:1. 证明基本情况:首先证明当 n 取一个特定的值时,命题成立。
这一步又称为“递归起点”。
2. 归纳假设:假设当 n=k 时,命题成立,即假设命题对于某个特定的自然数 k 成立。
3. 归纳步骤:通过归纳假设证明当 n=k+1 时,命题也成立。
这一步又称为“递归关系”。
二、数列定义与数列极限的概念在进行数学归纳法证明数列与数列极限之前,我们先来回顾一下数列的定义及数列极限的概念。
数列是将自然数与实数联系起来的一种函数关系。
通常用 {an} 或者 (an) 表示一个数列,其中 an 表示数列的第 n 个元素。
数列极限是指数列随着 n 趋向无穷大时的极限值。
当数列随着 n 的增大无限逼近某个实数 L 时,就称数列 {an} 的极限为 L,记作 lim an = L。
三、数学归纳法证明数列与数列极限的步骤下面我们将以一个具体的例子来说明如何使用数学归纳法证明数列与数列极限。
【例】证明数列 {an} = 2^n + 1 是递增数列。
解:首先,我们先验证 n=1 时数列成立。
当 n=1 时,a1 = 2^1 + 1 = 3。
根据数列的定义,可以得出 a1 = 3,所以当 n=1 时,数列成立。
这就是我们要证明的基本情况。
接下来,我们假设当 n=k 时数列成立,即 ak < ak+1。
这个假设就是我们的归纳假设。
现在我们来证明当 n=k+1 时数列也成立,即证明 ak+1 < ak+2。
高考数学中的数学归纳法和数列极限
高考数学中的数学归纳法和数列极限高考数学是考生们最关注的一门考试科目,其中数学归纳法和数列极限是高考数学中不可忽视的重点内容。
本文将从数学归纳法的基本原理及应用,数列极限的概念、性质和计算方法等多个方面进行分析和探讨,以期对广大高中生的数学学习有所帮助。
一、数学归纳法数学归纳法是高中数学中重要的证明方法。
归纳法的基本思想是证明当$x$满足某种条件时,命题$P(x)$成立,再证明当$x$不满足该条件时,命题$P(x)$依然成立。
下面介绍具体的数学归纳法思想及其应用。
1.1 数学归纳法的基本思想数学归纳法是一种用自然数的递增法证明表达式的方法。
它的基本思想是先证明当$n=1$时,命题成立,再证明当$n=k$时命题成立,则可以证明当$n=k+1$时也成立。
用公式表示为:如果$P(1)$成立且对于任意正整数$k$,只要$P(k)$成立,就有$P(k+1)$成立,那么对于所有正整数,$P(n)$都成立。
1.2 数学归纳法的应用数学归纳法广泛应用于高中数学中的数列、函数、不等式等问题的证明中,也是高考数学中的常见命题证明方法。
常见的应用如下:(1)证明数列性质:证明数列$a_{n+1}=f(a_n)$,$a_1$满足某些条件,则$a_n$满足某些性质。
(2)证明不等式:证明某个不等式在正整数范围内成立。
(3)证明等式:证明某个等式在正整数范围内成立。
二、数列极限数列极限是高中数学中的重要概念之一。
它是计算机科学、物理学、工程学等学科中的基础知识。
下面将从基本概念、性质和计算方法三个方面对数列极限进行分析和探讨。
2.1 基本概念数列极限是数学分析中用来描述数列等无限序列的一种重要概念。
常用的数列有等差数列、等比数列、Fibonacci数列等。
一个数列的极限是指随着$n$无限增大,数列的值逐渐接近某个值,称为这个数列的极限。
用数学符号表示为:$\lim\limits_{n\to\infty}{a_n}=a$,表示当$n$趋近于无穷大时,数列$a_n$的极限为$a$。
高中奥数教程
高中奥数教程高中奥数是一门精密而深邃的数学学科,涉及数学中的许多方面。
它常常利用符号和代数,探究多个的解题技巧,深化对数学概念的理解,并推广数学成果以扩展数学的应用范围。
在高中奥数学习中,需要具备数学素养、推理思维、逻辑思维、创新能力和合作精神等多个方面的学习能力,以全面提高数学知识、思维方法和应用能力。
一、奥数的基本概念1.奥数概念奥数是指数学竞赛的一个分类,它通常包括数学分析、代数、组合、几何等多个领域和几个不同层次的学科内容。
奥数学习尤其注重启发性和创新性,旨在通过解决更有挑战性和更有意义的数学问题,培养学生更深刻的数学思维、创新能力、综合能力和团队协作精神。
奥数学习也是提高学生数学水平,加强数学应用能力和推理训练的重要途径之一。
2.奥数的应用奥数的应用范围很广,例如,它可以应用到基础数学中,如代数、数论和几何,也可以应用到工程和科学中,如物理、计算机科学和生物学。
此外,奥数也可以培养学生的数学思维和分析能力,提高学生的数学素养和自信心。
3.奥数的特点(1)奥数强调启发思考和创新能力,提出非传统思路和一些创新性的解题方法。
(2)奥数不仅考察学生对常规数学知识的掌控,也考察学生对复杂数学问题的处理能力。
(3)奥数是一个综合性学科,能够帮助学生更好的理解和应用整个数学体系。
(4)奥数可以重点培养学生的数学思维,通过奥数的学习,学生可以更好的理解快速思考和解决问题。
二、高中奥数的基本学习内容1.基础代数代数是高中奥数内容中非常基础的一个领域,是学生掌握奥数知识的前提。
基本代数知识包括平面和空间几何以及向量和多项式等。
2.解方程和不等式在高中奥数中,解决方程和不等式的能力很重要。
学生需要通过训练提高基本的方程和不等式解法的熟练程度,更深入地理解方程和不等式的规律,掌握解决现实问题的能力。
3.立体几何立体几何是高中数学奥数内容较为重要的内容之一,需要学生对几何建模、割平面、向量叉乘等技巧熟练掌握。
通过解决多种不同形式的几何问题,学生可以培养特殊形状空间理论、转移面技巧以及高效计算的能力。
(完整版)奥数知识系列(4)方法与原理
(完整版)奥数知识系列(4)方法与原理奥数知识系列(4)方法与原理在奥数竞赛中,学生需要通过掌握一定的方法和原理来解决问题。
这些方法和原理是解题的基础,掌握它们可以帮助学生更好地进行思考和推理。
本文将介绍一些常用的奥数方法和原理,帮助读者更好地理解和应用于实际问题中。
1. 排列组合法排列组合法是奥数中经常使用的方法之一。
它用来计算某个事件发生的可能性。
排列指的是从一组元素中选取多个元素进行排列的方式,而组合是指从一组元素中选取多个元素形成的子集。
排列组合法的公式如下:排列公式:P(n, m) = n! / (n - m)!组合公式:C(n, m) = n! / (m! * (n - m)!)2. 数学归纳法数学归纳法是一种常用的证明方法,也是解决奥数问题的重要原理之一。
它的基本思想是:首先证明当 n = 1 时结论成立,然后假设当 n= k 时结论成立,再证明当 n = k+1 时结论也成立。
通过这种方式可以逐步推导出结论成立的条件。
数学归纳法可以帮助学生在求解一些数学问题时,找到规律性的方法,从而简化解题过程。
3. 数形结合法数形结合法是奥数中常用的一种解题方法。
它的基本思想是通过将数学问题转化为几何问题,或者通过几何图形来解决数学问题。
通过将问题进行图形化表示,可以使问题变得直观,并且通过对图形的特征进行分析,可以得到一些隐藏的规律。
数形结合法在奥数中被广泛运用,尤其是在几何题和概率问题中。
4. 反证法反证法是一种证明方法,通过否定要证明的结论,然后推导出导致矛盾的前提条件,从而证明结论的正确性。
在奥数中,反证法常常用来解决一些数学推理问题,其中需要运用假设推导出的结论与已知条件产生矛盾,从而得出结论的正确性。
反证法可以帮助学生锻炼逻辑思维能力,提高解题的灵活性。
5. 均值不等式均值不等式是奥数中常用的一种方法,它描述了若干个正实数的平均值与它们的某种函数之间的关系。
常见的均值不等式有算术平均-几何平均不等式、柯西-施瓦茨不等式和弦比不等式等。
高中数学的归纳不等式与数列极限
高中数学的归纳不等式与数列极限数学是一门精确而又严谨的科学,高中数学也是学生们学习的重要课程之一。
在高中数学学习中,归纳不等式与数列极限是两个重要的概念。
本文将对高中数学的归纳不等式与数列极限进行介绍与分析。
一、归纳不等式的概念及应用归纳不等式是数学归纳法在不等式证明中的应用。
数学归纳法是一种常用的证明方法,通过证明基本情形成立,以及假设某一情形成立,然后证明下一情形也成立,最终得出结论。
在归纳不等式的证明中,我们常常需要运用到数学推理、数学运算与恒等变形等方法。
具体来说,归纳不等式有着以下的基本形式:设P(n)为关于n的不等式,当n取某一特定值时,P(n)成立;如果当n=k时P(n)成立,那么当n=k+1时P(n)也成立。
通过上述归纳不等式的基本形式,可以帮助我们解决一些归纳证明问题。
以不等式的证明为例,我们可以通过证明基本情形成立,即n=1时不等式成立;然后假设n=k时不等式成立,即P(k)成立;最后通过推理和变形等方法证明当n=k+1时不等式也成立,即P(k+1)成立。
这就完成了整个归纳证明过程。
二、数列极限的概念及性质数列极限是高中数学中一个重要的概念,它与数列的发散和收敛性质密切相关。
数列极限描述了在无限项数列中,当项数趋近于无穷大时,数列中的项的极限情况。
对于数列{an},当对于任意的正数ε,都存在正整数N,使得当n>N时,满足|an-L|<ε,其中L为实数,就称L是数列{an}的极限,记作lim(n→∞)an=L。
数列极限具有以下的性质:1. 极限的唯一性:如果数列{an}的极限存在,那么它的极限是唯一的;2. 有界性:如果数列{an}收敛,则它是有界的;3. 保号性:如果数列{an}收敛且极限不等于0,那么存在正整数N,当n>N时,数列的项与极限同号。
通过对数列极限的学习,我们可以更好地理解数列的性质,同时也可以应用数列极限来解决一些实际问题。
三、归纳不等式与数列极限的联系归纳不等式与数列极限在高中数学中有着密切的联系,它们可以相互应用,互相支撑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数 不等式 数列 极限 数学归纳法一 能力培养1,归纳-猜想-证明 2,转化能力 3,运算能力 4,反思能力 二 问题探讨问题1数列{n a }满足112a =,212n n a a a n a ++⋅⋅⋅+=,(n N *∈). (I)求{n a }的通项公式; (II)求1100nn a -的最小值; (III)设函数()f n 是1100nn a -与n 的最大者,求()f n 的最小值.问题2已知定义在R 上的函数()f x 和数列{n a }满足下列条件:1a a =,1()n n a f a -= (n =2,3,4,⋅⋅⋅),21a a ≠,1()()n n f a f a --=1()n n k a a --(n =2,3,4,⋅⋅⋅),其中a 为常数,k 为非零常数.(I)令1n n n b a a +=-(n N *∈),证明数列{}n b 是等比数列; (II)求数列{n a }的通项公式; (III)当1k <时,求lim n n a →∞.问题3已知两点M (1,0)-,N (1,0),且点P 使MP MN ⋅,PM PN ⋅,NM NP ⋅成公差小 于零的等差数列.(I)点P 的轨迹是什么曲线? (II)若点P 坐标为00(,)x y ,记θ为PM 与PN 的夹角,求tan θ.三 习题探讨 选择题1数列{}n a 的通项公式2n a n kn =+,若此数列满足1n n a a +<(n N *∈),则k 的取值范围是 A,2k >- B,2k ≥- C,3k ≥- D,3k >- 2等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S nT n =+,则n na b = A,23 B,2131n n -- C,2131n n ++ D,2134n n -+ 3已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是A,B,C,D, 4在等差数列{}n a 中,1125a =,第10项开始比1大,记21lim ()n n n a S t n →∞+=,则t 的取值范围是A,475t > B,837525t <≤ C,437550t << D,437550t <≤5设A 11(,)x y ,B 22(,)x y ,C 33(,)x y 是椭圆22221x y a b+=(0a b >>)上三个点,F 为焦点,若,,AF BF CF 成等差数列,则有A,2132x x x =+ B,2132y y y =+ C,213211x x x =+ D,2213x x x =⋅ 6在ABC ∆中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以13为 第三项,9为第六项的等比数列的公比,则这个三角形是A,钝角三角形 B,锐角三角形 C,等腰直角三角形 D,以上都不对 填空7等差数列{}n a 前n (6n >)项和324n S =,且前6项和为36,后6项和为180,则n = .8223323232323236666n nn nS ++++=+++⋅⋅⋅+,则lim n n S →∞= .9在等比数列{}n a 中,121lim()15n n a a a →∞++⋅⋅⋅+=,则1a 的取值范围是 . 10一个数列{}n a ,当n 为奇数时,51n a n =+;当n 为偶数时,22n n a =.则这个数列的前2m 项之和2m S = .11等差数列{}n a 中,n S 是它的前n 项和且67S S <,78S S >,则①此数列的公差0d <,②96S S <,③7a 是各项中最大的一项,④7S 一定是n S 中的最大项,其中正确的是 . 解答题12已知23123()n n f x a x a x a x a x =+++⋅⋅⋅+,且123,,n a a a a ⋅⋅⋅组成等差数列(n 为正偶数). 又2(1)f n =,(1)f n -=,(I)求数列的通项n a ;(II)试比较1()2f 与3的大小,并说明理由.13已知函数2()31f x x bx =++是偶函数,()5g x x c =+是奇函数,正数数列{}n a 满足11a =,211()()1n n n n n f a a g a a a +++-+=.(I)若{}n a 前n 项的和为n S ,求lim n n S →∞;(II)若12()()n n n b f a g a +=-,求n b 中的项的最大值和最小值.14. 已知等比数列{}n x 的各项不为1的正数,数列{}n y 满足log 2n n x y a ⋅=(0a >且1a ≠),设417y =,711y =.(I)求数列{}n y 的前多少项和最大,最大值是多少? (II)设2n yn b =,123n n S b b b b =+++⋅⋅⋅+,求25lim2nn S →∞的值.(III)试判断,是否存在自然数M,使当n M >时1n x >恒成立,若存在求出相应的M;若不存 在,请说明理由.15设函数()f x 的定义域为全体实数,对于任意不相等的实数1x ,2x ,都有12()()f x f x -12x x <-,且存在0x ,使得00()f x x =,数列{}n a 中,10a x <,1()2()n n n f a a a n N +=-∈,求证:对于任意的自然数n ,有: (I)0n a x <; (II)1n n a x +<.参考答案:问题1解:(I)212n n a a a n a ++⋅⋅⋅+=,得n S =2n n a当2n ≥时,1n n n a S S -=-=2n n a 21(1)n n a ---,有221(1)(1)n n n a n a --=-,即111n n a n a n --=+. 于是3241123112313451n n n a a a a a n a a a a a n --=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅+=2(1)n n +.又112a =,得n a =1(1)n n +. 由于1a 也适合该式,故n a =1(1)n n +.(II)1100nn a -=299n n -=2(49.5)2450.25n -- 所以当49n =或50时,1100nn a -有最小值2450-. (III)因()f n 是1100nn a -与n 的最大者,有(1100)()1100(100)nn n f n n n a ≤≤⎧⎪=⎨-<⎪⎩, 有min ()f n =(1)f =1.问题2(I)证明:由1210b a a =-≠,得2322121()()()0b a a f a f a k a a =-=-=-≠. 由数学归纳法可证10n n n b a a +=-≠(n N *∈). 而,当2n ≥时,1111111()()()n n n n n n n n n n n n n n b a a f a f a k a a k b a a a a a a +---------====--- 因此,数列{}n b 是一个公比为k 的等比数列. (II)解:由(I)知,11121()()n n n b kb k a a n N --*==-∈当1k ≠时,112211()(2)1n n k b b b a a n k--++⋅⋅⋅+=-≥- 当1k =时,12n b b b ++⋅⋅⋅+=21(1)()n a a --(2n ≥)而12213211()()()(2)n n n n b b b a a a a a a a a n -++⋅⋅⋅+=-+-+⋅⋅⋅+-=-≥,有当1k ≠时,1n a a -= 1211()(2)1n k a a n k---≥-;当1k =时,1n a a -=21(1)()n a a --(2)n ≥. 以上两式对1n =时也成立,于是当1k ≠时,11211()1n n k a a a a k --=+--= 11(())1n k a f a a k--=+--当1k =时,121(1)()n a a n a a =+--=(1)(())a n f a a +--.(III)解:当1k <时,11()lim lim[(())]11n n n n k f a aa a f a a a k k-→∞→∞--=+-=+--.问题3解:(I)设点P(,x y ),由M (1,0)-,N (1,0)得(1,)PM MP x y =-=---,(1,)PN NP x y =-=--,(2,0)MN NM =-=有2(1)MP MN x ⋅=+,221PM PN x y ⋅=+-,2(1)NM NP x ⋅=-. 于是MP MN ⋅,PM PN ⋅,NM NP ⋅成公差小于零的等差数列等价于2211[2(1)2(1)]22(1)2(1)0x y x x x x ⎧+-=++-⎪⎨⎪--+<⎩,即2230x y x ⎧+=⎨>⎩ 所以点P 的轨迹是以原点为圆心C. (II)设P(00,x y ),则由点P 在半圆C 上知,22001PM PN x y ⋅=+-又(1PM PN⋅=得cos 4PM PN PM PNθ⋅==⋅ 又001x <≤,12≤,有1cos 12θ<≤, 03πθ≤<,sin 1cos θ=-=,由此得0tan y θ==. 习题解答:1由1(21)0n n a a n k +-=++>,n N *∈恒成立,有30k +>,得3k >-,选D.21211212112112121(21)22(21)21223(21)131(21)2n n n n n n n n n n a a n a a a a Sn n b b b b b b T n n n ------+-+--======++-+--,选B. 3设三边长分别为2,,a aq aq ,且0,0a q >> ①当1q ≥时,由2a aq aq +>,得112q +≤<; ②当01q <<时,由2aq aq a +>,1q <<,q <<选D. 4由10191a a d =+>,且9181a a d =+≤,而21lim ()2n nn da S t n →∞+==, 又1125a =,于是737550t <≤,选D.5由椭圆第2定义得222132()()22()a a a AF CF x x BF x c c c+=+++==+,选A.6由条件得31444tan ,9tan 3A B =-+=,有tan 2A =,tan 3B =. 得tan tan[()]tan()1C A B A B π=-+=-+=,于是ABC ∆为锐角三角形,选B. 7由12345636a a a a a a +++++=,12345180n n n n n n a a a a a a -----+++++=有12165()()()216n n n a a a a a a --++++⋅⋅⋅++=,即16()n a a +=216,得1n a a +=36,又13242na a n +⨯=,解得18n =. 822111111()()333222n n n S =++⋅⋅⋅++++⋅⋅⋅+,得11332lim 1121132n n S →∞=+=--.9由条件知,公比q 满足01q <<,且11115a q =-,当01q <<时,11015a <<;当10q -<<时,1121515a <<.于是1a 的取值范围是112(0,)(,)151515. 10当n 为奇数时,相邻两项为n a 与2n a +,由51n a n =+得25(2)1(51)n n a a n n +-=++-+ =10,且16a =.所以{}n a 中的奇数项构成以16a =为首项,公差10d =的等差数列.当n 为偶数时,相邻两项为n a 与2n a +,由n a = 22n ,得2222222n n n na a ++==,且22a = 所以{}n a 中的偶数项构成以22a =为首项,公比2q =的等比数列. 由此得212(1)2(12)610522212m m mm m S m m m +--=+⨯+=++--.11由6778,S S S S <>,得780,0a a ><,有0d <;96S S <;7S 是n S 中的最大值,选①②④. 12解:(I)由12(1)n f a a a =++⋅⋅⋅+=2n ,再依题意有1a +n a =2n ,即12(1)2a n d n +-=① 又121(1)n n f a a a a n --=-+-⋅⋅⋅-+=,(n 为正偶数)得2d =,代入①有21n a n =-. (II)2311111()3()5()(21)()22222n f n =+++⋅⋅⋅+-,2341111111()()3()5()(21)()222222n f n +=+++⋅⋅⋅+- 得2311111111(1)()2()2()2()(21)()2222222n n f n +-=+++⋅⋅⋅+--于是2111()12()(21)3222n f n n-=+---⋅<. 13解: (I)可得2()31f x x =+,()5g x x =,由已知211()()1n n n n n f a a g a a a +++-+=,得11(32)()0n n n n a a a a ++-⋅+=,而10n n a a ++≠,有123n n a a +=,于是1lim 3213n n S →∞==-.(II)215832()()6()1854n n n n b f a g a a +=-=-+, 由12()3n n a -=知n b 的最大值为1143b =,最小值为4374243b =.14解: (I)22log log n n a n x y x a==,设11n n x x q -=有1122log 2log 2log log n n n a n a n a x y y x x q a++-==-=,又{}n y 成等差数列.742log 74a y y q d -==-,得2d =-,17(71)(2)23,y y =--⨯-=252n y n =-. 当0n y ≥时,即23(1)(2)0n +-⨯-≥,得252n ≤.于是前12项和最大,其最大值为144.(II)25222ny n n b -==,2312b =,得21124n n b b -+==,23112()4n n b -=232522lim 1314n n S →∞==-,于是251lim 23n n S →∞= (III)由(I)知当12n >时,0n y <恒成立,由2log n a n y x =,得2n y n x a =.(i)当01a <<且12n >时,有2n y n x a =01a >=,(ii)当1a >且12n >时,1n x <,故当01a <<时,在12M =使n M >时,1n x >恒成立;当1a >时不存在自然数M,使当n M >时1n x >.15证明:用数学归纳法 (I)当1n =时,10a a <命题成立.假设当n k =(k N *∈)时,0k a a <成立,那么当1n k =+时,由1212()()f x f x x x -<-, 得00()()k k f x f a x a -<-,又00()f x x =,有00()k k x f a x a -<-, 而0k a x <,得00()k k x f a x a -<-,于是000()k k k a x x f a x a -<-<-,即0()2()k k k k a f a x f a a +<⎧⎨>⎩,又1()2k k k f a a a +=-,有10(2)2k k k a a a x ++-<,即10k a x +<,于是当1n k =+时,命题也成立. 综上所述,对任意的k N *∈,0n a a <.(II)由1212()()f x f x x x -<-,得00()()n n f x f a x a -<-, 又00()f x x =,得00()n n x f a x a -<-,又0n a a <,得00()n n x f a x a -<-,即000()n n n a x x f a x a -<-<-, 有()n n f a a >,而1()2n n n f a a a +=-,得12n n n a a a +->, 故1n n a a +>.。