计算方法复习题3
实用计算方法习题3解答
实⽤计算⽅法习题3解答习题3已知函数表如表1试⽤两点和三点公式计算 x i 处的⼀阶、⼆阶导数。
解:⼀阶导数的等距两点公式:⼀阶导数的等距三点公式:⼆阶导数的等距三点公式:[]101222(4)1()()2()() ()12h f''x f x f x f x f h ξ=+--计算结果如下表:依据的计算结果,利⽤插值法构造f (x )的导函数f ′(x)。
构造4次插值多项式作为f ′(x)的近似。
设⽣产某产品的成本函数c(x)的数据如表2,求边际成本函数143)(2+-='x x x C ,从节约成本的⾓度考虑,选择使平均成本较低的产量x 。
表2()()0101101()()()1()()()f'x f x f x h f'x f x f x h ≈-≈-001210220121()3()4()() 21()()() 21()()4()3()2f'x f x f x f x h f'x f x f x h f'x f x f x f x h ≈-+-≈-+≈-+解:提⽰:构造过点(x i ,c i )(i=0,1,2,3)的插值多项式p 3(x)作为c(x)的近似;⽤p 3(x)的导数近似代替143)(2+-='x x x C 。
由于143)(2+-='x x x C < c(x)/x 时,提⾼产量可降低成本,所以应选使143)(2+-='x x x C =c(x)/x 的产量x 。
设某产品的总成本C (万元)与产量q (万件)之间的函数关系式(即总成本函数C=C(q))数据如表3,求⽣产⽔平为q=10(万件)时的平均成本和边际成本,并从降低成本⾓度看,继续提⾼产量是否合适解:提⽰:构造过点(x i ,c i )(i=0,1,2,3)的插值多项式p 3(x)作为c(x)的近似;⽤p 3(x)的导数近似代替)('q c 。
数值计算方法 第3章复习
1 第3章 插值法与数据拟合一、考核知识点拉格朗日插值法及其余项、牛顿插值、最小二乘法、超定方程组。
二、考核要求:1.熟练掌握拉格朗日插值法及其余项。
2.掌握牛顿插值。
3.了解最小二乘法的基本思想,熟练掌握求最小二乘多项式与超定方程组最小二乘解的方法。
三、重、难点分析例1 已知,3)9(,2)4(==f f 用线性插值计算)5(f ,并估计误差。
解 取插值节点x 0= 4,x 1= 9,两个插值基函数分别为)9(51)(1010--=--=x x x x x x l )4(51)(0101-=--=x x x x x x l 故有 565)4(53)9(52)()()(11001+=-+--=+=x x x y x l y x l x L 2.25655)5()5(1=+=≈L f 误差为 )(2)95)(45(!2)()5(2ξξf f R ''-=--''=例2 求过点(0,1)、(1,2)、(2,3)的三点插值多项式。
解:由Lagrange 插值公式又0120120,1,2;1,2,3x x x y y y ======故例3已知f(0)=8, f(1)= -7.5, f(2)= -18;用牛顿插值法求f(x)在[0,2]之间的近似零点。
0201122012010210122021()()()()()()()()()()()()()x x x x x x x x x x x x L x y y y x x x x x x x x x x x x ------=++------2(1)(2)(0)(2)(0)(1)()123(01)(02)(10)(12)(20)(21)1x x x x x x L xx ------=⨯+⨯+⨯------=+2例4求下列超定方程组的最小二乘解。
⎪⎩⎪⎨⎧=-=+=+2724212121x x x x x x1 解 令 ⎪⎩⎪⎨⎧--=-+=-+=2724213212211x x u x x u x x u23222121u u u x x ++=)(ϕ221221221)2()72()4(--+-++-+=x x x x x x 由 ⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=-+=∂∂0)1662(20)1323(2212211x x x x x x ϕϕ得法方程组 ⎩⎨⎧=+=+166213232121x x x x解得 7231=x 7112=x所以最小二乘解为 7231=x 7112=x2 解 方程组写成矩阵形式为 正规方程组为即解得12114127112x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦12114111111127121121112x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦1232132616x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦122311,77x x ==。
吉林大学工程数学计算方法(第三章习题答案)
第三章习题答案1.分别用梯形公式、Simpson公式、Cotes公式计算积分1,I=⎰并估计误差。
解:1)用梯形公式有:()()110.51[10.5]10.42678242f f⎛-≈+=+≈⎝⎭⎰()()()333333220.512.6042107.36571012124Tb aE f fηηη-----⎛⎫''=-=--=⨯≤⨯⎪⎝⎭事实上,()()()()()()110.430964410.50.510.4267767210.50.510.00418772Tf x II f fE f f f===-≈+=⎡⎤⎣⎦-∴=-+=⎡⎤⎣⎦⎰⎰2)Simpson公式()110.53111410.43093 642122f f f⎛-⎡⎤⎛⎫⎛⎫≈++=+=⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎝⎭⎰[]()()44744211111522 1.1837710180218028Sb a b aE f fηη--⎛⎫--⎪⎛⎫--⎛⎫=-=--≤⨯⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭3122()''()48T f fb aE事实上,()()()10.510.50.510.5410.000030462SE f f f f-⎡+⎤⎛⎫=-++=⎪⎢⎥⎝⎭⎣⎦⎰3)由Cotes公式有:()() ()111537270.5321232719084814.9497525.2982210.3923029.9332670.43096180f f f f f-⎡⎤⎛⎫⎛⎫⎛⎫≈++++⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=++++=⎰15732127)18088()6116211294522 2.697410945464C E f η--⎛⎫⨯ ⎪⎛⎫=-⨯-≤⨯ ⎪ ⎪⎝⎭⎪⎝⎭7(6)945*42()()82Cf b aEf事实上,()0.0000003C E f =2.证明Simpson 公式()2.8具有三次代数精度。
计算方法复习题库
计算方法复习题库 一、填空题:1.设某数x *,它的保留三位有效数字的近似值的绝对误差是 。
2.设某数x *,它的精确到10-4的近似值应取小数点后 位。
3.设方程f (x )=x -4+2x=0,在区间[1,2]上满足 ,所以f (x )=0在区间[1,2]内有根。
建立迭代公式xx 2-4=,因为 ,此迭代公式发散。
4.设函数f (x )在区间[a ,b ]内有二阶连续导数,且f (a )f (b )<0,当 时,则用弦截法产生的解数列收敛到方程f (x )=0的根。
5.乘幂法是求实方阵 。
6.二阶阶差()=210,,x x x f7.已知3=n 时,科兹系数()8130=C ,()8331=C ,()8332=C ,则()=33C8.求方程()x f x =根的牛顿迭代格式是9.n 个求积节点插值型求积公式代数精确度至少为 次。
10.数值计算方法中需要考虑误差为 、 。
二、选择题1.用二分法求方程f (x )=0在区间[a ,b ]内的根x n ,已知误差限ε,确定二分的次数n 是使( )。
(A)b -a ≤ε (B)∣f (x )∣≤ε (C)∣x *-x n ∣≤ε (D)∣x *-x n ∣≤b -a2.( )的3位有效数字是0.236×102。
(A)235.54×10-1(B)235.418(C)2354.82×10-2(D)0.0023549×1033.设a *=2.718181828…,取a=2.718,则有( ),称a 有四位有效数字。
(A)(B)(C)(D)4.设某数x *,对其进行四舍五入的近似值是( ),则它有3位有效数字,绝对误差限是。
(A)0.315 (B)0.03150 (C)0.0315 (D)0.00315 5.以下近似值中,( )保留四位有效数字,相对误差限为。
(A)0.01234 (B)–12.34 (C)–2.20 (D)0.22006.牛顿切线法求解方程f (x )=0的近似根,若初始值x 0满足( ),则解的迭代数列一定收敛。
计算方法第三章习题答案
计算方法第三章习题答案计算方法第三章习题答案计算方法是一门涵盖了数值计算和计算机编程的学科,它在现代科学和工程中扮演着重要的角色。
第三章是计算方法课程中的重要章节,主要涉及到数值计算中的误差分析和插值方法。
本文将为大家提供第三章习题的详细答案,帮助读者更好地理解和应用这些概念。
1. 误差分析误差分析是计算方法中非常重要的一部分,它帮助我们理解和评估数值计算中的误差来源。
以下是一些常见的误差类型:- 绝对误差:绝对误差是指数值计算结果与真实值之间的差异。
它可以通过计算两者之差来得到。
- 相对误差:相对误差是指绝对误差与真实值之间的比值。
通常以百分比的形式表示。
- 截断误差:截断误差是由于在计算过程中舍入或截断数字而引入的误差。
它通常是由于计算机的有限精度导致的。
- 舍入误差:舍入误差是由于将无限位数的小数截断为有限位数而引入的误差。
它通常是由于计算机的有限精度或计算方法的近似性质导致的。
2. 插值方法插值方法是一种用于通过已知数据点来估计未知数据点的技术。
以下是一些常见的插值方法:- 线性插值:线性插值是一种简单的插值方法,它假设两个已知数据点之间的未知数据点的取值在直线上。
通过已知数据点的斜率和截距,我们可以计算出未知数据点的值。
- 拉格朗日插值:拉格朗日插值是一种使用多项式来逼近已知数据点的方法。
它通过构造一个满足通过已知数据点的多项式来估计未知数据点的值。
- 牛顿插值:牛顿插值是一种使用差商来逼近已知数据点的方法。
它通过构造一个满足通过已知数据点的差商多项式来估计未知数据点的值。
3. 习题答案以下是一些第三章习题的答案,供大家参考:- 习题1:已知函数f(x)在区间[a, b]上连续,且在[a, b]上的导数存在且连续,证明存在一点c∈(a, b),使得f(b) - f(a) = (b - a)f'(c)。
这是拉格朗日中值定理的一个特例,根据定理的条件,我们可以得到上述结论。
- 习题2:已知函数f(x)在区间[a, b]上连续,且在(a, b)内可导,证明存在一点c∈(a, b),使得f'(c) = (f(b) - f(a))/(b - a)。
数值计算方法复习题3
习题三
1. 给出数据如下表所示,试用最小二乘法求一次和二次拟合多项式。
2. 用最小二乘法求下列不相容方程组的近似解。
(1)
(2),其中c为任意常数
3. 用最小二乘法求一个形如
的经验公式,使它与下表中的
数据相拟合,并计算均方误差。
4. 在某次实验中,需要观察水份的渗透速度,测得时间t与水的重量W的数据见下表。
设已知t与W之间的关系为
,试用最小二
乘法确定参数a、s。
5. 试构造点集
上的离散正交多项式系
据求二次拟合多项式。
,,
和米、米,为了提高测量的可靠性,
6. 现测量长度
又测量到
米。
试合理地决定长度和的值。
差主项为。
算法设计与分析复习题目及答案 (3)
分治法1、二分搜索算法是利用(分治策略)实现的算法。
9. 实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略)实现的算法。
34.实现合并排序利用的算法是(分治策略)。
实现大整数的乘法是利用的算法(分治策略)。
17.实现棋盘覆盖算法利用的算法是(分治法)。
29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。
不可以使用分治法求解的是(0/1背包问题)。
动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。
下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。
(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。
矩阵连乘问题的算法可由(动态规划算法B)设计实现。
实现最大子段和利用的算法是(动态规划法)。
贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。
回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。
剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。
分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。
分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。
(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。
计算方法作业集及答案
计算方法作业集及答案第一章数值计算基本常识一.填空题1.用四舍五入得到的近似数0.628,有_____位有效数字,其绝对误差限是____________。
2.用四舍五入得到的近似数0.586,有_____位有效数字,其绝对误差限是____________。
3.用四舍五入得到的近似数0.69,其绝对误差是__________,由此计算出的相对误差限是__________。
4.用四舍五入得到的近似数0.7960,其绝对误差是__________,由此计算出的相对误差限是__________。
5.设0.484是0.4900的近似值,那么0.484具有____位有效数字。
6.设某某=0.231是真值某=0.229的近似值,则某某有_____位有效数字。
7.设某某=0.23是真值某=0.229的近似值,则某某有_____位有效数字。
8.设某=2.3149541,取5位有效数字,则所得的近似值某某=_____。
9.设某=2.3149541,取4位有效数字,则所得的近似值某某=_____。
10.若近似数0.1100有4位有效数字,由有效数字计算出的相对误差是____________。
11.若近似数76.82有4位有效数字,由有效数字计算出的相对误差是____________。
12.若近似数576.00有5位有效数字,由有效数字计算出的相对误差是____________。
13.用3.15作为π的近似值有_____位有效数字。
14.用3.14作为π的近似值有_____位有效数字。
15.用3.1416作为π的近似值有_____位有效数字。
解答:1.3、0.5某10-32.3、0.5某10-33.0.5某10-2、0.725%4.0.5某10-4、0.00628%5.16.27.28.2.31509.2.31510.0.05%11.0.007%12.0.001%13.214.315.5二.选择题1.3.141580是π的近似值,有()位有效数字。
数值计算方法复习题
fuxiti例1证明方程1-x-sin x=0在区间[0,1]内有一个根,使用二分法求误差不超过0.5×10-4的根要迭代多少次?证明令f(x)=1-x-sin x,∵f(0)=1>0,f(1)=-sin1<0∴f(x)=1-x-sin x=0在[0,1]有根.又f'(x)=1-c os x>0(x∈[0.1]),故f(x)=0在区间[0,1]内有唯一实根.给定误差限ε=0.5×10-4,有只要取n=14.例4选择填空题1. 设函数f(x)在区间[a,b]上连续,若满足,则方程f(x)=0在区间[a,b]一定有实根.答案:f(a)f(b)<0解答:因为f(x)在区间[a,b]上连续,在两端点函数值异号,由连续函数的介值定理,必存在c,使得f(c)=0,故f(x)=0一定有根.2. 用简单迭代法求方程f(x)=0的实根,把方程(x)=0表成x=ϕ(x),则f(x)=0的根是( )(A)y=x与y=ϕ(x)的交点(B) y=x与y=ϕ(x)交点的横坐标(C) y=x与x轴的交点的横坐标(D) y=ϕ(x)与x轴交点的横坐标答案:(B)解答:把f(x)=0表成x=ϕ(x), 满足x=ϕ(x)的x是方程的解,它正是y=x与y=ϕ(x)的交点的横坐标.3.为求方程x3―x2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( )(A)(B)(C)(D)答案:(A)解答:在(A)中故迭代发散.在(B)中,故迭代收敛.在(C)中,,故迭代收敛.在(D)中,类似证明,迭代收敛.例3填空选择题:1. 用高斯列主元消去法解线性方程组作第1次消元后的第2,3个方程分别为。
解答1. 选a21=2为主元,作行互换,第1个方程变为:2x1+2x2+3x3=3,消元得到是应填写的内容。
一、解答下列问题:1) 数值计算中,最基础的五个误差概念(术语)是 , , , , .2) 分别用 2.718281, 2.718282 作数e 的近似值 ,它们的有效位数分别有位, 位; 又取73.13≈ (三位有效数字),则≤-73.13 .3)为减少乘除法运算次数,应将算式32)1(7)1(51318---+-+=x x x y 改写成4)为减少舍入误差的影响,应将算式 9910- 改写成 5)递推公式 ⎪⎩⎪⎨⎧=-==-,2,1,110210n y y y n n如果取41.120≈=y 作计算,则计算到10y 时,误差有这个计算公式数值稳定不稳定 ?1) 绝对误差 , 相对误差 , 有效数字 , 截断误差 , 舍入误差 。
方法3极值法在计算中的应用(原卷版)-2022年中考化学一轮总复习计算题分类专练
方法3:极值法在计算中的应用(原卷版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2021·河南汝南·九年级一模)将一定量的镁粉、铝粉、锌粉的混合物与足量的稀硫酸完全反应生成0.4g 氢气,则金属混合物的质量不可能是A.4.8g B.5.4g C.9.2g D.13.0g2.(2021·全国九年级专题练习)在等质量、同浓度的稀硫酸中分别投人Mg、Al、Fe的粉末,完全溶解后,溶液质量仍相等,则投入金属的质量关系是A.Mg>Al>FeB.Al>Mg> FeC.Fe>Mg> AlD.Mg=Al= Fe3.(2021·黑龙江九年级模拟预测)现有一定质量的由两种金属组成的混合物,加入过量的稀盐酸,充分反应,测得生成H20.2g,将反应后的溶液蒸发,得到11.1g固体。
则金属混合物的组成不可能是A.Mg FeB.Fe ZnC.Zn MgD.Al Fe4.(2021·全国九年级)将60g铁、镁、锌的混合物放入到足量的稀硫酸中,充分反应后产生氢气的质量不可能是A.2.0 g B.3.6g C.4.3g D.5.2g5.(2021·河南九年级三模)含两种杂质的铁的混合物5.6g与足量的稀硫酸充分反应,生成0.23g氢气,则该杂质不可能为A.Mg和Al B.Al和Zn C.Mg和Cu D.Zn和Cu6.(2021·茶陵县云阳中学九年级开学考试)将5.6g铁样品加到足量稀硫酸中,充分反应后得到0.12g的氢气,这种铁样品中含有的金属可能是A.Zn B.Cu C.Ag D.Mg7.(2021·山东寿光市古城街道古城初级中学九年级二模)已知相同条件下,气体体积比等于气体分子个数之比。
现有20mLO2、CO、CO2的混合气体,在密闭容器中用电火花引燃,充分反应后恢复到原来状态,体积减少了2mL,再通过足量NaOH溶液后又减少10mL,最后剩余气体能使带火星的木条复燃。
计算方法模拟题3(答案)
模拟题(三)一、选择题(单选,14道小题,每题3分,共42分)1. 设A X =3.141是真值T X =π的近似值,则A X 有__A__位有效数字。
A 、3 B 、4 C 、5 D 、62. 用毫米刻度的直尺测量一长度为x*的物体,测得其长度的近似值为x = 25mm ,其误差上限为 C mm 。
A 、20.510-⨯ B 、10.510-⨯ C 、0.5 D 、53. 设x =37.134678,取5位有效数字,x ≈__C__。
A 、 37.1347B 、 37.13468C 、 37.135D 、 37.13467 4. 数值x *的近似值为x ,那么按定义x 的绝对误差是__B_。
**A B *C *D **x xx x x x x x x x ----、、、、 5. 用列主元高斯消去法解线性方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-20111.0310********x x x ,进行第二次列主元选择时所选取的列主元为 C 。
A 、5B 、4C 、-2.5D 、-36. 用选列主元的方法解线性方程组AX =b ,是为了 C 。
A 、提高计算速度B 、简化计算步骤C 、降低舍入误差D 、方便计算7. 以下方程求根的数值计算方法中,其迭代格式为111()()()()k k k k k k k f x x x x x f x f x +--=---的是: D 。
A 、二分法B 、简单迭代法C 、牛顿迭代法D 、割线法8. 牛顿迭代法是用曲线f (x )上点的 D 与x 轴的交点的横坐标逐步逼近f (x )=0的解。
A 、弧线 B 、折线 C 、割线 D 、切线9. 设b >a ,在区间[],a b 上的插值型求积公式其系数为01,,A A ┅,n A ,则01A A ++┅+n A =__C__。
A 、3(b-a )B 、4(b-a )C 、b-aD 、b 2-a 2 10. 通过__B__个点来构造多项式的插值问题称为线性插值。
计算方法练习题与答案
练习题与答案练习题一练习题二练习题三练习题四练习题五练习题六练习题七练习题八练习题答案练习题一一、是非题1.–作为x的近似值一定具有6位有效数字,且其误差限。
()2.对两个不同数的近似数,误差越小,有效数位越多。
()3.一个近似数的有效数位愈多,其相对误差限愈小。
()4.用近似表示cos x产生舍入误差。
( )5.和作为的近似值有效数字位数相同。
( )二、填空题1.为了使计算的乘除法次数尽量少,应将该表达式改写为;2.–是x舍入得到的近似值,它有位有效数字,误差限为,相对误差限为;3.误差的来源是;4.截断误差为;5.设计算法应遵循的原则是。
三、选择题1.–作为x的近似值,它的有效数字位数为( ) 。
(A) 7; (B) 3;(C) 不能确定 (D) 5.2.舍入误差是( )产生的误差。
(A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值(C) 观察与测量 (D) 数学模型准确值与实际值3.用 1+x近似表示e x所产生的误差是( )误差。
(A). 模型 (B). 观测 (C). 截断 (D). 舍入4.用s*=g t2表示自由落体运动距离与时间的关系式 (g为重力加速度),s t是在时间t内的实际距离,则s t s*是()误差。
(A). 舍入 (B). 观测 (C). 模型 (D). 截断5.作为的近似值,有( )位有效数字。
(A) 3; (B) 4; (C) 5; (D) 6。
四、计算题1.,,分别作为的近似值,各有几位有效数字?2.设计算球体积允许的相对误差限为1%,问测量球直径的相对误差限最大为多少?3.利用等价变换使下列表达式的计算结果比较精确:(1), (2)(3) , (4)4.真空中自由落体运动距离s与时间t的关系式是s=g t2,g为重力加速度。
现设g是精确的,而对t有秒的测量误差,证明:当t增加时,距离的绝对误差增加,而相对误差却减少。
5*. 采用迭代法计算,取k=0,1,…,若是的具有n位有效数字的近似值,求证是的具有2n位有效数字的近似值。
《计算方法》期末考试试题
《计算方法》期末考试试题一 选 择(每题3分,合计42分)1. x* = 1.732050808,取x =1.7320,则x 具有 位有效数字。
A 、3 B 、4 C 、5 D 、62. 取73.13≈(三位有效数字),则≤-73.13 。
A 、30.510-⨯B 、20.510-⨯C 、10.510-⨯D 、0.5 3. 下面_ _不是数值计算应注意的问题。
A 、注意简化计算步骤,减少运算次数B 、要避免相近两数相减C 、要防止大数吃掉小数D 、要尽量消灭误差 4. 对任意初始向量)0(x ϖ及常向量g ϖ,迭代过程g x B x k k ϖϖϖ+=+)()1(收敛的充分必要条件是__。
A 、11<B B 、1<∞BC 、1)(<B ρD 、21B <5. 用列主元消去法解线性方程组,消元的第k 步,选列主元)1(-k rka ,使得)1(-k rk a = 。
A 、 )1(1max -≤≤k ikni a B 、 )1(max -≤≤k ikni k a C 、 )1(max -≤≤k kj nj k a D 、 )1(1max -≤≤k kj nj a6. 用选列主元的方法解线性方程组AX =b ,是为了A 、提高计算速度B 、简化计算步骤C 、降低舍入误差D 、方便计算7. 用简单迭代法求方程f (x )=0的实根,把方程f (x )=0转化为x =(x ),则f (x )=0的根是: 。
A 、y =x 与y =(x )的交点B 、 y =x 与y =(x )交点的横坐标C 、y =x 与x 轴的交点的横坐标D 、 y =(x )与x 轴交点的横坐标 8. 已知x 0=2,f (x 0)=46,x 1=4,f (x 1)=88,则一阶差商f [x 0, x 1]为 。
A 、7 B 、20 C 、21 D 、42 9. 已知等距节点的插值型求积公式()()463kkk f x dx A f x =≈∑⎰,那么4kk A==∑_____。
《计算方法》复习题参考答案
《计算方法》练习题一练习题第1套参考答案一、填空题1. 14159.3=π的近似值3.1428,准确数位是( )。
2.满足d b f c a f ==)(,)(的插值余项=)(x R ( )。
3.设)}({x P k 为勒让德多项式,则=))(),((22x P x P ( )。
4.乘幂法是求实方阵( )特征值与特征向量的迭代法。
5.欧拉法的绝对稳定实区间是( )。
二、单选题1.已知近似数,,b a 的误差限)(),(b a εε,则=)(ab ε( )。
A .)()(b a εε B.)()(b a εε+ C.)()(b b a a εε+ D.)()(a b b a εε+ 2.设x x x f +=2)(,则=]3,2,1[f ( )。
A.1 B.2 C.3 D.43.设A=⎥⎦⎤⎢⎣⎡3113,则化A为对角阵的平面旋转=θ( ). A.2πB.3πC.4π D.6π4.若双点弦法收敛,则双点弦法具有( )敛速.A.线性 B.超线性 C.平方 D.三次5.改进欧拉法的局部截断误差阶是( ).A .)(h o B.)(2h o C.)(3h o D.)(4h o三、计算题1.求矛盾方程组:⎪⎩⎪⎨⎧=-=+=+2423212121x x x x x x 的最小二乘解。
2.用4=n 的复化梯形公式计算积分⎰211dx x ,并估计误差。
3.用列主元消元法解方程组:⎪⎩⎪⎨⎧=++=++=++426453426352321321321x x x x x x x x x 。
4.用雅可比迭代法解方程组:(求出)1(x )。
计算机算法复习题及答案(前三章)
计算机算法复习题及答案(前三章)第一章1、什么是绝对误差?什么是相对误差?答:绝对误差等于准确值与近似值差的绝对值。
相对误差是近似数的误差与准确值的比值。
2、什么是绝对误差限?什么是相对误差限?答:绝对误差限为绝对误差的“上界”相对误差限为相对误差绝对值的“上界”3、有效数字与绝对误差限有何关系?有效数字与相对误差限有何关系?答:(绝对)若近似值的绝对误差限是某一位上的半个单位,且该位直到的第一位非零数字一共有几位。
则称近似值有n位有效数字。
(相对)设近似值=±0.···×有n位有效数字,≠0,则真相对误差限为×设近似值=±0.···×的相对误差限为×,≠0,则它有n位有效数字。
4、例1.11、例1.12、例1.15、例1.16.例1.11.设x=4.26972,那么取2位,=4.3,有效数字为2位取3位,=4.27,有效数字为3位取4位,=4.270,有效数字为4位取5位,=4.2697,有效数字为5位例1.12,若=3587.64是x的具有6位有效数字的近似值,则误差限是|-x|≤×=×若=0.0023156是x的具有5位有效数字的近似值,则误差限是|-x|≤×≤×例1.15,若=2.72来表示e的具有3位有效数字的近似值,则相对误差限是=×=×例1.16要使的近似值的相对误差限小于0.1%,要取几位有效数字?由定理1.1,≤×.由于=4.4···,已知=4,故只要取n=4,就有≤0.125×=0.1%只要对的近似值取4位有效数字,其相对误差限就小于0.1%。
此时由开方表得≈4.472 5、课本13~14页习题1、2、3、4.习题1:下列各数都是经过四舍五入得到的近似数,试指出它们是具有几位有效数字的近似数,并确定++和的误差限答:=1.1021,5位,=0.031,2位,=385.6,4位|++|-|++|≤|-|+|-|+|-|=×+×+×=0.5055 η()≈||η()+|η()|=1.1021××+0.031××=0.00055105+0.00000155=0.0005526η()≈||η()+||η() =0.001708255+0.21308256 =0.2148习题2.已测得某场地长L 的值为=110m ,宽d 的值为=80m,已知|L-|≤0.2m ,|d-|≤0.1m ,试求面积S=Ld 的绝对误差限和相对误差限。
(完整版)计算方法试题集及答案
复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。
答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。
答案:2.367,0.253、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。
答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );7、计算方法主要研究( 截断 )误差和( 舍入 )误差;8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为( )],(),([2111+++++=n n n n n n y x f y x f hy y );10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。
成人教育《计算方法 提纲》期末考试复习题及参考答案
一、单项选择题1、Jacobi迭代法解方程组Ax = b的必要条件是( C ).A.A的各阶顺序主子式不为零 B.ρ(A)<1C. D.|A|≤12、设,均差( B )A.3B. -3C. 5D.03、设,则ρ(A)为( C ).A. 2B. 5C. 7D. 34、三点的高斯求积公式的代数精度为( B ).A. 2B.5C. 3D. 45、幂法的收敛速度与特征值的分布( A )。
A. 有关B. 不一定C. 无关6、求解线性方程组Ax=b的分解法中,A须满足的条件是( B )。
A. 对称阵B. 正定矩阵C. 任意阵D. 各阶顺序主子式均不为零7、舍入误差是( A )产生的误差。
A.只取有限位数B.模型准确值与用数值方法求得的准确值C. 观察与测量D.数学模型准确值与实际值8、3.141580是π的有( B )位有效数字的近似值。
A.6B.5C. 4D. 79、幂法是用来求矩阵( A )特征值及特征向量的迭代法。
A. 按模最大B. 按模最小C. 所有的D. 任意一个10、用1+x近似表示所产生的误差是( C )误差。
A. 模型B. 观测C.截断D. 舍入11、解线性方程组的主元素消去法中选择主元的目的是( A )。
A.控制舍入误差B. 减小方法误差C.防止计算时溢出D. 简化计算12、解线性方程组Ax=b的迭代格式收敛的充要条件是( D )。
A. |M|<1B. ρ(A)<1C. |ρ(M)|<1D. ρ(M)<113、用近似表示所产生的误差是( D )误差。
A. 舍入B. 观测C.模型D. 截断14、-324.7500是舍入得到的近似值,它有( C )位有效数字。
A. 5B. 6C.7D. 815、反幂法是用来求矩阵( B )特征值及相应特征向量的一种向量迭代法。
A. 按模最大B. 按模最小C.全部D. 任意一个16、用表示自由落体运动距离与时间的关系式( g为重力加速度),是在时间t内的实际距离,则是( C )误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题(共24分,每空2分)
(1)若1)(37++=x x x f , 则
]2,2,2[710 f = ,]2,2,2[810 f = 。
(2) 设)(ij a A =是n 阶方阵, 则∞A = , 1A = 。
(3) 如果A 是正交阵, 则)(2A cond = 。
(4) 形如)()(0k b a n
k k x f A dx x f ⎰∑=≈的插值型求积公式,其代数精度至少可达 阶, 至多共能达 阶。
(5) ⎥⎦⎤⎢⎣⎡+=12
21a A ,当a 满足条件时 , A 可作LU 分解,当a 满足条件 时, 必有分解式T
L L A ⋅=,其中L 是对角元素为正的下三角阵。
(6) 在用逐次超松弛迭代法(SOR )解线性方程组b AX =时,若松弛因子ω满足 条件时, 则迭代一定发散。
(7). 设矩阵A 是对称正定矩阵,则用 迭代法解线性方程组A X =b ,其迭代解数列一定收敛。
(8). 已知f (1)=1,f (2)=3,那么y =f (x )以x =1,2为节点的拉格朗日线性插值多项式为 。
二、计算题(每题15分,共60分)
1.求一个次数不高于三次的多项式P 3(x),满足下列条件
P 3(1)=2,P 3(2)=4,P 3(3)=12,P ’3(2)=3。
2. 用列主元消去法解线性方程组
⎪⎩⎪⎨⎧=++-=-+-=+-615318153312321
321321x x x x x x x x x
计算过程保留4位小数.
3.给定数据
用复合辛普森方法计算⎰
=38.130.1)()(dx x f f I 的近似值,并估计误差。
4..取h =0.1, 用改进欧拉法求下列初值问题
⎪⎩⎪⎨⎧-=-=-+=6
.0,4.0)0(2sin 2'2'''y y y x e y y x 在x =0.1处的近似值. 计算过程保留5位小数.
三、证明题(10分)
证明0sin 1=--x x ,在[0,1]内仅有一个根,使用二分法求误差不太于4102
1-⨯的根要二分多少次?
四、用自然语言方法描述高斯----塞德尔迭代的计算机算法(6分)。