第5章地下水的稳定渗流运动

合集下载

5地下水运动的基本规律

5地下水运动的基本规律

第五章地下水运动的基本规律5. 1 港流基本概念渗流一地卞水在岩石空隙中的运动称为渗流(渗透,地下径流)。

渗流场一发生渗流的区域。

层流运动——水的质点作有秩序的、互不混杂的流动。

紊流运动——水的质点无秩序的、互相混杂的流动。

稳定流一各个运动要素(水位、流速、流向等)不随时间改变的水流运动。

非稳定流——运动要素随时间变化的水流运动。

地卜•水总是从能量校高处流向能量较低处。

能态差异是地卜水运动的驱动力。

地下水的机械能包括动能和势能,水力学中用总水头(hydiaulic head)H表示,水总是从总水头高的地方流向总水头低的地方。

5. 2重力水运动的基本规律1.达西定律(Darcy'sLaw)1856年达西通过实验得到达西定律。

实验在砂柱中进行(P36:图4-1),根据实验结果(流量):Q=KA(H r H2)/L=KAI(5.1)式中:Q为渗透流童(出口处流量,即通过砂柱各断面的体枳流量):A为过水断面的面积(砂柱的横断面积,包括砂颗粒和孔隙面积);Hi比分别为上、卜•游过水断面的水头:L为渗透途径(上、卜•游过水断面的距离):图5. 1达西实验装置示意图I为水力梯度;(据Bear, 1979)K 为渗透系数。

由水力学:Q=vA达西定律也可以另一种形式表达(流速): 由公式(5.1)及Q=\A 得:v=KI式中:£ --- 渗透流速,m/d, cm/s ;K ----- 渗透系数,nVd, cm/s :I —水力梯度,无量纲(比值)。

具体到实际问题:计算流最:H _ HQ =川F ---------- (单位一•般为:m 3/d, L/s)L微分形式:式中:负号表示水流方向与水力梯度方向相反,水流方向(坐标方向):由水位高一 低:而水力梯度方向:由等水位线低一高。

在三维空间中(向量形式):■\v = -K x ^-i-K v ^- j-K,-51k = -KgradH dy dz或V = -KVH ,式中:K 一为渗透系数张量:gradH =更 i +更* 更 Amdy dz若用标量表示,V 的三个分最分别为:得到 v=Q/A(对地下水也适用)(5.2) (5.3)v=-KdH £Vy= ~K - dy—呻**■ dz2. 渗透流速(V ) (seepage velocity, Daicy velocity )与实际流速(u )渗透流速一水流通过整个过水断面(包括砂砾和孔隙)的流速。

地下水运动的基本规律

地下水运动的基本规律

地下水运动的基本规律
因为流速V=Q/A,故达西定律也可以用式(56)来表达。 V=Ki(5-6) 式中,V为渗透流速(m/d或cm/s)。
由式(5-6)可知,K是水力坡度为1时的 渗透流速,称为渗透系数。渗透系数可以用来 比较不同岩石的透水性,是水文地质学中一个 非常重要的水文地质参数。
地下水运动的基本规律
地下水运动的基本规律
在满足生产要求和方便研究的前提下,可以不将含 水层概括为均质各向同性、均质各向异性、非均质各向 同性和非均质各向异性的含水层。所谓均质各向同性就 是指渗透系数在含水层的任何空间位置上、任何渗透方 向上均为一个常数;如不为常数则属非均质各向异性, 其余可类推。
对于渗透系数的测定,一般采用室内土柱试验(达 西试验)和野外抽水试验两种方法。一些松散岩石的渗 透系数参考值见表5-4,表见下页。
应该明确,渗透系数不仅取决于 岩石的空隙性质及水在空隙中的存在 形式,而且与地下水的一些物理性质 ,如黏滞性等有关。在具有同样空隙 的岩石中,当水力坡度相等时,黏滞 性大的水(或液体)渗透系数小。
一般情况下,当地下水的黏 滞性相近时可以不予考虑,但在 研究卤水时,不可忽视。因此, 除个别特殊情况外,可以把渗透 系数看作衡量岩石透水性能的参 数。岩石的透水性能在不同空间 位置和渗透方向上是不一致的, 即渗透系数是不相等的。
地下水运动的基本规律
工程地质Βιβλιοθήκη 工程地质地下水运动的基本规律
地下水在岩石空隙(孔隙、裂隙及溶穴) 中的运动称为渗流(渗透),地下水运动的 场所称为渗流场。渗流是在与介质发生密切 联系的条件下进行的,由于受到介质的阻滞, 地下水的运动远较地表水缓慢。
在岩层空隙中渗流时,水的质点有秩序 地、互不混杂地流动,称为层流运动。水的 质点无秩序地、互相混杂地流动,称为紊流 运动。一般认为渗流属于层流。

工程地质学第五章-地下水

工程地质学第五章-地下水

硬 度
M C2 2 a g 2 H3 C O M Ca3 3 g C C H 2 O O O C2 O
2021/永8/2 久硬度:煮沸时未发生碳酸盐沉淀的那部分Ca2+、Mg2+含量 44
②根据硬度对地下水进行分类:
极软水、软水、微硬水、硬水、极硬水
5、地下水的侵蚀性
地下水对混凝土的侵蚀破坏类型包括分解性侵蚀、结晶性侵蚀和分解结晶
如挖排水、截水沟,筑挡水坝,开凿输
水隧洞改道等等。
2021/8/2
30
5、泉:地下水在地表的天然出露
泉的类型按补给源可分为三类:包气带泉、潜水泉、 自流水泉,按水头性质分为上升泉和下降泉,按出露 原因分为侵蚀泉、接触泉和断层泉。
河谷切割到潜水含水层时,潜水出露成侵蚀下降泉。河 谷切穿承压含水层的隔水顶板时,承压水喷涌成泉,称 为侵蚀上升泉。透水性不同的岩层接触,地下水沿接触 面出露称为接触泉。断层使承压含水层被隔水层阻挡, 当断层导水时沿地面出露的承压水称为断层泉。
隔水层(aquiclude): 不透水但可含水的岩土层。
含水层的形成条件:
一是岩石中要有空隙存在,并充满足
够数量的重力水;二是这些重力水能够在 岩石空隙中自由运动。
2021/8/2
10
3、岩土的水理性质
1.含水性
• 容水度:岩土空隙完全被水充满时的含水
量。
• 持水度:岩土在重力作用下释水时仍能保
持的含水量。
C、H、O为主的有机质
2、氢离子浓度
氢离子浓度是指水的酸碱度,用PH值表示:PH = lg[H+]
根据PH值可将地下水分为5类:
强酸性水、弱酸性水、中性水、弱碱性水、强碱性水
20地21/下8/2水的氢离子浓度为一般酸性侵蚀指标。

工程地质 第5章 地下水及其对工程的影响

工程地质 第5章 地下水及其对工程的影响
I —— 水力坡度
断面1
断面2
Q O
h L
H1 H2
O’
A
5.5 地下水运动与动态
二、地下水向集水建筑物运动的计算
基坑开挖时,流入 坑内的地下水和地表水 如不及时排除,会使施 工条件恶化、造成土壁 塌方,亦会降低地基的 承载力。施工排水可分 为明排水法和人工降低 地下水位法两种。
5.5 地下水运动与动态
<4.2 4.2~8.4 8.4~16.8 16.8~25.2
>25.2
meq/L
<1.5 1.5~3.0 3.0~6.0 6.0~9.0
>9.0
mol/L
<7.5×10-4 7.5×104~1.5×108 1.5×10-3~3×10-3 3×10-3~4.5×10-3
>4.5×10-3
5.4地下水分类
1 岩土的空隙性
概念:将岩土空隙的大小、多少、形状、连通程度,以及分布 状况等性质统称为岩土的空隙性。
5.2 地下水的基本概念
1 岩土的空隙性
意义:是地下水赋存场所和运移通道,其多少、大小及其分布规 律,决定着地下水的分布与运动特点
分类:岩土空隙的成因不同
孔隙
裂隙
溶隙
5.2 地下水的基本概念
5.1 概述
1 什么叫地下水
赋存和运移于地面以下岩石空隙中的水。狭义上指赋存于地下水面以下饱和含 水层的水。
2 地下水的功能
地下水是一种宝贵的资源
不工
地下水是地球内部地质演变的信息载体
良程 地地
质质
地下水是极其重要的生态环境因子
现问 象题
地下水是一种很活跃的地质营力
5.2 地下水的基本概念

5地下水PPT课件

5地下水PPT课件
6
2020/12/6
7
概念(掌握)
➢ 含水层
能够给出并透过相当 数量重力水的岩土层。
如砂岩、灰岩
➢ 隔水层
不能给出并透过水, 或者透过的水是微不 足道的岩土层。
如泥岩、粉砂岩
2020/12/6
8
• (二)岩土的主要水理性质
容水性 持水性 给水性 透水性
2020/12/6
9
容水性 ——指岩土能容纳一定水量的性能。
⑶当含水层厚度变大时,潜水面坡度变缓;
⑷当岩层透水性变好,潜水面坡度变缓。
2020/12/6
20
⑴ 潜水面一般呈倾斜的各种形态的曲面。
2020/12/6
21
2020/12/6
地表地形的影响
⑵ 潜水面的起伏经常与地形一致,只是比 地形起伏平缓一些;潜水面与地表面的 形态具有相似性。
22
⑶当含水层厚度变大时,潜水面坡度变缓;
潜水的排泄 ——向地表水排泄
2020/12/6
潜水补给河流
34
承压水
埋藏并充满在两个隔水层之间的含水层中 的地下水,是一种有压重力水。
2020/12/6
35
➢承压水的形成
最适宜形成承压水的地质构造有:
向斜构造 单斜构造
承压盆地 承压斜地
2020/12/6
36
承压盆地
此类承压水的水位受到气候及地形的控制,
2020/12/6
12
透水性
——岩土允许水透过的性能称为透水性。 透水的 半透水的 不透水的
2020/12/6
13
概念
➢ 水力坡度Ⅰ(掌握)
沿渗流途径的水头损失与相应渗透途径长度的 比值。
水头损失

达西定律

达西定律

三、达西定律的适用条件
适用条件
雷诺数(Re)小于1-10之间某一数值的层流才符合达西定律;
Vd Vd Re
天然条件下地下水的渗流速度通常很缓慢,绝大部分为层流运动,一般 可用线性定律描述其运动规律。
当地下水流速相当大时,呈紊流运动,此时的渗透服从非线性渗透定 律称为哲才(A.Chezy)定律:
V——I 曲线
V
1
砂样
2
O
I
V=K· I ——(3)
思考:1和2哪个代表砾样和砂砾混合样的V-I曲线?
二、达西公式各物理量的含义
过水断面ω 与实际过水断面ω ' 过水断面ω :砂柱的横切面积,是指水流通过的包括岩石 骨架与空隙在内的整个断面。 实际过水断面ω ′:扣除结合水所占据范围以外的空隙面积, 也就是重力水所占据的空隙面积 。
影响渗透系数的因素—— 以松散岩石
,等径孔隙为例来分析
V u ne K I I
多孔介质(概化为等径的平行毛细管束):
I d u 32
K
2 0

32
d ne
2 0
K k
K表示渗透率
K与液体的物理性质有关,与液体的容重γ成正比,与动 力粘滞系数μ成反比。 K与岩石的性质有关,与空隙大小(d0)成2次方,与空 隙多少(ne)成一次方。
中间内插,画其它流线 等单宽流量控制流线根数; 等水头差绘制等水头线
以河间地块为例,考虑稳定均匀降雨条件下,均质 各向同性介质稳定信手流网的绘制。
思考题:河流完全切割含水层至隔水底板,其它条件不 变时流网形态?
流网的应用
确定任意点的水头值(H)及变化规律; 确定水力梯度 I 的大小及变化规律; 等水头线愈密, 水力梯度愈大! 确定渗透流速V的大小及变化规律; V KI 确定流量Q的大小及变化规律。 流线愈密,径流愈强!

第五章 地下水

第五章 地下水
(3)水力坡度I:水力坡度为沿渗流途径的水头损失 与相应渗透途径长度的比值。 地下水在空隙中运动时,受到空隙壁以及水质点 自身的摩阻力,克服这些阻力保持一定流速,就要消 耗能量,从而出现水头损失。
§5.2 地下水类型及其主要特征
地下水按埋藏条件可分为三大类:即包气带水、 潜水、承压水 。根据含水层的空隙性质,地下水可分为 三个亚类:孔隙水、裂隙水、岩溶水。
二、地下水及含水层 1. 基本概念
地下水的来源:大气降水。降落的水分,一部分渗
入地下,另一部分沿地面汇集于低处,成为河流、湖泊、 海洋的地表水,而地表水也可以通过岸边或谷底渗入地 下。这些渗入的水,就是地下水的主要补给来源。
地下水:存在于地壳表面以下岩土空隙(如岩石裂
隙、溶穴、土孔隙等)中的水称为地下水。
§5.1 地下水概述
一、地下水的地质作用 地下水能降低岩上强度和地基承载力; 对砂性土、粉性土产生潜蚀作用,破坏土体的 结构; 会使粉细砂和粉性土产生流砂现象,影响建筑 物和地下设施的稳定性,甚至引起破坏,同时 给地下工程施工带来许多麻烦; 当深基坑下部有承压水时,若不降低承压水头 压力,可能会冲毁坑底土体造成突涌危害; 地下水对其水位以下的岩土会产生静水压力作 用; 有些地下水会腐蚀钢筋混凝土。
▲矿化度:地下水中所含各种离子、分 子与化合物的总量称为矿化度,以g/L表示。 习惯上用105~110℃温度将地下水样品 蒸干后所得的干涸残余物总量来表示矿化度。 可以将分析所得阴阳离子含量相加,求得 理论干涸残余物总量。
注意: 由于在蒸干时有将近一半的HCO3-了分解 生成CO,及H2O而逸失。所以,阴阳离子相加 时, HCO3只取重量的50%。
毛细水对建筑工程的意义主要有:
(1) 产生毛细压力, 对于砂性土特别是细 砂、粉砂,由于毛细压力作用使砂性土具有一 定的粘聚力(称假粘聚力)。

第5章 地下水

第5章 地下水

第二节 地下水类型及其主要特征
3. 承压水的补给与排泄 承压水的补给源有大气降水、地表水及潜水; 承压水的排泄方式有:向潜水排泄、泉的排泄及向地表 水排泄。 4. 承压水对工程建设的影响 (1)良好的城市供水水源; (2)基坑突涌; (3)排水比较困难,井深,范围广,水量大。
运动多属于非层流运动。
第二节 地下水类型及其主要特征
地下水按照埋藏条件可以分为包气带水、潜水和承压水 三类;按照含水层的空隙性质可分为孔隙水、裂隙水和岩溶 水三类。
第二节 地下水类型及其主要特征
5.2.1 包气带水 处于地表面以下潜水位以上的包气带岩土层中,包括土 壤水、沼泽水、上层滞水以及基岩风化壳(粘土裂隙)中季节 性存在的水。主要特征是受气候控制,季节性明显,变化大, 雨季水量多,旱季水量少,甚至干涸。包气带水对农业有很 大意义,对工程建筑有一定影响。
第二节 地下水类型及其主要特征
承压斜地
第二节 地下水类型及其主要特征
承压含水层在同一区域内均可在不同深度有着若干层 同时存在的情况,它们之间的水头高度与地形和构造二者 有关。 当地形和构造一致时称为正地
形。下部含水层压力高,若有裂隙
穿透上下含水层,下部含水层的水 通过裂隙补给上部含水层。如山东
济南的承压斜地,地下水通过近20m厚的第四系覆盖层出
水下施工。若潜水对施工有危害,宜用排水、降低水位、隔离(包括冻结法
等)等措施处理。
第二节 地下水类型及其主要特征
5.2.3 承压水 承压水是指埋藏并充满在两个稳定隔水层之间的含水层 中的地下水,是一种有压重力水。
第二节 地下水类型及其主要特征
1. 承压水的形成 最适宜形成承压水的地质构造有向斜构造盆地和单斜构 造。 承压盆地 此类承压水的水 位受到气候及地形的 控制,往往有较好的 径流条件。

河北工程大学 土木工程学院 工程地质 第五章_地下水

河北工程大学 土木工程学院 工程地质 第五章_地下水
●在具有成岩裂隙的岩体为后期地层覆盖 时可构成承压含水层。
25
6. 构造裂隙水
●其发育程度既取决于岩石本身的性质,也取决于 边界条件及构造应力分布等因素。 ●分为层状构造裂隙水和脉状构造裂隙水。 ●可以是潜水,也可以是承压水 ●裂隙各有自己独立的系统:补给源、径流及排 泄条件,水位不一致。 ●渗透性常常显示各向异性。 26
5
3.
重力水-----受重力控制的地下水
当岩石、土层的空隙完全被水饱和时,粘 土颗粒之间除结合水以外的水都是重力水,它 不受静电引力的影响,而在重力作用下运动, 可传递静水压力。
重力水的工程意义:
静水压力 动水压力 浮托力 溶解能力--岩土产生化学潜蚀
6
☆ 含水层:能够给出并透过相当数量 重力水的岩层或土层,称为含水层。 ☆ 隔水层:是指那些不能给出并透过 水的岩层、土层,或者这些岩土层给出与透 过水的数量是微不足道的。 ☆构成含水层的条件: 1.岩土中要有空隙存在,并充满足够数 量的重力水; 2.这些重力水能够在岩土空隙中自由运 动。
36
▲矿化度:地下水中所含各种离子、分子 与化合物的总量称为矿化度,以g/L表示。 习惯上用105~110℃温度将地下水样品蒸 干后所得的干涸残余物总量来表示矿化度。 可以将分析所得阴阳离子含量相加,求得 理论干涸残余物总量。
注意: 由于在蒸干时有将近一半的HCO3-了分解生 成CO,及H2O而逸失。所以,阴阳离子相加时, HCO3 只取重量的50%。
31
32
自流水泉(上升泉):主要靠承压水补给, 动态稳定,年变化不大,主要分布在自流盆地 及自流斜地的排泄区和构造断裂带上。
33
§5.3 地下水的性质
一、地下水的物理性质 地下水的物理性质有:温度、颜色、透明 度、气味、味道、导电性及放射性。 地下水物理性质的研究,使我们能初步了 解地下水的形成环境、污染情况及化学成分, 这为利用地下水提供了依据。

工程地质学第五章-地下水

工程地质学第五章-地下水

• • •
• Darcy定律适合于层流(砂土)。
5.2 地下水类型及其主要特性
地下水按埋藏条件可分为三大类:即包气带
水、潜水、承压水;
根据含水层的空隙性质地下水可分为孔隙水、 裂隙水、岩溶水。 通过这两种分类的组合,可得九类不同特点 的地下水。见教材p124。
裂隙水
孔隙水
含水层
承压水井 自流水井 潜水井 承压水位 潜 水 位
6、 地下水的循环:补给、排泄
上层滞水循环:大气降水补给,垂直蒸发、下渗排泄。 潜水补给: 大气降水,地表水的补给,含水层之间的补给①越流 补给②直接补给,凝结水,人工补给。 潜水排泄:蒸发,泉的排泄,地表水排泄,人为排泄。 承压水补给:大气降水,地表水,潜水。 承压水排泄:潜水排泄,泉的排泄,地表水排泄。
承压水面上高程相等点的连线图
用途:流向,水力坡度,初见水位,水位埋深,水头
5.3 地下水的性质
一、地下水的物理性质
1、温度:主要受气候条件和地热控制
由于地下水形成的环境不同,其温度变化范围很大; 常随埋藏深度不同而异,埋藏越深、水温越高。 纯净的地下水是无色的,当含有某些化学成分或悬浮物质时, 2、颜色: 会带有一定颜色。 纯净的地下水是透明的,但含有有机质、矿物质及胶体时, 3、透明度: 地下水将变得浑浊不清。 地下水一般是无嗅无味的,当含有气体或有机质时,会具有特殊 4、气味:
特点:空间分布极不均匀,动态变化强 烈,流动迅速,排泄集中。
在土木工程建筑地基内有岩溶水活 动,不但在施工中会有突然涌水的事故 发生,而且对建筑物的稳定性也有很大 影响。因此,在建筑场地和地基选择时 应进行工程地质勘察,针对岩溶水的情 况,用排除、截源、改道等方法处理, 如挖排水、截水沟,筑挡水坝,开凿输 水隧洞改道等等。

工程地质学第5章

工程地质学第5章
以液态或固态的形式存在于江河、湖泊、海洋、南北两极以 及高山地区的水称为地表水。
图5-2 长江和黄河
图5-3 塔里木河和湘江
图5-4 洞庭湖和博斯腾湖
图5-5 南海海面和渤海湾
图5-6 雪山
3、地下水
地下水是以固态、液态或水汽形式存在于 岩石以及土的裂隙、孔隙和空洞中的水。
二、岩土的空隙性
(3)水力坡度I:水力坡度为沿渗流途径的水头损失 与相应渗透途径长度的比值。 地下水在空隙中运动时,受到空隙壁以及水质点 自身的摩阻力,克服这些阻力保持一定流速,就要消 耗能量,从而出现水头损失。
§5.2 地下水类型及其主要特征
地下水按埋藏条件可分为三大类:即包气带水、 潜水、承压水 。根据含水层的空隙性质,地下水可分为 三个亚类:孔隙水、裂隙水、岩溶水。
2、溶隙

3、孔隙
存在于土的颗粒与颗粒之间的小孔状或细管状的空隙称 为土中的孔隙
三、地下水的形成
地下水主要是由渗透作用和凝结作用形成的,此外还有极少量的原 生水 渗透作用形成的地下水是大气降水和地表水经岩土的裂隙、孔隙 渗入到地表以下并在一定深度处聚集而成的,它也是地下水的最 主要来源。在以大气降水为主要补给源的区域,当地的降雨量愈 多、岩土透水性愈强、地下水的含量愈丰富。在江河、湖泊等地 表水系附近,当地表水的水位高于该区域的地下水水位时,地表 水经岩土中的空隙下渗,并在地下一定深度聚集形成地下水。 当空气中含有水蒸汽时,这些水蒸汽会随空气一起进入土体和外界 相通的孔隙中,并在气温下降时凝结成水滴,在重力作用下下渗、 聚集形成地下水。这种现象在一些干旱型草原和沙漠地区极为普遍。 山区中的一些岩体裂隙常在每天早晨至中午这一段时间有水流流出 或水滴渗出,但是一过中午,这些裂隙中不再有水渗出,第二天早 晨,裂隙中重又出水。这些裂隙中的水就是每天晚上温度降低后水 汽凝结形成的,水汽或凝结于岩石表面流入裂隙、或直接在裂隙中 凝结成水

地下水渗流基本方程及数学模型总结

地下水渗流基本方程及数学模型总结

方程右端项:
( nz ) z H H [ (1 e) e ] t 1 e t t H z ( n ) t
§5 描述地下水运动的数学模型及解算方法
第三步:方程的左端项=方程的右端项
H H H (K xx ) (K yy ) (K zz ) xyz x x y y z z H z( n ) xy t
(二)含水层的状态方程
根据Terzaghi有效应力公式:水压力p减少,将引起含 水层状态发生哪些变化? p减少 p减少 地下水体积膨胀,从而释放出一部分地下水; 地下水对上覆岩土体浮力降低,为维持平衡,
这部分力将转嫁到多孔介质固体骨架上,有效应力增大 ,压缩多孔介质(固体+空隙),结果使含水层空隙度 n变小、介质挤密、厚度变薄,从孔隙中(挤压)释放 一部分地下水;
(二)含水层的状态方程 含水层的弹性存储
取一典型处于平衡状态的饱和地层柱体来研究,这里只考虑垂直一维 变形,忽略侧面上粒间力(包括内聚力和摩擦力)的作用。 含水层上覆(岩土体、地表建筑物和大气压力等)荷载形成的总压应 力由固体颗粒粒间应力的垂向分量s和孔隙水压力p两者来平衡。
测压水头
p hp
§5 描述地下水运动的数学模型及解算方法
第二步:化简方程右端项:
e e e p H 根据 (1 e)和dp dH , 得 (1 e) p t p t t d p H 根据 和dp dH , 得 dp t p t t
§5 描述地下水运动的数学模型及解算方法
第一步:化简方程左端项: 由于在一般情况下,水的密度变化很小,可视 ρ 近似不变:
( v x ) H ( K xx ) x x x H H K xx K xx x x x x H H [ K xx (K xx )] x x x x

岩土工程中的地下水渗流与稳定性

岩土工程中的地下水渗流与稳定性

岩土工程中的地下水渗流与稳定性岩土工程是土力学与岩石力学的交叉学科,研究土壤与岩石的力学性质与工程应用。

地下水渗流与稳定性是岩土工程中一个重要且复杂的问题。

地下水渗流是指地下水在岩土体中的流动现象。

在岩土工程中,地下水渗流是一个既有利也有害的因素。

利的一面是地下水能够形成有效的荷载和增强土体的稳定性。

在土体中,加入一定的水分能改善土体的力学性质,增加土体的抗剪强度,提高土体的受力性能。

然而,地下水渗流也可能带来一些不良的影响。

高含水量的土体容易软化,导致土体的变形与失稳。

地下水还可能通过长期的冲刷与侵蚀作用,导致土体的沉陷、裂缝甚至坍塌。

地下水的渗流规律对岩土工程的稳定性和设计起着至关重要的作用。

岩土体中的地下水渗流可以通过各种方法进行分析与计算。

其中,最常用的方法是通过数学模型来解决。

渗流模型可以通过碗状基因型,模拟渗流路径和渗流速度的分布。

通过观测地下水位、水质以及取样分析等,可以得到渗流模型的参数。

在地下水渗流与稳定性问题中,岩土工程师关注的重点是如何控制和管理地下水,以确保土体的稳定性。

一个常用的方法是在工程设计中加入地下水防护措施,例如设置排水系统、抽水井等。

另外,合理的排水则可以减少水分对土体力学性质的影响,并提高土体的稳定性。

为了保证地下水渗流与稳定性的研究与设计的准确性,岩土工程师还需要进行现场勘察与实测。

现场勘察可以提供地下水位、土体含水量、岩土体性质与渗透性等相关数据。

实测可以通过孔隙水压力计、土壤水分计等设备,对地下水的压力与含水量进行测量。

这些数据将为岩土工程师提供准确的参数值,以便进行地下水渗流与稳定性的计算与分析。

岩土工程中地下水渗流与稳定性问题的研究还在不断发展中。

随着科技的进步,新的理论、模型、方法和工具在岩土工程中得到了广泛的应用。

同时,对于地下水渗流与稳定性问题的研究也愈加深入,为岩土工程师们提供了更多的理论依据和实用技术。

总之,地下水渗流与稳定性是岩土工程中一个重要而复杂的问题。

地下水向河渠间的运动

地下水向河渠间的运动

W
0, q1
K
h12 h22 2l
该, 式图为3-无1-8入河渗间补地给段潜潜水水流剖动剖面面图
二维稳定流动,此时河间地段呈单向流动。
h1 h2时,q1 0, 水由河1向河2流动
h1
2.
河当h流2W时的, 排0,且泄q1h量1相h02等,, q水1,由各W河 为2l 补,2q向2给 河 W量的2l1流 ,存一在动半分水W岭l a
四、无入渗潜水向河渠三维稳定运动
(一)平面流线辐射状
Q
K
B1
B1
l
B2
x h
dh dx
h12
h22 2
Q K
B1
l B2
l 0
d
B1
B1
l
B2
x
B1
B1 B2 l
x
Q K
B1
l
B2
ln
B1
B1
l
B2
x
l 0
Q K
B1
l
B2
ln
B2
ln
B1
Q K
B1
l
水头线方程 (解法二)
数学模型
d (h dh) 0 dx dx h |x0 h1 h |xl h2
h2 2
C1x C2 ,
C2
h12 2
h22 2
C1l
h12 2
C1
h22 2l
h12 2l
三、无入渗潜水向河渠二维稳定运动 ------(二)隔水底板倾斜
沿水平方向取x轴,它和底板 夹角为 ;H轴和井轴一致。 基准面可取在底板以下任意
2.当h1
h2且
l 2
K W

4第五章 达西定律

4第五章  达西定律

渗透系数K( 渗透系数 (coefficient of permeability) )
也有称为水力传导度( 也有称为水力传导度(Hydraulic Conductivity) ) V=KI,当I=1时,K=V ;因此 在数值上是当 时的 因此K在数值上是当 在数值上是当I=1时的 , 时 渗透流速。 渗透流速。 具有流速量纲[L/T],常用单位 具有流速量纲 ,常用单位cm/s,m/d; I一定,K大,则V也大, Q 也大,因此,渗透系数 K 一定, 大 也大, 也大,因此, 一定 也大 是表征岩石透水性的定量指标; 愈大 愈大, 是表征岩石透水性的定量指标;K愈大,则表明岩石的 透水能力愈强; 透水能力愈强; 影响渗透系数的因素
通过变水头,多次实验得出:出水端的流量 与砂柱 与砂柱、 通过变水头,多次实验得出:出水端的流量Q与砂柱、测 压管水头之间的关系为: 压管水头之间的关系为: (1) )
h Q = Kω L
Q ——渗流量; ω——砂柱断面面积; 渗流量; 砂柱断面面积; 渗流量 砂柱断面面积 h ——水头损失(m); ——渗流途径; 水头损失( ); );L 渗流途径; 水头损失 渗流途径 K——渗透系数。 渗透系数。 渗透系数 由水力学中水动力学基本原理: 由水力学中水动力学基本原理:
ω′ = ωne
有效孔隙度n 重力水流动的空隙体积( 有效孔隙度 e:重力水流动的空隙体积(不包括不连通的死孔隙和不 流动结合水所占据的空间)与岩石体积之比。 流动结合水所占据的空间)与岩石体积之比。

ω
ω′
渗透流速V与实际流速u 渗透流速V与实际流速u
Q = ωV = ω′ ⋅ u
ω′ = ωne
Q A
Q=KIW
HA 0 B

地下水流的渗流力学分析

地下水流的渗流力学分析

地下水流的渗流力学分析地下水是地球表层下方的水体,由于地壳中的孔隙和裂隙中填充了水分,形成地下水层。

地下水流是指地下水在地下岩层中的运动过程。

为了更好地理解地下水流的运动特性,科学家们进行了渗流力学分析。

一、地下水流的渗流力学基础渗流力学研究地下水流动的原因、特征和规律,是岩石力学和流体力学的交叉学科。

渗流力学的基本原理是达西定律,即渗流速度与渗透率成正比,与流体密度和粘度成反比。

根据达西定律,我们可以计算地下水的渗流速度和渗透率,以及地下水与地下岩层之间的关系。

二、地下水流的物质平衡方程地下水流的物质平衡方程是描述地下水流动的重要工具。

该方程描述了地下水流动过程中水量的变化。

它是根据质量守恒定律推导出来的,可以表达为:∇·(qρ) + ∂(ρΦ)/∂t = S其中,q是地下水流速向量,ρ是地下水密度,Φ是地下水位势,t是时间,S是外部水源和汇水源的贡献。

这个方程可以用来分析地下水在不同区域的流动情况,并预测地下水流动的趋势。

三、地下水流的渗透率计算渗透率是描述岩层渗透性的参数,是测量岩层渗流能力的指标。

地下水流的渗透率计算可以通过实验或野外测试获得。

其中一种常用的方法是Lugeon试验,该试验通过注入标准单位水量来测量注水速度和水压变化,进而计算出地下水的渗透率。

四、地下水流的流动特征地下水流的流动特征包括流速分布、流向、流线和流量等。

地下水流速分布的分析可以通过建立二维或三维数值模型,使用流体力学方程进行数值模拟来实现。

借助计算机技术,科学家们可以获取地下水流动的详细信息,预测地下水流动的趋势。

五、地下水流的影响因素地下水流的流动过程受到众多因素的影响,主要包括岩性、裂隙特征、孔隙度和渗透率等。

岩性是决定地下水流动性质的基本因素,不同的岩性具有不同的渗透性。

裂隙特征是影响地下水流速和渗透率的重要因素,对于裂隙性岩石来说,渗透率的计算需要考虑裂隙的数量、宽度和方向等因素。

孔隙度是描述岩石中可存储和运移水的能力,是衡量地下水资源的关键指标。

地下水在岩石空隙中的运动称为渗流

地下水在岩石空隙中的运动称为渗流

动量方程
动量方程是描述流体动量守恒的方程,也称为NavierStokes方程。在渗流问题中,动量方程用于描述流体在多 孔介质中的应力分布和流动行为。
动量方程基于牛顿第二定律,即流体的动量变化率等于作 用在流体上的力。在渗流问题中,动量方程需要考虑流体 与多孔介质的相互作用力,如摩擦力、粘滞力等。
物质平衡方程
详细描述
在自然界和工程实际中,复杂地质条件广泛存在,如非均质多孔介质、非达西流动、裂 隙和断层等。这些复杂条件对渗流行为产生显著影响,需要深入研究其渗流规律和建立
相应的数学模型。
多相流体的渗流特性研究
总结词
多相流体的渗流特性和相互作用机理是当前研究的热点和难点。
详细描述
多相流体在石油、天然气、水文等领域具有广泛应用,其渗流特性比单相流体更为复杂。研究多相流体在多孔介 质中的流动规律、相间作用力、流动模式和驱替机理等,对于提高油气采收率和多孔介质中流体输送的效率具有 重要意义。
渗流的生态与环境影响研究
总结词
渗流对生态环境的影响及其与环境因素的相互作用是未来研究的重点。
详细描述
地下水污染、土壤盐渍化、土壤侵蚀等环境问题与地下水的运动和溶质运移密切相关。研究渗流对生 态环境的直接影响以及渗流与环境因素的相互作用机制,有助于提出有效的环境保护措施和修复方案 。
数值模拟与实验研究方法的发展
地下水与岩石的相互作用
01
地下水在岩石中流动,对岩石产 生压力,这种压力会对岩石产生 侵蚀和溶蚀作用,从而改变岩石 的结构和性质。
02
岩石的孔隙和裂隙也会对地下水 的流动产生影响,如改变流动方 向、速度和压力等。
渗流现象的应用领域
水利工程
石油和天然气开采

工程地质学 第五章 地下水 岩土的水理性质渗流与达西定律

工程地质学 第五章 地下水 岩土的水理性质渗流与达西定律

5.2 岩土的水理性质
岩土的水理性质 含水性 给水性 透水性
5.2 岩土的水理性质
岩土的含水性 表示岩土能容纳和保持水分多少。表示
方法有以下两种:
容水量 岩体和土体中能容纳的水的最大体积与
岩体和土体体积的比值。显然,容水度在数 值上与孔隙度、裂隙率或岩溶率相等。但是, 对于具有膨胀性的粘土来说,充水后体积扩 大,容水度可以大于孔隙度。
5.3 渗流与达西定律
有关渗流的几个概念 ➢渗流 ➢渗流速度 ➢水力坡度
5.3 渗流与达西定律
渗流 地下水的渗透符合达西定律。即地下
水的渗流速度与水力坡度的一次方成正比, 也就是线性渗透定律。
当I=1时,K=v,即渗透系数是单位水 力坡度时的渗流速度。
达西定律只适用于雷诺数≤10的地下 水层流运动。
5.2 岩土的水理性质
表5-3 持水度与岩石颗粒直径的关系
颗粒直径 (mm)
持水度/ (%)
1.00~0.50
1.57
0.50~0.25
1.60
0.25~0.10
2.73
颗粒直径(mm)
0.10~0.05 0.05~0.005
<0.005
持水度/(%)
4.75 10.18 44.85
5.2 岩土的水理性质
5.3 渗流与达西定律
渗流速度v
在达西定律,过水断面的面积包括岩土 颗粒所占据的面积及空隙所占据的面积,而 水流实际通过的过水断面面积空隙所占 据的面积,即:
A1 = A ·n 式中 n——空隙度。 由此可知:v并非地下水的实际流速,而是 假设水流通过整个过水断面(包括颗粒和空 隙所占据的全部空间)时所具有的虚拟流速。
工程地质学 Engineering Geology

岩土工程渗流:第5章 地下水井流理论

岩土工程渗流:第5章 地下水井流理论
9
5.1.3 其他井流情 况与相关的约定
向井中注水的情况实际上和抽水的情况一样,在计算与分 析中可以同样利用抽水的相关理论。
本章除特别提到的条件外,一般都用了以下的假定: (1)含水层中水流服从Darcy定律 (2)在水头下降的瞬间水就释放出来(专指潜水浸润面) (3)含水层均质、各向同性、无限延伸 (4)含水层底部水平,承压含水层等厚 (5)抽水前的地下水面是水平 (6)忽略弱透水层的贮水性
17
计算影响半径R的经验公式和经验值
18
19
2)两个观测孔的井流公式
Q 2 KM H0 hw
ln R rw
sw
H0
hw
Q
2 KM
ln R
rw
边界条件并不一定在r=R和r=rw,可以是任何已知点的 水头值(ri,Hi)或降深值(ri,si)。
承压井流量 一般形式为:
Q
2
KM H1
计算机广泛应用 前的时代产物
14
5.2.2 承压井的齐姆(Thiem)公式
1)引用影响半径
影响半径R的取值,理论上没有严格证明,实际上 是困扰人们的一个问题。 该问题分为两类:
无限大区域中R取值; 有界区域R取值
2)两个观测孔的井流公式
由于井壁影响,应用时有误差,工程中常用两个 观测孔的井流公式。
s(x, y,t) H0 (x, y, 0) H (x, y,t)
井中心处降深最大,离井越远降深越小,整个水头下降 区呈漏斗状,称为降落漏斗。
潜水井的降落漏斗在含水层内部扩展,有自由面。
承压水井的降落漏斗没有自由面,是水头的降低区。
如无其他来源,潜水井抽出的水量相当于降落漏斗的含 水层体积的重力疏干,而承压水井的水来自于因降深漏 斗处的水头降低造成含水层的弹性释水。(非稳定井)

关于渗流稳定和抗滑稳定参考文档

关于渗流稳定和抗滑稳定参考文档

❖ 二、与渗流有关的堤坝破坏
从土坝的剖面看主要有以下几种破坏形式 1、双层地基,下部为砂层,上部为弱透水、透水值相差10倍时(粘土
、壤土、粉壤土或淤泥质土),砂层中的承压水顶穿表层弱透水层, 在坝下淤坡脚处发生局部集中渗流形成流土、泉涌现象,并沿砂层向 上游发展成连通的管道,当管道失去拱效应,坝将产生沉陷、裂隙并 下沉而破坏,当上游铺盖存有裂隙坍塌及临水面河水淘、冲刷时将加 速破坏。 2、背水坡脚大面积发生小泉涌的砂沸现象,造成坡脚土软化或受浮托 力的作用失去或减少支承力而引起大的滑动。发生砂沸、土软化的水 可以是坝基承压水,也可以是沉表层弱透水层深层粉土,粉细砂渗的 表层小,还可以是坝体渗水造成背水坡软化从而在浸润线出渗点以下 的局部滑坡。 3、坝本身或地基渗流,在出口处管涌开始逐渐将细颗粒带走,直至坡 面破坏。如出渗点处的颗粒,首先被冲蚀沉坡面向下移动推理,坡脚 ,逐渐在坡面形成局部凹陷和小沟,或沉基的岩石接触面,坝体较薄 透水层,以及沉输水管外壁,按蚀面等形成集中渗流通道,造成冲蚀 破坏。
8、波浪冲刷坡面,土体被淘刷使坡面破坏。
❖ 三、坝破坏形成分类(主要由渗流引起的破坏)
1、个别部位的集中渗流冲刷、顶托,它总是沿渗流阻力相对较小的薄 弱环节发生,管涌、流土、接触冲刷、接触流失。
2、整个渗流场范围内的滑坡,通常计算边坡稳定时,考虑或不考虑渗 流作用对边坡稳定影响较大。要求必须考虑。
关于渗流稳定和抗滑稳定
内容提要
1 渗流控制 2 关于渗流比降的几个问题 3 为排渗减压设计、地勘应作的工作安排 4 抗滑稳定中的有关问题 5 抗剪强度取值方法
山东省水利勘测设计院SDSS
一、渗 流 及 控 制
确定抗渗允许比降,计算实际产生的渗透比 降,分析坝体内部及下游出逸段渗透稳定及相应 保护措施、反滤、压重。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• A=2pxy
• 从图5.5亦可看出:地下水向潜水完整井的流动过程中水 力坡度J是个变数,但任意断面处的水力坡度J均可表示为: J=dy/dx
• 故地下水通过任意过水断面B—B/的运动方程为:
Q kJA k 2px y dy
dx
将上式分离变量并积分:
R
Q
dx
H
2pk
ydy
r0 x
h0
5.3.1地下水流向潜水完整井 根据裘布依的理论,当在潜水完整井中进行长时间的抽 水后,井中的动水位和出水量都会达到稳定状态,同时在抽
水井周围亦会形成有规律的稳定的降落漏斗,漏斗的半径R 称为影响半径,井中的水面下降值s称为降深,从井中抽出
的水量称单井出水量。
潜水完整井稳定流计算公式(裘布依公式)的推导假设 条件:
• A =2pxM;i=dy/dx
地下水通过任意过水断面的流量为
Q kJA k 2pxM dy
dx
R
Q
dx
2pkM
H
dy
r0 x
h0
Q = 2p kM (H - h0 ) ln R r0
因h0=H-s0
Q = 2πkMs0 = 2.73k Ms0
ห้องสมุดไป่ตู้
ln R
lg R - lg r0
r0
反映地下水向承压完整井运动规律的方程式,亦称裘布依公式。
• 推导公式的方法是从达西公式开始的,因为有:Q=kJA • 假设地下水向潜水完整井的 • 流动仍属缓变流,井边附近 • 的水力坡度不大于1/4;这样 • 就可使那些弯曲的过水断面 • 近似地被看作直面,如把 • B—B曲面近似地用B—B/直 • 面来代替,地下水的过水断 • 面就是圆柱体的侧面积:
第5章 地下水的稳定渗流运动
本书只讨论液态重力地下水的运动。
5.1 地下水运动特征和渗透基本规律
达西定律:
kJ
K—渗透系数; J—水力坡度; — 渗透流速。
当Re<1~10时,k≈C,故曲线基本呈直线,此时地下水运动为 层流运动,服从达西定律。当Re>10时,曲线偏离直线,此时地 下水运动仍可为层流,但不服从达西定律。
渗流量:
qi
k
H si
i
kH
i si
H H n
i和Δsi可从流网图中量出。
q kH m i i1 si
kH n
m i i1 si
取各网格的边长比例为常数、并等于1,则:q
kH
m n
s
kH
m n
自己看P52[例5.2] 。
• 5.3 地下水向完整单井的稳定渗流运动 • 提取地下水的工程设施称为取水构筑物。当取水构筑物 中地下水的水位和抽出的水量都保持不变,这时水流称为稳 定渗流运动。
天然情况下,绝大多数地下水运动是服从达西定律的。
5.1.2 非线性渗透定律:
1
km J m
1 —流态指数,1≤m≤2
m
• 5.2平面渗流问题的流网解法
• 渗流场内的水头及流向是空间的连续函数,因此可作出一 系列水头值不同的等水头线(面)和一系列流线(面),由 一系列等水头线(面)与流线(面)所组成的网格称为流网。
• 1.天然水力坡度等于零,抽水时为了用流线倾角的正切代 替正弦,则井附近的水力坡度不大于1/4;
• 2.含水层是均质各向同性的,含水层的底板是隔水的; • 3.抽水时影响半径的范围内无渗入、无蒸发,每个过水断
面上流量不变;在影响半径范围以外的地方流量等于零; 在影响半径的圆周上为定水头边界;
• 4.抽水井内及附近都是二维流(抽水井内不同深度处的水 头降低是相同的)。
在各向同性介质中,地下水必定沿着水头变化最大的方向 即垂直于等水头线的方向运动,因此,流线与等水头线构成
正交网格。通常把流网绘成曲边正方形。
位于同一等势线上的各测压管中 的水面一样高,相邻等势线间 的势差相等。
F1 1
F2
23
4
1.流线 2.等水头线 3.断层 4.抽水井
• 5.2.2应用流网求解渗流
该点的水头。
作用在地下轮廓上的垂直渗透总压力为P = r gWb ,式中
为渗透压强水头分布图的面积,b为建筑物宽度。总压力作用线
通过该面积的形心。
• 渗透流速与水力坡度

渗流区内各点的水力坡度可从下式求出:J
H s
H ns


式中ΔH为该处网格两边相邻等势线的水头差
H
H
n ,Δs
为该网格内流线长度,渗流区内各点的渗透流速为 u kJ
ln R
lg R
r0
r0
• 公式表明潜水完整井的出水量Q与井内水位降深s0的二次
方成正比,这就决定了Q与s0间的抛物线关系。即随着s0
值的增大,Q的增加值将越来越小。
5.3.2地下水流向承压水完整井
根据裘布依稳定流理论,在承压完整 井中抽水时,经过一个相当长的时段, 从井内抽出来的水量和井内的水头降 落同样均能达到稳定状态,这时在井 壁周围含水层内就会形成抽水影响范 围,这种影响范围可以由承压含水层 中的水头的变化表示出来,承压水 头线的变化具有降落漏斗的形状,
• 已知渗流上、下游水头h1和h2 ,水头差H= h1 - h2 ,
流网共有n+1条等势线,则两相邻等势线间的水头 H H ,
n
流网共有m+1条流线 。见图5.2。
从上游算起的第i条等势线上的水头为hi,则
hi
h1
i 1H n
设从水头基准线(注:以AB线为基准面)向下到计算点的垂
直距离为y,则作用在该点的渗透压强为p=rg(hi+y) ,式中hi为
Q = 2πkMs0 = 2.73k Ms0
ln R
lg R - lg r0
r0
• Q与s0间为直线关系
0
Q
承压井
潜水井
5.3.3裘布依(Dupuit)公式的讨论 s 1.抽水井流量与水位降深的关系
这里所讨论的降深,仅仅考虑地下水在含水层中流动的结果。 但实际上降深是多种原因造成的水头损失的叠加。另外主要还有: (2)由于水井施工时泥浆堵塞井周围的含水层,增加了水流阻 力所造成的水头损失。 (3)水流通过过滤器孔眼时所产生的水头损失。 (4)水流在滤水管内流动时的水头损失。 (5)水流在井管内向上流动至水泵吸水口的沿程水头损失。 这些损失,有些与流量的一次方成正比,有的与流量的二次方成 正比。 由于上述原因,承压水的出水量Q与s的线性关系也是不多见的。
Q = pk(H 2 - h02 ) = 1.36k H 2 - h02
ln R
lg R
r0
r0
因 h0 H s0
Q=
p k(2H - s0 )s0 ln R
=
1.36k
(2H lg
s0 R
)s0
r0
r0
AB AB
地下水向潜水完整井运动规律的方程式,亦称裘布依公式。
Q = p k(2H - s0 )s0 = 1.36k (2H - s0 )s0
相关文档
最新文档