全等三角形拔高题(适合尖子生)(优选.)
(完整)全等三角形证明之能力拔高(经典题目)
全等三角形能力拔高题姓名:一、角度转化问题1.已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.2.已知:如图,AD=AE,AB=AC,∠DAE=∠BAC.求证:BD=CE.3.已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.4.如图,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l 的垂线AE、BF,E、F为垂足.当直线l不与底边AB相交时,求证:EF=AE+BF.5.已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.二、二次全等问题1.已知:如图,线段AC、BD交于O,∠AOB为钝角,AB=CD,BF⊥AC于F,DE⊥AC于E,AE=CF.求证:BO=DO.2.已知:如图,AC与BD交于O点,AB∥DC,AB=DC.若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.3.如图,E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?4.已知:如图,DE⊥AC,BF⊥AC,AD=BC,DE=BF.求证:AB∥DC.MF E CBA5、已知:如图,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,DB=DC , 求证:EB=FC【练习】1、已知∠B=∠E=90°,CE=CB ,AB ∥CD. 求证:△ADC 是等腰三角形。
2、如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。
求证:MB=MCG FEDC BA3、已知,△ABC 和△ECD 都是等边三角形,且点B ,C ,D 在一条直线上求证:BE=AD4、如图:在△ABC 中,∠C =90°,AD 平分∠ BAC ,DE ⊥AB 交AB 于E ,BC=30, BD :CD=3:2,则DE= 。
5、如图,已知,EG ∥AF ,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。
(完整word版)全等三角形拔高题目附附答案解析
全等三角形提高练习1. 如图所示,△ABC ≌△ADE ,BC 的延长线过点E,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF 的度数。
2. 如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转52°,得到△A ′OB ′,边A ′B ′与边OB 交于点C (A ′不在OB 上),则∠A ′CO 的度数为多少?3. 如图所示,在△ABC 中,∠A=90°,D 、E 分别是AC 、BC 上的点,若△C 的度数是多少?4.如图所示,把△ABC 绕点C 顺时针旋转35°,得到△A ′B ′C,A ′B′交AC 于点D ,若∠A ′DC=90°,则∠A=5. 已知,如图所示,AB=AC ,AD ⊥BC 于D ,且AB+AC+BC=50cm ,而,则AD是多少?AB'CA6. 如图,Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B 、C 作过点A 的垂线BC 、CE,垂足分别为D 、E ,若BD=3,CE=2,则DE=7. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、G ,AD 与EF 垂直吗?证明你的结论.8. 如图所示,在△ABC 中,AD 为∠BAC 的角平分线,DE ⊥AB 于E,DF ⊥AC 于F,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长。
9. 已知,如图:AB=AE ,∠B=∠E ,∠BAC=∠EAD ,∠CAF=∠DAF ,求证:10. 如图,AD=BD ,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点BCB11. 如图所示,已知,AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF=AC ,FD=CD ,求证:BE ⊥AC12. △DAC 、△EBC 均是等边三角形,AF 、BD 分别与CD 、CE 交于点M 、N,求证:(1)AE=BD (2)CM=CN (3)△CMN 为等边三角形 (4)MN ∥BC13. 已知:如图1,点C 为线段AB 上一点,△ACM 、△CBN 都是等边三角形,AN 交MC 于点E ,BM 交CN于点F(1) 求证:AN=BM(2) 求证:△CEF 为等边三角形14. 如图所示,已知△ABC 和△BDE 都是等边三角形,下列结论:①AE=CDAHD ;④∠AHC=60°;⑤△BFG 是等边三角形;⑥FG ∥AD ,其中正确的有(A .3个B 。
八年级数学全等三角形证明拔高集训(经典)
八年级数学全等三角形证明拔高集训(经典)1.如图所示,△ABC和△BDE都是等腰直角三角形,其中∠ABC=∠BDE=90,且AB=CB,BD=ED,连接AD并交BE于F,且AF=DF,AD=AB。
证明BE=2CD。
2.在Rt△ABC中,∠BAC=90,且AB=AC。
点D和E 分别位于AC和CA的延长线上,且CD=AE。
连接BD,过点A作AM⊥BD于M交BC于N,连接EN并延长交BD于F。
证明DF=EF。
3.如图所示,△ABC中,∠ACB=90,点D在BC上,且AC=DC。
连接AD,过点C作CE⊥___于E,点F在CE 的延长线上,连接DF。
若∠F=45,证明AE=EF。
4.如图所示,△ABC和△DAF都是等腰直角三角形,其中∠BAC=∠DAF=90,且AB=AC,AD=AF。
DF的延长线交BC于E,且∠AFC=90.证明BE=CE。
5.在Rt△ABC中,∠BAC=90,且AB=AC。
点E为AC 上一点,连接BE,过点A作AE⊥BE于H交BC于D。
点F也为AC上一点,且AE=CF。
连接DF交BE于G,连接AG。
若AG平分∠CAD,证明AH=AC。
6.如图所示,∠ACB=∠CDE=90,且AC=BC,AB=2CD=2ED。
连接BD交CE于G,且GD=GB。
F是AB的中点。
证明___。
7.在Rt△ABC中,∠ACB=90°,且AC=BC。
AD、BE分别垂直于过点C的直线于D、E,延长BE至F。
连接CF,以CF为腰作等腰直角三角形GCF,使∠GCF=90°,连接AG 交过点C的直线于H。
证明BF=2CH。
8.在△ABC中,AD⊥BC于D,点E在BC上,且AB=BE=CD。
点F是AE的中点,连接CF并延长交AB于G。
若AD=BD,证明BG=BD。
9.在Rt△ABC中,∠ABC=90,且AB=CB。
点E、O分别为BC、AC的中点,连接AE。
过点B作BG⊥AE于G交AC于M,过点A作AH⊥GO交其延长线于H。
全等三角形拔高题目附带答案
全等三角形提高练习1. 如下图,△≌△,的延长线过点E ,∠∠105°,∠10°,∠50°,求∠的度数。
2. 如图,△中,∠30°,将△绕点O 顺时针旋转52°,得到△A ′′,边A ′B ′与边交于点C 〔A ′不在上〕,那么∠A3. 如下图,在△中,∠90°,D 、E么∠C 的度数是多少?AB'C4. 如下图,把△绕点C 顺时针旋转35°,得到△A ′B ′C ,A ′假设∠A ′90°,那么∠5. ,如下图,,⊥于D ,且50,而40,那么是多少?6. 如图,△中,∠90°,,分别过点B 、C 作过点A 的垂线、,垂足分别为D 、E ,假设3,2,那么7. 如图,是△的角平分线,⊥,⊥,垂足分别是E 、F 垂直吗?证明你的结论。
A B8.如下图,在△中,为∠的角平分线,⊥于E,⊥于F,△的面积是28220,8,求的长。
9.,如图:,∠∠E,∠∠,∠∠,求证:⊥10.如图,,⊥于D,⊥于E,与相交于点HC B11. 如下图,,为△的高,E 为上一点,交于F ,且有,,求证:⊥12.△、△均是等边三角形,、分别与、交于点M 、N〔3〕△为等边三角形 〔4〕∥ 13.:如图1,点C 为线段上一点,△、△都是等边三角形,交于点E ,交于点F (1) 求证:BAB(2)求证:△为等边三角形14.∠60°;⑤△是等边三角形;⑥∥,其中正确的有〔A.3个 B. 4个 C. 5个 D. 6个15.:、是△的高,点F在上,,点G在的延长线上,16.如图:在△中,、分别是、两边上的高,在上截取,在的延长线上截取,连结、求证:〔1〕〔2〕与的位置关系如何AB B17.如图,E 是正方形的边的中点,点F 在上,且∠∠ 求证:18.如下图,△中,,D 是延长线上一点,∠60°,E 是上一点,且,求证:19.如下图,在△中,∠90°,平分∠,⊥,垂足为F ,,求证:D20.如图:,直线、相交于C ,∠∠180°,∥,交于F21.如图,是∠的平分线,P 是上一点,⊥于D ,⊥于E ,F 是上一点,连接和,求证:22.:如图,⊥于点F ,⊥于点E ,且,求证:〔1〕△≌△ 〔2〕 点D 在∠A 的平分线上B23.如图,∥,O 是∠与∠的平分线的交点,⊥于E距离是多少?24.如图,过线段的两个端点作射线、画∠、∠的平分线交于E 〔1〕∠是什么角?〔2〕过点E 作一直线交于D ,交于C ,观察线段、,你有何发现? 〔3〕无论的两端点在、如何移动,只要经过点E ,①;②谁成立?并说明理由。
全等三角形练习题经典综合拔高题
FE D C BA1.已知:如图,点B,E,C,F 在同一直线上,AB ∥DE,且AB=DE,BE=CF.求证:AC ∥DF .2. 如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .3. 如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D ,BC=DF .求证:AC=EF .4. 如图,在ΔABC 中,AC=AB ,AD 是BC 边上的中线,则AD⊥BC ,请说明理由。
5. 如图,已知AB=DE ,BC=EF ,AF=DC ,则∠EFD=∠BCA ,请说明理由。
6. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。
7. 如图,ΔABC 的两条高AD 、BE 相交于H ,且AD=BD ,试说明下列结论成立的理由。
(1)∠DBH=∠DAC ; (2)ΔBDH ≌ΔADC 。
8. 如图,已知ABC ∆为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF ∆也是等边三角形.(1) 除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的;(2) 你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程.9. 已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。
10. 如图,在矩形ABCD 中,F 是BC 边上的一点,AF 的延长线交DC 的延长线于G ,DE ⊥AG 于E ,且DE =DC ,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论。
11. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,•PN ⊥CD 于N ,判断PM 与PN 的关系.12. 如图所示,P 为∠AOB 的平分线上一点,PC ⊥OA 于C ,•∠OAP+∠OBP=180°,若OC=4cm ,求AO+BO 的值.13. 如图,∠ABC=90°,AB=BC ,BP 为一条射线,AD ⊥BP ,CE ⊥PB ,若AD=4,EC=2.求DE 的长。
(最新最全)全等三角形练习题综合拔高题_共6页
全等三角形拔高题1.如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。
2.已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。
3.已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD上,PM⊥AD 于M , PN⊥CD 于N ,判断PM 与PN 的关系.4.如图所示,P 为∠AOB 的平分线上一点,PC⊥OA 于C , ∠OAP+∠OBP=180°,若OC=4cm ,求AO+BO 的值.ABCDE P D ACBM NPA C5.如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE ⊥AC,BF⊥AC,若AB=CD,可以得到BD平分EF,为什么?若将△DEC的边EC沿AC方向移动,变为如图所示时,其余条件不变,上述结论是否成立?请说明理由.6.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由。
7.已知:如图E在△ABC的边AC上,且∠AEB=∠ABC。
(1)求证:∠ABE=∠C;(2)若∠BAE的平分线AF交BE于F,FD∥BC交AC于D,设AB=5,AC=8,求DC的长。
GDFACBEGD FACBEFED CBAG8.如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M .(1)求证:△ABC ≌△DCB ;(2)过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN 的数量关系,并证明你的结论.9.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):10.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.BCADMOEDCBA11.如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE⊥BD 于E .(1)若BD 平分∠ABC,求证CE=BD ;12(2)若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。
全等三角形拔高题目附带标准答案
全等三角形提高练习1. 如图所示,△AB C ≌△AD E,BC 的延长线过点E ,∠ACB =∠AE D=105°,∠CA D=10°,∠B=50°,求∠D EF的度数。
2. 如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转52°,得到△A′OB′,边A ′B ′与边O B交于点C(A ′不在OB 上),则∠A ′CO 的度数为多少?3. 如图所示,在△AB C中,∠A=90°,D 、E 分别是AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC,则∠C 的度数是多少?4. 如图所示,把△ABC 绕点C 顺时针旋转35°,得到△A′B ′C ,A ′B′交AC 于点D,若∠A ′DC=90°,则∠A=5. 已知,如图所示,A B=AC ,A D⊥BC 于D ,且AB +AC+B C=50cm ,而AB+BD +AD=40cm ,则AD 是多少?6. 如图,R t△A BC中,∠BAC=90°,AB=AC ,分别过点B 、C作过点A 的垂线BC 、CE ,垂足分别为D 、E,若BD=3,CE=2,则DE=AB'CA7. 如图,AD 是△A BC 的角平分线,D E⊥AB ,D F⊥AC,垂足分别是E、F,连接EF,交AD于G,AD 与EF 垂直吗?证明你的结论。
8. 如图所示,在△AB C中,AD 为∠BAC 的角平分线,D E ⊥AB 于E,DF ⊥AC 于F ,△ABC 的面积是28cm2,AB=20cm ,AC=8cm ,求DE 的长。
9. 已知,如图:AB =AE ,∠B=∠E ,∠BAC=∠EAD ,∠CAF =∠DAF,求证:AF ⊥CD10. 如图,A D=BD ,A D ⊥BC 于D,BE ⊥AC 于E ,AD 与BE相交于点H ,则BH 与A C相等吗?为什么?11. 如图所示,已知,AD 为△AB C的高,E 为A C上一点,BE 交AD 于F ,且有BF=AC ,FD=CD,求证:BE⊥AC12. △DAC 、△E BC均是等边三角形,A F、BD 分别与CD 、CE 交于点M、N,求证:(1)A E=BD (2)CM=CN (3)△CMN 为等边三角形 (4)M N∥BCBCBBA B。
全等三角形练习题经典综合拔高题
F E D C B A 1. 已知:如图,点B,E,C,F 在同一直线上,AB ∥DE,且AB=DE,BE=CF.求证:AC ∥DF .2. 如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .3. 如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D ,BC=DF .求证:AC=EF .4. 如图,在ΔABC 中,AC=AB ,AD 是BC 边上的中线,则AD⊥BC ,请说明理由。
5. 如图,已知AB=DE ,BC=EF ,AF=DC ,则∠EFD=∠BCA ,请说明理由。
6. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。
7. 如图,ΔABC 的两条高AD 、BE 相交于H ,且AD=BD ,试说明下列结论成立的理由。
(1)∠DBH=∠DAC ;(2)ΔBDH ≌ΔADC 。
8. 如图,已知ABC ∆为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF∆也是等边三角形. (1) 除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的;(2) 你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程. 9. 已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。
10. 如图,在矩形ABCD 中,F 是BC 边上的一点,AF 的延长线交DC 的延长线于G ,DE ⊥AG 于E ,且DE =DC ,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论。
11. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,•PN ⊥CD 于N ,判断PM 与PN 的关系. 12. 如图所示,P 为∠AOB 的平分线上一点,PC ⊥OA 于C ,•∠OAP+∠OBP=180°,若OC=4cm ,求AO+BO 的值.13. 如图,∠ABC=90°,AB=BC ,BP 为一条射线,AD ⊥BP ,CE ⊥PB ,若AD=4,EC=2.求DE 的长。
全等三角形拔高题目附带答案
E
21.如图, OC 是∠ AOB的平分线, P 是 OC 上一点, PD ⊥ OA于 D, PE ⊥ OB 于 E, F 是 OC上一点,连接 EF ,求证: DF=EF
A D
DF 和
C
F
P E
O
B
22.已知:如图, 的平分线上
BF ⊥ AC于点 F, CE ⊥ AB 于点 E,且 BD=CD ,求证:( 1 )△ BDE ≌△ CDF ( 2) 点 D 在∠ A
A D B' A'
B
C
5.
已知,如图所示,
AB=AC , A D⊥ BC于 D,且 AB+AC+BC=50cm, 而 AB+BD+AD=40cm ,则 AD是多少?
C
A
D
BHale Waihona Puke 6.如图, Rt △ ABC中,∠ BAC=90 °, AB=AC ,分别过点 B、 C 作过点 A 的垂线 BC、 CE ,垂足分别为 若 BD=3 , CE=2 ,则 DE= B
3 / 14
19.如图所示,已知在△
AEC 中,∠ E=90 °, AD平分∠ EAC , DF⊥ AC ,垂足为 F, DB=DC ,求证: BE=CF
E D
B
A
F
C
20.已知如图: AB=DE ,直线 AE 、 BD 相交于 C,∠ B+∠ D=180 °, AF ∥ DE ,交 BD于 F ,求证: CF=CD A
全等三角形提高练习
1. 如图所示,△ AB C≌△ ADE , BC 的延长线过点 求∠ DEF 的度数。 E,∠ ACB= ∠ AED=10 5°,∠ CAD=1 0 °,∠ B=5 0 °,
(完整word版)全等三角形拔高练习题
全等三角形拔高练习1•已知:AD 平分/ BAC , AC=AB+BD,求证:/ B=2 / C2•如图,ABC 中,AB=2AC AD平分BAC,且AD=BD 求证:CDLAC3•如图,四边形ABCD中,AB // DC, BE、CE分别平分/ ABC、/ BCD ,且点E在AD上。
4..如图所示,已知△ ABC中AB >AC , AD是/ BAC的平分线,AD上任意一点,求证:MB —MC V AB —AC5..如图①,E、F分别为线段AC上的两个动点,且DE丄AC于E, BF丄AC于F,若AB=CD ,AF=CE, BD交AC于点M. (1)求证:MB = MD , ME=MF (2)当E、F 两点移动到如图② 的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.6.女口图所示,已知AE! AB, AF丄AC, AE=AB AF=AC 求证:(1) EC=BF (2) EC! BF C求证:BC=AB+DC。
M是7•平面内有一等腰直角三角板(/ ACB= 90° )和一直线MN过点C作CE L MNT点E, 过点B作BF丄MN于点F.当点E与点A重合时(如图1),易证:AF+ BF= 2CE当三角板绕点A顺时针旋转至图2的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.8. 如图,C为线段AE上一动点(不与点A, E重合),在AE同侧分别作正三角形ABC和正三角形CDEAD与BE交于9. 如图所示,已知/ 仁/2, EF L AD于P,交BC延长线于M,求证:2/ M= (Z ACB-Z B )10. 如图所示,△ ABC是等腰直角三角形,Z ACB = 90°, AD是BC边上的中线,过C作交AD于点F,求证:Z ADC = Z BDE .D C M11. 如图,AD是ABC的角平分线,H ,G分别在AC , AB上,且HD = BD.(1)求证:Z B与Z AHD互补;(2)若Z B + 2 Z DGA = 180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明12. 已知,E是AB 中点,AF=BD BD=5 AC=7 求DCE B13. 在厶ABC 中,AD 是/ A 的外角平分线,P 是AD 上异于A 的任意一点,请说明 PB+PC 与AB+AC 的大小关系并写出证明过程。
全等三角形拔高题(适合尖子生)
全等三角形拔高经典题(适合尖子生)1已知:如图,四边形ABCD中,AC平分∠BAD,CE垂直AB 于E,且∠B+∠D=180度,求证:AE=AD+BEABDCE122..已知:如图,PA、PC分别是△ABC外角∠MAC和∠NCA的平分线,•它们交于点P,PD⊥BM 于D,PF⊥BN于F.求证:BP为∠MBN的平分线.3.如图,等腰直角三角形ABC中,∠ACB=90°,AD为腰CB上的中线,CE⊥AD交AB于E.求证∠CDA=∠EDB.4.在Rt△ABC中,∠A=90°,CE是角平分线,和高AD相交于F,作FG∥BC交AB于G,求证:AE=BG.AB CDEFG12A BCDEGFEDCB A5.如图,已知∠BAC=90º,AD ⊥BC, ∠1=∠2,EF ⊥BC, FM ⊥AC,说明FM=FD 的理由6.如图D C B A 、、、四点在同一直线上,请你从下面四项中选出三个作为条件,其余一个作为结论,构成一个真命题,并进行证明. ①D ACE ∠=∠,②CD AB =,③ ,④ FBG EAG ∠=∠7.直线CD 经过BCA ∠的顶点C ,CA=CB .E 、F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠. (1)若直线CD 经过BCA ∠的内部,且E 、F 在射线CD 上,请解决下面两个问题:①如图1,若90,90BCA α∠=∠=,则EF BE AF -(填“>”,“<”或“=”号);②如图2,若0180BCA <∠<,若使①中的结论仍然成立,则 α∠与BCA ∠ 应满足的关系是 ;(2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,请探究EF 、与BE 、AF 三条线段的数量关系,并给予证明.8.已知:如图,△ABC 中,∠ABC=45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,H 是BC 边的中点,连结DH 与BE 相交于点G 。
全等三角形拔高题
1.如图所示,△ ABC ◎△ ADE , BC 的延长线过点 E ,/ ACB= / AED=105 °,/ CAD=10°,/ B=50 °,求/ DEF 的度数。
2.如图,△ AOB 中,/ B=30。
,将△ AOB 绕点O 顺时针旋转 52°,得到△ A ‘ OB ',边A‘ B '与边OB 交于点C (A '不在ABC 中,/ A=90 ° ,D 、E 分别是 AC 、BC 上的点,若△ ADB EDB ◎△ EDC ,则/ C 的度数BOB 上),则/ A ‘ CO 的度数为多少?3.如图所示, 是多4.如图所示,5.已知, 如图所示,6.如图,ABC 绕点C 顺时针旋转35°,得到△ A ‘ B ‘C , A ‘ B '交AC 于点D ,若/ A ‘ DC=90 °,则/AB=AC , AD 丄 BC 于 D ,且 AB+AC+BC=50cm,而 AB+BD+AD=40cm ,贝U AD 是多少?RtA ABC CE=2,则 中,/ BAC=90 ° , AB=AC ,分别过点 B 、C 作过点A 的垂线 DE=7.如图, 吗?证明你的结论。
AD 是^ ABC 的角平分线,DE 丄AB , DF 丄AC ,垂足分别是 E 、F ,连接EF ,交AD 于G , AD 与EF 垂直ABD 、E ,若8.如图所示,在^ ABC中,AD为/ BAC的角平分线,DE丄AB于E,DF丄AC于F,△ ABC的面积是28cm2,AB=20cm , AC=8cm,求DE 的长。
9.已知,如图:AB=AE , / B= / E,/ BAC= / EAD , / CAF= / DAF,求证:AF 丄CDAAD丄BC于D, BE丄AC于E, AD与BE相交于点H,贝U BH与AC相等吗?为什么?CAD为^ ABC的高,E为AC上一点,BE交AD于F,且有BF=A C, FD=CD,求证:BE丄ACA均是等边三角形,AF、BD分别与CD、CE交于点M、N,求证:(1) AE=BD(4) MN // BCBF13.已知:如图1,点C为线段AB上一点,△ ACM、△ CBN都是等边三角形,AN交MC于点E, BM交CN于点F(1)求证:AN=BM(2)求证:△ CEF为等边三角形将^ ACM绕点C按逆时针方向旋转90°,其他条件不变,在图小题的结论是否仍然成立(不要求证明) 。
人教版八年级数学上册《全等三角形》拔高练习
《全等三角形》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图,△ABC≌△EDC,BC⊥CD,点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°2.(5分)已知△ABC的三边长分别为3,4,5,△DEF的三边长分别为3,3x﹣2,2x+1,若这两个三角形全等,则x的值为()A.2B.2或C.或D.2或或3.(5分)如图,△ABC≌△AED,点E在线段BC上,∠1=40°,则∠AED的度数是()A.70°B.68°C.65°D.60°4.(5分)如果△ABC≌△DEF,△DEF的周长为12,AB=3,BC=4,则AC的长为()A.2B.3C.4D.55.(5分)如图,点P在BC上,AB⊥BC于点B,DC⊥BC于点C,△ABP≌△PCD,其中BP=CD,则下列结论中错误是()A.∠APB=∠D B.∠A+∠CPD=90°C.AP=PD D.AB=PC二、填空题(本大题共5小题,共25.0分)6.(5分)已知△ABC≌△DEF,若∠A=50°,∠E=70°,则∠F为°.7.(5分)如图,△ABC≌△ADE,点E在BC上,若∠C=80°,则∠DEB=.8.(5分)如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC =12cm,AC=10cm,DO=3cm,那么OC的长是cm.9.(5分)如图,△ACB≌△A′CB′,∠BCB′=37°,则∠ACA′的度数为.10.(5分)如图,△ABC≌△A′B′C′,其中∠A=46°,∠B′=27°,则∠C=°.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,线段AC交BD于O,点E,F在线段AC上,△DFO≌△BEO,且AF =CE,连接AB、CD,求证:AB=CD.12.(10分)如图所示,△ABC≌△ADE,BC的延长线交DA于F点,交DE于G点,∠ACB=105°,∠CAD=15°,∠B=30°,则∠1的度数为多少度.13.(10分)如图,△ACE≌△DBF,AC=6,BC=4.(1)求证:AE∥DF;(2)求AD的长度.14.(10分)如图,已知△ABC≌△DEF,∠A=90°,∠B=60°,AB=8,EH=3.求∠F 的度数与DH的长.15.(10分)如图,△ABC≌△DEF,∠B=30°,∠A=50°,BF=2,求∠DFE的度数与EC的长.《全等三角形》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图,△ABC≌△EDC,BC⊥CD,点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【分析】根据全等三角形的性质和三角形内角和解答即可.【解答】解:∵,△ABC≌△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查全等三角形的性质,关键是根据全等三角形的性质和三角形内角和解答.2.(5分)已知△ABC的三边长分别为3,4,5,△DEF的三边长分别为3,3x﹣2,2x+1,若这两个三角形全等,则x的值为()A.2B.2或C.或D.2或或【分析】首先根据全等三角形的性质:全等三角形的对应边相等可得:3x﹣2与5是对应边,或3x﹣2与7是对应边,计算发现,3x﹣2=5时,2x﹣1≠7,故3x﹣2与5不是对应边.【解答】解:∵△ABC与△DEF全等,当3x﹣2=5,2x+1=4,x=,把x=代入2x+1中,2x﹣1≠4,∴3x﹣2与5不是对应边,当3x﹣2=4时,x=2,把x=2代入2x+1中,2x+1=5,故选:A.【点评】此题主要考查了全等三角形的性质,关键是掌握性质定理,要分情况讨论.3.(5分)如图,△ABC≌△AED,点E在线段BC上,∠1=40°,则∠AED的度数是()A.70°B.68°C.65°D.60°【分析】依据△ABC≌△AED,即可得到∠AED=∠B,AE=AB,∠BAC=∠EAD,再根据等腰三角形的性质,即可得到∠B的度数,进而得出∠AED的度数.【解答】解:∵△ABC≌△AED,∴∠AED=∠B,AE=AB,∠BAC=∠EAD,∴∠1=∠BAE=40°,∴△ABE中,∠B==70°,∴∠AED=70°,故选:A.【点评】本题考查的是全等三角形的性质、等腰三角形的性质,掌握全等三角形的对应角相等是解题的关键.4.(5分)如果△ABC≌△DEF,△DEF的周长为12,AB=3,BC=4,则AC的长为()A.2B.3C.4D.5【分析】根据全等三角形的周长相等求出△ABC的周长,根据三角形的周长公式计算即可.【解答】解:∵△ABC≌△DEF,△DEF的周长为12,∴△ABC的周长为12,又AB=3,BC=4,∴AC=5,故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的周长相等,面积相等是解题的关键.5.(5分)如图,点P在BC上,AB⊥BC于点B,DC⊥BC于点C,△ABP≌△PCD,其中BP=CD,则下列结论中错误是()A.∠APB=∠D B.∠A+∠CPD=90°C.AP=PD D.AB=PC【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABP≌△PCD,∴∠APB=∠D,AP=PD,AB=PC,∠A=∠CPD,∴∠A+∠CPD=90°是错误的,故选:B.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边和对应角相等是解题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)已知△ABC≌△DEF,若∠A=50°,∠E=70°,则∠F为60°.【分析】根据全等三角形的性质可得∠D=∠A=70°,再根据三角形内角和定理可得答案.【解答】解:∵△ABC≌△DEF,∴∠D=∠A=70°,∵∠E=50°,∴∠F=180°﹣50°﹣70°=60°,故答案为:60.【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.7.(5分)如图,△ABC≌△ADE,点E在BC上,若∠C=80°,则∠DEB=20°.【分析】根据全等三角形的性质:对应角和对应边相等解答即可.【解答】解:∵△ABC≌△ADE,∴∠C=∠AED=80°,AC=AE,∴∠AEC=∠C=80°,∴∠BED=180°﹣80°﹣80°=20°.故答案为:20°.【点评】本题考查了全等三角形的性质,熟记性质并准确识图是解题的关键.8.(5分)如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC =12cm,AC=10cm,DO=3cm,那么OC的长是7cm.【分析】根据全等三角形的性质得到DB=AC=10cm,∠ABC=∠DCB,∠DBC=∠ACB,求出OB,根据等腰三角形的性质解答.【解答】解:∵△ABC≌△DCB,∴DB=AC=10cm,∠ABC=∠DCB,∠DBC=∠ACB,∴OB=DB﹣DO=7cm,∠OBC=∠OCB,∴OC=OB=7cm,故答案为:7.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等,对应角相等是解题的关键.9.(5分)如图,△ACB≌△A′CB′,∠BCB′=37°,则∠ACA′的度数为37°.【分析】根据全等三角形的性质得到∠ACB=∠A′CB′,结合图形计算即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,即∠ACA′=∠BCB′=37°,∴∠ACA′=37°,故答案为:37°.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.10.(5分)如图,△ABC≌△A′B′C′,其中∠A=46°,∠B′=27°,则∠C=107°.【分析】根据全等三角形的性质求出∠B的度数,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△A′B′C′,∴∠B=∠B′=27°,∴∠C=180°﹣∠A﹣∠B=107°,故答案为:107.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,线段AC交BD于O,点E,F在线段AC上,△DFO≌△BEO,且AF =CE,连接AB、CD,求证:AB=CD.【分析】先由△BEO≌△DFO,即可得出OF=OE,DO=BO,进而得到AO=CO,再证明△ABO≌△CDO,即可得到AB=CD.【解答】证明:∵△BEO≌△DFO,∴OF=OE,DO=BO,又∵AF=CE,∴AO=CO,在△ABO和△CDO中,,∴△ABO≌△CDO(SAS),∴AB=CD.【点评】本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是熟练掌握全等三角形的判定.12.(10分)如图所示,△ABC≌△ADE,BC的延长线交DA于F点,交DE于G点,∠ACB=105°,∠CAD=15°,∠B=30°,则∠1的度数为多少度.【分析】根据全等三角形的性质和三角形的内角和即可得到结论.【解答】解:∵△ABC≌△ADE,∴∠D=∠B=30°,∵∠ACB=∠CAD+∠AFC,∴∠AFC=90°,∴∠AFC=90°,∴∠1=180°﹣∠D﹣∠DFG=180°﹣90°﹣30°=60°.【点评】本题考查了全等三角形的性质,三角形的内角和,正确的识别图形是解题的关键.13.(10分)如图,△ACE≌△DBF,AC=6,BC=4.(1)求证:AE∥DF;(2)求AD的长度.【分析】(1)根据全等三角形的性质可得∠A=∠D,再根据内错角相等两直线平行可得AE∥DF.(2)根据全等三角形的性质得出AC=DB,进而解答即可.【解答】证明:(1)∵△ACE≌△DBF,∴∠A=∠D,∴AE∥DF.(2)∵△ACE≌△DBF,∴AC=DB,∴AB=DC=AC﹣BC=6﹣4=2,∴AD=AC+CD=6+2=8.【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等;全等三角形的对应角相等.14.(10分)如图,已知△ABC≌△DEF,∠A=90°,∠B=60°,AB=8,EH=3.求∠F 的度数与DH的长.【分析】根据三角形内角和定理求出∠ACB,根据全等三角形的性质得出AB=DE,∠F =∠ACB,即可得出答案.【解答】解:∵∠A=90°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=30°,∵△ABC≌△DEF,AB=8,∴∠F=∠ACB=30°,DE=AB=8,∵EH=3,∴DH=8﹣3=5.【点评】本题考查了全等三角形的性质,三角形的内角和定理,平行线的判定的应用,解此题的关键是掌握:全等三角形的对应边相等,对应角相等.15.(10分)如图,△ABC≌△DEF,∠B=30°,∠A=50°,BF=2,求∠DFE的度数与EC的长.【分析】根据三角形的内角和等于180°求出∠ACB的度数,然后根据全等三角形对应角相等即可求出∠DFE,全等三角形对应边相等可得EF=BC,然后推出EC=BF.【解答】解:∵∠B=30°,∠A=50°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣50°=100°,∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EF﹣CF=BC﹣CF,即EC=BF,∵BF=2,∴EC=2.【点评】本题主要考查了全等三角形对应边相等,全等三角形对应角相等的性质,三角形的内角和定理,比较简单,熟记性质是解题的关键.。
全等三角形证明题之拔尖
全等三角形证明题拔高培优1、已知,如图,AB=CD,DF⊥AC于F,BE⊥AC于E,DF=BE。
求证:AF=CE。
2、已知,如图,AB⊥AC,AB=AC,AD⊥AE,AD=AE。
求证:BE=CD。
3、如图,△ABC中,AB=AC,过A作GE∥BC,角平分线BD、CF交于点H,它们的延长线分别交GE于E、G,试在图中找出三对全等三角形,并对其中一对给出证明。
4、已知:如图,四边形ABCD中,AC平分角BAD,CE垂直AB 于E,且角B+角A B DCE 12EGFEAC DBAEDCB5、如图,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,请你从下面三个条件中任选出两个作为已知条件,另一个为结论,推出一个正确的命题。
① AB=AC ② BD=CD ③ BE=CF6、已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。
求证:EB=ED 。
DA ECB7、已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。
求证:∠ACE=∠BDF 。
DC8、已知:如图,△ABC 中,AD ⊥BC 于D ,E 是AD 上一点,BE 的延长线交AC 于F ,若BD=AD ,DE=DC 。
求证:BF ⊥AC 。
9、如图,在四边形ABCD 中,AB=BC ,BF 是∠ABC 的平分线,AF ∥DC ,连接AC 、CF , 求证:CA 是∠DCF 的平分线。
10、 已知:如图,△ABC 和△A 'B 'C '中,∠BAC=∠B 'A 'C ',∠B=∠B ',AD 、A 'D '分别是∠BAC 、∠B 'A 'C '的平分线,且AD=A 'D '。
求证:△ABC ≌△A ’B ’C ’。
ABCDEFOAB CDEFFDACB11、已知:如图,AB=CD ,AD=BC ,O 是AC 中点,OE ⊥AB 于E ,OF ⊥D 于F 。
求证:OE=OF 。
ABCD E F O12、已知:如图,AC ⊥OB ,BD ⊥OA ,AC 与BD 交于E 点,若OA=OB ,求证:AE=BE 。
全等三角形推理拔高经典题目(精编文档).doc
【最新整理,下载后即可编辑】截长补短、倍长中线1、已知:如图, AD 、BE 是△ABC 的高,AD 和EB 的延长线相交于H , 且BH=AC.求证:AD=DH -BC2、如图,四边形ABCD 中,BE 平分∠ABC 交CD 于E ,且DE=CE ,AB=AD+BC , 求证:AD ∥BC .HED CB AEDCBA3、已知:如图,AD 是△ABC 的中线,AB=AE ,AC=AF ,∠BAE=∠FAC=90°. 试探究线段AD 与EF 数量和位置关系.4、若△ABC 中,AB=AC ,∠ABC=∠ACB ,CE 是AB 边上的中线,延长AB 到D ,使BD=AB ,设CE= a ,CD= b ,求b a , 之间的数量关系5、如图,D 是△ABC 的BC 边上一点且CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线.EF求证:∠C=∠BAE .6、如图,△ABC 中,∠A=2∠B ,AB=2AC ,求证:∠C=90°.E D CB AC BA全等训练1.已知:正方形ABCD 中,45MAN ∠=,MAN ∠绕点A 顺时针旋转,它的两边分别交CB DC ,(或它们的延长线)于点M N ,. 当MAN ∠绕点A 旋转到BM DN =时(如图1),易证BM DN MN +=. (1)当MAN ∠绕点A 旋转到BM DN ≠时(如图2),线段BM DN ,和MN 之间有怎样的数量关系?写出猜想,并加以证明.(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间又有怎样的数量关系?请直接写出你的猜想.2. △ABC 中, AB = AC = BC, △DCB 中, DC = DB, ∠BDC = 120︒, E 、F 分别为AB 、AC 上的点,∠EDF =60︒. 求证: EF = BE + CF .B B M BC N CNM C NM 图1 图2 图3 A A A D D D ACBDEF3.已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .(1)当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.(2)当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.4. 已知:如图,在△ABC 中,AB=AC ,∠BAC=α,且60°<α<120°.P 为△ABC 内部一点,且PC=AC ,∠PCA=120°—α.(1)用含α的代数式表示∠APC ,得∠APC=______________;(2)求证:∠BAP=∠PCB ; (3)求∠PBC 的度数.5.数学课上,张老师提出问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=︒,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE=EF .BC PA经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM=EC ,易证AME ECF △≌△,所以AE EF .在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE=EF ”仍然成立,你认为 小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF ” 仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.6.如图,在△ABC 中,点D ,E 分别在AB ,AC 上,且∠DCB=∠EBC=12∠A ,BE 、CD 交于点O.求证:BD=CE.ADFCGB图1ADF CGB图2ADFC GB图3BOADECF M PE D C B A7.如图,在△ABC 中,∠C =2∠B ,∠1=∠2,求证:AB =AC +CD .8.已知:如图, AF 平分∠BAC ,BC ⊥AF , 垂足为E ,点D 与点A 关于点E 对称,PB 分别与线段CF , AF 相交于P ,M . (1)求证:AB =CD ;(2)若∠BAC =2∠MPC ,请你判断∠F 与∠MCD 的数量关系,并说明理由.9.如图1,直线l 1:y=3x+3与x 轴交于B 点,与直线l 2交于y 轴上一点A ,且l 2与x 轴的交点为C (1,0). (1)求证:∠ABC=∠ACB.(2)如图2,过x 轴上一点D(3 ,0)作DE ⊥AC 于E,DE 交y 轴于F 点,交AB 于G 点,求G点坐标.(3)如图3,将△ABC 沿x 轴向左平移,AC 边与y 轴交于一点P(P 不同于A 、C 两点),过P 点作一直线与AB 的延长线交于Q 点,与x 轴交于M 点,且CP=BQ,在△ABC 平移的过程中,线段OM 的长度是否发生变化?若不变,求其长度;若变化,确定其变化范围.10. 如图,已知AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE=EF . 求证:AC=BF .A BCDE F11. 已知: 如图, 在△ABC 中, AB = AC , D 为△ABC 外一点, ∠ABD = 60︒,∠ADB = 90︒ -12∠BDC .求证: AB = BD + DC12. 如图,四边形ABCD 中,AC 、BD 是对角线,AB=AC ,∠ABD =60°,过D 作 ED ⊥AD ,交AC 于点E ,恰有DE 平分∠BDC . 试判断线段CD 、BD 与AC 之间有怎样的数量关系?并证明你的结论. .CE DBAE DB A13.已知四边形ABCD 中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠, MBN ∠绕B 点旋转,它的两边分别交AD DC ,(或它们的延长线)于E F ,. 当MBN ∠绕B 点旋转到AE CF =时(如图1),易证AE CF EF +=.当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立?若成立,请 给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系?请写出你的猜想,不需证明.14.在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED=EC ,如图.试确定线段AE 与DB 的大小关系,并说明理由.图1 A B C D E F M N ABCD E F M N A B C D E F M N 图2图315.如图(1),Rt △ABC 中,∠ACB=-90°,CD ⊥AB ,垂足为D .AF 平分∠CAB ,交CD 于点E ,交CB 于点F (1)求证:CE=CF .(2)将图(1)中的△ADE 沿AB 向右平移到△A ’D ’E ’的位置,使点E ’落在BC 边上,其它条件不变,如图(2)所示.试猜想:BE'与CF 有怎样的数量关系?请证明你的结论.16. 我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边 形叫做等对边四边形.(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;(2)如图,在△ABC 中,点D ,E 分别在AB ,AC 上,设CD ,BE 相交于点O ,\若∠A=60°,∠DCB=∠EBC=12∠A .请你写出图中一个与∠A 相等的角,并猜想图中哪个四边形是等对边四边形;(3)在△ABC 中,如果∠A 是不等于60°的锐角,点D ,E 分别在AB ,AC 上,图(1)图(2)BOA DEC且∠DCB=∠EBC=12∠A .探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.17.在四边形ABCP 中,BP 平分∠ABC ,PD ⊥BC 于D求证:∠BAP+∠BCP=180o.18.已知:点O 到△ABC 的两边AB 、AC 所在直线的距离相等,且OB =OC. (1)如图1,若点O 在BC 上,求证:AB =AC ;(2)如图2,若点O 在△ABC 的内部,求证:AB =AC ;(3)若点O 在△ABC 的外部,AB =AC 成立吗?请画图表示.OBA CB 图1 图2O B CA19.如图,在△ABC 中,∠B =60°,∠A 、∠C 的角平分线AD 、CE 相交于F ,求证:EF =DF20.在△ABC 中,∠ABC =100O ,∠C 的平分线交AB 边于E ,在AC 边上取点D ,使得∠CBD =20O,连结DE.求∠CED 的度数.ABC D E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形拔高经典题(适合尖子生)
1已知:如图,四边形ABCD中,AC平分∠BAD,CE垂直AB 于E,且∠B+∠D=180度,求证:AE=AD+BE
A
B
D
C
E
1
2
2..已知:如图,PA、PC分别是△ABC外角∠MAC和∠NCA的平分线,•它们交于点P,PD⊥BM 于D,PF⊥BN于F.求证:BP为∠MBN的平分线.
3.如图,等腰直角三角形ABC中,∠ACB=90°,AD为腰CB上的中线,CE⊥AD交AB于E.求证∠CDA=∠EDB.
4.在Rt△ABC中,∠A=90°,CE是角平分线,和高AD相交于F,作FG∥BC交AB于G,求证:AE=BG.
A
B C
D
E
F
G
1
2
A B
C
D
E
G
F
E
D
C
B A
5.如图,已知∠BAC=90º,AD ⊥BC, ∠1=∠2,EF ⊥BC, FM ⊥AC,说明FM=FD 的理由
6.如图D C B A 、、、四点在同一直线上,请你从下面四项中选出三个作为条件,其余一个作为结论,构成一个真命题,并进行证明.
①D ACE ∠=∠,②CD AB =,③ BF AE =,④ FBG EAG ∠=∠
7.直线CD 经过BCA ∠的顶点C ,CA=CB .E 、F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠. (1)若直线CD 经过BCA ∠的内部,且E 、F 在射线CD 上,请解决下面两个问题:
①如图1,若90,90BCA α∠=∠=,则EF BE AF -(填“>”,“<”或“=”号);
②如图2,若0180BCA <∠<,若使①中的结论仍然成立,则 α∠与BCA ∠ 应满足的关系是 ;
(2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,请探究EF 、与BE 、AF 三条线段的数量关系,并给予证明.
8.已知:如图,△ABC 中,∠ABC=45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与
CD 相交于点F ,H 是BC 边的中点,连结DH 与BE 相交于点G 。
(1) BF=AC (2) CE=1
2BF (3)CE 与
BC 的大小关系如何。
A B C E F D
D A B C E
F A D F C E B
图1 图2 图3
E D
C B A F 9.如图,△ACB 和△EC
D 都是等腰直角三角形,A ,C ,D 三点在同一直线上,连结BD ,A
E ,并延长AE 交BD 于
F .求证:1)△ACE ≌△BCD (2)直线AE 与BD 互相垂直
10.如图,在四边形ABCD 中,AB=BC ,BF 是∠ABC 的平分线,AF ∥DC ,连接AC 、CF ,求证:CA 是∠DCF 的平分线。
F
D
A
C B
11.已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。
12..如图所示,△ABC 中,∠ACB=90°,AC=BC,AE 是BC 边上的中线,过C 作CF ⊥AE, 垂足为F,过B 作BD ⊥BC 交CF 的延长线于D.
求证:(1)AE=CD;(2)若AC=12cm,求BD 的长.
A
B
C D
E
F
13.如图,在R t △ABC 中,∠ACB=450,∠BAC=900,AB=AC ,点D 是AB 的中点,AF ⊥CD 于H 交BC 于F ,BE ∥AC 交AF 的延长线于E ,求证:BC 垂直且平分DE.
14.如图1,ABC △的边BC 在直线l 上,AC BC ⊥,且AC BC =;EFP △的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =.
(1)在图1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系; (2)将EFP △沿直线l 向左平移到图2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;
(3)将EFP △沿直线l 向左平移到图3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,
BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若
不成立,请说明理由.
A (E )
B
C (F ) P l
l
l
A
B B
Q
P E
F F
C Q
图1
图2
图3
E
C
15如图甲,在△ABC 中,∠ACB 为锐角.点D 为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF . 解答下列问题:
(1)如果AB=AC ,∠BAC=90º.
①当点D 在线段BC 上时(与点B 不重合),如图乙,线段CF 、BD 之间的位置关系为 ,数量关系为 .
②当点D 在线段BC 的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB ≠AC ,∠BAC ≠90º,点D 在线段BC 上运动.
试探究:当△ABC 满足一个什么条件时,CF ⊥BC (点C 、F 重合除外)?画出相应图形,并说明理由.(画图不写作法)
.16如图,过线段AB 的两个端点作射线AM 、BN ,使AM ∥BN,按下列要求画图并回答: 画∠MAB 、∠NBA 的平分线交于E 。
(1)∠AEB 是什么角?
(2)过点E 作一直线交AM 于D ,交BN 于C ,观察线段DE 、CE ,你有何发现? (3)无论DC 的两端点在AM 、BN 如何移动,只要DC 经过点E ,①AD+BC=AB ;②AD+BC=CD 谁成立?并说明理由。
A B C D E
F 第28题图 图甲 图乙 F E B A
F E D C B A 图丙
最新文件---------------- 仅供参考--------------------已改成word文本--------------------- 方便更改。