华东师范大学数学系《数学分析》(第4版)(下册)课后习题-曲面积分(圣才出品)

合集下载

(NEW)华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题(含考研真题)详解

(NEW)华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题(含考研真题)详解

目 录第12章 数项级数12.1 复习笔记12.2 课后习题详解12.3 名校考研真题详解第13章 函数列与函数项级数13.1 复习笔记13.2 课后习题详解13.3 名校考研真题详解第14章 幂级数14.1 复习笔记14.2 课后习题详解14.3 名校考研真题详解第15章 傅里叶级数15.1 复习笔记15.2 课后习题详解15.3 名校考研真题详解第16章 多元函数的极限与连续16.1 复习笔记16.2 课后习题详解16.3 名校考研真题详解第17章 多元函数微分学17.1 复习笔记17.2 课后习题详解17.3 名校考研真题详解第18章 隐函数定理及其应用18.1 复习笔记18.2 课后习题详解18.3 名校考研真题详解第19章 含参量积分19.1 复习笔记19.2 课后习题详解19.3 名校考研真题详解第20章 曲线积分20.1 复习笔记20.2 课后习题详解20.3 名校考研真题详解第21章 重积分21.1 复习笔记21.2 课后习题详解21.3 名校考研真题详解第22章 曲面积分22.1 复习笔记22.2 课后习题详解22.3 名校考研真题详解第23章 向量函数微分学23.1 复习笔记23.2 课后习题详解23.3 名校考研真题详解第12章 数项级数12.1 复习笔记一、级数的收敛性1.相关定义(1)给定一个数列{u n},对它的各项依次用“+”号连接起来的表达式u1+u2+…u n+… (12-1)称为常数项无穷级数或数项级数(也常简称级数),其中u n称为数项级数(12-1)的通项或一般项.数项级数(12-1)也常写作或简单写作∑u n.(2)数项级数(12-1)的前n项之和,记为 (12-2)称它为数项级数(12-1)的第n个部分和,也简称部分和.(3)若数项级数(12-1)的部分和数列{S}收敛于S(即),则称数项级数(12-1)收敛,称S为数项级数(12-1)的和,记作或S=∑u n.若{S n}是发散数列,则称数项级数(12-1)发散.2.重要定理。

华东师范大学数学系数学分析第4版下册知识点总结笔记课后答案

华东师范大学数学系数学分析第4版下册知识点总结笔记课后答案

第12章数项级数12.1复习笔记一、级数的收敛性II级数的走义若S=f如存在极限值s r即HmS r = .S r则级数收敛,S为级数的和。

若{S“}发散,则级数发散。

创重要走理(1)级数收敛的柯西准则工叫收敛mN(NWN+ ),当m>N时以及又寸0p(pWN+ ),都有(2 )如果级数Zu n^£v n都收敛r则对任意常数c , d r级数工(cu n + dv n )也收敛r且》(* +叽)=c》冷加工耳(3)改变级数的有限个项不改变级数的敛散性。

(4 )在收敛级数的项中任意加括号r不改变其收敛性与和。

二、正项级数Q正项级数收敛性的一般判别原则(1)正项级数工%收敛O冥部分和数列{S,J有界。

(2)比较原则设工*和工□是两个正项级数r 3N (NGN* ) r使得对%> N都有u n<v n r则①若8n收敛,则工g也收敛。

②若»1…发散,则工口也发散。

(3 )设& =工*和S"=工V"是两个正项级数.如果则①若0 v 1 v +1级数si S"同敛散。

②若1 = 0且级数S"收敛,级数S,也收敛。

③若1 = + 0C且级数S"发散,级数S也发散。

Q比式判别法和根式判别法(1)比式判别法设工*为正项级数,且存在正整数N()及常数q (0<q<l ),则①若对任意n > N o , SPWu n+1/u n<q ,则工%收敛。

②若对任意n > N o ,都有5+ ]/11診1 ,则》i.发散。

(2 )比式判别法的极限形式若Xw为正项级数,且,则①若q V 1 ,则工Un收敛。

②若q > 1或q =+oo,则工片发散。

③若q = 1 ,则无法判断工叫的发散性。

(3)根式判别法设工g为正项级数,且存在正整数N()及正常数1 ,①若对任意n > N(”都有阪5*1 ,则工%收敛。

华东师范大学数学系《数学分析》(第4版)(下册)章节题库-含参量积分(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)章节题库-含参量积分(圣才出品)

第19章含参量积分§1含参量正常积分1.设(这个函数在x=y时不连续),试证由含参量积分所确定的函数在上连续,并作函数F(y)的图像.解:由于因此当y<0时时,f(x,y)=﹣1,当时,所以它在上连续,F(y)的图像见图19-1图19-12.求下列极限:解:(1)在区域上连续.因此(2)在区域上连续,因此3.设求F'(x).解:存在k>0,使二元函数与在矩形区域上连续,x与x2均为可微函数.则函数在[﹣k,k]上可微,且4.应用对参量的微分法,求下列积分:解:(1)若,所以同理若,设则又因所以因而(2)设当|a|<1时因而为连续函数,且具有连续导数,所以故当|a|<1时,I(a)=C(常数),又I(0)=0,从而I(a)=0.当|a|>1时,令,则|b|<1,有I(b)=0,于是当|a|=1时,同理可得I(﹣1)=0.综上所述得5.应用积分号下的积分法,求下列积分:解:(1)记因为故令贝g(x)在[0,1]上连续,于是有记则f(x,y)在上连续,所以作代换x=e﹣t后得到因此(2)类似于(1)题6.试求累次积分与并指出它们为什么与定理19.6的结果不符.解:由于故有因为在点(0,0)不连续,所以与定理19.6的结果不符.7.研究函数的连续性,其中f(x)在闭区间[0,1]上是正的连续函数.解:由于f(x)在[0,1]上是正的连续函数,故存在正数m,使得,f(x)≥m>0,x∈[0,1].当y>0时,当y<0时,因此所以F(y)在y=0处不连续,当时在上连续,所以当y≠0时,函数F(y)连续.8.设函数f(x)在闭区间[a,A]上连续,证明:证明:因为当h→0时.所以9.设其中,f(z)为可微函数,求F xy(x,y).解:10.设,其中0<k<1(这两个积分称为完。

华东师范大学数学系《数学分析》(第4版)(下册)-第十八章至第二十章(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)-第十八章至第二十章(圣才出品)

(18-2)
则可使上述切平面存在,并满足与 z=0 相交成直线的要求.
图 18-1
由此可见,条件(18-2)对于隐函数的存在性是很重要的.
3.隐函数定理
(1)隐函数存在惟一性定理
若函数 F(x,y)满足下列条件:
①F 在以
为内点的某一区域
上连续;

(通常称为初始条件);
③F 在 D 内存在连续的偏导数
与之相对应,由此所产生的新映射称为映射 T 的逆映射(逆变换),记作 ,即
或 亦即存在定义在 B′上的一个函数组
把它代入(18-4)而成为恒等式:
这时又称函数组(18-5)是函数组(18-4)的反函数组.
(2)反函数组定理
设函数组(18-4)及其一阶偏导数在某区域
上连续,点
点,且
(18-5) (18-6) 是 D 的内
则在点
的某一邻域
上存在惟一的一组反函数(18-5),使得
6 / 112
圣才电子书 十万种考研考证电子书、题库视频学习平台

且当
时,有
以及恒等式(18-6)此外,反函数组(18-5)在
上存在连续的一阶偏导数,且
三、几何应用 1.平面曲线的切线与法线 设平面曲线由方程
(18-7)
,在
上,方程组(18-3)
惟一地确定了定义在点
的某一(二维空间)邻域
上的两个二元隐函

使得
且当
时,
(2) (3)

上连续;

上有一阶连续偏导数,且
3.反函数组与坐标变换 (1)设函数组
(18-4)
是定义在 xy 平面点集 平面上惟一的一点
上的两个函数.对每一点

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-重积分(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-重积分(圣才出品)

证明:假设 f 在 D 上可积,但在 D 上无界,那么,对 D 的任一分割

必在某个小区域 上无界.
当 i≠k 时,任取

由于 f 在 上无界,从而存在 从而
使得
另一方面,由 f 在 D 上可积知:存在
对任一 D 的分割

时,T 的任一积分和
都满足
1 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台
时).即 f(x,y)在 D 上不可积.
因此
的极
7.证明:若 f(x,y)在有界闭区域 D 上连续,g(x,y)在 D 上可积且不变号,则
存在一点
使得
证明:不妨设
令 M,m 分别是 f 在 D 上的最大、最小值,从而

=0,则由上式

则必大于 0,于是
于是任取
即可.
3 / 48
圣才电子书

为D内
证明:设 D 在 x 轴和 y 轴上的投影区间分别为[a,b]和[c,d].
考虑
9 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台

由于
因此
所以
,同理可证


7.设 D=[0,1]×[0,1],
其中 表示有理数 x 化成既约分数后的分母.证明 f(x,y)在 D 上的二重积分存在而两个
同理可证先 y 后 x 的累次积分不存在.
8.设 D=[0,1]×[0,1],
其中 意义同第 7 题.证明 f(x,y)在 D 上的二重积分不存在而两个累次积分存在.
10 / 48
圣才电子书 十万种考研考证电子书、题库视频学习平台

证明:因为在正方形的任何部分内,函数 f 的振幅等于 1.所以二重积分不存在.对固

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-数项级数(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-数项级数(圣才出品)
圣才电子书

十万种考研考证电子书、题库视频学习平台
第二部分 课后习题
第 12 章 数项级数
§1 级数的收敛性
1.证明下列级数的收敛性,并求其和: (1) (2) (3) (4) (5) 证明:(1)
所以原级数收敛,且和数 (2)
1 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
也发散.
证明:假设
收敛.因 c≠0,故级数
矛盾,所以若
发散.
也发散(c≠0).
收敛,这与题设
发散
3.设级数 与级数 都发散,试问
一定发散吗?又若 un 与 vn(n=1,
2,…)都是非负数,则能得出什么结论?
解:(1)当 与 都发散时,
不一定发散.如
两级数均发散,但
,即
收敛.
又如,
,两级数均发散,且
所以
从而级数
由比较原则知 收敛.
.又
收敛,
6.设级数 收敛,证明 证明:因为
也收敛.
又及
收敛,故
收敛,所以由比较原则得
收敛.
7.设正项级数 收敛,证明级数
也收敛.
证明:因为
,义由已知碍 及
收敛,所以
收敛,进而由比较原则得
收敛.
8.利用级数收敛的必要条件,证明下列等式:
证明:(1)设
,考察正项级数 的收敛性,因为
发敛.
8 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台

(5)因
,而级数
收敛,故级数
收敛.
(6)因
,而级数
发散,故级数
发散.
(7)因
,而级数
发散,故级数

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-傅里叶级数(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-傅里叶级数(圣才出品)

理 13.14(逐项求导)知
g(x),所以级数
的和函数 S(x)
有连续的导函数 g(x).
§2 以 2l 为周期的函数的展开式
1.求下列周期函数的傅里叶级数展开式: (周期π); (周期 1);
解:(1)将 f(x)进行周期延拓,又因 f(x)在(0,2π)内按段光滑,故由收敛定 理,f(x)可展开为傅里叶级数,
所以在区间(0,2π)内,有
7 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台

(2)在[-π,π]上 所以
所以在区间(-π,π)内 在 x=π或 x=-π时,上式右端收敛于 所以在闭区间[-π,π]上
(3)
8 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台所以,在(0,2π源自内所以,在(-π,π)内 故
9 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台

故 所以,在(-π,π)内
故 从而在区间(-π,π)内
及其周期延拓的图像如图 15-3 所示,
显见 因为
图 15-3 在(-π,π)内按段光滑,由收敛定理知它可以展开成傅里叶级数,
所以在(-π,π)内, (ii)函数 f(x)及其周期延拓的图像如图 15-4 所示,
2 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台

4 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台

所以

当 x=0 时,上式的右端收敛到 0.
(1)当
时,由于
,因此
(2)因为 所以
(3)
时,因
,故
所以
4.设函数 f(x)满足条件:f(x+π)=-f(x),问此函数在(-π,π)上的傅里叶 级数具有什么特性.

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-幂级数(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-幂级数(圣才出品)

第14章幂级数§1幂级数1.求下列幂级数的收敛半径与收敛区域:解:(1)因故收敛半径R=1,收敛区间为(-1,1).又时,级数与级数均发散,故收敛域为(-1,1).(2)因为故收敛半径收敛区间为(-2,2).当时,级数收敛,故收敛域为[-2,2].(3)记所以,则收敛半径R=4.当时,级数为,通项为u故,即时级数发散,故收敛域为(-4,4).(4)因故收敛半径为收敛域为(5)设则故对任取定的x,有<1,故级数的收敛半径为收敛域为(6)设,则故级数收敛半径故,从而收敛区间为当时,原级数可化为对于级数,因为故级数收敛,又收敛,故时,原级数收敛.当时,原级数可化为因级数收敛,而级数发散,故时原级数发散,从而收敛域为(7)设故收敛半径,故时,原级数是发散的,从而收敛域为(-1,1).(8)设,则因此级数在时收敛,时发散,从而可得收敛半径R=1,收敛区域为[-1,1].2.应用逐项求导或逐项求积方法求下列幂级数的和函数(应同时指出它们的定义域):解:(1)设时,级数收敛,故原级数的收敛半径R =1.又当时,原级数可化为发散,从而得收敛域为(-1,1).设内逐项求导,得故和函数(2)记因为所以,收敛区域为(-1,1).因为所以(3)记则收敛区域为(-1,1).因为所以所以,因此3.证明:设在内收敛,若也收敛,则(注意:这里不管在x=R是否收敛),应用这个结果证明:证明:因在内收敛,所以有又x=R时,级数收敛,从而由定理14.6知的和函数在x=R 处左连续,从而又因为内收敛,且级数收敛,所以4.证明:(1)满足方程(2)满足方程证明:(1)设故,从而幂级数的收敛区间为,且y可在内任意阶可导,所以(2)设,故所以幂级数的收敛区间为且和函数y在具有任意阶导数,由,可得所以又由5.证明:设f为幂级数(2)在(-R,R)上的和函数,若f为奇函数,则级数(2)仅出现奇次幂的项,若f为偶函数,则(2)仅出现偶次幂的项.证明:由可得当f(x)为奇函数时,故此时有当f(x)为偶函数时,,故此时有6.求下列幂级数的收敛域:解:(1)设故收敛半径,又当故原幂级数在|x|=R时发散,收敛域为(-R,R).(2)设,则,故收敛半径为时,所以原级数在时发散,故收敛域为7.证明定理14.3并求下列幂级数的收敛半径:证明:对任意的x,据定理12.8推论2可得:。

华东师范大学数学系《数学分析》(第4版)(下册)章节题库-曲面积分(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)章节题库-曲面积分(圣才出品)

第22章曲面积分1.设S是椭圆面的上半部分,点,Ⅱ为S在点P的切平面, (x,y,z)为点O(0,0,0)到平面Ⅱ的距离,求.解:设(X,Y,Z)为Ⅱ上任意一点,则Ⅱ的方程为由此易知由S的方程有,于是其中是S在xOy平面上的投影.作极坐标变换容易求出:2.计算积分其中S:x+y+z=t,解:将z=t-x-y代入整理可得:由此可知,当时,平面S在球内;当时,平面S在球之外,所以显然当时.F(t)=0,所以只需计算时的积分:其中D是式(1)所表示的区域.作变换则D变为,其中.于是对式(3)右边进一步计算得所以3.设曲面S由方程所确定,求曲面S的面积.解:在球坐标变换:x=rsinφcosθ,y=rsinφsinθ,z=rcosφ之下,曲面S的方程是,其参数方程为通过计算易知,由此得由曲面的对称性,只需求第一卦限部分的面积即可.而此时,并且由曲面方程知cos2θ≥0,所以0≤θ≤π/4.故S的面积为4.计算曲面积分,其中S是曲面x2+y2=R2及两个平面z=R,z=-R(R>0)所围的立体的表面的外侧(数学Ⅰ,Ⅱ).解:设S1,S2,S3分别为S的上、下底面和圆柱侧面,则记S1+S2在xOy平面上的投影区域为D xy,则在S3上,而S3在yOz平面上的投影区域D yz:-R≤y≤R,-R≤z≤R,故从而曲面积分5.求,其中S是球面x2+y2+z2=a2(x>0,y≥0,z≥0)的第一卦限部分,取外侧.解:球面在点(x,y,z)处的法向量为,由两类曲面积分的关系,有(利用轮换对称性)其中,x≥0,y≥0.作极坐标变换,有6.计算曲面积分S是闭曲面|x-y+z|+|y-z+x|+|z-x+y|=1,方向取外侧.解:由高斯公式,可得其中Ω是由闭曲面S所围的空间区域.作变换:u=x-y+z,v=y-z+x,w=z-x+y,则区域力变成Ω1:|u|+|v|+|w|≤1.由对称性,有7.计算第二型曲面积分其中f(x,y,z)为连续函数,∑是平面x-y+z=1在第四卦限部分,方向取上侧.解:设曲面∑的单位法向量为(cosα,cosβ,cosγ),则dydz=cosαdS,dzdx=cosβdS,dxdy=cosγdS.由此可得具体到本例,,因而dydz=dxdy,dzdx=-dxdy.于是其中D xy={(x,y)1≤x≤1+y,-1≤y≤0}是曲面∑在xOy平面的投影。

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-隐函数定理及其应用(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-隐函数定理及其应用(圣才出品)

5.设以 u,v 为新的自变量变换下列方程:
解:(1)因 所以

代入原方程,并化简得,
所以
8 / 32
圣才电子书 十万种考研考证电子书、题库视频学习平台

将上述
代入原方程,并化简得

6.设函数 u=u(x,y)由方程组 u=f(x,y,z,t),g(y,z,t)=0,h(z,t) =0 所确定,求
解之得
3.求下列函数所确定的反函数组的偏导数:
解:(1)因
所以由反函数组定理,得
7 / 32
圣才电子书 十万种考研考证电子书、题库视频学习平台

(2)关于 x 求偏导数得
解之得
4.设函数 z=z(x,y)是由方程组 函数,求当 u=0,v=0 时的 dz.
解:因
(u,v 为参量)所定义的 所以当 u=0,v=0 时 dz=0.
证明:因为
所以
7.求由下列方程所确定的隐函数的偏导数:
求 z 对于 x,y 的一阶与二阶偏导数;

解:(1)令
,则
(2)把 z 看成 x,y 的函数,两边对 x 求偏导数,得 原方程两边关于 y 求偏导数,得
4 / 32
,故
圣才电子书 十万种考研考证电子书、题库视频学习平台

在点(1,-1,2)的附近能否确定形如 x=f(x),y=g(z)的隐函数组?
解:令

①F,G 在点(1,-1,2)的某邻域内连续;
②F(1,-1,2)=0,G(1,-1,2)=0;

均在点(1,-1,2)的邻域内连续;
故由隐函数组定理知,在点(1,-1,2)的附近所给方程组能确定形如 x=f(z),y =g(z)的隐函数组.

华东师范大学数学系《数学分析》(第4版)(下册)配套题库-名校考研真题(下)(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)配套题库-名校考研真题(下)(圣才出品)

,其中 为曲线
(1,1,1)的部分.[哈尔滨工业大学 2009 研]
解:设
因为
从(1,1,0)到
所以积分与路径无关. 取积分路径为从(1,1,0)到(1,1,1)的直线段,则
10 / 25
圣才电子书 十万种考研考证电子书、题库视频学习平台

一致收敛.
另外
对于固定的 y∈[0,1]都单调,且在 x∈[1,+∞)时,满足
即一
致有界.从而由阿贝尔判别法知,I(y)在[0,1]上一致收敛.
2.研究函数 f x
0
e xt2 1 t2
dt
的连续性及可微性.[郑州大学
2009
研]
解: 设f
x, t
0
e xt2 1 t2
dt

由于当 x
5 / 25
圣才电子书 十万种考研考证电子书、题库视频学习平台

所以由狄利克雷判别法知
t e2 xt2 0 1t2
dt 在
0,
上一致收敛,
故 f(x)在0, 上可微.
3.证明:含参量反常积分 (0,+∞)内不一致收敛.[武汉大学研]
证明:(1)令 x=xy,有
8 / 25
圣才电子书

十万种考研考证电子书、题库视频学习平台
第 20 章 曲线积分
1.求曲线积分
这里 L 是球面

交成的曲线.[北京大学 2009 研]
解:
等价于

利用斯托克斯公式得,
2.计算线积分
,其中 ABC 为三点 A(1,0),B(0,1),C(-1,0)
上一致收敛(其中 >0),在
根据定义,
.取

华东师范大学数学系《数学分析》(第4版)(上册)(课后习题 定积分)【圣才出品】

华东师范大学数学系《数学分析》(第4版)(上册)(课后习题  定积分)【圣才出品】

第9章 定积分§1 定积分概念1.按定积分定义证明:证明:对于[a ,b]的任一分割,任取,f (x )=k 相应的积分和为从而可取δ为任何正数,只要使,就有根据定积分定义有2.通过对积分区间作等分分割,并取适当的点集,把定积分看作是对应的积分和的极限,来计算下列定积分:解:(1)因f (x )=x 3在[0,1]上连续,所以f (x )在[0,1]上可积.对[0,1]进行n 等分,记其分割为,取为区间的右端点,i =1,2,…,n ,得(2)同(1),有(3)由在[a,b]上连续知,f(x)在[a,b]上可积,对[a,b]进行n等分,记其分割为,则,取为区间的右端点,i=1,2,…,n,得(4)同(3),取,得§2 牛顿-莱布尼茨公式1.计算下列定积分:解:(7)先求原函数,再求积分值:2.利用定积分求极限:解:(1)把极限化为某一积分的极限,以便用定积分来计算,为此作如下变形:这是函数在区间[0,1]上的一个积分和的极限.这里所取的是等分分割,,而恒为小区间的右端点,i=1,2,…,n.所以有(2)不难看出,其中的和式是函数在区间[0,1]上的一个积分和.所以有(3)(4)3.证明:若f在[a,b]上可积,F在[a,b]上连续,且除有限个点外有F'(X)=f(x),则有证明:对[a,b]作分割,使其包含等式F'(x)=f(x)不成立的有限个点为部分分点,在每个小区间上对F (x )使用拉格朗日中值定理,则分别存在,使于是因为f 在[a ,b]上可积,所以令,有§3 可积条件1.证明:若T '是T 增加若干个分点后所得的分割,则证明:设T 增加p 个分点得到T ',将p 个新分点同时添加到T ,和逐个添加到T ,都同样得到T ',所以我们只需证p =1的情形.在T 上添加一个新分点,它必落在T 的某一小区间内,而且将分为两个小区间,记作与.但T 的其他小区间(i≠k)仍旧是新分割T 1所属的小区间,因此,比较的各个被加项,它们之间的差别仅仅是前者中的一项换为后者中的两项.又因函数在子区间上的振幅总是小于其在区间上的振幅,即有.故即一般的,对增加一个分点得到,就有这里,故2.证明:若f(x)在[a,b]上可积,[α,β][a,b],则f(x)在[α,β]上也可积.证明:已知f(x)在[a,b]上可积,故任给ε>0,存在对[a,b]的某分割T,使得,在T上增加两个分点α,β,得到一个新的分割T',则由上题结论知分割T'在[α,β]上的部分,构成[α,β]的一个分割,记为T*,则有故由可积准则知,f(x)在[α,β]上可积.3.设f、g均为定义在[a,b]上的有界函数.证明:若仅在[a,b]中有限个点处f(x)≠g(x),则当f在[a,b]上可积时,g在[a,b]上也可积,且证明:设f(x)与g(x)在[a,b]上的值仅在k个点处不同,记,由于f (x )在[a ,b]上可积.存在,使当时,有令,则当时,有当时,,所以上式中至多仅有k项不为0,故这就证明g(x)在[a,b]可积,且。

(NEW)华东师范大学数学系《数学分析》(第4版)(下册)配套题库【名校考研真题+课后习题章节题库模拟试题

(NEW)华东师范大学数学系《数学分析》(第4版)(下册)配套题库【名校考研真题+课后习题章节题库模拟试题

有界,由Dirichlet判别法,知 二、解答题
收敛.
1.设 ,求级数
的和.[苏州大学2004研]
解:设
, 的收敛区间为



,则


,则

从而
2.
.[武汉大学2004研]
解:原式 3.判断下列级数是绝对收敛、条件收敛还是发散:
(1)

(2)
.[北京科技大学2011研]
解:(1)因为

收敛,
所以由级数的比较判别法知,级数
上逐
点收敛,即由Osgood定理,得
上一致收敛.
(Osgood定理)设函数列 在有限闭区间 上连续, 在 上等 度连续,如果

(1)
上连续;
(2)
上一致收敛于 [哈尔滨工业大学2009研]
证明:(1)由 在 上等度连续,得

,当
成立;
时,不等式
令 取极限得,
由此得
上连续;
,对所有
(2)由 时,有

;对于任意的
目 录
第一部分 名校考研真题 第12章 数项级数 第13章 函数列与函数项级数 第14章 幂级数 第15章 傅里叶级数 第16章 多元函数的极限与连续 第17章 多元函数微分学 第18章 隐函数定理及其应用 第19章 含参量积分
第20章 曲线积分 第21章 重积分 第22章 曲面积分 第23章 向量函数微分学 第二部分 课后习题 第12章 数项级数 第13章 函数列与函数项级数 第14章 幂级数 第15章 傅里叶级数 第16章 多元函数的极限与连续
闭区间的性质可知,存在
即 这里
,由比值判别法知
绝对收敛.

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-函数列与函数项级数(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-函数列与函数项级数(圣才出品)

是单调递减的.
又对任意

由狄利克雷判别法知
致收敛.
(3)因为|x|>r≥1,所以

上一
当 r>1 时,因级数
收敛,所以 在| x |>r>1 上一致收敛.
3 / 23
圣才电子书

当 r=1 时,
十万种考研考证电子书、题库视频学习平台
所以级数
上不一致收敛.
(4)因
时.
,而
上不一致收敛. 考虑区间[0,M]时,
所以 在[0,M]上一致收敛且
上内闭一致收敛.
(5)任意给定的
(i)
,考虑区间[-1,1]时,
由(ii)知 在[0,+∞)
(ii)D=(-∞,+∞)时.
故 但由(i)知 在
所以
在(-∞,+∞)上不一致收敛.
上内闭一致收敛.
2.证明:设
2 / 23
若对每一个正整数 n 有
证明:必要性
总存在 的一个邻域 和 I 的一个内闭区间[a,b],使得
所以
而 在[a,b]上一致收敛于 f,因此 在
上一致收敛于 f.
充分性
由已知
使得 在
上一致收敛于
f.从而



显然,当
取遍[a,b]上所有点时,
覆盖[a,b].由有限覆盖定理,存在有限个区间覆盖[a,b].不妨设

,则当 n>N 时,
证明:不妨设存在 M≥0,对任意
有|g(x)|<M.因
在 D 上一致收敛于
S(x),故对任意
存在 N>0,当 n>N 时,对任意
,均有
从而,对任意
4 / 23
圣才电子书 十万种考研考证电子书、题库视频学习平台

华东师范大学数学系《数学分析》(第4版)(下册)章节题库-重积分(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)章节题库-重积分(圣才出品)

显然当 p>1 时,积分收敛,且积分值为

13.计算广义三重积分
其中 D 为 解:作变换:

,则

所以

其中 D′为

再作球坐标变换

.且
.而

其中 作变换:
.由上式可见,积分是存在的,下面展开计算. ,则
11 / 20
圣才电子书 十万种考研考证电子书、题库视频学习平台

其中在 内
.在

,所以
原式
(3) 所以
,其中
(4)积分区域为 y 是奇函数,所以
,D 关于 x 轴对称,而函数
从而原式 令 原式
,则
所以
关于
(5)方法一 积分区域关于直线 y=x 对称,所以

2 / 20
圣才电子书 十万种考研考证电子书、题库视频学习平台

方法二 作变换 x+y=u,x-y=v,则 D 变为
于是
,所以
(6)积分区域关于 y=x 对称,所以
于是

3.作极坐标变换,将二重积分
化为定积分,其中 解:如图 21-1 所示:
图 21-1
3 / 20
圣才电子书 十万种考研考证电子书、题库视频学习平台


,则
4.计算积分
其中 解:因为积分区域 D 关于 x 轴对称,而
8 / 20
圣才电子书

因此球体Ω的重心坐标为
十万种考研考证电子书、题库视频学习平台

10.求由
所围的立体的体积.
解:显见立体关于 xOy 平面、yOz 平面对称.在上半空间 y≥0 上,用 表示位于第一

数学分析华东师大第四版章曲线积分资料

数学分析华东师大第四版章曲线积分资料
于是此时
f (x, y)ds
d
f [( y), y]
1 ['( y)]2 dy.
L
c
此时求曲线积分的积分值,
转化为求等号右边的定积分.
例子
计算第一型曲线积分
L (x y)ds,
其中L是以O(0,0), A(1,0), B(0,1) 为顶点的三角形.
解答
将曲线积分分成3段, 分别求出每一段的曲线积分
s ti
i
ti1
[x'(t)]2 [ y'(t)]2 dt.
证明
在Li上任取一点(i ,i ), 假设i x(ui ),i y(ui ),
则由积分中值定理可知, 和式
n
n
f (i ,i ) si f (x(ui ), y(ui )) [x'(ui*)]2 [ y'(ui*)]2 ti
i 1
i 1
n
f (x(ui ), y(ui )) [x'(ui )]2 [ y'(ui )]2 ti i 1
[ ] n f (x(ui ), y(ui )) [x'(ui*)]2 [ y'(ui*)]2 [x'(ui )]2 [ y'(ui )]2 ti.
的第一型曲线积分存在,
则 f (x, y)ds f (x, y)ds.
AB
BA
第一型曲线积分的计算
设有光滑曲线L, 其参数方程为
x x(t), y y(t),(a t b)
如果二元函数f (x, y)在L上连续,
则f (x, y)在L上的第一型曲线积分一定存在,且

华东师范大学数学系《数学分析》(第4版)(下册)-第二十一章至第二十三章(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)-第二十一章至第二十三章(圣才出品)

①Δi 上的点都是 P 的内点;
②Δi 上的点都是 P 的外点,即

③Δi 上含有 P 的边界点;
图 21-1
将所有介于直线网 T 的第①类小矩形(图 21-1 中阴影部分)的面积加起来,记这个和
数为 sp(T),则有
(这里ΔR 表示包含 P 的那个矩形 R 的面积);将所有第①
类与笫③类小矩形(图 21-1 中粗线所围部分)的面积加起来,记这个和数为 Sp(T),则有
二、直角坐标系下二重积分的计算 1.定义在矩形区域 D=[a,b]×[c,d]上二重积分计算问题 (1)设 f(x,y)在矩形区域 D=[a,b]×[c,d]上可积,且对每个 x∈[a,b],积分
存在,则累次积分
也存在,且
4 / 153
圣才电子书 十万种考研考证电子书、题库视频学习平台

三、格林公式、曲线积分与路线的无关性 1.格林公式 (1)设区域 D 的边界 L 中一条或几条光滑曲线所组成边界曲线的正方向规定为:当人 沿边界行走时,区域 D 总在它的左边;如图 21-2 所示,与上述规定的方向相反的方向称为 负方向,记为-L.
图 21-2 (2)若函数 P(x,y),Q(x,y)在闭区域 D 上连续,且有连续的一阶偏导数,则
(21-3)
2 / 153
圣才电子书 十万种考研考证电子书、题库视频学习平台

则称 f(x,y)在 D 上可积,数 J 称为函数 f(x,y)在 D 上的二重积分,记作
(21-4) 其中 f(x,y)称为二重积分的被积函数,x,y 称为积分变量,D 称为积分区域.
(2)f(x,y)在 D 上可积的充要条件是: (3)f(x,y)在 D 上可积的充要条件是:对于任给的正数ε,存在 D 的某个分割 T, 使得 (4)有界闭区域 D 上的连续函数必可积. (5)设ε在有界闭域 D 上有界,且其不连续点集 E 是零面积集,则 f(x,y)在 D 上 可积. 3.二重积分的性质 (1)若 f(x,y)在区域 D 上可积,k 为常数,则 kf(x,y)在 D 上也可积,且

华东师范大学数学系《数学分析》讲义定积分【圣才出品】

华东师范大学数学系《数学分析》讲义定积分【圣才出品】

第9章定积分9.1本章要点详解本章要点■定积分的概念■牛顿-莱布尼茨公式■可积条件■定积分的性质■微积分基本定理/定积分计算重难点导学一、定积分概念1.问题提出背景类似计算曲边梯形面积的几何问题和求变力做功的力学问题,求解的思想方法可以用“分割,近似求和,取极限”来概括,这也是产生定积分概念的背景.2.定积分的相关定义(1)设闭区间[,]a b 上有1n +个点,依次为0121n n a x x x x x b -=<<<<<=L ,它们把[,]a b 分成n 个小区间1[,],1,2,,i i i x x i n -∆==L ,这些分点或这些闭子区间构成对[,]a b 的一个分割,记为{}01,,,n T x x x =L 或{}12,,,n ∆∆∆L小区间i ∆的长度为1i i i x x x -∆=-并记1||||max{}i i nT x ≤≤=∆称为分割T 的模.(2)设f 是定义在[,]a b 上的一个函数,对于的[,]a b 一个分割12{,,,}n T =∆∆∆L ,任取点,1,2,,i i i n ξ∈∆=L ,并作和式1()n i i i f x ξ=∆∑,称此和式为函数f 在[,]a b 上的一个积分和,又称黎曼和.(3)设f 是定义在[,]a b 上的一个函数,J 是一个确定的实数,若对任给的正数ε,总存在某一正数δ,使得对[,]a b 的任何分割T ,以及在其上任意选取的点集{}i ξ,只要||||T δ<,就有1|()|ni i i f x J ξε=∆-<∑,则称函数f 在区间[,]a b 上可积或黎曼可积.数J 称为f 在[,]a b 的定积分或黎曼积分,记作()d ba J f x x =⎰其中f 称为被积函数,x 称为积分变量,[,]ab 称为积分区间,,a b 分别称为这个定积分的下限和上限.二、牛顿-莱布尼茨公式若函数f 在[,]a b 上连续,且存在原函数,即()(),[,]F x f x x a b '=∈,则f 在[,]a b 上可积,且()d =()()ba f x x Fb F a -⎰上式称为牛顿-莱布尼茨公式.它也常写成()d =()b ba a f x x F x ⎰三、可积条件1.可积的必要条件若函数f 在[,]a b 上可积,则f 在上[,]a b 必定有界.2.可积的充要条件(1)可积准则函数f 在[,]a b 上可积的充要条件是:任给0ε>,总存在相应的一个分割T ,使得()(T)S T s ε-<(2)可积准则的改述函数f 在[,]a b 上可积的充要条件是:任给0ε>,总存在相应的某一分割T ,使得i i T xωε∆<∑3.可积的充分条件(1)若f 为[,]a b 上的连续函数,则f 在[,]a b 上可积.(2)若是f 区间[,]a b 上只有有限个间断点的有界函数,则f 在[,]a b 上可积.(3)若f 是[,]a b 上的单调函数,则f 在[,]a b 上可积.四、定积分的性质1.定积分的基本性质(1)若f 在[,]a b 上可积,k 为常数,则kf 在[,]a b 上也可积,且()()d d b b a a kf x x k f x x =⎰⎰(2)若f ,g 都在[,]a b 上可积,则f g ±在[,]a b 也可积,且()()[()()]d d d b b ba a a f x g x x f x x g x x ±=±⎰⎰⎰(3)若,f g 都在[,]ab 上可积,则f ·g 在[a ,b ]上也可积.(4)f 在[,]a b 上可积的充要条件是:任给(,)c a b ∈,f 在[,]a c 与[,]c b 上都可积,此时又有等式()()()d d d b c ba a c f x x f x x f x x =+⎰⎰⎰(5)设f 为[,]a b 上的可积函数,若()0,[,]f x x a b ≥∈,则()d 0ba f x x ≥⎰推论:积分保不等式性若f 与g 为[,]a b ]上的两个可积函数,且()g(x),[,]f x x a b ≤∈,则有()()d d b ba a f x x g x x ≤⎰⎰(6)若f 在[,]ab 上可积,则||f 在[,]a b 上也可积,且()()d d b b a a f x x f x x≤⎰⎰2.积分中值定理(1)积分第一中值定理若f 在[,]a b 连续,则至少存在一点[,]a b ξ∈,使得()d =()()b a f x x f b a ξ-⎰(2)推广的积分第一中值定理若f 与g 都在[,]a b 上连续,且()g x 在[,]a b 上不变号,则至少存在一点[,]a b ξ∈,使得()()g()d =()d bba a f x x x f g x x ξ⎰⎰五、微积分学基本定理·定积分计算1.变限积分与原函数的存在性(1)定义设f 在[a ,b ]上可积,根据定积分的性质,对任何x ∈[a ,b ],f 在[a ,x ]上也可积.于是,由(9-1)定义了一个以积分上限x为自变量的函数,称为变上限的定积分.类似地,又可定义变下限的定积分Φ与ψ统称为变限积分.(2)变限积分的性质①若f在[a,b]上可积,则由式(9-1)所定义的函数φ在[a,b]上连续.②原函数存在定理(微积分学基本定理)若f在[a,b]上连续,则由式(9-1)所定义的函数函在[a,b]上处处可导,且(3)重要定理①积分第二中值定理设函数f在[a,b]上可积,则:a.若函数g在[a,b]上减,且g(x)≥0,则存在ξ∈[a,b],使得b.若函数g在[a,b]上增,且g(x)≥0,则存在η∈[a,b],使得②推论设函数f在[a,b]上可积.若g为单调函数,则存在ξ∈[a,b],使得2.换元积分法与分部积分法(1)定积分换元积分法若函数f在[a,b]上连续,φ在[α,β]上可积,且满足则有定积分换元公式(2)定积分分部积分法若u(x),ν(z)为[a,b]上的可微函数,且u′(x)和ν′(x)都在[a,b]上可积,则有定积分分部积分公式3.泰勒公式的积分型余项设函数f在点x0的某邻域U(x0)上有n+1阶连续导函数.令x∈U(x0),则(1)积分型余项(2)拉格朗日型余项。

华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题考研真题详解

华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题考研真题详解

华东师范大学数学系《数学分析》(第4版)(下册)笔记和
课后习题考研真题详解
华东师范大学数学系《数学分析》(第4版)(下册)笔记和课后习题(含考研真题)详解完整版>精研学习wang>无偿试用20%资料
全国547所院校视频及题库资料
考研全套>视频资料>课后答案>往年真题>职称考试
第12章数项级数
12.1复习笔记
12.2课后习题详解
12.3名校考研真题详解
第13章函数列与函数项级数
13.1复习笔记
13.2课后习题详解
13.3名校考研真题详解
第14章幂级数
14.1复习笔记
14.2课后习题详解
14.3名校考研真题详解
第15章傅里叶级数
15.1复习笔记
15.2课后习题详解
15.3名校考研真题详解
第16章多元函数的极限与连续
16.1复习笔记
16.2课后习题详解
16.3名校考研真题详解
第17章多元函数微分学
17.1复习笔记
17.2课后习题详解
17.3名校考研真题详解
第18章隐函数定理及其应用
18.1复习笔记
18.2课后习题详解
18.3名校考研真题详解
第19章含参量积分
19.1复习笔记
19.2课后习题详解
19.3名校考研真题详解
第20章曲线积分20.1复习笔记20.2课后习题详解20.3名校考研真题详解第21章重积分
21.1复习笔记21.2课后习题详解21.3名校考研真题详解第22章曲面积分22.1复习笔记22.2课后习题详解22.3名校考研真题详解第23章向量函数微分学23.1复习笔记23.2课后习题详解23.3名校考研真题详解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的上半部分并取外侧为正向;
其中 S 是球面
并取外侧
为正向。
解:(1)因
所以原积分 (2)由对称性知只需计算其中之一即可。 由于
因此原积分=3 × 8=24。 (3)由对称性知,
(4)作球坐标变换,令


4 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台

(5)由轮换对称知只计算
面所围的立方体表面并取外侧为正向; 其中 S 是以原点为中心,边长为 2 的立方体
表面并取外侧正向; 其中 S 是由平面 x=y=z=0 和 x+y+z=1 所围的四面
3 / 19
圣才电子书

体表面并取外侧为正向;
十万种考研考证电子书、题库视频学习平台
其中 S 是球面
解:(1)因
从而
(2)面积 S 由两部分 组成,其中 面上的投影区域都是
由极坐标变换可得
它们在:xOy
1 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台

2.求均匀曲面 解:设质心坐标为
x≥0,y≥0,z≥0 的质心。 ,由对称性有:
其中 S 为所求曲面的面积, 而
解:
十万种考研考证电子书、题库视频学习平台
由柱面坐标变换
z=z,0≤0≤2π,0≤r≤h,r≤z≤h
(5)原曲线不封闭,故添加辅助曲面

2.应用高斯公式计算三重积分
≤1 与
所确定的空间区域。
解:
其中 V 是由 x≥0,y≥0,0≤z
3.应用斯托克斯公式计算下列曲线积分: 其中 L 为 x+y+z=1 与三坐标面的交线,

D 为 S 在 xOy 面投影
所以质心坐标为
3.求密度为ρ的均匀球面 解:因
对于 z 轴的转动惯量 则
2 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台

4.计算
其中 S 为圆锥表面的一部分
这里θ为常数 解:由于

§2 第二型曲面积分
1.计算下列第二型曲面积分 其中 S 为由 x=y=z=0,x=y=z=a 六个平

中 cosα,cosβ,cosγ为曲面 S 的外法线方向余弦。
证明:因
故原公式成立。
7.证明:若 S 为封闭曲面,l 为任何固定方向,则 外法线方向。
证明:设 n 和 l 的方向余弦分别是 cosα,cosβ,cosγ和
由第一、二型曲面积分之间的关系可得
其中 n 为曲面 S 的 则
由 l 的方向固定, 式得
都是常数,故
由高斯公
8.证明公式 向
证明:因
其中 S 是包围 V 的曲面,n 为 S 的外法线方

10 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台

则由第一、二型曲面积分的关系及高斯公式可得
因此公式成立。
9.若 L 是平面
上的闭曲线,它所包围区域的面积为 S,求
,由
换可得
利用极坐标变
因此
2.设某流体的流速为 V=(k,y,0),求单位时间内从球面 过球面的流量.
解:设流量为 E,则
的内部流
(其中
利用球坐标变换计算)
3.计算第二型曲面积分
其中 S 是平行六面体(0
≤x≤a,0≤y≤b,0≤z≤c)的表面并取外侧为正向, f(x)、g(y)、h(z)为 S 上的连续
式知

同理
因此原积分=0。 (2)记 L 为该椭圆的边界,则
其中 S 为所交椭圆面, 是 S 在 xy 面的投影。
8 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台

4.求下列全微分的原函数:
解:(1)因 d(xyz)=yzdx+xzdy+xydz,故原函数为 u(x,y,z)=xyz+C (2)由于
其中 L 依正向进行。
解:因
故由斯托克斯公式及第一、二型曲面积分之间的关系得
1.若 解:由
§4 场论初步
计算 知
11 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台

2.求
在点 O(0,0,0),A(1,1,1),B(-1,
-1,-1)处的梯度,并求梯度为零之点。
7 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台

它的走向使所围平面区域上侧在曲线的左侧;
其中 L 为
x=y 所交的椭圆的正向;
其中 L 是以 A(a,0,0),B(0,a,0),C
(0,0,a)为顶点的三角形沿 ABCA 的方向。
解:(1)记 L 为曲面 S:z=1-x-y(x≥0,y≥0,x+y≤1)的边界,由斯托克斯公
圣才电子书

十万种考研考证电子书、题库视频学习平台
第 22 章 曲面积分
§1 第一型曲面积分
1.计算下列第一型曲面积分:
,其中 S 为上半球面
,其中 S 为立体
的边界曲面;
,其中 S 为柱面
被平面 z=0,z=H 所截取的部分;
其中 S 为平面 x+y+z=1 在第一卦限中的部分。
解:因为
所以:
在点 O(0,0,0):gradu=(-4,2,-4);在点 A(1,1,1):gradu=(0,8,
2);
在点 B(-1,-1,-1):gradu=(-8,-4,-10);
函数。
解:设平行六面体在 yz,zx,xy 平面上的投影区域分别为
,则有
5 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台

4.设磁场强度为
,求从球内出发通过上半球面
的磁通量.
解:设磁通量为Φ,则
由轮换对称性,并利用球坐标变换,


§3 高斯公式与斯托克斯公式
1.应用高斯公式计算下列曲面积分:
其中 S 为单位球面
的外侧;
其中 S 是立方体 0≤x,y,z≤a 的表面的外侧;
其中 S 是锥面
与平面 z=h 所围空间区域(0
≤z≤h)的表面,方向取外侧;
其中 S 是单位球面
的外侧;
其中 S 为上半球面
的外侧。
6 / 19
圣才电子书

故原函数为
5.验证下列线积分与路径无关,并计算其值:
上。 解:(1)因
其中
在球面
所以所给路曲线积分与路径无关,从而
(2)因
所以所给曲线积分与路径无关,且
由于

在球面上,所以原式=0。
9 / 19
圣才电子书 十万种考研考证电子书、题库视频学习平台

6.证明:由曲面 S 所包围的立体 V 的体积△V 为
相关文档
最新文档