2019年中考数学真题分类训练——专题一:数与式
【2019-2021年】浙江省宁波市中考真题分类汇编专题1数与式、方程与不等式(解析版)
【2019-2021年】浙江省宁波市中考真题分类汇编专题1 数与式、方程与不等式1.(2019·宁波)-2的绝对值为()A. B. 2 C. D. -2【答案】B【解析】【解答】解:∣-2∣=2.故答案为:B【分析】因为一个负数的绝对值等于它的相反数,而-2的相反数是2,所以-2的绝对值等于2。
2.(2019·宁波)下列计算正确的是()A. B. C. D.【答案】D【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D、∵,∴此答案正确,符合题意。
故答案为:D【分析】(1)因为a³与a²不是同类项,所以不能合并;(2)根据同底数幂相乘,底数不变,指数相加可判断求解;(3)根据幂的乘方,底数不变,指数相乘可判断求解;(4)根据同底数幂相除,底数不变,指数相减可判断求解。
3.(2019·宁波)宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.【答案】C【解析】【解答】解:。
故答案为:C【分析】任何一个绝对值大于等于1的数都可以用科学记数法表示,科学记数法的表示形式为a×10n,其中1≤|a|<10,n=整数位数-1.4.(2019·宁波)若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【解析】【解答】解:由题意得:x-2≠0,解得:x≠2.故答案为:B【分析】分式有意义的条件是:分母不为0,从而列出不等式,求解即可。
5.(2019·宁波)不等式的解为()A. B. C. D.【答案】A【解析】【解答】解:去分母得:3-x﹥2x,移项得:-x-2x﹥-3,合并同类项得:-3x﹥-3,系数化为1得:x﹤1.故答案为:A【分析】解不等式的步骤是:去分母、移项、合并同类项、系数化为1.根据解不等式的步骤计算即可求解。
2019、2020年山东中考数学试题分类(1)——数与式
2019、2020年山东中考数学试题分类(1)——数与式一.有理数的加减混合运算(共1小题) 1.(2019•德州)已知:[x ]表示不超过x 的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x }=x ﹣[x ],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}= . 二.科学记数法—表示较大的数(共5小题) 2.(2020•日照)“扶贫”是新时期党和国家的重点工作之一,为落实习近平总书记提出的“精准扶贫”战略构想,某省预计三年内脱贫1020000人,数字1020000用科学记数法可表示为( ) A .1.02×106 B .1.02×105 C .10.2×105 D .102×104 3.(2020•潍坊)今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少1109万.数字1109万用科学记数法可表示为( ) A .1.109×107 B .1.109×106 C .0.1109×108 D .11.09×106 4.(2020•泰安)2020年6月23日,中国北斗系统第五十五颗导航卫星暨北斗三号最后一颗全球组网卫星成功发射入轨,可以为全球用户提供定位、导航和授时服务.今年我国卫星导航与位置服务产业产值预计将超过4000亿元.把数据4000亿元用科学记数法表示为( ) A .4×1012元 B .4×1010元 C .4×1011元 D .40×109元 5.(2020•烟台)5G 是第五代移动通信技术,其网络下载速度可以达到每秒1300000KB 以上,正常下载一部高清电影约需1秒.将1300000用科学记数法表示为 . 6.(2019•济南)2019年1月3日,“嫦娥四号”探测器成功着陆在月球背面东经177.6度、南纬45.5度附近,实现了人类首次在月球背面软着陆.数字177.6用科学记数法表示为( ) A .0.1776×103 B .1.776×102 C .1.776×103 D .17.76×102 三.科学记数法—表示较小的数(共2小题) 7.(2020•威海)人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为( )A .10×10﹣10B .1×10﹣9C .0.1×10﹣8 D .1×109 8.(2019•烟台)某种计算机完成一次基本运算的时间约为1纳秒(ns ),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为( )A .1.5×10﹣9秒B .15×10﹣9秒C .1.5×10﹣8秒D .15×10﹣8秒 四.计算器—基础知识(共1小题)9.(2020•东营)利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为( ) A .﹣2 B .2 C .±2 D .4五.实数的性质(共1小题) 10.(2020•济南)﹣2的绝对值是( ) A .2 B .﹣2 C .±2 D .√2六.实数大小比较(共1小题) 11.(2020•菏泽)下列各数中,绝对值最小的数是( ) A .﹣5B .12C .﹣1D .√2七.规律型:数字的变化类(共4小题) 12.(2020•淄博)某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是 个. 13.(2019•济宁)已知有理数a ≠1,我们把11−a称为a 的差倒数,如:2的差倒数是11−2=−1,﹣1的差倒数是11−(−1)=12.如果a 1=﹣2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+…+a 100的值是( ) A .﹣7.5 B .7.5C .5.5D .﹣5.514.(2020•泰安)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a4+a200=.15.(2020•滨州)观察下列各式:a1=23,a2=35,a3=107,a4=159,a5=2611,…,根据其中的规律可得a n=(用含n的式子表示).八.规律型:图形的变化类(共3小题)16.(2020•聊城)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①①①…的次序铺设地砖,把第n个图形用图ⓝ表示,那么第50个图形中的白色小正方形地砖的块数是()A.150B.200C.355D.50517.(2019•青岛)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图①是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图①中,使它恰好盖住图①中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图①,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图①,在3×2的方格纸中,共可以找到2个位置不同的2×2方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图①,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图①,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图①是一个由4个棱长为1的小立方体构成的几何体,图①是一个长、宽、高分别为a,b,c(a ≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图①的不同位置共可以找到个图①这样的几何体.18.(2020•日照)用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是()A.59B.65C.70D.71九.完全平方公式(共2小题)19.(2019•烟台)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A.128B.256C.512D.102420.(2020•济南)下列运算正确的是( ) A .(﹣2a 3)2=4a 6 B .a 2•a 3=a 6 C .3a +a 2=3a 3 D .(a ﹣b )2=a 2﹣b 2 一十.整式的混合运算(共1小题) 21.(2020•东营)下列运算正确的是( ) A .(x 3)2=x 5 B .(x ﹣y )2=x 2+y 2 C .﹣x 2y 3•2xy 2=﹣2x 3y 5 D .﹣(3x +y )=﹣3x +y 一十一.提公因式法与公式法的综合运用(共1小题) 22.(2019•临沂)将a 3b ﹣ab 进行因式分解,正确的是( ) A .a (a 2b ﹣b ) B .ab (a ﹣1)2C .ab (a +1)(a ﹣1)D .ab (a 2﹣1) 一十二.分式的混合运算(共3小题) 23.(2019•青岛)(1)化简:a −aa ÷(a 2+a 2a−2n );(2)解不等式组{1−15a ≤653a −1<8,并写出它的正整数解.24.(2020•青岛)(1)计算:(1a+1a)÷(a a−a a);(2)解不等式组:{2a −3≥−5,13a +2<a .25.(2020•泰安)(1)化简:(a ﹣1+1a −3)÷a 2−4a −3;(2)解不等式:a +13−1<a −14.一十三.分式的化简求值(共12小题) 26.(2020•烟台)先化简,再求值:(aa −a−a 2a 2−a 2)÷aaa +a 2,其中x =√3+1,y =√3−1.27.(2019•日照)(1)计算:|√3−2|+π0+(﹣1)2019﹣(12)﹣1;(2)先化简,再求值:1−a +3a 2−1÷a +3a −1,其中a =2;(3)解方程组:{2a −a =5,3a +4a =2.28.(2019•菏泽)先化简,再求值:1a −a (2aa +a−1)÷1a 2−a 2,其中x =y +2019.29.(2019•枣庄)先化简,再求值:a 2a 2−1÷(1a −1+1),其中x 为整数且满足不等式组{a −1>1,5−2a ≥−2.30.(2019•滨州)先化简,再求值:(a 2a −1−a 2a 2−1)÷a 2−aa 2−2a +1,其中x 是不等式组{a −3(a −2)≤4,2a −33<5−a 2的整数解.31.(2019•泰安)先化简,再求值:(a ﹣9+25a +1)÷(a ﹣1−4a −1a +1),其中a =√2. 32.(2019•德州)先化简,再求值:(2a−1a)÷(a 2+a 2aa−5a a)•(a2a+2a a+2),其中√a +1+(n ﹣3)2=0.33.(2020•东营)(1)计算:√27+(2cos60°)2020﹣(12)﹣2﹣|3+2√3|;(2)先化简,再求值:(x −2aa −a 2a )÷a 2−a2a 2+aa,其中x =√2+1,y =√2. 34.(2020•潍坊)先化简,再求值:(1−a +1a 2−2a +1)÷a −3a −1,其中x 是16的算术平方根.35.(2020•菏泽)先化简,再求值:(2a −12a a +2)÷a −4a 2+4a +4,其中a 满足a 2+2a ﹣3=0. 36.(2020•德州)先化简:(a −1a −2−a +2a )÷4−aa 2−4a +4,然后选择一个合适的x 值代入求值.37.(2020•滨州)先化简,再求值:1−a −a a +2a ÷a 2−a 2a 2+4aa +4a 2;其中x =cos30°×√12,y =(π﹣3)0﹣(13)﹣1.一十四.最简二次根式(共1小题) 38.(2020•济宁)下列各式是最简二次根式的是( ) A .√13B .√12C .√a 3D .√53一十五.二次根式的加减法(共1小题) 39.(2020•日照)下列各式中,运算正确的是( ) A .x 3+x 3=x 6 B .x 2•x 3=x 5 C .(x +3)2=x 2+9 D .√5−√3=√2 一十六.二次根式的混合运算(共6小题) 40.(2019•聊城)下列各式不成立的是( ) A .√18−√89=73√2B .√2+23=2√23C .√8+√182=√4+√9=5D .√3+√2=√3−√241.(2020•菏泽)计算(√3−4)(√3+4)的结果是 . 42.(2020•青岛)计算:(√12−√43)×√3= . 43.(2019•临沂)计算:√12×√6−tan45°= .44.(2019•青岛)计算:√24+√8√2−(√3)0= . 45.(2020•临沂)计算:√(13−12)2+√221√6−sin60°.2019、2020年山东中考数学试题分类(1)——数与式参考答案与试题解析一.有理数的加减混合运算(共1小题) 1.【解答】解;根据题意可得原式=(3.9﹣3)+[(﹣1.8)﹣(﹣2)]﹣(1﹣1)=0.9+0.2=1.1; 故答案为:1.1二.科学记数法—表示较大的数(共5小题) 2.【解答】解:1020000=1.02×106. 故选:A . 3.【解答】解:∵1109万=11090000, ∴11090000=1.109×107. 故选:A . 4.【解答】解:4000亿=4000×108=4×1011, 故选:C . 5.【解答】解:将数据1300000用科学记数法可表示为:1.3×106. 故答案为:1.3×106. 6.【解答】解:177.6=1.776×102. 故选:B .三.科学记数法—表示较小的数(共2小题) 7.【解答】解:∵十亿分之一=11000000000=1×10﹣9,∴十亿分之一用科学记数法可以表示为:1×10﹣9. 故选:B .8.【解答】解:所用时间=15×0.000 000 001=1.5×10﹣8. 故选:C .四.计算器—基础知识(共1小题)9.【解答】解:表示“√4=”即4的算术平方根,∴计算器面板显示的结果为2, 故选:B .五.实数的性质(共1小题) 10.【解答】解:﹣2的绝对值是2; 故选:A .六.实数大小比较(共1小题)11.【解答】解:∵|﹣5|=5,|12|=12,|﹣1|=1,|√2|=√2, ∴绝对值最小的数是12.故选:B .七.规律型:数字的变化类(共4小题) 12.【解答】解:当一辆快递货车停靠在第x 个服务驿站时,快递货车上需要卸下已经通过的(x ﹣1)个服务驿站发给该站的货包共(x ﹣1)个, 还要装上下面行程中要停靠的(n ﹣x )个服务驿站的货包共(n ﹣x )个. 根据题意,完成下表:服务驿站序号 在第x 服务驿站启程时快递货车货包总数1 n ﹣12 (n ﹣1)﹣1+(n ﹣2)=2(n ﹣2)3 2(n ﹣2)﹣2+(n ﹣3)=3(n ﹣3)4 3(n ﹣3)﹣3+(n ﹣4)=4(n ﹣4)5 4(n ﹣4)﹣4+(n ﹣5)=5(n ﹣5)……n 0由上表可得y =x (n ﹣x ).当n =29时,y =x (29﹣x )=﹣x 2+29x =﹣(x ﹣14.5)2+210.25, 当x =14或15时,y 取得最大值210. 故答案为:210. 13.【解答】解:∵a 1=﹣2,∴a 2=11−(−2)=13,a 3=11−13=32,a 4=11−32=−2,…… ∴这个数列以﹣2,13,32依次循环,且﹣2+13+32=−16,∵100÷3=33…1,∴a 1+a 2+…+a 100=33×(−16)﹣2=−152=−7.5,故选:A .14.【解答】解:观察“杨辉三角”可知第n 个数记为a n =(1+2+…+n )=12n (n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110. 故答案为:20110.15.【解答】解:由分析可得a n =a 2+(−1)a +12a +1.故答案为:a 2+(−1)a +12a +1.八.规律型:图形的变化类(共3小题) 16.【解答】解:由图形可知:第1个图形12块白色小正方形,第2个图形19个白色小正方形,第3个图形26个白色小正方形则图ⓝ的白色小正方形地砖有(7n +5)块, 当n =50时,7n +5=350+5=355. 故选:C . 17.【解答】解:探究三:根据探究二,a ×2的方格纸中,共可以找到(a ﹣1)个位置不同的 2×2方格, 根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a ×2的方格纸中,共可以找到(a ﹣1)×4=(4a ﹣4)种不同的放置方法; 故答案为a ﹣1,4a ﹣4;探究四:与探究三相比,本题矩形的宽改变了,可以沿用上一问的思路:边长为a ,有(a ﹣1)条边长为2的线段, 同理,边长为3,则有3﹣1=2条边长为2的线段,所以在a ×3的方格中,可以找到2(a ﹣1)=(2a ﹣2)个位置不同的2×2方格,根据探究一,在在a ×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a ﹣2)×4=(8a ﹣8)种不同的放置方法.故答案为2a ﹣2,8a ﹣8;问题解决:在a ×b 的方格纸中,共可以找到(a ﹣1)(b ﹣1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a ×b 的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a ﹣1)(b ﹣1)种不同的放置方法;问题拓展:发现图①示是棱长为2的正方体中的一部分,利用前面的思路, 这个长方体的长宽高分别为a 、b 、c ,则分别可以找到(a ﹣1)、(b ﹣1)、(c ﹣1)条边长为2的线段,所以在a ×b ×c 的长方体共可以找到(a ﹣1)(b ﹣1)(c ﹣1)位置不同的2×2×2的正方体, 再根据探究一类比发现,每个2×2×2的正方体有8种放置方法, 所以在a ×b ×c 的长方体中共可以找到8(a ﹣1)(b ﹣1)(c ﹣1)个图①这样的几何体; 故答案为8(a ﹣1)(b ﹣1)(c ﹣1). 18.【解答】解:根据图中圆点排列,当n =1时,圆点个数5+2;当n =2时,圆点个数5+2+3;当n =3时,圆点个数5+2+3+4;当n =4时,圆点个数5+2+3+4+5,…∴当n =10时,圆点个数5+2+3+4+5+6+7+8+9+10+11=4+(1+2+3+4+5+6+7+8+9+10+11)=4+12×11×(11+1)=70. 故选:C .九.完全平方公式(共2小题) 19.【解答】解:由“杨辉三角”的规律可知,(a +b )9展开式中所有项的系数和为(1+1)9=29=512 故选:C . 20.【解答】解:∵(﹣2a 3)2=4a 6,故选项A 正确; ∵a 2•a 3=a 5,故选项B 错误;∵3a +a 2不能合并,故选项C 错误;∵(a ﹣b )2=a 2﹣2ab +b 2,故选项D 错误; 故选:A .一十.整式的混合运算(共1小题) 21.【解答】解:A 、原式=x 6,不符合题意; B 、原式=x 2﹣2xy +y 2,不符合题意; C 、原式=﹣2x 3y 5,符合题意; D 、原式=﹣3x ﹣y ,不符合题意. 故选:C .一十一.提公因式法与公式法的综合运用(共1小题) 22.【解答】解:a 3b ﹣ab =ab (a 2﹣1)=ab (a +1)(a ﹣1), 故选:C .一十二.分式的混合运算(共3小题)23.【解答】解:(1)原式=a −a a ÷a 2+a 2−2aaa=a −a a ×a (a −a )2=1a −a; (2){1−15a ≤65a 3a −1<8a 由①,得x ≥﹣1, 由①,得x <3.所以该不等式组的解集为:﹣1≤x <3. 所以满足条件的正整数解为:1、2.24.【解答】解:(1)原式=(a aa+aaa)÷(a 2aa−a 2aa)=a +a aa ÷a 2−a 2aa=a +aaa •aa (a +a )(a −a ) =1a −a ;(2)解不等式2x ﹣3≥﹣5,得:x ≥﹣1, 解不等式13x +2<x ,得:x >3, 则不等式组的解集为x >3.25.【解答】解:(1)原式=[(a −1)(a −3)a −3+1a −3]÷(a +2)(a −2)a −3=(a 2−4a +3a −3+1a −3)•a −3(a +2)(a −2)=(a −2)2a −3•a −3(a +2)(a −2)=a −2a +2;(2)去分母,得:4(x +1)﹣12<3(x ﹣1), 去括号,得:4x +4﹣12<3x ﹣3, 移项,得:4x ﹣3x <﹣3﹣4+12, 合并同类项,得:x <5.一十三.分式的化简求值(共12小题) 26.【解答】解:(aa −a −a 2a 2−a 2)÷aaa +a 2,=[a (a +a )(a +a )(a −a )−a 2(a +a )(a −a )]÷a a (a +a ), =aa (a +a )(a −a )×a (a +a )a , =a 2a −a ,当x =√3+1,y =√3−1时,原式=(√3−1)22=2−√3. 27.【解答】解:(1)|√3−2|+π0+(﹣1)2019﹣(12)﹣1=2−√3+1+(﹣1)﹣2 =−√3; (2)1−a +3a 2−1÷a +3a −1 =1−a +3(a +1)(a −1)⋅a −1a +3=1−1a +1 =a +1−1a +1=a a +1当a =2时,原式=22+1=23;(3){2a −a =5a3a +4a =2a ,①×4+①,得 11x =22, 解得,x =2,将x =2代入①中,得 y =﹣1,故原方程组的解是{a =2a =−1.28.【解答】解:1a −a (2aa +a−1)÷1a 2−a 2=1a −a ⋅2a −(a +a )a +a⋅(a +a )(a −a )=﹣(2y ﹣x ﹣y ) =x ﹣y ,∵x =y +2019,∴原式=y +2019﹣y =2019.29.【解答】解:原式=a 2(a +1)(a −1)÷(1a −1+a −1a −1)=a 2(a +1)(a −1)•a −1a=a a +1,解不等式组{a −1>1,5−2a ≥−2.得2<x ≤72,则不等式组的整数解为3,当x =3时,原式=33+1=34. 30.【解答】解:原式=[a 3+a 2(a +1)(a −1)−a 2(a +1)(a −1)]•(a −1)2a (a −1)=a 3(a +1)(a −1)•(a −1)2a (a −1) =a 2a +1,解不等式组{a −3(a −2)≤4,2a −33<5−a 2得1≤x <3, 则不等式组的整数解为1、2, 又x ≠±1且x ≠0, ∴x =2, ∴原式=43.31.【解答】解:原式=(a 2−8a −9a +1+25a +1)÷(a 2−1a +1−4a −1a +1)=a 2−8a +16a +1÷a 2−4a a +1 =(a −4)2a +1•a +1a (a −4)=a −4a ,当a =√2时, 原式=√2−4√2=1﹣2√2.32.【解答】解:(2a −1a )÷(a 2+a 2aa −5aa)•(a2a+2a a+2)=2a −a aa ÷a 2+a 2−5a 2aa •a 2+4a 2+4aa 2aa=2a −aaa •aa (a +2a )(a −2a )•(a +2a )22aa=−a +2a 2aa .∵√a +1+(n ﹣3)2=0.∴m +1=0,n ﹣3=0, ∴m =﹣1,n =3.∴−a +2a2aa =−−1+2×32×(−1)×3=56. ∴原式的值为56.33.【解答】解:(1)原式=3√3+(2×12)2020﹣22﹣(3+2√3) =3√3+1﹣4﹣3﹣2√3 =√3−6;(2)原式=a 2−2aa +a 2a •a 2+aa a 2−a 2 =(a −a )2a •a (a +a )(a +a )(a −a )=x ﹣y .当x =√2+1,y =√2时,原式=√2+1−√2=1.34.【解答】解:原式=(a 2−2a +1a 2−2a +1−a +1a 2−2a +1)÷a −3a −1, =(a 2−3a a 2−2a +1)×a −1a −3, =a (a −3)(a −1)2×a −1a −3, =a a −1. ∵x 是16的算术平方根,∴x =4,当x =4时,原式=43. 35.【解答】解:原式=(2a 2+4a a +2−12a a +2)÷a −4(a +2)2 =2a 2−8a a +2•(a +2)2a −4 =2a (a −4)a +2•(a +2)2a −4 =2a (a +2)=2(a 2+2a )∵a 2+2a ﹣3=0,∴a 2+2a =3,则原式=2×3=6.36.【解答】解:(a −1a −2−a +2a )÷4−aa 2−4a +4=[a (a −1)a (a −2)−(a −2)(a +2)a (a −2)]×(a −2)24−a=4−a a (a −2)⋅(a −2)24−a=a −2a , ∵x 不能取0,2,4把x =1代入a −2a =1−21=−1.37.【解答】解:原式=1−a −a a +2a ÷(a +a )(a −a )(a +2a )2=1+a −a a +2a •(a +2a )2(a +a )(a −a ) =1+a +2a a +a=a +a +a +2a a +a =2a +3a a +a ,∵x =cos30°×√12=√32×2√3=3,y =(π﹣3)0﹣(13)﹣1=1﹣3=﹣2,∴原式=2×3+3×(−2)3−2=0. 一十四.最简二次根式(共1小题)38.【解答】解:A 、√13是最简二次根式,符合题意;B 、√12=2√3,不是最简二次根式,不符合题意;C 、√a 3=a √a ,不是最简二次根式,不符合题意;D 、√53=√153,不是最简二次根式,不符合题意. 故选:A .一十五.二次根式的加减法(共1小题)39.【解答】解:A 、x 3+x 3=2x 3,故选项A 不符合题意;B 、x 2•x 3=x 5计算正确,故选项B 符合题意;C 、(x +3)2=x 2+6x +9,故选项C 不符合题意;D 、二次根式√5与√3不是同类二次根式故不能合并,故选项D 不符合题意. 故选:B .一十六.二次根式的混合运算(共6小题)40.【解答】解:√18−√89=3√2−2√23=7√23,A 选项成立,不符合题意; √2+23=√83=2√23,B 选项成立,不符合题意; √8+√182=2√2+3√22=5√22,C 选项不成立,符合题意; √3+√2=√3−√2(√3+√2)(√3−√2)=√3−√2,D 选项成立,不符合题意; 故选:C .41.【解答】解:原式=(√3)2﹣42 =3﹣16=﹣13.故答案为:﹣13.42.【解答】解:原式=(2√3−2√33)×√3 =4√33×√3=4, 故答案为:4.43.【解答】解:√12×√6−tan45°=√12×6−1=√3−1, 故答案为:√3−1.44.【解答】解:√24+√8√2−(√3)0=2√3+2﹣1=2√3+1, 故答案为:2√3+1. 45.【解答】解:原式=12−13+23−√32 =16+√36−√32=1−2√36.。
2019年中考数学真专题01数与式-分类汇编含答案解析
专题01 数与式1.(2019·宿迁)2019的相反数是A.12019B.-2019 C.12019D.2019【答案】B【解析】2019的相反数是-2019.故选B.2.(2019·潍坊)2019的倒数的相反数是A.-2019 B.12019C.12019D.2019【答案】B【解析】2019的倒数是12019,12019的相反数为12019,所以2019的倒数的相反数是12019,故选B.3.(2019?邵阳)下列各数中,属于无理数的是A.13B.1.414 C.2D.4【答案】C【解析】4=2是有理数;2是无理数,故选C.4.(2019?黄石)若式子12xx在实数范围内有意义,则x的取值范围是A.x≥1且x≠2B.x≤1C.x>1且x≠2D.x<1【答案】A【解析】依题意,得x-1≥0且x-200,解得x≥1且x≠2.故选A.5.(2019?河南)下列计算正确的是A.2a+3a=6a B.(-3a)2=6a2C.(x-y)2=x2-y2D.32222【答案】D【解析】2a+3a=5a,A错误;(-3a)2=9a2,B错误;(x-y)2=x2-2xy+y2,C错误;32222,D正确,故选D.6.(2019·安徽)2019年“五一”假日期间,某省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为A .1.61×109B .1.61×1010C .1.61×1011D .1.61×1012【答案】B【解析】161亿=16100000000=1.61×1010.故选B .7.(2019?河南)成人每天维生素D 的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为A .46×10-7B .4.6×10-7C .4.6×10-6D .0.46×10-5【答案】C【解析】0.0000046=4.6×10-6.故选C .8.(2019·安徽)在-2,-1,0,1这四个数中,最小的数是A .-2B .-1C .0D .1【答案】A 【解析】在2、1、0、1这四个数中,大小顺序为:2101,所以最小的数是2,故选A .9.(2019·重庆A 卷)下列各数中,比1小的数是A .2B .1C .0D .-2【答案】D【解析】根据负数小于0,0小于正数,且负数的绝对值越大,本身就越小,即可确定-2最小,故选D .10.(2019·安徽)已知三个实数a ,b ,c 满足a-2b+c=0,a+2b+c<0,则A .b>0,b 2-ac ≤0B .b<0,b 2-ac ≤0C .b>0,b 2-ac ≥0D .b<0,b 2-ac ≥0【答案】D【解析】∵a-2b+c=0,∴a+c=2b ,∴a+2b+c=4b<0,∴b<0,∴a 2+2ac+c 2=4b 2,即22224aac cb,∴b 2-ac=22222220444a c aac caac c ac,故选D .11.(2019?北京)如果m+n=1,那么代数式22221()()m n mn mmnm的值为A .-3B .-1C .1D .3【答案】D【解析】原式=2()m n m n m mn ·(m+n )(m -n )=3()m m mn ·(m+n )(m -n )=3(m+n ),当m+n=1时,原式=3.故选D .12.(2019?河北)如图,若x 为正整数,则表示22(2)1441x xxx 的值的点落在A .段①B .段②C .段③D .段④【答案】B【解析】∵2222(2)1(2)111441(2)111x x x xxx xx x x ,又∵x 为正整数,∴12≤x<1,故表示22(2)1441x xxx 的值的点落在②,故选B .13.(2019·重庆A 卷)估计1(2362)3的值应在A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】C【解析】1(2362)3=2+623=2+24,又因为4<24<5,所以6<2+24<7,故选C .14.(2019?北京)在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C ,若CO=BO ,则a 的值为A .-3 B .-2C .-1D .1【答案】A 【解析】∵点C 在原点的左侧,且CO=BO ,∴点C 表示的数为-2,∴a=-2-1=-3.故选A .15.(2019·滨州)下列各数中,负数是A .(2)B .2C .22D .02【答案】B 【解析】A 、22,故此选项错误;B 、22,故此选项正确;C 、224,故此选项错误;D 、021,故此选项错误,故选B .16.(2019?山西)下列二次根式是最简二次根式的是A.12B.127C.8D.3【答案】D【解析】A、1222,故A不符合题意;B、1222177,故B不符合题意;C、822,故C不符合题意;D、3是最简二次根式,故D符合题意.故选D.17.(2019?广东)实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是A.a>b B.|a|<|b| C.a+b>0 D.ab<0【答案】D【解析】由图可得:-2<a<-1,0<b<1,∴a<b,故A错误;|a|>|b|,故B错误;a+b<0,故C错误;ab<0,故D正确,故选D.18.(2019·金华)某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是星期一二三四最高气温10 °C 12 °C 11 °C 9 °C最低气温 3 °C 0 °C -2 °C -3 °C A.星期一B.星期二C.星期三D.星期四【答案】C【解析】星期一温差:10-3=7 °C;星期二温差:12-0=12 °C;星期三温差:11-(-2)=13 °C;星期四温差:9-(-3)=12 °C,综上,周三的温差最大,故选C.19.(2019·温州)计算:(-3)×5的结果是A.-15 B.15 C.-2 D.2【答案】A【解析】(-3)×5=-15,故选A .20.(2019·济宁)下列计算正确的是A .2(3)3B .3355C .36=6D .0.360.6【答案】D 【解析】A .2(3)3,故此选项错误;B .3355,故此选项错误;C .366,故此选项错误;D .0.360.6,正确.故选D .21.(2019·南京)面积为4的正方形的边长是A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根【答案】B 【解析】面积为4的正方形的边长是4,即为4的算术平方根,故选B .22.(2019·南京)下列整数中,与1013最接近的是A .4B .5C .6D .7【答案】C 【解析】∵9<13<16,∴3<13<4,∴与13最接近的是4,∴与10-13最接近的是6.故选C .23.(2019·天津)估计33的值在A .2和3之间B .3和4之间C .4和5之间D .5和6之间【答案】D【解析】∵25<33<36,∴5<33<6.故选D .24.(2019·临沂)下列计算错误的是A .3243a b ab a bB .2326mnm nC .523aaaD .2221455xyxyxy【答案】C 【解析】选项A ,单项式×单项式,323243a babaa b ba b ,选项正确;选项B ,积的乘方,2326mnm n ,选项正确;选项C ,同底数幂的除法,525(2)7aa a a ,选项错误;选项D ,合并同类项,2222215145555xyxyxyxyxy ,选项正确,故选C .25.(2019·滨州)若8mx y 与36n x y 的和是单项式,则3m n 的平方根为A .4B .8C .±4D .±8【答案】D【解析】由8mx y 与36nx y 的和是单项式,得31m n,.333164m n,64的平方根为8.故选D .26.(2019·南充)下列各式计算正确的是A .2(2)(2)a a aB .235()x x C .623xx xD .23x xx【答案】D【解析】A 、x+x 2,无法计算,故此选项错误;B 、(x 2)3=x 6,故此选项错误;C 、x 6÷x 2=x 4,故此选项错误;D 、x ·x 2=x 3,故此选项正确,故选D .27.(2019·天津)计算2211a a a 的结果是A .2B .22aC .1D .41a a 【答案】A 【解析】原式=222(1)211a a a a ,故选A .28.(2019·安徽)计算182的结果是__________.【答案】3 【解析】182=9=3,故答案为:3.29.(2019?绍兴)因式分解:x 2-1=__________.【答案】(x+1)(x-1)【解析】原式=(x+1)(x-1).故答案为:(x+1)(x-1).30.(2019?黄冈)分解因式3x 2-27y 2=__________.【答案】3(x+3y )(x -3y )【解析】原式=3(x 2-9y 2)=3(x+3y )(x-3y ),故答案为:3(x+3y )(x-3y ).31.(2019?哈尔滨)把多项式a 3-6a 2b+9ab 2分解因式的结果是__________.【答案】a (a -3b )2【解析】a 3-6a 2b+9ab 2=a (a 2-6ab+9b 2)=a (a -3b )2.故答案为:a (a -3b )2.32.(2019?衡阳)273=__________.【答案】23【解析】原式=33323.故答案为:23.33.(2019?镇江)氢原子的半径约为0.00000000005 m ,用科学记数法把0.00000000005表示为__________.【答案】5×10-11【解析】用科学记数法把0.00000000005表示为5×10-11.故答案为:5×10-11.34.(2019·重庆A 卷)计算:011(π3)()2=__________.【答案】3【解析】原式=1+2=3,故答案为:3.35.(2019·德州)33x x ,则x 的取值范围是__________.【答案】3x 【解析】根据绝对值的意义得,30x,∴3x ,故答案为:3x .36.(2019·聊城)计算:115()324=__________.【答案】23【解析】原式=542()653,故答案为:-23.37.(2019·宿迁)实数4的算术平方根为__________.【答案】2 【解析】∵224,∴4的算术平方根是2.故答案为:2.38.(2019·临沂)一般地,如果40xa a,则称x 为a 的四次方根,一个正数a 的四次方根有两个.它们互为相反数,记为4a ,若4410m,则m __________.【答案】10【解析】∵4410m,∴4410m,∴10m,故答案为:10.39.(2019·连云港)64的立方根是__________.【答案】4【解析】∵43=64,∴64的立方根是4,故答案为:4.40.(2019·嘉兴)数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,-a,-b的大小关系为__________(用“<”号连接).【答案】b a a b【解析】∵a>0,b<0,a+b<0,∴四个数a,b,-a,-b在数轴上的分布为:∴b<-a<a<-b.故答案为:b<-a<a<-b.41.(2019·天津)计算(31)(31)的结果等于__________.【答案】2【解析】原式=3-1=2.故答案为:2.42.(2019·天津)计算5x x的结果等于__________.【答案】6x【解析】56x x x,故答案为:6x.43.(2019·南充)计算:2111xx x__________.【答案】x+1【解析】2111xx x=2111xx x211xx111x xx1x,故答案为:x+1.44.(2019·宿迁)计算:11()π1|13| 2.【解析】原式21313.45.(2019·扬州)计算或化简:(1)08(3π)4cos45;(2)2111aa a.【解析】(1)08(3π)4cos45=22-1-4×22=22-1-22=-1.(2)2111aa a=2111aa a =211aa =(1)(1)1a a a =a+1.46.(2019·济宁)计算:16sin 6012()|32018|2.【解析】原式362312018320192.47.(2019·重庆A 卷)计算:(1)2()(2)x y y xy ;(2)2949()22a a aaa.【解析】(1)原式=22222xxy yxyy =2x .(2)原式=222949()222aa a a aaa 2269229aa a aa2(3)22(3)(3)a a a aa33a a.48.(2019?武汉)计算:(2x 2)3-x 2·x 4.【解析】(2x 2)3-x 2·x 4=8x 6-x6=7x 6.49.(2019?湖州)化简:(a+b )2-b (2a+b ).【解析】原式=a 2+2ab+b 2-2ab -b 2=a 2.50.(2019?益阳)化简:2244(4)2xxxx.【解析】原式=2(2)2(2)(2)x x xxx=242x x.51.(2019?河南)先化简,再求值:2212(1)244x x x xxx,其中x=3.【解析】原式=212(2)()22(2)x x x xxxx =322x x x=3x,当x=3时,原式=33=3.52.(2019?安顺)先化简2221(1)369x xxx ,再从不等式组24324x xx 的整数解中选一个合适的x的值代入求值.【解析】原式232(3)3(1)(1)x x xx x =31x x ,解不等式组24324x xx ①②得-2<x<4,∴其整数解为-1,0,1,2,3,∵要使原分式有意义,∴x 可取0,2.2019年全国中考数学真题分类汇编11 ∴当x=0时,原式=-3,(或当x=2时,原式=13).53.(2019·安徽)观察以下等式:第1个等式:211=111,第2个等式:311=226,第3个等式:211=5315,第4个等式:211=7428,第5个等式:211=9545,……按照以上规律,解决下列问题:(1)写出第6个等式:__________;(2)写出你猜想的第n 个等式:(用含n 的等式表示),并证明.【解析】(1)第6个等式:211=11666.(2)21121(21)n nn n .证明:∵右边112112(21)(21)21n n n n n n n 左边,∴等式成立.。
2019年山东省中考数学真题分类汇编 专题01 数与式 (解析版)
专题01 数与式一、选择题1.(2019山东滨州)下列各数中,负数是( )A .﹣(﹣2)B .﹣|﹣2|C .(﹣2)2D .(﹣2)0【答案】B .【解析】解:A 、﹣(﹣2)=2,故此选项错误; B 、﹣|﹣2|=﹣2,故此选项正确; C 、(﹣2)2=4,故此选项错误; D 、(﹣2)0=1,故此选项错误; 故选:B . 2.(2019山东德州)12-的倒数是( ) A. -2 B. 12C. 2D. 1【答案】A . 【解析】解:12-的到数是-2, 故选:A .3.(2019山东菏泽)下列各数中,最大的数是( )A .﹣12B .14C .0D .﹣2【答案】B . 【解析】解:﹣2<﹣12<0<14, 则最大的数是14, 故选:B .4.(2019的相反数是( )A .﹣2B .2C D【答案】D .,5.(2019山东临沂)|﹣2019|=()A.2019 B.﹣2019 C.12019D.﹣12019【答案】A.【解析】解:|﹣2019|=2019.故选:A.6.(2019的相反数是()A B.﹣3C D【答案】D.D.7.(2019山东潍坊)2019的倒数的相反数是()A.﹣2019 B.﹣12019C.12019D.2019【答案】B.【解答】解:2019的倒数是12019,再求12019的相反数为﹣12019;故选:B.8.(2019山东淄博)比﹣2小1的数是()A.﹣3 B.﹣1 C.1 D.3 【答案】A.【解答】解:﹣2﹣1=﹣(1+2)=﹣3.故选:A.9.(2019山东泰安)在实数|﹣3.14|,﹣3,π中,最小的数是()A B.﹣3 C.|﹣3.14| D.π【答案】B.【解析】解:∵||=<|﹣3|=33)C、D项为正数,A、B项为负数,正数大于负数,故选:B.10.(2019山东济宁)下列四个实数中,最小的是()A B.﹣5 C.1 D.4【解析】解:根据实数大小比较的方法,可得﹣5<1<4,所以四个实数中,最小的数是﹣5.故选:B.11.(2019山东威海)﹣3的相反数是()A.﹣3 B.3 C.13D.13【答案】B.【解析】解:﹣3的相反数是3.故选:B.12.(2019山东泰安)2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里、远地点约42万公里的地月转移轨道,将数据42万公里用科学记数法表示为()A.4.2×109米B.4.2×108米C.42×107米D.4.2×107米【答案】B.【解析】解:42万公里=420000000m用科学记数法表示为:4.2×108米,故选:B.13.(2019山东德州)据国家统计局统计,我国2018年国民生产总值(GDP)为900300亿元.用科学记数法表示900300亿是()A. 9.003×1012B. 90.03×1012C. 0.9003×1014D. 9.003×1013【答案】D.【解析】解:将900300亿元用科学记数法表示为:9.003×1013.故选:D.14.(2019山东青岛)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km【答案】B.【解析】解:科学记数法表示:384 000=3.84×105km,故选:B.15.(2019山东淄博)国产科幻电影《流浪地球》上映17日,票房收入突破40亿元人民币将40亿用科学记数法表示为()A.40×108B.4×109C.4×1010D.0.4×1010【解析】解:40亿用科学记数法表示为:4×109,故选:B.16.(2019山东潍坊)“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为()A.10.02亿B.100.2亿C.1002亿D.10020亿【答案】C.【解析】解:1.002×1011=1 002 000 000 00=1002亿,故选:C.17.(2019山东威海)据央视网报道,2019年1~4月份我国社会物流总额为88.9万亿元人民币,“88.9万亿”用科学记数法表示为()A.8.89×1013B.8.89×1012C.88.9×1012D.8.89×1011【答案】A.【解析】解:法一:88.9万亿=88.9×104×108=88.9×1012用科学记数法表示:88.9×1012=8.89×1013法二:科学记数法表示为:88.9万亿=889 000 000 000 0=8.89×1013故选:A.18.(2019山东潍坊)利用教材中时计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5 B.2.6 C.2.8 D.2.9【答案】B.【解析】解:∵7≈2.646,∴与7最接近的是2.6,故选:B.19.(2019山东淄博)与下面科学计算器的按键顺序:对应的计算任务是()A.0.6×+124B.0.6×+124C.0.6×5÷6+412D.0.6×+412【答案】B.【解析】解:与下面科学计算器的按键顺序对应的计算任务是0.6×+124,故选:B .20.(2019山东枣庄)点O ,A ,B ,C 在数轴上的位置如图所示,O 为原点,AC =1,OA =OB .若点C 所表示的数为a ,则点B 所表示的数为( )A .﹣(a +1)B .﹣(a ﹣1)C .a +1D .a ﹣1【答案】B .【解析】解:∵O 为原点,AC =1,OA =OB ,点C 所表示的数为a , ∴点A 表示的数为a ﹣1, ∴点B 表示的数为:﹣(a ﹣1), 故选:B .21.(2019山东济宁)下列计算正确的是( )A .=﹣3 B .=C .=±6D .﹣=﹣0.6【答案】D . 【解析】解:A 、=3,故此选项错误;B 、=﹣,故此选项错误;C 、=6,故此选项错误;D 、﹣=﹣0.6,正确.故选:D .22.(2019山东威海)计算013123)273-的结果是( ) A .833B .3C 3D .3【答案】D .【解析】解:原式=333. 故选:D .23.(2019山东聊城)下列各式不成立的是( )A 8718293=B .22233+===D.=C.5【答案】C.==A选项成立,不符合题意;==,B选项成立,不符合题意;==,C选项不成立,符合题意;222==D选项成立,不符合题意;24.(2019山东菏泽)下列运算正确的是()A.(﹣a3)2=﹣a6 B.a2•a3=a6 C.a8÷a2=a4D.3a2﹣2a2=a2【答案】D.【解析】解:A、原式=a6,不符合题意;B、原式=a5,不符合题意;C、原式=a6,不符合题意;D、原式=a2,符合题意,故选:D.25.(2019山东滨州)下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.x3÷x2=x D.(2x2)3=6x6【答案】C.【解析】解:A、x2+x3不能合并,错误;B、x2•x3=x5,错误;C、x3÷x2=x,正确;D、(2x2)3=8x6,错误;故选:C.26.(2019山东德州)下列运算正确的是()A. (-2a)2=-4a2B. (a+b)2=a2+b2C. (a5)2=a7D. (-a+2)(-a-2)=a2-4【答案】D.【解析】解:(-2a)2=4a2,故选项A不合题意;(a+b)2=a2+2ab+b2,故选项B不合题意;(a5)2=a10,故选项C不合题意;(-a+2)(-a-2)=a2-4,故选项D符合题意.故选:D.27.(2019山东滨州3分)若8x m y与6x3y n的和是单项式,则(m+n)3的平方根为()A.4 B.8 C.±4 D.±8【答案】D.【解析】解:由8x m y与6x3y n的和是单项式,得m=3,n=1.(m+n)3=(3+1)3=64,64的平方根为±8.故选:D.28.(2019山东临沂)下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣15xy2=45xy2【答案】C.【解析】解:选项A,单项式×单项式,(a3b)•(ab2)=a3•a•b•b2=a4b3,选项正确选项B,积的乘方,(﹣mn3)2=m2n6,选项正确选项C,同底数幂的除法,a5÷a﹣2=a5﹣(﹣2)=a7,选项错误选项D,合并同类项,xy2﹣xy2=xy2﹣xy2=xy2,选项正确故选:C.29.(2019山东青岛)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【答案】A.【解析】解:原式=4m2•2m3=8m5,故选:A.30.(2019山东潍坊)下列运算正确的是()A.3a×2a=6a B.a8÷a4=a2C.﹣3(a﹣1)=3﹣3a D.(13a3)2=19a9【答案】C.【解析】解:A、3a×2a=6a2,故本选项错误;B、a8÷a4=a4,故本选项错误;C、﹣3(a﹣1)=3﹣3a,正确;D、(13a3)2=19a6,故本选项错误.故选:C.31.(2019山东威海)下列运算正确的是()A.(a2)3=a5B.3a2+a=3a3C.a5÷a2=a3(a≠0)D.a(a+1)=a2+1 【答案】C.【解析】解:A、(a2)3=a6,故本选项错误;B、3a2+a,不是同类项,不能合并,故本选项错误;C、a5÷a2=a3(a≠0),正确;D、a(a+1)=a2+a,故本选项错误.故选:C.32.(2019山东枣庄)下列运算,正确的是()A.2x+3y=5xy B.(x﹣3)2=x2﹣9 C.(xy2)2=x2y4D.x6÷x3=x2【答案】C.【解析】解:A、2x+3y,无法计算,故此选项错误;B、(x﹣3)2=x2﹣6x+9,故此选项错误;C、(xy2)2=x2y4,正确;D、x6÷x3=x3,故此选项错误;故选:C.33.(2019山东泰安)下列运算正确的是()A.a6÷a3=a3B.a4•a2=a8C.(2a2)3=6a6D.a2+a2=a4【答案】A.【解析】解:A、a6÷a3=a3,故此选项正确;B、a4•a2=a6,故此选项错误;C、(2a2)3=8a6,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:A.34.(2019山东聊城)下列计算正确的是()A.a6+a6=2a12B.2﹣2÷20×23=32C.(﹣ab2)•(﹣2a2b)3=a3b3D.a3•(﹣a)5•a12=﹣a20【答案】D.【解析】解:A、a6+a6=2a6,故此选项错误;B、2﹣2÷20×23=2,故此选项错误;C、(﹣ab2)•(﹣2a2b)3=(﹣ab2)•(﹣8a6b3)=4a7b5,故此选项错误;D、a3•(﹣a)5•a12=﹣a20,正确.故选:D.35.(2019山东潍坊)下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)2【答案】D.【解析】解:A、3ax2﹣6ax=3ax(x﹣2),故此选项错误;B、x2+y2,无法分解因式,故此选项错误;C、a2+2ab﹣4b2,无法分解因式,故此选项错误;D、﹣ax2+2ax﹣a=﹣a(x﹣1)2,正确.故选:D.36.(2019山东临沂)将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)【答案】C.【解析】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.37.(2019山东聊城)如果分式的值为0,那么x的值为()A.﹣1 B.1 C.﹣1或1 D.1或0 【答案】B.【解析】解:根据题意,得:|x|﹣1=0且x+1≠0,解得,x=1.故选:B.38.(2019山东临沂)计算21aa-﹣a﹣1的正确结果是()A.﹣11a-B.11a-C.﹣211aa--D.211aa--【答案】B.【解析】解:原式=2(1)1aaa-+-=22111a aa a----=11a-.故选:B.39.(2019山东济宁)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是()A.﹣7.5 B.7.5 C.5.5 D.﹣5.5【答案】A.【解析】解:∵a1=﹣2,∴a2==,a3==,a4==﹣2,……∴这个数列以﹣2,,依次循环,且﹣2++=﹣,∵100÷3=33…1,∴a1+a2+…+a100=33×(﹣)﹣2=﹣=﹣7.5,故选:A .二、填空题40.(2019山东菏泽)计算121()(3)2---的结果是 .【答案】-7.【解析】解:原式=2﹣9=﹣7.故答案为:﹣7.41.(2019山东聊城)计算:115()324--÷= . 【答案】23-. 【解析】解:原式=(﹣)×=﹣,故答案为:23-. 42.(2019山东滨州)计算:2131()322218--= . 【答案】3. 【解析】解:原式=42333243-+=+,故答案为:343.(2019126﹣tan45°= . 31. 126﹣tan45162⨯13﹣1, 3﹣1.44.(2019248230= . 【答案】根据二次根式混合运算的法则计算即可.2482+30=3﹣1=3+1,故答案为:.45.(2019山东菏泽)已知x ,那么x 2﹣的值是 .【答案】4.【解析】解:∵x ,∴x 2﹣x +2=6,∴x 2﹣x =4,故答案为:4.46.(2019山东德州)|x -3|=3-x ,则x 的取值范围是 .【答案】x ≤3.【解析】解:3-x ≥0,∴x ≤3;故答案为x ≤3.47.(2019山东潍坊)若2x =3,2y =5,则2x +y = .【答案】15.【解析】解:∵2x =3,2y =5,∴2x +y =2x •2y =3×5=15.故答案为:15.48.(2019山东淄博)单项式12a 3b 2的次数是 . 【答案】5. 【解析】解:单项式12a 3b 2的次数是3+2=5.故答案为5. 49.(2019山东枣庄4分)若1m m -=3,则221m m += . 【答案】11. 【解析】解:∵22211()2m m m m -=-+=9,∴221m m+=11,故答案为11. 50.(2019山东威海)分解因式:2x 2﹣2x +12= . 【答案】2(x ﹣12)2. 【解析】解:原式=2(x 2﹣x +14)=2(x ﹣12)2. 故答案为:2(x ﹣12)2.51.(2019山东淄博)分解因式:x 3+5x 2+6x= .【答案】x (x +2)(x +3).【解析】解:x 3+5x 2+6x =x (x 2+5x +6)=x (x +2)(x +3).故答案为x (x +2)(x +3).52、(2019山东德州)已知:[x ]表示不超过x 的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}= .【答案】0.7.【解析】解;根据题意可得:{3.9}+{-1.8}-{1}=3.9-3-1.8+2-1+1=0.7,故答案为:0.7.53.(2019山东临沂)一般地,如果x 4=a (a ≥0),则称x 为a 的四次方根,一个正数a 的四次方根有两个.它们互为相反数,记为4a ±,若4410m =,则m = .【答案】±10.【解析】解:∵4410m =,∴m 4=104,∴m =±10.故答案为:±10.54.(2019山东滨州)观察下列一组数:a 1=,a 2=,a 3=,a 4=,a 5=,…, 它们是按一定规律排列的,请利用其中规律,写出第n 个数a n = (用含n 的式子表示)【答案】1(1)22n n n +++. 【解析】解:观察分母,3,5,9,17,33,…,可知规律为2n +1,观察分子的,1,3,6,10,15,…,可知规律为(1)2n n +, ∴a n =(1)221n n n ++=1(1)22n n n +++. 故答案为1(1)22n n n +++. 55.(2019山东聊城)数轴上O ,A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点A 1处,第2次从A 1点跳动到A 1O 的中点A 2处,第3次从A 2点跳动到A 2O 的中点A 3处,按照这样的规律继续跳动到点A 4,A 5,A 6,…,A n .(n ≥3,n 是整数)处,那么线段A n A 的长度为 (n ≥3,n 是整数).【答案】4﹣212n -.【解析】解:由于OA =4,所有第一次跳动到OA 的中点A 1处时,OA 1=12OA =12×4=2, 同理第二次从A 1点跳动到A 2处,离原点的(12)2×4处, 同理跳动n 次后,离原点的长度为(12)n ×4=212n -, 故线段A n A 的长度为4﹣212n -(n ≥3,n 是整数). 故答案为:4﹣212n -. 三、解答题56.(2019山东济宁)计算:6sin60(12)02018| 【答案】2019.【解析】解:原式=6×120182-+-2019. 57.(2019山东聊城)计算:1﹣22163()3969a a a a a ++÷+--+. 【答案】63a +. 【解析】解:原式=1﹣223(3)93a a a a +--+ =1﹣33a a -+ =3333a a a a +--++ =63a +. 58.(2019山东菏泽)先化简,再求值:22121(1)y x y x y y x -÷-+-,其中x =y +2019. 【答案】2019.【解析】解: 22121(1)y x y x y y x -÷-+-=12()()()y x y y x y x x y x y-++--+ =﹣(2y ﹣x ﹣y )=x ﹣y ,∵x =y +2019,∴原式=y +2019﹣y =2019.59.(2019山东青岛)化简:22(2)m n m n n m m-+÷-. 【答案】1m n-. 【解析】解:(1)原式=222m n m n mn m m-+-÷ =2()m n m m m n -⨯- =1m n-.60.(2019山东泰安)先化简,再求值:(a ﹣9+251a +)÷(a ﹣1﹣411a a -+),其中a .【答案】1﹣【解析】解:原式=(2892511a a a a --+++)÷(214111a a a a ---++) =22816411a a a a a a -+-÷++ =2(4)11(4)a a a a a -++- =4a a +,当a1﹣. 61.(2019山东枣庄)先化简,再求值:221(1)11x x x ÷+--),其中x 为整数且满足不等式组15221x x -≥⎩--⎧⎨>. 【答案】34. 【解析】解:原式=211()(1)(1)11x x x x x x -÷++--- =21(1)(1)x x x x x-÷+- =1x x +, 解不等式组15221x x -≥⎩--⎧⎨>,得2<x ≤72, 则不等式组的整数解为3,当x =3时,原式=33314=+.62.(2019山东德州)先化简,再求值:222152()()(2)2m n n m n m n mn m n m+-÷-++,2(3)0n -=. 【答案】56. 【解析】解:222152()()(2)2m n n m n m n mn m n m+-÷-++ =2222225442n m m n n m n mn mn mn mn-+-++÷ =22(2)(2)(2)2n m mn m n mn m n m n mn-++- =22m n mn+-.2(3)0n -=.∴m +1=0,n -3=0,∴m =-1,n =3.∴2123522(1)36m n mn +-+⨯-=-=⨯-⨯.∴原式的值为56.63.(2019山东枣庄)观察下列各式:=1+=1+(1﹣),=1+=1+(﹣),=1+=1+(﹣),…请利用你发现的规律,计算:+++…+,其结果为.【答案】2018.【解析】解:+++…+=1+(1﹣)+1+(﹣)+…+1+(﹣)=2018+1﹣+﹣+﹣+…+﹣=2018,故答案为:2018.。
2019年中考数学真题专项汇编:专题1 数与式
2019年09月13日xx 学校初中数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题)A .32a a a -= B .236a a a =C .623a a a ÷=D .236()a a --=答案:D解析:A 、32a a -,无法计算,故此选项错误;B 、235a a a =,故此选项错误;C 、624a a a ÷=,故此选项错误;D 、236()a a -=﹣,正确.故选:D .2.下列各数中比3大比4小的无理数是( )A B C .3.1 D .103答案: A4>,34<<∴选项中比3大比4故选:A .3.实效m n ,在数轴上的对应点如图所示,则下列各式子正确的是( ) A .m n >B .||n m ->C .||m n ->D .||||m n < 答案:C 解析:因为m n ,都是负数,且m n <,||||m n <A .m n >是错误的B .||n m ->是错误的C .||m n ->是正确的D .||||m n <是错误的4.下列因式分解正确的是( )A .2(1)x x x x =+-B .234(4)(1)a a a a -=+--C .2222)(a ab b a b =+--D .22()()x y x y x y +--= 答案:D解析:A 、原式(1)x x =-,错误;B 、原式(4)(1)a a =-+,错误;C 、222a ab b +-,不能分解因式,错误;D 、原式)(()x y x y +=-,正确.故选:D .5.下列各数中与2+的积是有理数的是( )A .2B .2CD .2答案:D解析:(23)(2431+=-=;故选:D .6.如图,若x 为正整数,则表示22(2)1441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④答案:B解析:22(2)1441x x x x +-+++22(2)111(2)111x x x x x x +=-=-=++++ 又x 为正整数,1121x x ∴≤<+ 故表示22(2)1441x x x x +-+++的值的点落在② 故选:B .7.计算11111133557793739+++++⨯⨯⨯⨯⨯的结果是( ) A .1937 B .1939 C .3739D .3839 答案:B 解析:原式1111111111(1)233557793739=-+-+-+-++- 1119(1)23939=⨯-= 故选:B .二、填空题1.2亿人在平台上学习,1.2亿这个数用科学计数法表示为 .答案:81.210⨯解析:1.2亿81.210=⨯.故答案为:81.210⨯.9.若21x x +=,则433331x x x +++的值为 .答案:4解析:∵21x x +=,∴43222233313)313313()134(1x x x x x x x x x x x +++=+++=++=++=+=; 故答案为:4.10.x 的取值范围是 . 答案:4x ≠解析:依题意得:40x -≠.解得4x ≠.故答案是:4x ≠.11.当2018a =时,代数式211()11(1)a a a a a --÷+++的值是 . 答案:2019 解析:211()11(1)a a a a a --÷+++ 21(1)11a a a a -+=⋅+- 1a =+,当2018a =时,原式201812019=+=,故答案为:2019.三、计算题(1)021π()53---; (2)2162844x x x x--÷+. 答案:(1)原式13952=-+-=;(2)原式(4)(4)2(4)44x x x x x +--=÷+ 2(4)4x x x =-⋅- 2x =.解析:13.先化简,再求值.2222225381a b b a bb a a b ab +⎛⎫+÷ ⎪--+⎝⎭,其中1a b ==. 答案:解:原式225381()a b b a b ab a b +-=÷-+ 5()()()()a b ab a b a b a b -=⋅++-5ab =,当1a b ==时,原式=.解析:根据分式的运算法则即可求出答案14.已知:1,21ab b a ==-,求代数式12a b -的值 答案:解:∵1,21ab b a ==-,∴21b a -=-, ∴122b a a b ab --=111-==- 解析:15.已知:1)1a =+-,112sin 45()2b -=︒+,求b a -的算术平方根.答案:解:(31)13111a =-+=-=+112sin 45()222b -=︒+==.211b a ∴-=-=.1==.解析:。
【2019中考数学真题+分类汇编】专题01数与式(第01期)(原卷版)【2019数学中考真题分类汇编系列】
专题01 数与式1.(2019·宿迁)2019的相反数是 A .12019B .-2019C .12019-D .20192.(2019·潍坊)2019的倒数的相反数是 A .-2019B .12019-C .12019D .20193.(2019•邵阳)下列各数中,属于无理数的是A .13B .1.414CD4.(2019•在实数范围内有意义,则x 的取值范围是 A .x ≥1且x ≠2B .x ≤1C .x >1且x ≠2D .x <15.(2019•河南)下列计算正确的是 A .2a +3a =6aB .(-3a )2=6a 2C .(x -y )2=x 2-y 2D .=6.(2019·安徽)2019年“五一”假日期间,某省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为 A .1.61×109B .1.61×1010C .1.61×1011D .1.61×10127.(2019•河南)成人每天维生素D 的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为 A .46×10-7B .4.6×10-7C .4.6×10-6D .0.46×10-58.(2019·安徽)在-2,-1,0,1这四个数中,最小的数是 A .-2B .-1C .0D .19.(2019·重庆A 卷)下列各数中,比1-小的数是 A .2B .1C .0D .-210.(2019·安徽)已知三个实数a ,b ,c 满足a -2b +c =0,a +2b +c <0,则A .b >0,b 2-ac ≤0B .b <0,b 2-ac ≤0C .b >0,b 2-ac ≥0D .b <0,b 2-ac ≥011.(2019•北京)如果m +n =1,那么代数式22221()()m n m n m mn m++⋅--的值为 A .-3B .-1C .1D .312.(2019•河北)如图,若x 为正整数,则表示22(2)1441x x x x +-+++的值的点落在A .段①B .段②C .段③D .段④13.(2019·重庆A 卷)估计 A .4和5之间 B .5和6之间 C .6和7之间D .7和8之间14.(2019•北京)在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C ,若CO =BO ,则a 的值为 A .-3B .-2C .-1D .115.(2019·滨州)下列各数中,负数是A .(2)--B .2--C .()22-D .()02-16.(2019•山西)下列二次根式是最简二次根式的是A BCD17.(2019•广东)实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a >bB .|a |<|b |C .a +b >0D .a b<0 18.(2019·金华)某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是A .星期一B .星期二C .星期三D .星期四19.(2019·温州)计算:(-3)×5的结果是A .-15B .15C .-2D .220.(2019·济宁)下列计算正确的是A 3=-B =C 6±D .0.6=-21.(2019·南京)面积为4的正方形的边长是A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根22.(2019·南京)下列整数中,与10-A .4B .5C .6D .723.(2019A .2和3之间B .3和4之间C .4和5之间D .5和6之间24.(2019·临沂)下列计算错误的是A .()()3243a b aba b ⋅=B .()2326mn m n -=C .523a a a -÷=D .2221455xy xy xy -= 25.(2019·滨州)若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为A .4B .8C .±4D .±826.(2019·南充)下列各式计算正确的是A .2(2)(2)a a a +-B .235()x x =C .623x x x ÷=D .23x x x ⋅=27.(2019·天津)计算2211a a a +++的结果是 A .2B .22a +C .1D .41aa +28.(2019的结果是__________. 29.(2019•绍兴)因式分解:x 2-1=__________. 30.(2019•黄冈)分解因式3x 2-27y 2=__________.31.(2019•哈尔滨)把多项式a 3-6a 2b +9ab 2分解因式的结果是__________.32.(2019•=__________.33.(2019•镇江)氢原子的半径约为0.00000000005 m ,用科学记数法把0.00000000005表示为__________.34.(2019·重庆A 卷)计算:011(π()2-+=__________. 35.(2019·德州)33x x -=-,则x 的取值范围是__________.36.(2019·聊城)计算:115()324--÷=__________. 37.(2019·宿迁)实数4的算术平方根为__________.38.(2019·临沂)一般地,如果()40x a a =≥,则称x 为a 的四次方根,一个正数a 的四次方根有两个.它们互为相反数,记为10=,则m =__________. 39.(2019·连云港)64的立方根是__________.40.(2019·嘉兴)数轴上有两个实数a ,b ,且a >0,b <0,a +b <0,则四个数a ,b ,-a ,-b 的大小关系为__________(用“<”号连接).41.(2019·天津)计算1)的结果等于__________. 42.(2019·天津)计算5x x ⋅的结果等于__________.43.(2019·南充)计算:2111x x x+=--__________.44.(2019·宿迁)计算:()011()π1|12---+.45.(2019·扬州)计算或化简:(10(3π)4cos 45---︒;(2)2111a a a+--.46.(2019·济宁)计算:016sin 60()|2018|2+︒.47.(2019·重庆A 卷)计算:(1)2()(2)x y y x y +-+;(2)2949()22a a a a a --+÷--.48.(2019•武汉)计算:(2x2)3-x2·x4.49.(2019•湖州)化简:(a+b)2-b(2a+b).50.(2019•益阳)化简:2244 (4)2x xx x+--÷.51.(2019•河南)先化简,再求值:2212(1)244x x xx x x+--÷--+,其中x52.(2019•安顺)先化简2221(1)369xx x x-+÷--+,再从不等式组24324xx x-<⎧⎨<+⎩的整数解中选一个合适的x的值代入求值.53.(2019·安徽)观察以下等式:第1个等式:211 =111+,第2个等式:311 =226+,第3个等式:211=5315+,第4个等式:211=7428+,第5个等式:211=9545+,……按照以上规律,解决下列问题:(1)写出第6个等式:__________;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.。
2019年湖南省中考数学真题分类汇编 专题1 数与式(原卷版)
2019湖南省11地市中考数学7大专题分类解析汇编专题1数与式一、选择题1.(2019湖南郴州)如图,数轴上表示﹣2的相反数的点是()A.M B.N C.P D.Q 2.(2019湖南娄底、张家界)2019 的相反数是()A.﹣2019 B.-12019C.2019 D.120193.(2019湖南怀化)下列实数中,哪个数是负数()A.0 B.3 C.D.﹣14.(2019湖南岳阳)﹣2019的绝对值是()A.2019 B.﹣2019 C.D.﹣5.(2019湖南株洲)﹣3的倒数是()A.﹣B.C.﹣3 D.36.(2019湖南益阳)﹣6的倒数是()A.﹣B.C.﹣6 D.67.(2019湖南常德)下列各数中比3大比4小的无理数是()A.B.C.3.1 D.8.(2019湖南衡阳)﹣的绝对值是()A .﹣B .C .﹣D .9.(2019湖南邵阳)下列各数中,属于无理数的是( )A .13B .1.414C D10.(2019湖南衡阳)2018年6月14日,探月工程嫦娥四号任务“鹊桥”中继星成功实施 轨道捕获控制,进入环绕距月球65000公里的地月拉格朗日L 2点Halo 使命轨道,成为世 界首颗运行在地月L 2点Halo 轨道的卫星,用科学记数法表示65000公里为( )公里. A .0.65×105 B .65×103C .6.5×104D .6.5×10511.(2019湖南张家界)为了有力回击美方单边主义贸易政策的霸凌行为,维护我国正当权 益和世界多边贸易正常秩序,经国务院批准,决定于2019年6月1日起,对原产于美国的 600亿美元进口商品加征关税,其中600亿美元用科学记数法表示为( )美元. A .6×1010 B .0.6×1010C .6×109D .0.6×10912.(2019湖南邵阳)据海关统计:2019年前4个月,中国对美国贸易顺差为5700亿元.用科学记数法表示5700亿元正确的是( )A .5.7×1011元B .57×1010元 C.5.7×10-11元 D .0.57×1012元13.(2019湖南怀化)怀化位于湖南西南部,区域面积约为27600平方公里,将27600用科 学记数法表示为( ) A .27.6×103 B .2.76×103C .2.76×104D .2.76×10514.(2019湖南郴州)邓小平曾说:“中东有石油,中国有稀土”.稀土是加工制造国防、军 工等工业品不可或缺的原料.据有关统计数据表明:至2017年止,我国已探明稀土储量约 4400万吨,居世界第一位,请用科学记数法表示 44 000 000为( ) A .44×106 B .4.4×107C .4.4×108D .0.44×10915.(2019湖南怀化)单项式﹣5ab 的系数是( )A.5 B.﹣5 C.2 D.﹣216.(2019湖南株洲)下列各式中,与3x2y3是同类项的是()A.2x5B.3x3y2C.﹣x2y3D.﹣y517.(2019湖南衡阳)下列各式中,计算正确的是()A.8a﹣3b=5ab B.(a2)3=a5C.a8÷a4=a2D.a2•a=a318.(2019湖南岳阳)下列运算结果正确的是()A.3x﹣2x=1 B.x3÷x2=xC.x3•x2=x6D.x2+y2=(x+y)219.(2019湖南张家界)下列运算正确的是()A.a2•a3=a6B.a2+a3=a5C.(a+b)2=a2+b2D.(a3)2=a620.(2019湖南株洲)下列各选项中因式分解正确的是()A.x2﹣1=(x﹣1)2B.a3﹣2a2+a=a2(a﹣2)C.﹣2y2+4y=﹣2y(y+2)D.m2n﹣2mn+n=n(m﹣1)221.(2019湖南湘西州)下列运算中,正确的是()A.2a+3a=5a B.a6÷a3=a2C.(a﹣b)2=a2﹣b2 D.+=22.以下计算正确的是()A.(-2ab2)3=8a3b6B.3ab+2b=5abC.(-x2)•(-2x)3=-8x5D.2m(mn2-3m2)=2m2n2-6m323.(2019湖南益阳)下列运算正确的是()A.=﹣2 B.(2)2=6 C.+=D.×=24.(2019湖南株洲)×=()A.4B.4 C.D.225.(2019湖南郴州)下列运算正确的是()A.(x2)3=x5B.+=C.x•x2•x4=x6D.=【26.(2019湖南常德)下列运算正确的是()A.+=B.=3C.=﹣2 D.=27.(2019湖南娄底)下列运算正确的是()A.x2•x3=x6 B.(x3)3=x9 C.x2+x2=x4 D.x6÷x3=x228.(2019湖南娄底)函数y中自变量x的取值范围为()A.x≥0B.x≥﹣2 C.x≥2D.x≤﹣229.(2019湖南衡阳)如果分式在实数范围内有意义,则x的取值范围是()A.x≠﹣1 B.x>﹣1 C.全体实数D.x=﹣130.(2019湖南常德)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…根据其中的规律可得70+71+72+…+72019的结果的个位数字是()A.0 B.1 C.7 D.831.(2019湖南株洲)从﹣1,1,2,4四个数中任取两个不同的数(记作a k,b k)构成一个数组M K={a k,b k}(其中k=1,2…S,且将{a k,b k}与{b k,a k}视为同一个数组),若满足:、对于任意的M i={a i,b i}和M j={a i,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,则S 的最大值()A.10 B.6 C.5 D.4二、填空题32.(2019湖南湘西州)﹣2019的相反数是.34.(2019湖南常德)数轴上表示﹣3的点到原点的距离是.35.(2019湖南常德)国产手机芯片麒麟980是全球首个7纳米制程芯片,已知1纳米=0.000 000 001米,将7纳米用科学记数法表示为米.36.(2019湖南湘西州)黔张常铁路将于2020年正式通车运营,这条铁路估算总投资36200 000 000元,数据36200 000 000用科学记数法表示为.37.(2019湖南娄底)五月初五是我国的传统节日﹣端午节.今年端午节,小王在“百度”搜索引擎中输入“端午节”,搜索到与之相关的结果约为75100000 个,75100000 用科学记数法表示为.38.(2019湖南岳阳)2018年12月26日,岳阳三荷机场完成首航.至此,岳阳“水陆空铁”四位一体的交通格局全面形成.机场以2020年为目标年,计划旅客年吞吐量为600000人次.数据600000用科学记数法表示为.39.(2019湖南益阳)国家发改委发布信息,到2019年12月底,高速公路电子不停车快速收费(ETC)用户数量将突破1.8亿,将180 000 000科学记数法表示为.40.(2019湖南怀化)合并同类项:4a2+6a2﹣a2=.42.(2109湖南怀化)当a =﹣1,b =3时,代数式2a ﹣b 的值等于 .43.(2019湖南湘西州)下面是一个简单的数值运算程序,当输入x 的值为16时,输出的 数值为 .(用科学计算器计算或笔算).44.(2019湖南娄底)按照如图所示的操作步骤,若输入的值为 3,则输出的值为.45.(2019湖南衡阳)﹣= .46.(2019湖南郴州)若=,则= .47.(2019湖南岳阳)已知x ﹣3=2,则代数式(x ﹣3)2﹣2(x ﹣3)+1的值为 .48.(2019湖南岳阳)因式分解:ax ﹣ay = .49.(2019湖南怀化)因式分解:a 2﹣b 2= .51.(2019湖南湘西州)因式分解:ab ﹣7a = .52.(2019湖南衡阳)因式分解:2a 2﹣8= .53.(2019湖南张家界)因式分解:x 2y ﹣y = .54.(2019湖南湘西州)要使二次根式有意义,则x的取值范围为.55.(2019湖南怀化)计算:﹣=.56.(2019湖南衡阳)计算:+=.57.(2019湖南郴州)二次根式中,x的取值范围是.58.(2019湖南常德)若x2+x=1,则3x4+3x3+3x+1的值为.59.(2019湖南益阳)观察下列等式:①3﹣2=(﹣1)2,②5﹣2=(﹣)2,③7﹣2=(﹣)2,…请你根据以上规律,写出第6个等式.60.(2019湖南湘西州)阅读材料:设a=(x1,y1),b=(x2,y2),如果a∥b,则x1•y2 =x2•y1,根据该材料填空,已知a=(4,3),b=(8,m),且a∥b,则m=.61.(2019湖南怀化)探索与发现:下面是用分数(数字表示面积)砌成的“分数墙”,则整面“分数墙”的总面积是.三、解答题62.(2019湖南株洲)计算:|﹣|+π0﹣2cos30°.63.(2019湖南湘西州)计算:+2sin30°﹣(3.14﹣π)0cos6065.(2019湖南益阳)计算:4sin60°+(﹣2019)0﹣()﹣1+|﹣2|.66.(2019湖南衡阳)()﹣3+|﹣2|+tan60°﹣(﹣2019)067.(2019湖南怀化)计算:(π﹣2019)0+4sin60°﹣+|﹣3| 68.(2019湖南岳阳)计算:(﹣1)0﹣2sin30°+()﹣1+(﹣1)2019 69.(2019湖南张家界)计算:(3.14﹣π)0+|﹣1|﹣2cos45°+(﹣1)2019.70.(2019湖南常德)计算:6sin45°+|2﹣7|﹣()﹣3+(2019﹣)0.71.(2019湖南郴州)计算:(3﹣π)0﹣2cos30°+|1﹣|+()﹣1.72.(2019湖南郴州)先化简,再求值:﹣,其中a=.73.(2019湖南常德)先化简,再选一个合适的数代入求值:(﹣)÷(﹣1).73.(2019湖南娄底)先化简2249xx--÷(1﹣13x-),再从不等式2x﹣3<7 的正整数解中选一个使原式有意义的数代入求值.75.(2019湖南益阳)化简:(﹣4)÷.76.(2019湖南张家界)先化简,再求值:(﹣1)÷,然后从0,1,2三个数中选择一个恰当的数代入求值.77.(2019湖南株洲)先化简,再求值:﹣,其中a=.78.(2019湖南张家界)阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a1,排在第二位的数称为第二项,记为a2,依此类推,排在第n位的数称为第n项,记为a n.所以,数列的一般形式可以写成:a1,a2,a3,…,a n,….一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示.如:数列1,3,5,7,…为等差数列,其中a1=1,a2=3,公差为d=2.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d为,第5项是.(2)如果一个数列a1,a2,a3,…,a n…,是等差数列,且公差为d,那么根据定义可得到a2﹣a1=d,a3﹣a2=d,a4﹣a3=d,…,a n﹣a n﹣1=d,….所以a2=a1+da3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=(a1+2d)+d=a1+3d,……由此,请你填空完成等差数列的通项公式:a n=a1+()d.(3)﹣4041是不是等差数列﹣5,﹣7,﹣9…的项?如果是,是第几项?.。
2019年浙江省中考数学分类汇编专题:数与式及参考答案
2019年浙江省中考数学分类汇编专题:数与式(2)一、单选题1.计算2a-3a,结果正确的是()A. -1B. 1C. -aD. a【答案】C【考点】合并同类项法则及应用【解析】【解答】解:∵原式=(2-3)a=-a.故答案为:C.【分析】根据合并同类项法则:相同字母不变,系数相加减,由此即可得出答案.2.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【考点】分式有意义的条件【解析】【解答】解:由题意得:x-2≠0,解得:x≠2.故答案为:B【分析】分式有意义的条件是:分母不为0,从而列出不等式,求解即可。
3.下列运算一定正确的是()A. 2a+2a=2a2B. a2·a3=a6C. (2a2)3=6a6D. (a+b)(a-b)=a2-b2【答案】 D【考点】同底数幂的乘法,平方差公式及应用,合并同类项法则及应用,积的乘方【解析】【解答】解:A、2a+2a=4a ,故A不符合题意;B、a2·a3=a5,故B不符合题意;C、(2a2)3=8a6 ,故C不符合题意;D、(a+b)(a-b)=a2-b2,故D符合题意;故答案为:D【分析】利用合并同类项的法则,可对A作出判断;利用同底数幂相乘,底数不变,指数相加,可对B 作出判断;利用积的乘方运算法则可以C作出判断;根据平方差公式的计算方法,可对D作出判断。
4.计算,正确的结果是()A. 1B.C. aD.【答案】A【考点】分式的加减法【解析】【解答】解:= ,故答案为:A.【分析】根据分式加减法法则:同分母分式相加,分母不变,分子相加,依此即可得出答案.5.下列计算正确的是()A. a6+a6=a12B. a6×a2=a8C. a6÷a2=a3D. (a6)2=a8【答案】B【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A.∵a6+a6=2a6,故错误,A不符合题意;B.∵a6×a2=a6+2=a8,故正确,B符合题意;C.∵a6÷a2=a6-2=a4,故错误,C不符合题意;D.∵(a6)2=a2×6=a12,故错误,D不符合题意;故答案为:B.【分析】A.根据合并同类项法则计算即可判断错误;B.根据同底数幂的乘法:底数不变,指数相加,依此计算即可判断正确;C.根据同底数幂的除法:底数不变,指数相减,依此计算即可判断错误;D.根据幂的乘方:底数不变,指数相乘,依此计算即可判断错误.6.下列计算正确的是()A. B. C. D.【答案】 D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D、∵,∴此答案正确,符合题意。
专题1.数与式(解析版)
2019年中考数学典题精选系列专题01 数与式1.3月30日,我区航空经济产业功能区2019年一季度重大项目集中开工仪式在电子科大产业园四期项目用地举行.参加此次集中开工仪式项目共计71个,总投资超过249亿元,未来随着这一波又一波项目的建成投产,必将为双流航空经济插上腾飞之翼,助力双流打造中国航空经济之都.用科学记数法表示249亿元为()A.249×108元B.24.9×109元C.2.49×1010元D.0.249×1011元【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将249亿用科学记数法可表示为2.49×1010.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a【答案】C.3.按如图所示的运算程序运算,能使输出的结果为7的一组x,y的值是()A.x=1,y=2 B.x=﹣2,y=1 C.x=2,y=1 D.x=﹣3,y=1【答案】C【解析】【分析】将各项中的x与y代入程序计算,即可得到结果.【详解】A、当x=1,y=2时,原式=2﹣2=0,不符合题意;B、当x=﹣2,y=1时,原式=8+1=9,不符合题意;C、当x=2,y=1时,原式=8﹣1=7,符合题意;D、当x=﹣3,y=1时,原式=18+1=19,不符合题意,故选:C.【点睛】本题考查代数式求值,熟练掌握运算法则是解题关键.4.下列整数中,比小的数是()A.B.C.D.【答案】D【解析】【分析】可根据有理数大小比较的方法:正数>0>负数,两个负数比较大小,绝对值越大的反而越小.通过比较直接得出.【详解】∵-3>-π,0>-π,1>-π,-4<-π故选D.【点睛】本题考查有理数比大小,深刻理解有理数中正数>0>负数,两个负数比较大小,绝对值越大的反而越小.5.已知23ab=,则代数式a ba+的值为()A.52B.53C.23D.32【答案】B【解析】由23ab=得到:a=23b,则代入可得2533b ba bb b++==.故选:B.6.下列运算正确的是()A .B .C .D .【答案】D【解析】【分析】根据合并同类项法则,有理数的混合运算,负整数指数幂,二次根式的混合运算求出每个式子的值,再根据结果判断即可.【详解】A 、与不是同类项,故本选项错误;B 、,故本选项错误;C 、,故本选项正确;D 、,故本选项正确.故选D.【点睛】本题考查了合并同类项法则,有理数的混合运算,负整数指数幂,二次根式的混合运算等知识点,主要考查学生的计算能力和辨析能力,题目比较好,但是一道比较容易出错的题目.7.一列数a1,a2,a3,…,其中a1=,a n =(n为不小于2的整数),则a100=()A .B.2 C.﹣1 D.﹣2【答案】A【解析】根据表达式求出前几个数后发现:每三个数为一个循环组.用100除以3,根据商和余数的情况确定a100的值即可.解:根据题意得,a 2==2,a 3==﹣1,a 4==,a 5==2,…,依此类推,每三个数为一个循环组依次循环, ∵100÷3=33…1,∴a 100是第34个循环组的第一个数,与a 1相同, 即a 100=.故选A .8.已知a ﹣b=3,则代数式a 2﹣b 2﹣6b 的值为( ) A .3 B .6 C .9 D .12 【答案】C .【解析】由a ﹣b=3,得到a=b+3,则原式=(b+3)2﹣b 2﹣6b=b 2+6b+9﹣b 2﹣6b=9.故选C .学科*网 9.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于-1,若我们规定一个“新数”,使其满足(即方程有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有,从而对任意正整数n ,我们可得到同理可得那么, 23420162017••••••i i i i i i ++++++。
2019年浙江省中考数学分类《专题:数与式
2019年浙江省中考数学分类汇编专题:数与式(2)一、单选题1.计算2a-3a,结果正确的是()A. -1B. 1C. -aD. a【答案】C【考点】合并同类项法则及应用【解析】【解答】解:∵原式=(2-3)a=-a.故答案为:C.【分析】根据合并同类项法则:相同字母不变,系数相加减,由此即可得出答案.2.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【考点】分式有意义的条件【解析】【解答】解:由题意得:x-2≠0,解得:x≠2.故答案为:B【分析】分式有意义的条件是:分母不为0,从而列出不等式,求解即可。
3.下列运算一定正确的是()A. 2a+2a=2a2B. a2·a3=a6C. (2a2)3=6a6D. (a+b)(a-b)=a2-b2【答案】 D【考点】同底数幂的乘法,平方差公式及应用,合并同类项法则及应用,积的乘方【解析】【解答】解:A、2a+2a=4a ,故A不符合题意;B、a2·a3=a5,故B不符合题意;C、(2a2)3=8a6 ,故C不符合题意;D、(a+b)(a-b)=a2-b2,故D符合题意;故答案为:D【分析】利用合并同类项的法则,可对A作出判断;利用同底数幂相乘,底数不变,指数相加,可对B 作出判断;利用积的乘方运算法则可以C作出判断;根据平方差公式的计算方法,可对D作出判断。
4.计算,正确的结果是()A. 1B.C. aD.【答案】A【考点】分式的加减法【解析】【解答】解:= ,故答案为:A.【分析】根据分式加减法法则:同分母分式相加,分母不变,分子相加,依此即可得出答案.5.下列计算正确的是()A. a6+a6=a12B. a6×a2=a8C. a6÷a2=a3D. (a6)2=a8【答案】B【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A.∵a6+a6=2a6,故错误,A不符合题意;B.∵a6×a2=a6+2=a8,故正确,B符合题意;C.∵a6÷a2=a6-2=a4,故错误,C不符合题意;D.∵(a6)2=a2×6=a12,故错误,D不符合题意;故答案为:B.【分析】A.根据合并同类项法则计算即可判断错误;B.根据同底数幂的乘法:底数不变,指数相加,依此计算即可判断正确;C.根据同底数幂的除法:底数不变,指数相减,依此计算即可判断错误;D.根据幂的乘方:底数不变,指数相乘,依此计算即可判断错误.6.下列计算正确的是()A. B. C. D.【答案】 D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D、∵,∴此答案正确,符合题意。
2019年中考数学真题分类汇编:一、数与式
选 B. 9. (2014?毕节地区) 1 纳米 =10﹣ 9 米,将 0.00305 纳米用科学记数法表示为
3.05 × 10﹣12
米. 解析: 0.00305 纳米 =3.05 × 10﹣ 3× 10﹣9 米=3.05 × 10﹣12 米
10. ( 2014 广东)据报道,截止 2013 年 12 月我国网民规模达 618 000 000 用科学记数法表示为 6.18 × 108 . 解析: 618 000 000=6.18 × 108.
解析: 350 000 000=3.5 × 108.故选 B.
2. ( 2014 枣庄) 2014 年世界杯即将在巴西举行,根据预算巴西将总共花费
14000000000 美
元,用于修建和翻新 12 个体育场,升级联邦、 各州和各市的基础设施, 以及为 32 支队伍和
预计约 60 万名观众提供安保.将 14000000000 用科学记数法表示为( C )
△+△数学中考教学资料 2019 年编 △ +△
第一单元 数与式
一、实数
(一)绝对值、相反数、倒数
1. (2014?汕尾)﹣ 2 的倒数是(
A. 2
B.
C)
C. ﹣
D. ﹣0.2
解析:﹣ 2 的倒数为﹣ .故选 C.
2. (2014?巴中)﹣ 的相反数是( B )
A. ﹣
B.
C. ﹣ 5
D. 5
解析:﹣ 的相反数是 ,故选 B.
A. 140× 108
B.14.0 × 109
C. 1.4 × 1010
D. 1.4 × 1011
解析: 14 000 000 000=1.4 ×1010,故选 C.
(2019年江苏省中考数学真题汇编)专题01数与式
D.x>﹣2
【答案】解:依题意,得
x﹣2≥0,
解得,x≥2.
故选:A.
【点睛】本题考查了二次根式有意义的条件.概念:式子 (a≥0)叫二次根式.性质:二次根式中的
被开方数必须是非负数,否则二次根式无意义.
31.(2019•常州)下列各数中与 2 的积是有理数的是( )
A.2
B.2
C.
D.2
ቤተ መጻሕፍቲ ባይዱ
【答案】解:∵(2 )(2 )=4﹣3=1;
【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n
为整数,表示时关键要正确确定 a 的值以及 n 的值.
12.(2019•南京)2018 年中国与“一带一路”沿线国家货物贸易进出口总额达到 13000 亿美元.用科学记数
法表示 13000 是( )
故选:D.
【点睛】本题考查分母有理化;熟练掌握利用平方差公式求无理数的无理化因子是解题的关键.
二.填空题(共 34 小题) 1.(2019•镇江)﹣2019 的相反数是 2019 .
【答案】解:﹣2019 的相反数是:2019. 故答案为:2019. 【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.
9.(2019•连云港)﹣2 的绝对值是( )
A.﹣2
B.
C.2
D.
【答案】解:因为|﹣2|=2,
故选:C.
【点睛】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值
是 0.
10.(2019•淮安)同步卫星在赤道上空大约 36000000 米处.将 36000000 用科学记数法表示应为( )
2019中考专题测试1--数与式(有答案)
2019中考专题测试1--数与式 (考试时间:120分钟 总分:150分)一、选择题(共10小题,每小题4分,共40分)1.2019的相反数为( C ) A .20191 B .-20191C .-2019D .20192.实数9,38,-2π,-13,tan 45°,sin 60°, 0.313 113 111 3…(相邻两个3之间依次多一个1),其中无理数的个数是( A ) A .4 B .2 C .1 D .3 3.下列各数中,最小的数是( A ) A .-3 B .|-2| C .(-3)2D .2×1034.下列运算正确的是( D )A .(3a 2)3=9a 6B .(-23)2=-94 C .5-3÷5-5=125 D .8-50=-3 25.2018年某企业销售收入将超9万亿元,其中6万亿元用科学记数法可表示为( C )A .0.9×1013元 B .90×1011元 C .9×1012元 D .9×1013元 6.下列计算正确的是( D )A .a 4+a 4=a 8B .(a 3)4=a 7C .12a 6b 4÷3a 2b-2=4a 4b 2D .(-a 3b)2=a 6b 27.实数a ,b 在数轴上对应点的位置如图所示,化简 |a |+(a -b )2的结果是( A )A .-2a +bB .2a -bC .-bD .b 8.下列结论正确的是( B )A .3a 2b -a 2b =2 B .单项式-x 2的系数是-1C .使式子x +2有意义的x 的取值范围是x >-2D .若分式a 2-1a +1的值等于0,则a =±19.2017年某省财政收入比2016年增长8.9%,2018年比2017年增长了9.5%.若2016年和2018该省财政收入分别为a 亿元和b 亿元,则a ,b 之间满足的关系式是( C )A .b =a(1+8.9%+9.5%)B .b =a(1+8.9%×9.5%)C .b =a(1+8.9%)(1+9.5%)D .b =a(1+8.9%)2(1+9.5%)10.在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( D )A .4,2,1B .2,1,4C .1,4,2D .2,4,1二、填空题(共6小题,每小题4分,共24分) 11.比较大小:5-3<5-22. 12.分解因式:(m +1)(m -9)+8m =(m +3)(m -3). 13.若(x -2)2+|y +3|=0,则(x +y)2019的值为__-1 ___14.已知x -1x =3,则4-12x 2+32x 的值为_72_____15.已知a +b =8,a 2b 2=4,则a 2+b22-ab =28或36.16.实数a ,n ,m ,b 满足a <n <m <b ,这四个数在数轴上对应的点分别为A ,N ,M ,B(如图),若AM 2=BM ·AB ,BN 2=AN ·AB ,则称m 为a ,b 的“大黄金数”,n 为a ,b 的“小黄金数”,当b -a =2时,a ,b 的大黄金数与小黄金数之差m -n = 25-4 .【解析】由题意,得AB =b -a =2 ,设AM =x ,则BM =2-x ,则x 2=2(2-x),解得x 1=-1+5,x 2= -1-5(舍去) ,则AM =BN =5-1 ,∴MN =m -n =AM +BN -2=2(5-1)-2=25-4.三、解答题(共86分)17.计算:(每小题5分,共20分)(1) |2|+(π-3)0+(-21)-1-2cos 45°.解:原式=2+1-2-2×22=2+1-2-2=-1.(2) 327+|5-2|-(-31)-2+(sin 30°-1)0. 解:原式=3+5-2-9+1=5-7.(3) -32+3×1tan 60°+|2-3|. 解:原式=-9+3×13+3-2=-5- 2.(4) 12﹣4sin60°+(π+2)0+(21-)2-.解:原式=23﹣4×23+1+4=5.班级:学校: 姓名: 学号:18.化简求值:(每小题8分,共32分)(1)先化简,再求值:(2x +1)·(2x -1)-(x +1)(3x -2),其中x =2-1.解:原式=4x 2-1-(3x 2+3x -2x -2)=4x 2-1-3x 2-x +2=x 2-x +1.当x =2-1时,原式=(2-1)2-(2-1)+1=2-22+1-2+1+1=5-3 2.(2)先化简,再求值:⎝ ⎛⎭⎪⎫3x x -2-x x +2÷x x 2-4,在-2,0,1,2四个数中选一个合适的代入求值.解:原式=3x (x +2)-x (x -2)(x -2)(x +2)·(x +2)(x -2)x =2x +8.∵当x =-2,0,2时,分式无意义, ∴x 只能取1.∴原式=2+8=10.(3)先化简,再求值:⎝ ⎛⎭⎪⎫2a -1-1a ÷a 2+a a 2-2a +1,其中a 2+a -2=0.解:原式=2a -(a -1)a (a -1)÷a (a +1)(a -1)2=a +1a (a -1)∙(a -1)2a (a +1)=a -1a 2. 由a 2+a -2=0,解得a =-2或1. 当a =1时,原分式无意义,所以a =-2. 当a =-2时,原式=-2-1(-2)2=-34.(4)先化简,再求值:(1x -y +2x 2-xy )÷x +22x,其中实数x 、y 满足y =x -2-4-2x +1.解:原式=x +2x (x -y )·2x x +2=2x -y,∵y =x -2-2(2-x )+1,∴x -2≥0,2-x ≥0,即x -2=0,解得:x =2,y =1, 则原式=2.19.(10分)对于任意实数,,定义关于“”的一种运算如下:.例如:,(1)若,求的值; (2)若,求的取值范围.解:(1)依题可得:3x=2×3-x=-2011. ∴x=2017.(2)依题可得:x 3=2x-3<5. ∴x <4. 即x 的取值范围为x <4.20.(12分)在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB=2,BC=1,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少? (2)若原点O 在图中数轴上点C 的右边,且CO=28,求p .解:(1)若以B 为原点,则C 表示1,A 表示﹣2, ∴p=1+0﹣2=﹣1; 若以C 为原点,则A 表示﹣3,B 表示﹣1,∴p=﹣3﹣1+0=﹣4(2)若原点O 在图中数轴上点C 的右边,且CO=28,则C 表示﹣28,B 表示﹣29,A 表示﹣31,∴p=﹣31﹣29﹣28=﹣8821.(12分)观察下列等式: 12×231=132×21, 13×341=143×31, 23×352=253×32,34×473=374×43, 62×286=682×26, …以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×______=______×25; ②______×396=693×______;(2)设这类等式左边两位数的十位数字为a ,个位数字为b ,且2≤a +b ≤9,写出表示“数字对称等式”一般规律的式子(含a ,b),并证明.解:(1)①275 572 ②63 36(①∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25.②∵左边的三位数是396,∴左边的两位数是63,右边的两位数是36,∴63×396=693×36.)(2)∵左边两位数的十位数字为a ,个位数字为b , ∴左边的两位数是10a +b ,三位数是100b +10(a +b)+a ,右边的两位数是10b +a ,三位数是100a +10(a +b)+b , ∴一般规律的式子为(10a +b)×[100b +10(a +b)+a]=[100a +10(a +b)+b]×(10b +a),证明:左边=(10a +b)×[100b +10(a +b)+a]=(10a +b)(110b +11a)=11(10a +b)(10b +a),右边=[100a +10(a +b)+b]×(10b +a)=(110a +11b)(10b +a)=11(10a +b)·(10b +a),左边=右边, ∴“数字对称等式”一般规律的式子为(10a +b)×[100b +10(a +b)+a]=[100a +10(a +b)+b]×(10b +a).。
2019年全国各地中考数学真题分类汇编:数与式、方程不等式(浙江专版)(解析卷)
2019年全国各地中考数学真题分类汇编(浙江专版)数与式、方程不等式参考答案与试题解析一.选择题(共10小题)1.(2019•宁波)宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1526000000元人民币.数1526000000用科学记数法表示为()A.1.526×108B.15.26×108C.1.526×109D.1.526×1010解:数字1526000000科学记数法可表示为1.526×109元.故选:C.2.(2019•杭州)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72﹣x)=30B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72D.3x+2(30﹣x)=72解:设男生有x人,则女生(30﹣x)人,根据题意可得:3x+2(30﹣x)=72.故选:D.3.(2019•宁波)不等式>x的解为()A.x<1B.x<﹣1C.x>1D.x>﹣1解:>x,3﹣x>2x,3>3x,x<1,故选:A.4.(2019•嘉兴)如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()A.tan60°B.﹣1C.0D.12019解:由题意可得:a+|﹣2|=+20,则a+2=3,解得:a=1,故a可以是12019.故选:D.5.(2019•宁波)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A.31元B.30元C.25元D.19元解:设每支玫瑰x元,每支百合y元,依题意,得:5x+3y+10=3x+5y﹣4,∴y=x+7,∴5x+3y+10﹣8x=5x+3(x+7)+10﹣8x=31.故选:A.6.(2019•嘉兴)已知四个实数a,b,c,d,若a>b,c>d,则()A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.>解:∵a>b,c>d,∴a+c>b+d.故选:A.7.(2019•湖州)计算+,正确的结果是()A.1B.C.a D.解:原式==1.故选:A.8.(2019•嘉兴)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:D.9.(2019•金华)用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1解:用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选:A.10.(2019•台州)一道来自课本的习题:从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程+=,则另一个方程正确的是()A.+=B.+=C.+=D.+=解:设未知数x,y,已经列出一个方程+=,则另一个方程正确的是:+=.故选:B.二.填空题(共10小题)11.(2019•杭州)因式分解:1﹣x2=(1﹣x)(1+x).解:∵1﹣x2=(1﹣x)(1+x),故答案为:(1﹣x)(1+x).12.(2019•温州)分解因式:m2+4m+4=(m+2)2.解:原式=(m+2)2.故答案为:(m+2)2.13.(2019•嘉兴)数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b(用“<”号连接).解:∵a>0,b<0,a+b<0,∴|b|>a,∴﹣b>a,b<﹣a,∴四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b.故答案为:b<﹣a<a<﹣b14.(2019•绍兴)我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,字母m所表示的数是4.解:根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,∴第一列第三个数为:15﹣2﹣5=8,∴m=15﹣8﹣3=4.故答案为:415.(2019•温州)不等式组的解为1<x≤9.解:,由①得,x>1,由②得,x≤9,故此不等式组的解集为:1<x≤9.故答案为:1<x≤9.16.(2019•金华)当x=1,y=﹣时,代数式x2+2xy+y2的值是.解:当x=1,y=﹣时,x2+2xy+y2=(x+y)2=(1﹣)2==故答案为:.17.(2019•嘉兴)在x2+±4x+4=0的括号中添加一个关于x的一次项,使方程有两个相等的实数根.解:要使方程有两个相等的实数根,则△=b2﹣4ac=b2﹣16=0得b=±4故一次项为±4x故答案为±4x18.(2019•金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t 的函数图象,则两图象交点P的坐标是(32,4800).解:令150t=240(t﹣12),解得,t=32,则150t=150×32=4800,∴点P的坐标为(32,4800),故答案为:(32,4800).19.(2019•衢州)已知实数m,n满足则代数式m2﹣n2的值为3.解:因为实数m,n满足,则代数式m2﹣n2=(m﹣n)(m+n)=3,故答案为:320.(2019•台州)砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共3个.解:∵210÷3=70,∴第一次砸碎3的倍数的金蛋个数为70个,剩下210﹣70=140个金蛋,重新编号为1,2,3, (140)∵140÷3=46…2,∴第二次砸碎3的倍数的金蛋个数为46个,剩下140﹣46=94个金蛋,重新编号为1,2,3, (94)三.解答题(共10小题)21.(2019•宁波)先化简,再求值:(x﹣2)(x+2)﹣x(x﹣1),其中x=3.解:(x﹣2)(x+2)﹣x(x﹣1)=x2﹣4﹣x2+x=x﹣4,当x=3时,原式=x﹣4=﹣1.22.(2019•温州)计算:(1)|﹣6|﹣+(1﹣)0﹣(﹣3).(2)﹣.解:(1)原式=6﹣3+1+3=7;(2)原式===.23.(2019•湖州)化简:(a+b)2﹣b(2a+b).解:原式=a2+2ab+b2﹣2ab﹣b2=a2.24.(2019•嘉兴)小明解答“先化简,再求值:+,其中x=+1.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.解:1 25.(2019•金华)计算:|﹣3|﹣2tan60°++()﹣1.解:原式=.26.(2019•绍兴)(1)计算:4sin60°+(π﹣2)0﹣(﹣)﹣2﹣.(2)x为何值时,两个代数式x2+1,4x+1的值相等?解:(1)原式=4×+1﹣4﹣2=﹣3;(2)x2+1=4x+1,x2﹣4x=0,x(x﹣4)=0,x1=0,x2=4.27.(2019•衢州)计算:|﹣3|+(π﹣3)0﹣+tan45°.解:|﹣3|+(π﹣3)0﹣+tan45°=3+1﹣2+1=3;28.(2019•金华)解方程组解:,将①化简得:﹣x+8y=5 ③,②+③,得y=1,将y=1代入②,得x=3,∴;29.(2019•台州)先化简,再求值:﹣,其中x=.解:﹣==,当x=时,原式==﹣6.30.(2019•杭州)化简:﹣﹣1圆圆的解答如下:﹣﹣1=4x﹣2(x+2)﹣(x2﹣4)=﹣x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.解:圆圆的解答错误,正确解法:﹣﹣1=﹣﹣===﹣.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中考数学真题分类训练——专题一:数与式1.(2019宁波)若分式12x -有意义,则x 的取值范围是 A.x >2B.x ≠2C.x ≠0D.x ≠﹣22.(2019的结果是 A.-4B.4C.±4D.23.(2019天津)计算2211a a a +++的结果是 A.2B.22a +C.1D.41aa + 4.(2019南充)下列各式计算正确的是 A.2(2)(2)a a a +- B.235()x x = C.623x x x ÷=D.23x x x ⋅=5.(2019衢州)下列计算正确的是 A.a 6+a 6=a 12 B.a 6×a 2=a 8C.a 6÷a 2=a 3D.( a 6)2=a 86.(2019滨州)若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为 A.4B.8C.±4D.±87.(2019宁波)下列计算正确的是 A.a 3+a 2=a 5 B.a 3•a 2=a 6C.(a 2)3=a 5D.a 6÷a 2=a 48.(2019临沂)下列计算错误的是 A.()()3243a b aba b ⋅=B.()2326mn m n -= C.523a a a -÷=D.2221455xy xy xy -= 9.(2019广东)实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A.a>bB.|a|<|b|C.a+b>0D.ab<010.(2019台州)计算2a–3a,结果正确的是A.–1B.1C.–aD.a11.(201933A.2和3之间B.3和4之间C.4和5之间D.5和6之间12.(2019广州)下列运算正确的是A.-3-2=-1B.3×(13-)213=-C.x3·x5=x15a ab=b13.(2019金华)计算a6÷a3,正确的结果是A.2B.3aC.a2D.a314.(2019南京)下列整数中,与1013A.4B.5C.6D.715.(2019深圳)下列运算正确的是A.a2+a2=a4B.a3·a4=a12C.(a3)4=a12D.(ab)2=ab216.(2019温州)计算:(–3)×5的结果是A.–15B.15C.–2D.217.(2019湖州)计算11aa a-+,正确的结果是A.1B.12C.aD.1a18.(2019南京)面积为4的正方形的边长是A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根19.(2019宁波)宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1526000000元人民币.数1526000000用科学记数法表示为 A.1.526×108 B.15.26×108C.1.526×109D.1.526×101020.(2019济宁)下列计算正确的是3=-=6± D.0.6=-21.(2019广东)下列计算正确的是 A.b 6+b 3=b 2B.b 3·b 3=b 9C.a 2+a 2=2a 2D.(a 3)3=a 622.(2019衢州)省陆域面积为101800平方千米,其中数据101800用科学记数法表示为 A.0.1018×105 B.1.018×105C.0.1018×106D.1.018×10623.(2019温州)计算:(-3)×5的结果是 A.-15B.15C.-2D.224.(2019深圳)预计到2025年,中国5G 用户将超过460000000,将460000000用科学记数法表示为 A.4.6×109 B.46×107 C.4.6×108D.0.46×10925.(2019舟山)2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为A.38×104B.3.8×104C.3.8×105D.0.38×10626.(2019金华)某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是A.星期一B.星期二C.星期三D.星期四27.(2019广东)实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是A.a>bB.|a|<|b|C.a+b>0D.ab<028.(2019广东)某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为A.2.21×106B.2.21×105C.221×103D.0.221×10629.(2019温州)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为A.0.25×1018B.2.5×1017C.25×1016D.2.5×101630.(2019山西)下列二次根式是最简二次根式的是1 21278331.(2019广州)|-6|=A.-6B.6C.16-D.1632.(2019滨州)下列各数中,负数是 A.(2)--B.2--C.()22-D.()02-33.(2019台州)2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为 A.5.952×1011 B.59.52×1010C.5.952×1012D.5952×10934.(2019北京)在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C ,若CO =BO ,则a 的值为 A.-3B.-2C.-1D.135.(2019深圳)15-的绝对值是 A.-5B.15C.5D.15-36.(2019绍兴)某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中数字126000000用科学记数法可表示为 A.12.6×107 B.1.26×108C.1.26×109D.0.126×101037.(2019重庆A 卷)估计A.4和5之间B.5和6之间C.6和7之间D.7和8之间38.(2019广东)-2的绝对值是 A.2B.-2C.12D.±239.(2019河北)如图,若x 为正整数,则表示22(2)1441x x x x +-+++的值的点落在A.段①B.段②C.段③D.段④40.(2019湖州)据统计,龙之梦动物世界在2019年“五一”小长假期间共接待游客约238000人次.用科学记数法可将238000表示为 A.238×103B.23.8×104C.2.38×105D.0.238×10641.(2019北京)如果m +n =1,那么代数式22221()()m n m n m mn m++⋅--的值为 A.-3B.-1C.1D.342.(2019金华)某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是A.星期一B.星期二C.星期三D.星期四43.(2019安徽)已知三个实数a ,b ,c 满足a -2b +c =0,a +2b +c <0,则 A.b >0,b 2-ac ≤0 B.b <0,b 2-ac ≤0 C.b >0,b 2-ac ≥0D.b <0,b 2-ac ≥044.(2019杭州)计算下列各式,值最小的是 A.2×0+1–9 B.2+0×1–9C.2+0–1×9D.2+0+1–945.(2019重庆A 卷)下列各数中,比1-小的数是 A.2B.1C.0D.-246.(2019宁波)﹣2的绝对值为A.12- B.2 C.12D.﹣247.(2019安徽)在-2,-1,0,1这四个数中,最小的数是A.-2B.-1C.0D.148.(2019绍兴)﹣5的绝对值是A.5B.﹣5C.15D.﹣1549.(2019河南)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为A.46×10-7B.4.6×10-7C.4.6×10-6D.0.46×10-550.(2019舟山)–2019的相反数是A.2019B.–2019C.12019D.12019-51.(2019安徽)2019年“五一”假日期间,某省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为A.1.61×109B.1.61×1010C.1.61×1011D.1.61×101252.(2019金华)实数4的相反数是A.14- B.–4 C.14D.453.(2019河南)下列计算正确的是A.2a+3a=6aB.(-3a)2=6a2C.(x-y)2=x2-y2D.= 54.(2019湖州)数2的倒数是A.–2B.2C.12- D.1255.(2019在实数范围内有意义,则x的取值范围是A.x≥1且x≠2B.x≤1C.x>1且x≠2D.x<156.(2019衢州)在12,0,1,﹣9四个数中,负数是A.12B.0C.1D.﹣957.(2019邵阳)下列各数中,属于无理数的是A.13B.1.41458.(2019潍坊)2019的倒数的相反数是A.-2019B.12019- C.12019D.201959.(2019宿迁)2019的相反数是A.12019B.-2019C.12019- D.20192019年中考数学真题分类训练——专题一:数与式参考答案1.(2019宁波)若分式12x -有意义,则x 的取值范围是 A.x >2 B.x ≠2C.x ≠0D.x ≠﹣2【答案】B2.(2019的结果是 A.-4B.4C.±4D.2【答案】B 3.(2019天津)计算2211a a a +++的结果是 A.2B.22a +C.1D.41aa + 【答案】A4.(2019南充)下列各式计算正确的是 A.2(2)(2)a a a +- B.235()x x = C.623x x x ÷=D.23x x x ⋅=【答案】D5.(2019衢州)下列计算正确的是 A.a 6+a 6=a 12 B.a 6×a 2=a 8C.a 6÷a 2=a 3D.( a 6)2=a 8【答案】B6.(2019滨州)若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为 A.4B.8C.±4D.±8【答案】D7.(2019宁波)下列计算正确的是A.a 3+a 2=a 5B.a 3•a 2=a 6C.(a 2)3=a 5D.a 6÷a 2=a 4【答案】D8.(2019临沂)下列计算错误的是 A.()()3243a b aba b ⋅=B.()2326mn m n -= C.523a a a -÷=D.2221455xy xy xy -= 【答案】C9.(2019广东)实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A.a >bB.|a |<|b |C.a +b >0D.ab<0 【答案】D10.(2019台州)计算2a –3a ,结果正确的是 A.–1 B.1C.–aD.a【答案】C11.(201933 A.2和3之间 B.3和4之间 C.4和5之间D.5和6之间【答案】D12.(2019广州)下列运算正确的是 A.-3-2=-1B.3×(13-)213=- C.x 3·x 5=x 15a ab =b【答案】D13.(2019金华)计算a6÷a3,正确的结果是A.2B.3aC.a2D.a3【答案】D14.(2019南京)下列整数中,与10A.4B.5C.6D.7【答案】C15.(2019深圳)下列运算正确的是A.a2+a2=a4B.a3·a4=a12C.(a3)4=a12D.(ab)2=ab2【答案】C16.(2019温州)计算:(–3)×5的结果是A.–15B.15C.–2D.2 【答案】A17.(2019湖州)计算11aa a-+,正确的结果是A.1B.12C.aD.1a【答案】A18.(2019南京)面积为4的正方形的边长是A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根【答案】B19.(2019宁波)宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1526000000元人民币.数1526000000用科学记数法表示为A.1.526×108B.15.26×108C.1.526×109D.1.526×1010【答案】C20.(2019济宁)下列计算正确的是3=- =6± D.0.6=-【答案】D21.(2019广东)下列计算正确的是 A.b 6+b 3=b 2B.b 3·b 3=b 9C.a 2+a 2=2a 2D.(a 3)3=a 6【答案】C22.(2019衢州)省陆域面积为101800平方千米,其中数据101800用科学记数法表示为 A.0.1018×105 B.1.018×105C.0.1018×106D.1.018×106【答案】B23.(2019温州)计算:(-3)×5的结果是 A.-15B.15C.-2D.2【答案】A24.(2019深圳)预计到2025年,中国5G 用户将超过460000000,将460000000用科学记数法表示为 A.4.6×109 B.46×107 C.4.6×108D.0.46×109【答案】C25.(2019舟山)2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为A.38×104B.3.8×104C.3.8×105D.0.38×106【答案】C26.(2019金华)某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是A.星期一B.星期二C.星期三D.星期四【答案】C27.(2019广东)实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是A.a>bB.|a|<|b|C.a+b>0D.ab<0【答案】D28.(2019广东)某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为A.2.21×106B.2.21×105C.221×103D.0.221×106【答案】B29.(2019温州)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为 A.0.25×1018 B.2.5×1017C.25×1016D.2.5×1016【答案】B30.(2019山西)下列二次根式是最简二次根式的是【答案】D31.(2019广州)|-6|= A.-6B.6C.16-D.16【答案】B32.(2019滨州)下列各数中,负数是 A.(2)--B.2--C.()22-D.()02-【答案】B33.(2019台州)2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为 A.5.952×1011 B.59.52×1010C.5.952×1012D.5952×109【答案】A34.(2019北京)在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C ,若CO =BO ,则a 的值为 A.-3B.-2C.-1D.1【答案】A35.(2019深圳)15-的绝对值是A.-5B.15C.5D.15-【答案】B36.(2019绍兴)某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中数字126000000用科学记数法可表示为A.12.6×107B.1.26×108C.1.26×109D.0.126×1010【答案】B37.(2019重庆A卷)估计1(2362)3+⨯的值应在A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】C38.(2019广东)-2的绝对值是A.2B.-2C.12D.±2【答案】A39.(2019河北)如图,若x为正整数,则表示22(2)1441xx x x+-+++的值的点落在A.段①B.段②C.段③D.段④【答案】B40.(2019湖州)据统计,龙之梦动物世界在2019年“五一”小长假期间共接待游客约238000人次.用科学记数法可将238000表示为A.238×103B.23.8×104C.2.38×105D.0.238×106【答案】C41.(2019北京)如果m +n =1,那么代数式22221()()m n m n m mn m++⋅--的值为 A.-3B.-1C.1D.3【答案】D42.(2019金华)某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是A.星期一B.星期二C.星期三D.星期四【答案】C43.(2019安徽)已知三个实数a ,b ,c 满足a -2b +c =0,a +2b +c <0,则 A.b >0,b 2-ac ≤0 B.b <0,b 2-ac ≤0 C.b >0,b 2-ac ≥0D.b <0,b 2-ac ≥0【答案】D44.(2019杭州)计算下列各式,值最小的是 A.2×0+1–9 B.2+0×1–9C.2+0–1×9D.2+0+1–9【答案】A45.(2019重庆A 卷)下列各数中,比1-小的数是 A.2B.1C.0D.-2【答案】D46.(2019宁波)﹣2的绝对值为A.12- B.2 C.12D.﹣2【答案】B47.(2019安徽)在-2,-1,0,1这四个数中,最小的数是A.-2B.-1C.0D.1 【答案】A48.(2019绍兴)﹣5的绝对值是A.5B.﹣5C.15D.﹣15【答案】A49.(2019河南)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为A.46×10-7B.4.6×10-7C.4.6×10-6D.0.46×10-5【答案】C50.(2019舟山)–2019的相反数是A.2019B.–2019C.12019D.12019-【答案】A51.(2019安徽)2019年“五一”假日期间,某省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为A.1.61×109B.1.61×1010C.1.61×1011D.1.61×1012【答案】B52.(2019金华)实数4的相反数是A.14- B.–4 C.14D.4【答案】B53.(2019河南)下列计算正确的是A.2a+3a=6aB.(-3a)2=6a2C.(x-y)2=x2-y2D.=【答案】D54.(2019湖州)数2的倒数是A.–2B.2C.12- D.12【答案】D55.(2019黄石)若式子2x-在实数范围内有意义,则x的取值范围是A.x≥1且x≠2 B.x≤1 C.x>1且x≠2 D.x<1 【答案】A56.(2019衢州)在12,0,1,﹣9四个数中,负数是A.12B.0C.1D.﹣9【答案】D57.(2019邵阳)下列各数中,属于无理数的是A.13B.1.414【答案】C58.(2019潍坊)2019的倒数的相反数是A.-2019B.12019- C.12019D.2019【答案】B59.(2019宿迁)2019的相反数是A.12019B.-2019C.12019D.2019【答案】B。