第十八届“华杯赛”决赛小高组试题A
18~22届华杯赛小高组初赛试题及参考答案
第一章 计算篇
1、【第 18 届华杯赛初赛 A 第 1 题】
2012.25×2013.75-2010.25×2015.75=( )
(A)5
(B)6
(C)7
(D)8
2、【第 18 届华杯赛初赛 B 卷第 2 题】
2 2 3 2 3 3 2 3 3 3 2 33的个位数字是( )。
9个3
-4-
第三章 几何篇
1、【第 18 届华杯赛初赛 A 卷第 5 题】
右图 ABCD 是平行四边形,M 是 DC 的中点,E 和 F 分别位于 AB 和 AD 上,且 EF
平行于 BD。若三角形 MDF 的面积等于 5 平方厘米,则三角形 CEB 的面积等于( )
平方厘米。
(A)5
(B)10
(C)15
计算: 481 1 265 1 904 1 184 29 160 41 703 55 _____。
6
12
20
30
42
56
7、【第 20 届华杯赛初赛 C 卷第 1 题】
计算: 9 11 13 15 17 120 1 1 ( )
20 30 42 56 72
34
(A)42
(B)43
4、【第 19 届华杯赛初赛 A 卷第 9 题】 四个黑色 1×1×1 的正方体和四个白色 1×1×1 的正方体可以组成________种不 同的 2×2×2 的正方体(经过旋转得到相同的正方体视为同一种情况)。 5、【第 19 届华杯赛初赛 B 卷第 10 题】 从 1,2,3,…,2014 中取出 315 个不同的数(不计顺序)组成等差数列,其中组 成的等差数列中包含 1 的有________种取法;总共有________种取法。 6、【第 20 届华杯赛初赛 A 卷第 3 题】
2020年第十八届华杯赛决赛小高年级(A)卷-试题及解析word版
总分第十八届华罗庚金杯少年邀请赛决赛试题A(小学高年级组)(时间2013年4月20日10:00~11:30)一、填空题(每小题10分,共80分)1.计算:19×0.125+281×81-12.5=________.解析:原式=(19+281-100)×0.125=200×0.125=252.农谚‘逢冬数九’讲的是,从冬至之日起,每九天分为一段,依次称之为一九,二九,……,九九,冬至那天是一九的第一天.2012年12月21日是冬至,那么2013年的元旦是________九的第________天.解析:31-21+1+1=12,12÷9=1…3,2013年的元旦是二九的第3天.3.某些整数分别被119977553,,,除后,所得的商化作带分数时,分数部分分别是92725232,,,,则满足条件且大于1的最小整数是________.解析:设整数为A,分别被119977553,,,除后,所得的商分别为A A A A 911795735,,,;)1(911921911)1(7972179)1(5752157)1(3532135-++=-++=-++=-++=A A A A A A A A ,,,显然,当A-1是[3,5,7,9]的时候满足题意。
所以A-1=315,A=316。
4.如右图,在边长为12厘米的正方形ABCD 中,以AB 为底边作腰长为10厘米的等腰三角形PAB .则三角形PAC 的面积等于________平方厘米.解析:过P点做PE⊥AB,由于三角形PAB为等腰三角形,所以AE=EB=6cm。
根据勾股定理:PE 2=102-62=64=82,所以PE=8cm。
S△PAB=12×8÷2=48cm 2,S△PCB=12×6÷2=36cm 2,S△PAC=48+36-12×12÷2=12cm 2。
第18届华杯赛决赛真题答案(小高组a卷)
第十八届华罗庚金杯少年数学邀请赛决赛试题 A 参考答案(小学高年级组)一、填空题(每题 10 分, 共 80 分)题号 1 2 3 4 5 6 7 8答案25 2, 3 316 12 62 74 94 54二、解答下列各题(每题 10 分, 共 40 分, 要求写出简要过程)9.解答.例如(4 + 4 + 4) ÷ 4 = 3 ,4 - (4 - 4) ⨯ 4 = 4 ,(4 ⨯ 4 + 4) ÷ 4 = 5 ,(4 + 4) ÷ 4 + 4 = 6 .10.答案:25解答. 设比小明小的学生为x人,比小华小的学生为y人.因为比小明大的学生为2x人,所以全班学生共 N =3x +1人;又因为比小华大的学生为3y人,所以全班学生共N=4y+1人. 这样, N-1既是 3 的倍数, 又是 4 的倍数, 因此N-1是3⨯4=12的倍数. 这个班学生人数大于 20 而小于 30, 所以N-1只可能是 24. 因此这个班共有学生N=24+1=25人.11.答案:1.375解答.小虎划船的全部时间为120分钟,他每划行30分钟,休息10分钟,周期为40分钟, “华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解所以一共可分为 3 个 30 分钟划行时间段, 有 3 个 10 分钟休息划船时, 顺水的船速与逆水的船速之比为 4.5:1.5=3:1. 因为小虎要把船划到离租船处尽可能远, 他在划船的过程中只能换一次划船的方向, 而且是在尽可能远处. 分两种情况讨论.1)开始向下游划船, 设最远离租船处x千米. 因为回到租船处是逆水, 所以小虎只有 110 分钟可用. 由于划船时顺流速度是逆流速度的 3 倍, 所以用在向下游划船的时间不能超过半小时. 另外两次休息时间只能用在返程, 在休息期间内船向下游漂流了13⨯1.5 , 所以⎛ 1 ⎫x ÷4.5+ x + ⨯1.5⎪ ÷1.5 = 1.5 .3⎝ ⎭整理上式得x +3x +1.5=6.75,4x= 5.25,x =1.3125(千米).2)开始向上游划, 设最远离租船处y千米. 小虎可用 120 分钟, 有两次休息时间用在向上游. 所以⎛ 1 ⎫ ⎛ 1 ⎫y + ⨯1.5⎪ ÷1.5 + y - ⨯1.5⎪ ÷ 4.5 = 1.5 .3 6⎝ ⎭ ⎝ ⎭整理上式得4 y+5 ⨯1.5 = 6.75 , 4 y= 5.5 , y =1.375(千米).6综合 1) 和 2) 的讨论, 小虎的船最多离租船处 1.375 千米.12.答案:不能解答. 设放的最小自然数为a,则放的最大自然数为a+23.于是这24个数的和为A= 12(2a+ 23).假设可能, 设每个正方形边上的数之和为S . 因为共有5个正方形, 这些和的和为5S . 因为每个数在这些和中出现两次, 所以有5S= 2A.“华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解记最小的 16 个数的和为B , 则B=8(2a+15) . 下面分两种情形讨论:(1)若 B ≤ S ,则S = 2 A = 24 (2a+ 23) ≥ 8(2a+15) , 9.8a+110.4 ≥16a+120 ,5 5不存在自然数 a 使得不等式成立.(2)情形 B > S 也是不可能的,因为此时不可能选择最大正方形边上的16个数使得这16 个数的和等于S .三、解答下列各题(每题 15 分, 共 30 分, 要求写出详细过程)13.答案:5解答. 用右图代替题目中的2⨯1小长方形.因为题目所给的小长方形上下不对称,所以同一个小长方形在拼成的上下对称的正方形中, 不会既在上半部分也在下半部分. 这样, 就可以只考虑上半部分的不同情形.1)相邻的空白格在第一行最左边或最右边. 因为要排除旋转相同的, 所以只考虑相邻空白格在最右边的情况, 有下图所示的 2 种图形,2)相邻的空白格在第一行中间. 去掉旋转重合的, 有下图所示的 3 种图形,所有不同的图形为 5 种.14.答案:6036“华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解解答. 令n = a1+ a2++ a2010 = b1 + b2 + + b2012 = c1 + c2 ++ c2013 ,其中, 所有的a i数字和相同, 所有的b j数字和相同, 所有的c k数字和相同. 两个自然数数字的和相同, 则它们除以 9 的余数相同, 即a i = 9u i + r, i =1, 2, , 2010,bj = 9v j + s, j =1, 2, , 2012,c k = 9w k + t, k =1, 2, , 2013.则n= 9 ⨯ (u1+u2+ +u2010 ) + 2010⨯r= 9 ⨯ (v1+v2+ +v2012 ) + 2012⨯s (1)= 9 ⨯ (w1+w2+ +w2013 ) + 2013⨯t,由上面的等式可得,9 ⨯ (u1+u2++ u2010 + 223 ⨯ r) + 3r = 9 ⨯ (v1 + v2 ++ v2012 + 223 ⨯ s) + 5 ⨯ s ,(2)9 ⨯ (w1+w2++ w2013 + 223 ⨯ t) + 6 ⨯ t = 9 ⨯ (v1 + v2 ++ v2012 + 223 ⨯ s) + 5 ⨯ s ,(3) 由 (2) 可以得出s是 3 的倍数, 只能是 0, 3 或 6. 下面三种情况讨论:1)s =0.此时,对j=1, 2,, 2012 ,因为b j=9v j的数字和不为零,所以v j≥1. 则n =9⨯(v1+ v2++ v2012 ) ≥ 9 ⨯ 2012 = 18108 .2)s =6.此时“华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解客服电话:400 650 0888 n =9(v1+ v2++ v2012 ) + 2012 ⨯ 6 ≥ 12072 .3)s =3,此时n= 9(v1+v2+ +v2012 ) + 2012 ⨯ 3 ≥ 6036 .可以取 r =2, t =1.而6036 = 3 + 3 + + 3 = 2 + 2 + + 2 +11 +11 + +112012 个x 个y 个=10 +10 + +10 +1 +1 + +1.=m 个n 个下面计算 x, y 与 m, n,⎧x + y =2010, ⎨ ⎧m + n =2013,⎨⎩10m+n= 6 0 3,6即6036 = 2⨯1786 +11⨯224 =10⨯447 +1566 = 3⨯2012.最终, 满足条件的最小自然数是 6036.“华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解第 5 页共5页。
2019年第十八届华杯赛决赛小高年级(A)卷-试题及解析word版
第十八届华罗庚金杯少年邀请赛决赛试题A (小学高年级组)(时间2019年4月20日10:00~11:30)一、填空题(每小题 10分, 共80分)1.计算: 19×0.125+281×81-12.5=________. 解析:原式=(19+281-100)×0.125=200×0.125=252.农谚‘逢冬数九’讲的是, 从冬至之日起, 每九天分为一段, 依次称之为一九, 二九, ……, 九九, 冬至那天是一九的第一天. 2019年12月21日是冬至, 那么2019年的元旦是________九的第________天.解析:31-21+1+1=12,12÷9=1…3,2019年的元旦是二九的第3天.3.某些整数分别被119977553,,,除后, 所得的商化作带分数时, 分数部分分别是92725232,,,, 则满足条件且大于1的最小整数是________.解析:设整数为A, 分别被119977553,,,除后, 所得的商分别为A A A A 911795735,,,; )1(911921911)1(7972179)1(5752157)1(3532135-++=-++=-++=-++=A A A A A A A A ,,,显然,当A-1是[3,5,7,9]的时候满足题意。
所以A-1=315,A=316。
4.如右图, 在边长为12厘米的正方形ABCD 中, 以AB 为底边作腰长为10厘米的等腰三角形PAB . 则三角形PAC 的面积等于________平方厘米.解析:过P 点做PE ⊥AB,由于三角形PAB 为等腰三角形,所以AE=EB=6cm 。
根据勾股定理:PE 2=102-62=64=82,所以PE=8cm 。
S △PAB=12×8÷2=48cm 2,S △PCB=12×6÷2=36cm 2,S △PAC=48+36-12×12÷2=12 cm 2。
奥数第十八届华杯赛决赛小高年级(A)卷试题及解析
奥数第十八届华杯赛决赛小高年级〈A 〉卷试题及解析决赛试题A 〈小学高年级组〉一、填空题〈每小题 10分, 共80分〉1.计算: 19×0.125+281×81-12.5=________. 解析:原式=〈19+281-100〉×0.125=200×0.125=252.农谚‘逢冬数九’讲的是, 从冬至之日起, 每九天分为一段, 依次称之为一九, 二九, ……, 九九, 冬至那天是一九的第一天. 2012年12月21日是冬至, 那么2013年的元旦是________九的第________天.解析:31-21+1+1=12,12÷9=1…3,2013年的元旦是二九的第3天.3.某些整数分别被119977553,,,除后, 所得的商化作带分数时, 分数部分分别是92725232,,,, 则满足条件且大于1的最小整数是________.解析:设整数为A, 分别被119977553,,,除后, 所得的商分别为A A A A 911795735,,,; )1(911921911)1(7972179)1(5752157)1(3532135-++=-++=-++=-++=A A A A A A A A ,,,显然,当A-1是[3,5,7,9]的时候满足题意。
所以A-1=315,A=316。
4.如右图, 在边长为12厘米的正方形ABCD 中, 以AB 为底边作腰长为10厘米的等腰三角形PAB . 则三角形PAC 的面积等于________平方厘米.解析:过P 点做PE ⊥AB,由于三角形PAB 为等腰三角形,所以AE=EB=6cm 。
根据勾股定理:PE 2=102-62=64=82,所以PE=8cm 。
S △PAB=12×8÷2=48cm 2,S △PCB=12×6÷2=36cm 2,S △PAC=48+36-12×12÷2=12 cm 2。
第18届总决赛笔试小高1试
填空题(共3题, 每题10分)1.【答案】132.192.【答案】843.753.【答案】59.84.(10分)【答案】3【解答】6个自然数1至6的和是21, 将立体截成两个小的立体, 相当于将1至6这6个自然数分成两组, 各组自然数的和相加后, 其和仍是21, 而差是 5. 所以, 其中一个小的立体上的原立体顶点上自然数的和是13, 另一个则是8. 显然, 有3种截断方式: ①用一个平面将标有2和6的两个顶点截下; ②用一个平面将标有3和5的两个顶点截下; ③如右图, 用一个平面将标有1, 3和4的三个顶点截下. 无法用一个平面将三棱柱截成两个小的立体, 使其中1个小的立体中仅含有标有自然数1, 2和5的三个顶点.5. (10分)【答案】13【解答】(1)先说明如果选出的方格中经过移动整行或者整列的位置, 出现32⨯或者23⨯方格都有数时, 一定有个矩形4角数和为偶数. 记6个方格中填的数字分别为f e d c b a ,,,,,. 设e d b a +++, f d c a +++, f e c b +++为奇数, 则3个式子的和为奇数. 但是)(2f e d c b a +++++为偶数. 故必有一个矩形的四个角的数为偶数.(2)再说明 12个数没有矩形的四个角的数和为偶数. 右图填了12个数, 没有一个没有矩形的四个角的数和为偶数.(3)再说明13个数可以. 由抽屉原则, 至少有一列有4个数.则剩下的9个数填在另外3列中. 至少有一列的有3个数. 把有四个数的一列移到左边第一列, 一个有3个数的移至左边第2列, 如右图. 上面左上角的32⨯方格每格只有一个数, 情况(1)出现.6. (10分)【解答】 假定从自然数m 开始, 则在第一步运算之后得到的数为 12+m , 可以写成 1)1(212-+=+m m ; 在第二步运算之后, 得到的数为 ;1)1(21]1)1(2[22-+=+-+m m在第三步运算之后, 得到的数为 ;1)1(23-+m以此类推, 在第15步运算之后, 得到的数为 1)1(215-+m .现在问题变为要回答: 是否有自然数m 能使得n m 20131)1(215=-+?其中n 是某个正整数. 只要将上式改写为一次不定方程的形式:12013)1(215=-+n m ,其中 1)2013,2(15=.由一次不定方程的理论, 立即可以知道此方程有(无穷多个)正整数解),(n m .也可以用以下方法来直接说明.记 152=p , 2013=q , 则p 和q 是互质的, 且q p >. 考虑q 个自然数},,3,2,{qp p p p ,这些数除以q 得到不同的余数. 事实上, 若对某个l k ,, q l k ≤≤≤1, 且 p k l kp lp )(-=-能被q 整除, 因为1),(,0=<-<q p q k l , 所以p k l )(-不可能被q 整除. 既然这个自然数除以q 得互不相同的余数, 就存在},,2,1{q a ∈, 使得 1+=bq ap , 其中'n 为正整数. 令1-+=q a m , p a n +=, 显然 00>>m n ,, 且1)()()1(=-=+-+=-+bq ap q p b p q a nq p m .即n m , 为所求的自然数. 若取此m 为第一个数, 那么重复这里定义的运算15次后, 所得的数为n nq m p m 20131)1(1)1(215==-+=-+它能被2013整除.。
第十八届“华杯赛”初赛小高组试题A
第十八届华罗庚金杯少年数学邀请赛初赛试卷A(小学高年级组)(时间: 2013 年3月23日10:00 ~ 11:00)一、选择题(每小题10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.2012.25×2013.75-2010.25×2015.75=().(A)5 (B)6 (C)7 (D)82.2013年的钟声敲响了, 小明哥哥感慨地说: 这是我有生以来第一次将要渡过一个没有重复数字的年份. 已知小明哥哥出生的年份是19的倍数, 那么2013年小明哥哥的年龄是()岁.(A)16 (B)18 (C)20 (D)223.一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米, 下滑1米的时间是向上爬3米所用时间的三分之一.8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为()分钟.(A)22 (B)20 (C)17 (D)164.一个盒子里有黑棋子和白棋子若干粒, 若取出一粒黑子, 则余下的黑子数与白子数之比为9:7, 若放回黑子, 再取出一粒白子, 则余下的黑子数与白子数之比为7:5, 那么盒子里原有的黑子数比白子数多()个.(A)5 (B)6 (C)7 (D)85.右图ABCD是平行四边形, M是DC的中点, E和F分别位于AB和AD上, 且EF平行于BD. 若三角形MDF的面积等于5平方厘米, 则三角形CEB的面积等于()平方厘米.(A)5 (B)10 (C)15 (D)206.水池A和B同为长3米, 宽2米, 深1.2米的长方体. 1号阀门用来向A池注水, 18分钟可将无水的A池注满; 2号阀门用来从A池向B池放水, 24分钟可将A池中满池水放入B池. 若同时打开1号和2号阀门, 那么当A池水深0.4米时, B池有()立方米的水.(A)0.9 (B)1.8 (C)3.6 (D)7.2二、填空题(每小题10 分, 满分40分)7.小明、小华、小刚三人分363张卡片, 他们决定按年龄比来分. 若小明拿7张, 小华就要拿6张;若小刚拿8张, 小明就要拿5张. 最后, 小明拿了________张;小华拿了________张;小刚拿了________张.8.某公司的工作人员每周都工作5天休息2天, 而公司要求每周从周一至周日,每天都至少有32人上班, 那么该公司至少需要________名工作人员.9.右图中, AB是圆O的直径, 长6厘米, 正方形BCDE的一个顶点E在圆周上,45ABE∠=︒. 那么圆O中非阴影部分的面积与正方形BCDE中非阴影部分面积的差等于________平方厘米(取π314=)..10.圣诞老人有36个同样的礼物, 分别装在8个袋子中. 已知8个袋子中礼物的个数至少为1且各不相同. 现要从中选出一些袋子, 将选出的袋子中的所有礼物平均分给8个小朋友, 恰好分完(每个小朋友至少分得一个礼物). 那么, 共有________种不同的选择.。
第十八届华杯赛总决赛试题
第十八届华杯赛总决赛试题——必答题A 组试题组试题必答题A1 左下图是一个等腰梯形,左下图是一个等腰梯形,上底和两腰的长度是上底和两腰的长度是2,下底长度是4;右下图是一个正六角星形,面积和等腰梯形的面积相等,问:正六角星形的周长是多少?个正六角星形,面积和等腰梯形的面积相等,问:正六角星形的周长是多少?必答题A2 将1,2,3,4分别填入下面的方格中,使得等式分别填入下面的方格中,使得等式+2× +3× +4× =22 成立,那么第一个方格填的数与第四个方格填的数之积是多少?成立,那么第一个方格填的数与第四个方格填的数之积是多少?必答题A3 右图的三角形ABC 中,D ,E 分别是所在边的中点,BC=6MN ,三角形GMN 的面积等于3平方厘米。
求三角形ABC 的面积。
的面积。
等腰梯形正六角星形面积相等,五个地块栽种四种不同颜色不能同色,不相邻的地块可以同色。
问共有多少种不同的栽种方案?E D C B A A黑板上写有数字1到9.请你擦掉其中的几个数字,使得剩下的数字的两两相这十个数字,你从黑板上最多能擦掉几个数字?乘积中,个位出现由0到9这十个数字,你从黑板上最多能擦掉几个数字?第十八届华杯赛总决赛试题——必答题B组试题组试题 必答题B1 在100至200之间有三个连续的自然数,其中最小的能被3整除,中间的能整除。
写出这样的三个连续自然数。
被5整除,最大的能被7整除。
写出这样的三个连续自然数。
必答题B2 边长分别为6厘米和8厘米的两张正方形纸板,放在一个边长为10厘米的大正方形内,大正方形内未被两小正方形纸板盖住的部分的面积最小值是多少平方厘米?厘米?必答题B3 自然数n是两个质数的乘积,它的包含1但不包含n的所有因数的和等于100,那么n=? 必答题B4 如图,三角形ABC中,∠ACB=90°,AC=1cm,AB=2cm.以B为中心,将三角形ACB顺时针旋转,使得点A落在边CB的延长线上A1点,此时点C落在点C1的位置。
华杯赛决赛天天练汇总(解析版)
题目1第十八届华杯赛决赛 A 卷(2014×2014+2012)-2013×2013= 【答案】6039【解析】(2014×2014+2012)-2013×2013=((2013+1)×2014+2012)-2013×2013=(2013×2014+2014+2012)-2013×2013=2013×2014-2013×2013+2014+2012=2013×(2014-2013)+2014+2012=2013+2014+2012=6039题目2第二十届华杯赛决赛 B 卷3752÷(39×2)+5030÷(39×10)= 【答案】61【解析】3752÷(39×2)+5030÷(39×10)=3752÷(39×2)+5030÷(39×5×2)=3752÷(39×2)+5030÷5÷(39×2)=3752÷(39×2)+1006÷(39×2)=3752÷78+1006÷78=(3752+1006)÷78=4758÷78=61题目1第十九届华杯赛决赛用□和○表示两个自然数, 若□⨯○= 42, 则(□⨯4)⨯(○÷3)=【答案】56【解析】(□⨯4)⨯(○÷3)=□⨯4⨯○÷3=□⨯○⨯4÷3=42⨯4÷3=56题目2第二十一届华杯赛决 A 卷计算:(98×76 – 679×8)÷(24×6 + 25×25×3-3)= 【答案】1【解析】(98×76 – 679×8)÷(24×6 + 25×25×3-3)=(7448 – 5432)÷(144 + 1875-3)=2016÷2016=1题目12018 年1 月19 日(小中组计数专题)第十九届华杯赛决赛第一次操作将图a。
18~22届华杯赛【小高组】决赛试题打印版
18~22届华杯赛决赛试题【小高组】目录计算篇 (1)计数篇 (6)几何篇 (16)数论篇 (30)应用题 (40)行程篇 (46)组合篇 (50)第一部分:计算篇1、【第18届华杯赛决赛B A 、卷第1题】 计算:______5.1281281125.019=-⨯+⨯.2、【第18届华杯赛决赛C 卷第1题】计算:______2785111111131322=÷⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛-⨯.3、【第19届华杯赛决赛D B A 、、卷第5题】 如果54□711○<<成立,则“○”与“□”中可以填入的非零自然数之和最大为______.4、【第19届华杯赛决赛C 卷第1题】 计算:______5213.23.0241225.095.22.3=-⨯++⨯-.5、【第20届华杯赛决赛B 卷第1题】 计算:______2110804.1451848.28586.57=+⨯-⨯+⨯.6、【第20届华杯赛决赛C 卷第1题】 计算:______528.11.03.0441225.175.01=-+⨯++-.7、【第20届华杯赛决赛D 卷第1题】 计算:______8.0195105375.119484=⨯+⨯.8、【第21届华杯赛决赛A 卷第1题】计算:______107143214.2317=÷⎪⎭⎫ ⎝⎛⨯+-.9、【第21届华杯赛决赛B 卷第1题】计算:_____4.213453611753971=-÷⨯⎪⎪⎪⎪⎭⎫ ⎝⎛-.10、【第21届华杯赛决赛B 卷第8题】现有算式:甲数□乙数○1,其中□,○是符号+,-,×,÷中的某两个.李雷对四组甲数、乙数进行了计算,结果见右表,那么,A ○B =______.11、【第21届华杯赛决赛B 卷第9题】 计算:201620152016201420152014201635343201624232201613121+⎪⎭⎫ ⎝⎛++⋅⋅⋅+⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅++12、【第21届华杯赛决赛C 卷第1题】计算:______525125.022143225.0412=-⨯+-+.13、【第21届华杯赛决赛C 卷第3题】 大于20161且小于20151的真分数有______个.14、【第22届华杯赛决赛A 卷第1题】用][x 表示不超过x 的最大整数,例如3]14.3[=,则⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯118201711720171162017115201711420171132017的值为_____.15、【第22届华杯赛决赛A 卷第2题】从4个整数中任意选出3个,求出它们的平均值,然后再求这个平均值和余下1个数的和,这样可以得到4个数:8,12,3210和319,则原来给定的4个整数的和为______.16、【第22届华杯赛决赛B 卷第1题】______2017120161201512017120151514131513131211311=⨯⨯-+⋅⋅⋅+⨯⨯-+⨯⨯-.第二部分:计数篇1、【第18届华杯赛决赛B A 、卷第13题】用八个右图所示的2×1的小长方形可以拼成一个4×4的正方形.若一个拼成的正方形图形经过旋转与另一个拼成的正方形图形相同,则认为两个拼成的正方形相同.问:在所有可能拼成的正方形图形中,上下对称、第一行有两个空白小方格且空白小方格相邻的图形有多少种?2、【第18届华杯赛决赛B 卷第9题】 右图中,不含“*”的长方形有多少个?3、【第18届华杯赛决赛C 卷第3题】 最简单分数b a 满足4151<<b a ,且b 不超过19,那么b a +的最大可能值与最小可能值之积为______.4、【第18届华杯赛决赛C 卷第12题】一次数学竞赛中,参赛各队每题的得分只有0分,3分和5分三种可能.比赛结束时,有三个队的总得分之和为32分.若任何一个队的总得分都可能达到32分,那么这三个队的总得分共有多少种不同的情况?5、【第18届华杯赛决赛C 卷第14题】用八个右图所示的1×2的小长方形可以拼成一个4×4的正方形.若一个拼成的正方形图形经过旋转与另一个拼成的正方形图形相同,则认为两个拼成的正方形相同.问:有几种拼成的正方形图形仅以一条对角线为对称轴?6、【第19届华杯赛决赛D B A 、、卷第3题】从1~8这八个自然数中任取三个数,其中没有连续自然数的取法有______种.7、【第19届华杯赛决赛A 卷第9题】把n 个相同的正方形纸片无重叠地放置在桌面上,拼成至少两层的多层长方形(含正方形)组成的图形,并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上.下图给出了6=n 时所有的不同放置方法,那么9=n 时有多少种不同放置方法?8、【第19届华杯赛决赛D B 、卷第9题】把n 个相同的正方形纸片无重叠地放置在桌面上,拼成至少两层的多层长方形(含正方形)组成的图形,并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上.下图给出了6=n 时所有的不同放置方法,那么8=n 时有多少种不同放置方法?9、【第19届华杯赛决赛C卷第7题】1的小正方块堆成一立体,其俯视图如右图所示,问共有用八块棱长为cm种不同的堆法(经旋转能重合的算一种堆法).10、【第19届华杯赛决赛C卷第11题】a、和c.现有5块上面有一颗星、两颗星和三颗星的积木分别见下图的b一颗星,2块两颗星和1块三颗星的积木,如果用若干个这些积木组成一个五颗星的长条,那么一共有多少种不同的摆放方式?(下图d是其中一种摆放方式).(a)(b)(c)(d)11、【第20届华杯赛决赛B卷第5题】贝塔星球有7个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国,对于一种这样的星球局势,共可以组成______个两两都是友国的三国联盟.12、【第20届华杯赛决赛B卷第12题】两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后,多得两分者胜,两人的得分总和都是31分,一人赢了第一局且赢得比赛,那么第二局的比分共有多少种可能?13、【第20届华杯赛决赛C卷第2题】将自然数1至8分成两组,使两组的自然数各自之和的差等于16,共有______种不同的分法.14、【第20届华杯赛决赛C卷第5题】如图,3×4的长方形网格纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形,沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出______种不同类型的卡片.15、【第20届华杯赛决赛D 卷第7题】一次数学竞赛有C B A 、、三题,参赛的39个人中,每人至少答对了一道题,在答对A 的人中,只答对A 的比还答对其他题目的多5人,在没答对A 的人中,答对B 的是答对C 的2倍;又知道只答对A 的等于只答对B 的 与只答对C 的人数之和,那么答对A 的最多有______人.16、【第20届华杯赛决赛D 卷第8题】甲,乙两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后,多得两分者胜,两人的得分总和都是30分,在不计比分先后顺序时,三局的比分共有______种情况.17、【第21届华杯赛决赛A 卷第4题】在9×9的格子纸上,1×1小方格的顶点叫做格点.如右图,三角形ABC 的三个顶点都是格点.若一个格点P 使得三角形PAB 与三角形PAC 的面积相等,就称P 点为“好点”.那么在这张格子纸上共有______个“好点”.18、【第21届华杯赛决赛A 卷第5题】对于任意一个三位数n ,用 表示删掉n 中为0的数位得到的数,例如 102=n 时, 12=那么满足 n <,且 是n 的约数的三位数n 有 ______个.19、【第21届华杯赛决赛A 卷第9题】复活赛上,甲乙二人根据投票结果决出最后一个参加决赛的名额.投票人数 固定,每票必须投给甲乙二人之一.最后,乙的得票数为甲的得票数的2120,甲胜出.但是,若乙得票数至少增加4票,则可胜甲.请计算甲乙所得的票数.20、【第21届华杯赛决赛A 卷第13题】如右图,有一张由四个1×1的小方格组成的凸字形纸片和一张5×6的方格纸.现将凸字形纸片粘到方格纸上,要求凸字形纸片的每个小方格都要与方格纸的某个小方格重合,那么可以粘出多少种不同的图形?(两图形经旋转后相同看作相同图形)21、【第21届华杯赛决赛C 卷第11题】如图,是一个等边三角形,等分为4个小的等边三角形,用红和黄两种颜色涂染它们的顶点,要求每个顶点必须涂色,且只能涂一种颜色.涂完后,如果经过旋转,等边三角形的涂色相同,则认为是相同的涂色,则共有多少种不同的涂法?22、【第22届华杯赛决赛B A 、卷第3题】在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子最多放一枚棋子,共有______种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).23、【第22届华杯赛决赛A 卷第5题】某校开设了书法和朗诵两个兴趣小组,已知两个小组都参加的人数是只参加书法小组人数的72,是只参加朗诵小组人数的51,那么书法小组与朗诵小组的人数比是______.24、【第22届华杯赛决赛B A 、卷第8题】如右图,六边形的六个顶点分别标志为F E D C B A 、、、、、.开始的时候“华罗庚金杯赛”六个汉字分别位于F E D C B A 、、、、、顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有______种.25、【第22届华杯赛决赛A 卷第10题】某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选了香蕉,30%的学生选了梨.那么三种水果都选的学生数占学生总数至多是百分之几.26、【第22届华杯赛决赛B 卷第4题】小于1000的自然数中,有______个数的数字组成中最多有两个不同的数字.27、【第22届华杯赛决赛B卷第7题】一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有______个.28、【第22届华杯赛决赛B卷第11题】从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.第三部分:几何篇1、【第18届华杯赛决赛A卷第4题】如右图,在边长为12厘米的正方形ABCD中,以AB为底边作腰长为10厘米的等腰三角形PAB.则三角形PAC的面积等于______平方厘米.2、【第18届华杯赛决赛A卷第4题、B卷第6题】两个大小不同的正方体积木粘在一起,构成右图所示的立体图形,其中,小积木的粘贴面的四个顶点分别是大积木的粘贴面各边的一个三等分点.如果大积木的棱长为3,则这个立体图形的表面积为______.3、【第18届华杯赛决赛A卷第8题,B卷第12题】由四个完全相同的正方体堆积成如右图所示的立体,则立体的表面上(包括底面)所有黑点的总数至少是______.4、【第18届华杯赛决赛B 卷第4题】如图所示,Q P 、分别是正方形ABCD 的边AD 和对角线AC 上的点,且4:1:=PD AP ,2:3:=QC AQ ,如果正方形ABCD 的面积为25,那么三角形PBQ 的面积是______.5、【第18届华杯赛决赛B 卷第10题】如右图,三角形ABC 中,BD AD 2=,EC AD =,18=BC ,三角形AFC 的面积和四边形DBEF 的面积相等,那么AB 的长度是多少?6、【第18届华杯赛决赛C 卷第4题】如图所示,Q P 、分别是正方形ABCD 的边AD 和对角线AC 上的点,且3:1:=PD AP ,1:4:=QC AQ ,如果正方形ABCD 的面积为100,那么三角形PBQ 的面积是______.7、【第18届华杯赛决赛C卷第6题】两个较小的正方体积木分别粘在一个大正方体积木的两个面上,构成右图所示的立体图形,其中,每个小积木粘贴面的四个顶点分别是大积木粘贴面各边的一个五等分点.如果三个积木的棱长互不相同且最大的棱长为5,那么这个立体图形的表面积是______.8、【第18届华杯赛决赛C卷第8题】由四个完全相同的正方体堆积成如右图所示的立体,则立体的表面上(包括底面)所有黑点的总数至少是______.9、【第18届华杯赛决赛C卷第9题】右图中,大正方形的周长比小正方形的周长多80厘米,阴影部分的面积为880平方厘米.那么,大正方形的面积是多少平方厘米?10、【第18届华杯赛决赛C 卷第13题】在等腰直角三角形ABC 中,90=∠A 度,1==AC AB ,矩形EHGF 在三 角形ABC 内,且H G 、在边BC 上.求矩形EHGF 的最大面积.11、【第19届华杯赛决赛D B A 、、卷第1题】如右图,边长为12米的正方形池塘的周围是草地,池塘边D C B A 、、、处各有一根木桩,且3===CD BC AB 米.现用长4米的绳子将一头羊拴在其中的某根木桩上.为了使羊在草地上活动区域的面积最大,应将绳子拴在______处的木桩.12、【第19届华杯赛决赛A 卷第4题】如右图所示,网格中每个小正方格的面积都为1平方厘米.小明在网格纸上 画了一匹红鬃烈马的剪影(马的轮廓由小线段组成,小线段的端点在格子点上或在格线上),则这个剪影的面积为______平方厘米.13、【第19届华杯赛决赛A 卷第8题】平面上的五个点E D C B A 、、、、满足:8=AB 厘米,4=BC 厘米, 5=AD 厘米,1=DE 厘米,12=AC 厘米,6=AE 厘米.如果三角形EAB 的面积为24平方厘米,则点A 到CD 的距离等于______厘米.14、【第19届华杯赛决赛A 卷第12题】如右图,在三角形ABC 中,D 为BC 的中点,BF AF 2=,AE CE 3=.连接CF 交DE 于P 点,求DPEP 的值.15、【第19届华杯赛决赛D B 、卷第4题】如右图所示,网格中每个小正方格的面积都为1平方厘米.小明在网格纸上画了一匹红鬃烈马的剪影(马的轮廓由小线段组成,小线段的端点在格子点上或在格线上),则这个剪影的面积为______平方厘米.16、【第19届华杯赛决赛B 卷第8题】平面上的五个点E D C B A 、、、、满足:16=AB 厘米,8=BC 厘米, 10=AD 厘米,2=DE 厘米,24=AC 厘米,12=AE 厘米.如果三角形EAB 的面积为96平方厘米,则点A 到CD 的距离等于______厘米.17、【第19届华杯赛决赛D B 、卷第12题】如右图,在三角形ABC 中,BF AF 2=,AE CE 3=,BD CD 2=.连接CF 交DE 于P 点,求DPEP 的值.18、【第19届华杯赛决赛C 卷第3题】如右图,在直角三角形ABC 中,点F 在AB 上且BF AF 2=,四边形EBCD 是平行四边形,那么EF FD :为______.19、【第19届华杯赛决赛C 卷第4题】右图是由若干块长12厘米、宽4厘米、高2厘米的积木搭成的立体的正视图,上面标出了若干个点.一只蚂蚁从立体的左侧地面经过所标出的点爬到右侧的地面.如果蚂蚁向上爬行的速度为每秒2厘米,向下爬行的速度为每秒3厘米,水平爬行的速度为每秒4厘米,则蚂蚁至少爬行了______秒.20、【第19届华杯赛决赛C 卷第8题】如右图,在三角形ABC 中,BF AF 2=,AE CE 3=,BD CD 4=.连接CF 交DE 于P 点,求DPEP 的值.21、【第19届华杯赛决赛D 卷第8题】长为4的线段AB 上有一动点C ,等腰三角形ACD 和等腰三角形BEC 在过AB 的直线同侧,DC AD =,EB CE =,则线段DE 的长度最小为______.22、【第20届华杯赛决赛B 卷第7题】如图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角 形DOE 的面积为______.23、【第20届华杯赛决赛B 卷第10题,D 卷第6题】如图,从长、宽、高为15,5,4的长方体中切割走一块长、宽、高为y , 5,x 的长方体(y x 、为整数),余下部分的体积为120,求x 和y 的值.24、【第20届华杯赛决赛B 卷第13题】如图,点M 是平行四边形ABCD 的边CD 上的一点,且2:1:=MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G ,若三角形FCG 的面积与三角形MED 的面积之差为13平方厘米,求平行四边形ABCD 的面积?25、【第20届华杯赛决赛C卷第4题】如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是直角,三角形EDH的是边长为9厘米的正方形,H在AB上,EDH面积是______.26、【第20届华杯赛决赛C卷第6题】一个长方体,棱长都是整数厘米,所有棱长之和是88厘米,问这个长方体总的侧面积最大是______平方厘米.27、【第20届华杯赛决赛C卷第13题】如图,ABCD是平行四边形,F在AD上,三角形AEF的面积是8平方厘米,三角形DEF的面积是12平方厘米,四边形BCDF的面积是72平方厘米,求三角形CDE的面积?28、【第20届华杯赛决赛D 卷第2题】如图,用六个正方形,六个三角形,一个正六边形组成的图案,正方形边 长都是cm 2,这个图案的周长是______.29、【第20届华杯赛决赛D 卷第11题】如图,长方形ABCD 的面积为2m 56,cm 3=BE ,cm 2=DF ,求:三角形AEF 的面积是多少?30、【第20届华杯赛决赛D 卷第13题】如图,ABCD 是平行四边形,MB AM =,CN DN =,FC EF BE ==四边形EFGH 的面积是1,求平行四边形ABCD 的面积.31、【第21届华杯赛决赛A 卷第3题】右图中,5=AB 厘米,85=∠ABC °,45=∠BCA °,20=∠DBC °, 则______=AD 厘米.32、【第21届华杯赛决赛A 卷第10题】如右图,三角形ABC 中,180=AB 厘米,204=AC 厘米,F D 、是AB 上的点,G E 、是AC 上的点,连结FG EF DE CD 、、、,将三角形ABC 分 成面积相等的五个小三角形.则AG AF +为多少厘米?33、【第21届华杯赛决赛B 卷第2题】如右图,30个棱长为1的正方体粘成一个四层的立体,这个立体的表面积等于______.34、【第21届华杯赛决赛B 卷第4题】如右图所示,将一个三角形纸片ABC 折叠,使得点C 落在三角形ABC 所在平面上,折痕为DE .已知74=∠ABE °,70=∠DAB °,20=∠CEB °,那么CDA ∠等于______.35、【第21届华杯赛决赛B 卷第1题】如右图,正方形ABCD 的边长为5,F E 、为正方形外两点,满足4==CF AE ,3==DF BE ,那么______2=EF .36、【第21届华杯赛决赛B 卷第11题】如右图,等腰直角三角形ABC 与等腰直角三角形DEF 之间的面积为20,2=BD ,4=EC ,求三角形ABC 的面积.37、【第21届华杯赛决赛B 卷第13题】如右图,正方形ABCD 的面积为1,M 是CD 边的中点,F E 、是BC 边上的两点,且FC EF BE ==.连接DF AE 、分别交BM 分别于G H 、.求四边形EFGH 的面积.38、【第21届华杯赛决赛卷第5题】如图,AD AB =,21=∠DBC °,39=∠ACB °,则______=∠ABC .39、【第21届华杯赛决赛C 卷第1题】如图,ABCD 是直角梯形,上底2=AD ,下底6=BC ,E 是DC 上一点,三角形ABE 的面积是15.6,三角形AED 的面积是4.8,则梯形ABCD 的面积是______.40、【第22届华杯赛决赛A 卷第6题、B 卷第5题】右图中,三角形ABC 的面积为100平方厘米,三角形ABD 的面积为72平方厘米.M 为CD 边的中点,90=∠MHB °.已知20=AB 厘米.则MH 的长度为______厘米.【几何天地】求阴影面积是正方形面积的几分之几?第四部分:数论篇1、【第18届华杯赛决赛B A 、卷第3题】 某些整数分别被119977553,,,除后,所得的商化作带分数时,分数部分分别是92725232,,,,则满足条件且大于1的最小整数是______.2、【第18届华杯赛决赛A 卷第3题】有一筐苹果,甲班分,每人3个还剩11个;乙班分,每人4个还剩10个;丙班分,每人5个还剩12个.那么这筐苹果至少有______个.3、【第18届华杯赛决赛A 卷第7题】设n 是小于50的自然数,那么使得54+n 和67+n 有大于1的公约数的所有n 的可能值之和为______.4、【第18届华杯赛决赛A 卷第14题】不为零的自然数n 既是2010个数字和相同的自然数之和,也是2012个数 字和相同的自然数之和,还是2013个数字和相同的自然数之和,那么n 最 小是多少?5、【第18届华杯赛决赛B卷第5题】有一箱苹果,甲班分,每人3个还剩10个;乙班分,每人4个还剩11个;丙班分,每人5个还剩12个.那么这箱苹果至少有______个.6、【第18届华杯赛决赛B卷第8题】用“学”和“习”代表两个不同的数字,四位数“学学学学”与“习习习习”的积是一个七位数,且它的个位和百万位数字与“学”所代表的数字相同,那么“学习”所能代表的两位数共有______个.7、【第18届华杯赛决赛B卷第14题】对于155个装有红、黄、蓝三种颜色球的盒子,有三种分类方法:对于每种颜色,将该颜色的球数目相同的盒子归为一类.若从1到30之间所有的自然数都是某种分类中一类的盒子数.1)求三种分类的类数之和?2)说明,可以找到三个盒子,其中至少有两种颜色的球,它们的数目分别相同.8、【第18届华杯赛决赛C卷第5题】四位数abcd与cdab的和为3333,差为693,那么四位数abcd为______.9、【第18届华杯赛决赛C 卷第7题】设c b a 、、分别是0~9中的数字,它们不同时都为0也不同时都为9.将循环小数⋅⋅⋅c b a .0化成最简分数后,分子有______不同情况.10、【第18届华杯赛决赛C 卷第11题】设n 是小于50的自然数,求使得53+n 和45+n 有大于1的公约数的所有n .11、【第19届华杯赛决赛A 卷第2题】在所有是20的倍数的正整数中,不超过2014并且是14的倍数的数之和是______.12、【第19届华杯赛决赛A 卷第13题】从连续自然数1,2,3,…,2014中取出n 个数,使这n 个数满足:任意取其中两个数,不会有一个数是另一个数的5倍.求n 的最大值,并说明理由.13、【第19届华杯赛决赛D B 、卷第2题】在所有是20的倍数的正整数中,不超过3000并且是14的倍数的数之和是______.14、【第19届华杯赛决赛D B 、卷第14题】从连续自然数1,2,3,…,2014中取出n 个数,使这n 个数满足:任意取其中两个数,不会有一个数是另一个数的7倍.求n 的最大值,并说明理由.15、【第19届华杯赛决赛C 卷第5题】设e d c b a 、、、、均是自然数,并且e d c b a <<<<,3005432=++++e d c b a ,则b a +的最大值为______.16、【第19届华杯赛决赛C 卷第10题】 把20142013201420122014220141,,,,⋅⋅⋅中的每个分数都化成最简分数,最后得到的以2014为分母的所有分数的和是多少?17、【第19届华杯赛决赛B 卷第12题】某自然数减去39是一个完全平方数,减去144也是一个完全平方数,求此自然数.18、【第19届华杯赛决赛B 卷第14题】 将每个最简分数m n (其中n m 、为互质的非零自然数)染成红色或蓝色,染色规则如下:1)将1染成红色;2)相差为1的两个数颜色不同;3)不为1的数与其倒数颜色不同.问:20142013和72分别染成什么颜色?19、【第20届华杯赛决赛B 卷第4题】某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小是______.20、【第20届华杯赛决赛B卷第6题】由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是______,最小的是______.21、【第20届华杯赛决赛B卷第8题】三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么3个数之积的末尾3位数有______种可能数值.22、【第20届华杯赛决赛B卷第9题】将1234567891011的某两位的数字交换能否得到一个完全平方数?请说明理由.23、【第20届华杯赛决赛B卷第14题】设“一家之言”,“言扬行举”,“举世皆知”,“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数,如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?24、【第20届华杯赛决赛C 卷第7题】5321-=⎥⎦⎤⎢⎣⎡-x x ,这里的[]x 表示不超过x 的最大整数,则______=x .25、【第20届华杯赛决赛C 卷第10题】将2015个分数2016120151413121,,,,,⋅⋅⋅化成小数,共有多少个有限小数?26、【第20届华杯赛决赛C 卷第11题】 b a 、为正整数,小数点后三位经四舍五入后,式子51.175≈+b a ,求 =+b a27、【第20届华杯赛决赛C 卷第12题】 已知原式e aad abcd ⨯=,式中不同字母代表不同的数字,问四位数abcd 的最大值是多少?28、【第20届华杯赛决赛D 卷第5题】由四个非零数字组成的没有重复数字的所有四位数的和为73326,则这些四位数中最大的是______.29、【第20届华杯赛决赛D 卷第9题】两个自然数之和为667,它的最小公倍数除以最大公约数所得的商等于120,求这两个数?30、【第20届华杯赛决赛D 卷第12题】当n 取遍1,2,3,…,2015中的所有的数时,形如33n n 的数中能够被7整除的有多少个?31、【第20届华杯赛决赛D 卷第14题】“虚有其表”,“表里如一”,“一见如故”,“故弄玄虚”四个成语中每个汉字代表11个非零连续自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数,且“表”>“一”>“故”>“如”>“虚”,且 各个成语中四个汉字所代表的数的和都是21,则“弄”可以代表的数最大 是多少?32、【第21届华杯赛决赛B A 、卷第7题】如果832⨯能表示成k 个连续正整数的和,则k 的最大值为______.33、【第21届华杯赛决赛A 卷第14题】设n 是正整数.若从任意n 个非负整数中一定能找到四个不同的数d c b a 、、、使得d c b a --+能被20整除,则n 的最小值是多少?34、【第21届华杯赛决赛B 卷第12题】试找出这样的最大的五位正整数,它不是11的倍数,通过划去它的若干数字也不能得到可被11整除的数.35、【第21届华杯赛决赛C 卷第7题】n 为正整数,形式为12-n 的质数称为梅森数,例如:712,31232=-=-是梅森数.最近,美国学者刷新了最大梅森数,74207281=n ,这个梅森数也是目前已知的最大的质数,它的个位数字是______.36、【第22届华杯赛决赛B A 、卷第12题】 使1523++n n 不为最简分数的三位数n 之和等于多少.37、【第22届华杯赛决赛B 卷第10题】求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.第五部分:应用题篇1、【第18届华杯赛决赛A卷第10题】小明与小华同在小六(1)班,该班学生人数介于20和30之间,且每个人的出生日期均不相同.小明说:“本班比我大的人数是比我小的人数的两倍”,小华说:“本班比我大的人数是比我小的人数的三倍”问这个班的有多少名学生?2、【第18届华杯赛决赛B卷第11题】若干人完成了植树2013棵的任务,每人植树的棵数相同.如果有5人不参加植树,其余的人每人多植2棵不能完成任务,而每人多植3棵可以超额完成任务.问:共有多少人参加了植树?3、【第18届华杯赛决赛C卷第10题】某高中根据入学考试成绩确定了录取分数线,录取了四分之一的考生.所有被录取者的成绩平均分比录取分数线高10分,所有没有被录取的平均分比录取分数线低26分,所有考生的平均成绩是70分.求录取分数线是多少?4、【第19届华杯赛决赛A卷第7题】学校组织1511人去郊游,租用42座大巴和25座中巴两种汽车.如果要求恰好每人一座且每座一人,则有______种租车方案.5、【第19届华杯赛决赛A卷第10题】有一杯子装满了浓度为16%的盐水.有大、中、小铁球各一个,它们的体积比为10:4:3.首先将小球沉入盐水杯中,结果盐水溢出10%,取出小球;其次把中球沉入盐水杯中,又将它取出;接着将大球沉入盐水杯中后取出;最后在杯中倒入纯水至杯满为止.此时杯中盐水的浓度是多少?(保留一位小数)B、卷第7题】6、【第19届华杯赛决赛D学校组织482人去郊游,租用42座大巴和20座中巴两种汽车.如果要求每人一座且每座一人,则有______种租车方案.。
第18届华杯赛决赛小高组(A)、(B)卷试题及参考答案
8.用“学”和“习”代表两个不同的数字,四位数“学学学学”与“习习习习”的积是一个七位数,且它的个位和 百万位数字与“学”所代表的数字相同,那么“学习”所能代表的两位数共有_______个.
7.设 n 是小于 50 的自然数,那么使得 4n+5 和 7n+6 有大于 1 的公约数的所有 n 的可能值之和为________. 8.由四个完全相同的正方体堆积成如右图所示的立体,则立体的表面上(包括底面)所有黑点的总数至 少是________.
二、解答下列各题(每题 10 分,共 40 分要求写出简要过程) 9.用四个数字 4 和一些加、减、乘、除号和括号,写出四个分别等于 3,4,5 和 6 的算式.
6.解析:【知识点】立体几何 求出小积木的棱长即可,如图所示:
小积木的棱长是直角三角形的斜边长度,小积木一个面的面积为12 22 5 ,大积木一个面的面积为 32 9 ,立体图形的表面积为: S 9 5 5 5 (9 5) 74 7.解析:【知识点】数论,余数,因数
设 4n 5 和 7n 6 的公约数为 k ,则 (4n 5) k 为整数,(7n 6) k 也为整数,为了作差消去 n ,前者 乘 7,后者乘 4,则[7(4n 5) 4(7n 6)] k 11 k 为整数,因为 k 1,则11 k 为整数时,只能是 k 11, 即 4n 5 和 7n 6 的公约数为 11; 又因为[(7n 6) (4n 5)] 11为整数,则 3n 1 为整数,
第十八届华杯赛·小学高年级组·武汉
【分析】 原式
2.
3.
4.
5.
【考点】勾股定理 【答案】 110 【分析】 直角边有 101 条,斜边有 9 条,一共 110 条. 【考点】计数 【答案】 B 【分析】 和是 12,有 1 种;和是 10 有 1 种;和是 8,有 2 种;和是 6 有 2 种;和是 4, 有 1 种,一共 7 种,选 B. 【考点】完全平方数 【答案】 9 【分析】 5ab 4 是完全平方数,那么这个数末位是 2 或 8,在判断首位只能是 7,验证 722 5184 满足,那么 a b 9 【考点】容斥 【答案】 140 【分析】 5,8 40 个一周期,去的时候一共标记 40 个,回来时标记 25 个,重复标记 5 个,没有被标记的一共有 200 40 25 5 140 个.
一、填空题 1. 【考点】计算 【答案】2013
2012 2013 2007 2014 2013 . 2007 2012 2014 【考点】扶梯问题 【答案】36 2 【分析】 小孩的速度: 60 90 (米/秒) ,自动扶梯的速度是: 60 60 1 (米/秒) , 3 2 需要: 60 1 36 (秒) 3 【考点】行程 【答案】 3 : 40 【分析】 骑车 A:10 分钟共走 3 千米,骑车 B:10 分钟走 40 千米,速度比等于路程 比是 3 : 40 . 【考点】比例应用题 【答案】20 5 4 【分析】 猴大:猴二:猴三= 5 : 4 : 4 45 : 20 :16 ,则猴二为 9 9 20 29 45 16 20 .
A G F E
B
D
C
11. 影院正在放映《玩具总动员》 、 《冰河世纪》 、 《怪物史莱克》 、 《齐天大圣》四部动漫电影, 票价分别为 50 元、55 元、60 元、65 元。来影院的观众至少看一场,至多看两场。因 时间关系《冰河世纪》与《怪物史莱克》不能观看,若今天必有 200 人看电影所花的钱 一样多,则影院今天至少接待观众多少人?
第十八届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组a卷)
2013年第十八届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组A卷)一、填空题(每小题10分,共80分)1.(10分)计算:(2014×2014+2012)﹣2013×2013 .2.(10分)将长方形的纸片ABCD按右图的方式折叠后压平,使三角形DCF 落在三角形DEF的位置,顶点E恰落在边AB上.已知∠1=22°,那么∠2是度.3.(10分)鸡兔同笼,共有40个头,兔脚的数目比鸡脚的数目的10倍少8只,那么兔有只.4.(10分)第一次操作将图a左下角的正方形分为四个小正方形,见图b;第二次操作再将图b左下角的小正方形分为四个更小的正方形,见图c;这样继续下去,当完成第六次操作时,得到的图形中共有个正方形.5.(10分)如图加法竖式中,相同的汉字代表1至 9中的相同数字,而不同的汉字代表不同的数字.则竖式中的“数学”所表示的两位数共有个.6.(10分)大小两个正方体积木粘在一起,构成如图所示的立体图形,其中小积木的下底面的四个顶点,恰好是大积木的上底面各边的中点.如果大积木的棱长为2,那么这个立体图形的表面积是.7.(10分)某班学生人数大于20而小于30,其中女同学的人数是男同学的2倍.全班报名参加“华杯赛”的人数是未报名人数的3倍少1人.这个班有学生名.8.(10分)如图,图形内的数字分别表示所在的矩形或三角形的面积,那么阴影三角形的面积为.二、简答题(每小题15分,共60分,要求写出简要过程)9.(15分)用四个数字4和一些加、减、乘、除号和括号,写出四个分别等于3、4、5和6的算式.10.(15分)如图是U,V,W,X四辆不同类型的汽车每百千米的耗油量.如果每辆车都有50升油,那么这四辆车最多可行驶的路程总计是多少千米?11.(15分)某商店卖出一支钢笔的利润是9元,一个小熊玩具的进价为2元.一次商家采取“买4支钢笔赠送一个小熊玩具”的打包促销,共获利润1922元.问这次促销最多卖出了多少支钢笔?12.(15分)编号从1到10的10个白球排成一行,现按照如下方法涂红色:(1)涂2个球;(2)被涂色的2个球的编号之差大于2.那么不同的涂色方法有多少种?2013年第十八届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组A卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)计算:(2014×2014+2012)﹣2013×2013 6039 .【分析】把2014看作2013+1,把2012看作2013﹣1,进行简算即可.【解答】解:(2014×2014+2012)﹣2013×2013=[(2013+1)×(2013+1)+(2013﹣1)]﹣2013×2013=(2013+1)×(2013+1)+2013﹣1﹣2013×2013=2013×2013+2013+2013+1+2013﹣1﹣2013×2013=(2013×2013﹣2013×2013)+(1﹣1)+(2013+2013+1+2013)=6039.故答案为:6039.2.(10分)将长方形的纸片ABCD按右图的方式折叠后压平,使三角形DCF 落在三角形DEF的位置,顶点E恰落在边AB上.已知∠1=22°,那么∠2是44 度.【分析】由题意可知:因为是翻折,∠CFD应该和∠EFD相等,又因∠DEF 等于90°,∠1=22°,于是利用三角形的内角和定理即可求出∠DFE的度数,又因∠CFD和∠EFD和∠2构成了一个平角,平角是180°,据此即可求出∠2的度数.【解答】解:因为翻折,∠CFD=∠EFD=90°﹣22°=68°,∠2=180°﹣68°﹣68°=44°.故答案为:44.3.(10分)鸡兔同笼,共有40个头,兔脚的数目比鸡脚的数目的10倍少8只,那么兔有33 只.【分析】设兔有x只,则鸡有(40﹣x)只,根据脚的倍数关系:兔脚的数=鸡脚的数×10倍+8只,可列方程解答即可.【解答】解:设兔有x只,则鸡有(40﹣x)只,根据脚的倍数关系可列方程:4x+8=10×2×(40﹣x)4x+8=800﹣20xx=33答:兔子有33只.故答案为:33.4.(10分)第一次操作将图a左下角的正方形分为四个小正方形,见图b;第二次操作再将图b左下角的小正方形分为四个更小的正方形,见图c;这样继续下去,当完成第六次操作时,得到的图形中共有29 个正方形.【分析】图a有5个正方形,以后每次操作将一个正方形数目变成四个小正方形,每次增加4个正方形.所以答案为5+6×4=29.【解答】解:5+6×4=29.故答案为:29.5.(10分)如图加法竖式中,相同的汉字代表1至 9中的相同数字,而不同的汉字代表不同的数字.则竖式中的“数学”所表示的两位数共有 3 个.【分析】根据“学+学+学”没有进位,可知“学”只有3种可能.“学”=1,“学习”=17,“数学”=51;“学”=2,“学习”=24,“数学”=72;“学”=3,“学习”=31,“数学”=93.竖式中的“数学”所表示的两位数共有3个.【解答】解:根据题干分析可得:所以数学表示的两位数是51或72或93,一共有3个.答:竖式中的“数学”所表示的两位数共有 3个.故答案为:3.6.(10分)大小两个正方体积木粘在一起,构成如图所示的立体图形,其中小积木的下底面的四个顶点,恰好是大积木的上底面各边的中点.如果大积木的棱长为2,那么这个立体图形的表面积是32 .【分析】如图,因为小积木的下底面的四个顶点,恰好是大积木的上底面各边的中点,所以大正方体一个面的面积是小正方体一个面的面积的2倍.因此,这个立体图形的表面积是大正方体的表面积加上小正方体四个面的面积.据此解答.【解答】解:6×2×2+4×(2×2÷2)=24+4×2=24+8=32.答:这个立体图形的表面积是32.故答案为:32.7.(10分)某班学生人数大于20而小于30,其中女同学的人数是男同学的2倍.全班报名参加“华杯赛”的人数是未报名人数的3倍少1人.这个班有学生27 名.【分析】女同学的人数是男同学的2倍,所以全班人数是3的倍数,全班人数只能是21,24,27;全班报名参加“华杯赛”的人数是未报名人数的3倍少1人,所以全班人数加1人,是4的倍数;检验的全班人数为27人.【解答】解:根据分析知:全班人数是3的倍数,全班人数只能是21,24,27;全班报名参加“华杯赛”的人数是未报名人数的3倍少1人,所以全班人数加1人,是4的倍数;检验的全班人数为27人.故答案为:27.8.(10分)如图,图形内的数字分别表示所在的矩形或三角形的面积,那么阴影三角形的面积为9 .【分析】如下图所示:OA×OC=30,OD×OF=12,将两个式子的等号的两边分别相乘,得出OA×OC×OD×OF=30×12,而OC×OD=10×2=20,由此得出OA×OF,进而求出阴影三角形的面积.【解答】解:因为OA×OC=30,OD×OF=12,所以OA×OC×OD×OF=30×12=360.又因为OC×OD=10×2=20,所以OA×OF=360÷20=18.所以S△AGF=GF•AG=OA•OF=×18=9;答:阴影三角形的面积为9.故答案为:9.二、简答题(每小题15分,共60分,要求写出简要过程)9.(15分)用四个数字4和一些加、减、乘、除号和括号,写出四个分别等于3、4、5和6的算式.【分析】因为12÷4=3,4+4+4=12,所以可以写成(4+4+4)÷4=3;因为4×(4﹣4)=0,4﹣0=4,所以可以写成4﹣(4﹣4)×4=4;因为4×5=20,20÷4=5,所以可以写成(4×4+4)÷4=5;因为2+4=6,(4+4)÷4=2,所以可以写成(4+4)÷4+4=6.【解答】解:(4+4+4)÷4=3;4﹣(4﹣4)×4=4;(4×4+4)÷4=5;(4+4)÷4+4=6;10.(15分)如图是U,V,W,X四辆不同类型的汽车每百千米的耗油量.如果每辆车都有50升油,那么这四辆车最多可行驶的路程总计是多少千米?【分析】根据统计图所提供的信息,可以看出每种车每百千米的耗油量,用50(升)除以每种车的百千米耗油量(升),就是每种车行驶的路程,把四辆车行驶的路程相加即可.【解答】解:(50÷20+50÷25+50÷5+50÷10)×100=(2.5+2+10+5)×100=19.5×100=1950(千米)答:这四辆车最多可行驶的路程总计是1950千米.11.(15分)某商店卖出一支钢笔的利润是9元,一个小熊玩具的进价为2元.一次商家采取“买4支钢笔赠送一个小熊玩具”的打包促销,共获利润1922元.问这次促销最多卖出了多少支钢笔?【分析】根据题意,“买4支钢笔赠送一个小熊玩具”这样卖4支钢笔实得利润9×4﹣2=34元,要这次促销钢笔卖出最多,则要求尽量打包销售.由此可以求出1922是34的多少倍就是打包卖出多少个4支,进而求出最多卖出多少支钢笔.据此解答.【解答】解析:要这次促销钢笔卖出最多,则要求尽量打包销售.1922÷(4×9﹣2)=1922÷34=56(倍)…18(元);18÷9=2(支);56×4+2=224+2=226(支).答:这次促销最多卖出了226支钢笔.12.(15分)编号从1到10的10个白球排成一行,现按照如下方法涂红色:(1)涂2个球;(2)被涂色的2个球的编号之差大于2.那么不同的涂色方法有多少种?【分析】本题采用枚举法,令被涂色的第一个球的编号小于第二个球的编号,由于8+2=10,要使编号之差大于2,所以第二个球编号最大是7,那么第一个球可以是1~7号中的任意一个,由此进行逐个情况讨论,最后再把各种情况的种数相加即可.【解答】解:第一个球涂1号,则另一个球可涂4~10;有7种不同的情况;第一个球涂2号,则另一个球可涂5~10;有6种不同的情况;第一个球涂3号,则另一个球可涂6~10;有5种不同的情况;第一个球涂4号,则另一个球可涂7~10;有4种不同的情况;第一个球涂5号,则另一个球可涂8~10;有3种不同的情况;第一个球涂6号,则另一个球可涂9~10;有2种不同的情况;第一个球涂7号,则另一个球可涂10;有1种不同的情况;所以,不同的涂色方法有:7+6+5+4+3+2+1=28(种).答:不同的涂色方法有28种.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 10:52:49;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800第11页(共11页)。
第十八届华杯赛决赛中年级A卷试题及解析word版
文档仅供参照总分第十八届华罗庚金杯少年邀请赛决赛试题 A (小学中年级组)(时间 2013年4月20日10:00~11:30)一、填空(每小10分, 共 80分)1.算 : (2014 × 2014+2012)-2013 × 2013________.分析: (2014 × 2014+2012)-2013 × 2013=( 2013+1)×( 2013+1 )+2013— 1-2013 × 2013=2013×2013+2013+2013+1+2013-1-2013 × 2013=6039考中最直接的方法,死算也OK。
2.将方形的片 ABCD按右的方式折叠后平 , 使三角形 DCF 落在三角形DEF 的地点 , 点 E恰落在 AB上 . 已知∠ 1= 20°, 那么∠2是 ________度.分析:因翻折,∠CFD= ∠ EFD=90°-20 °=70°∠2=180°-70 °-70 °=40°3.兔同 , 共有 40个 , 兔脚的数目比脚的数目的10倍少 8只 , 那么兔有 ________只 .分析:迫近法列表枚,因为兔脚是脚的 9倍多,而兔数目同样,兔脚是脚两倍,所以兔比多,我能够假兔有 35只,上下整,得答案兔子353433兔脚140136132脚101214兔脚与脚的倍数>10倍>10 倍可列方程求解。
兔有x只,有( 40-x )只,依据脚的倍数关系可列方程:4x+8=10 × 2×( 40-x )解得 x=33。
4.第一次操作将 a左下角的正方形分四个小正方形 , b; 第二次操作再将 b左下角的小正方形分四个更小的正方形 , c; 下去 , 当达成第六次操作 , 获得的形中共有________个正方形 .⋯a b c分析:找律。
第十八届华杯赛决赛答案小中A
第十八届华罗庚金杯少年数学邀请赛决赛试题A参考答案(小学中年级组)一、填空题(每题10 分, 共80分)二、简答题(每题15 分, 共60分, 要求写出简要过程)9.解答. 例如++÷=;44442÷+÷=; (444)43⨯+÷=4(44)46++÷=.+-⨯=;(444)4 5.4(44)44(说明:答案不惟一, 每个式子3分).10.答案:1950解答.U车行驶(5020)100250÷⨯=(千米),V车行驶(5025)100200÷⨯=(千米),W车行驶(505)1001000÷⨯=(千米),X 车行驶(5010)100500÷⨯=(千米).4辆车最多可行驶的路程总计是250+200+1000+500=1950(千米). (说明:本题共5步, 每个式子做对得3分).11.答案:226解答. 卖出一个打包促销, 可赚 94234⨯-=元, 而1922÷34=56……余18, 说明, 钢笔有按每支9元利润单支零售的. ……(5分)即 1922345692=⨯+⨯, 即最多可卖出56包外加零售2支钢笔, 共计4562226⨯+=支钢笔. ……(10分)如果少买1包(4只)钢笔, 即少赚34元, 这时零售多4支可赚36元, 要保持1922这个定值, 零售就要不足4支(739支), 总支数就要减少724399-=支. 当打包减少9包时, 要保持1922这个定值, 零售总支数就要减少2支.……(13分)因此, 打包销售最多为56包时, 销售出钢笔的总支数最多, 为226支.……(15分)12. 答案:28解答. 设被染色的每两个球中的小号码为k , 则k 取值1, 2, 3, 4, 5, 6, 7. 另一个被染色的球的号码可能是 3,4,,10.k k ++ ……(3分)采用列举法:k =1时, (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (1, 10), 共7种;k =2时, (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (2, 10), 共6种;k =3时, (3, 6), (3, 7), (3, 8), (3, 9), (3, 10), 共5种;k =4时, (4, 7), (4, 8), (4, 9), (4, 10), 共4种;k =5时, (5, 8), (5, 9), (5, 10), 共3种;k =6时, (6, 9), (6, 10), 共2种;k =7时, (7, 10). 共1种.不同的染法数为1+2+3+4+5+6+7 = 28 (种). ……(15分)。
第十八届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组a卷)
2013年第十八届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组A卷)一、选择题(每题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)2012.25×2013.75﹣2010.25×2015.75=()A.5 B.6 C.7 D.82.(10分)2013年的钟声敲响了,小明哥哥感慨地说:这是我有生以来第一次将要渡过一个没有重复数字的年份.已知小明哥哥出生的年份是19的倍数,那么2013年小明哥哥的年龄是()岁.A.16 B.18 C.20 D.223.(10分)一只青蛙8点从深为12米的井底向上爬,它每向上爬3米,因为井壁打滑,就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一.8点17分时,青蛙第二次爬至离井口3米之处,那么青蛙从井底爬到井口时所花的时间为()分钟.A.22 B.20 C.17 D.164.(10分)一个盒子里有黑棋子和白棋子若干粒,若取出一粒黑子,则余下的黑子数与白子数之比为9:7,若放回黑子,再取出一粒白子,则余下的黑子数与白子数之比为7:5,那么盒子里原有的黑子数比白子数多()个.A.5 B.6 C.7 D.85.(10分)图ABCD是平行四边形,M是DC的中点,E和F分别位于AB和AD上,且EF平行于BD.若三角形MDF的面积等于5平方厘米,则三角形CEB的面积等于()平方厘米.A.5 B.10 C.15 D.206.(10分)水池A和B同为长3米,宽2米,深1.2米的长方体.1号阀门用来向A池注水,18分钟可将无水的A池注满; 2号阀门用来从A池向B池放水,24分钟可将A池中满池水放入B池.若同时打开1号和2号阀门,那么当A池水深0.4米时,B池有()立方米的水.A.0.9 B.1.8 C.3.6 D.7.2二、填空题(每小题10分,满分40分)7.(10分)小明、小华、小刚三人分363张卡片,他们决定按年龄比来分.若小明拿7张,小华就要拿6张;若小刚拿8张,小明就要拿5张.最后,小明拿了张;小华拿了张;小刚拿了张.8.(10分)某公司的工作人员每周都工作5天休息2天,而公司要求每周从周一至周日,每天都至少有32人上班,那么该公司至少需要名工作人员.9.(10分)图中,AB是圆O的直径,长6厘米,正方形BCDE的一个顶点E 在圆周上,∠ABE=45°.那么圆O中非阴影部分的面积与正方形BCDE 中非阴影部分面积的差等于平方厘米(取π=3.14)10.(10分)圣诞老人有36个同样的礼物,分别装在8个袋子中.已知8个袋子中礼物的个数至少为1且各不相同.现要从中选出一些袋子,将选出的袋子中的所有礼物平均分给8个小朋友,恰好分完(每个小朋友至少分得一个礼物).那么,共有种不同的选择.2013年第十八届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组A卷)参考答案与试题解析一、选择题(每题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)2012.25×2013.75﹣2010.25×2015.75=()A.5 B.6 C.7 D.8【分析】把2012.25看作2010.25+2,2015.75看作2013.75+2,原式变为(2010.25+2)×2013.75﹣2010.25×(2013.75+2),进一步计算为2×2013.75﹣2010.25×2,再运用乘法分配律简算.【解答】解:2012.25×2013.75﹣2010.25×2015.75,=(2010.25+2)×2013.75﹣2010.25×(2013.75+2),=2010.25×2013.75+2×2013.75﹣2010.25×2013.75﹣2010.25×2,=2×2013.75﹣2010.25×2,=(2013.75﹣2010.25)×2,=3.5×2,=7;故选:C.2.(10分)2013年的钟声敲响了,小明哥哥感慨地说:这是我有生以来第一次将要渡过一个没有重复数字的年份.已知小明哥哥出生的年份是19的倍数,那么2013年小明哥哥的年龄是()岁.A.16 B.18 C.20 D.22【分析】从1990年~2012年,年份中都有重复数字,其中是19的倍数的数只有1900+95=1995,然后用2013﹣1995,解答即可.【解答】解:从1990年~2012年,年份中都有重复数字,其中是19的倍数的数只有1900+95=1995,2013﹣1995=18(岁);故选:B.3.(10分)一只青蛙8点从深为12米的井底向上爬,它每向上爬3米,因为井壁打滑,就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一.8点17分时,青蛙第二次爬至离井口3米之处,那么青蛙从井底爬到井口时所花的时间为()分钟.A.22 B.20 C.17 D.16【分析】下滑1米的时间是向上爬3米所用时间的3倍;爬1米和滑1米的时间相同,以爬3米,滑1米为一个周期;(3﹣1)×3+3=9m,青蛙第一次爬至离井口3米之处,(3﹣1)×4+1=9m,青蛙第二次爬至离井口3米之处,此时,青蛙爬的路程为(3+1)×4+1=17米,即4个周期加1米,用时17分钟,所以青蛙每爬1m或滑1m所用时间为1分钟;(12﹣3)÷(3﹣1)=4…1,青蛙从井底爬到井口经过5个周期,再爬2m,用时5×(3+1)+2;解答即可.【解答】解:以爬3米,滑一米为一个周期;(3﹣1)×3+3=9m,青蛙第一次爬至离井口3米之处,(3﹣1)×4+1=9m,青蛙第二次爬至离井口3米之处,此时,青蛙爬了4个周期加1米,用时17分钟,所以青蛙每爬1m或滑1m所用时间为1分钟;(12﹣3)÷(3﹣1)=4…1,青蛙从井底爬到井口经过5个周期,再爬2m,用时5×(3+1)+2=22分钟;故选:A.4.(10分)一个盒子里有黑棋子和白棋子若干粒,若取出一粒黑子,则余下的黑子数与白子数之比为9:7,若放回黑子,再取出一粒白子,则余下的黑子数与白子数之比为7:5,那么盒子里原有的黑子数比白子数多()个.A.5 B.6 C.7 D.8【分析】我们运用比例进行解答,设白子有x个,黑子是x+1.用黑子的个数与白子的个数减去1个的比是7:5,列方程进行解答即可.【解答】解:设白子有x个,黑子是x+1.(x+1):(x﹣1)=7:5,x×5+5=7x﹣7,6x+5=7x﹣7,x=12,x×=12×,x=21;黑子的个数:x=21+1=28;28﹣21=7(个);故选:C.5.(10分)图ABCD是平行四边形,M是DC的中点,E和F分别位于AB和AD上,且EF平行于BD.若三角形MDF的面积等于5平方厘米,则三角形CEB的面积等于()平方厘米.A.5 B.10 C.15 D.20【分析】连接FC,DE,FB,在梯形FBCD中,有S△FDB和S△FDC等底等高,所以面积相等;在梯形EBCD中,有S△EDB和S△EBC等底等高,所以面积相等;在梯形FEBD中,有S△FDB和S△EDB等底等高,所以面积相等;所以可得S△FDC =S△EBC,又因为M是DC的中点,根据高一定时,三角形的面积与底成正比例的性质,所以S△EBC=2×5=10cm2.【解答】解:如图,连接FC,DE,FB,在梯形FBCD中,有S△FDB=S△FDC,在梯形EBCD中,有S△EDB=S△EBC,在梯形FEBD中,有S△FDB=S△EDB,所以S△FDC=S△EBC,因为M是DC的中点,所以S△EBC=2×5=10(平方厘米).则S△EBC=10平方厘米,答:三角形EBC的面积是10平方厘米.故选:B.6.(10分)水池A和B同为长3米,宽2米,深1.2米的长方体.1号阀门用来向A池注水,18分钟可将无水的A池注满; 2号阀门用来从A池向B池放水,24分钟可将A池中满池水放入B池.若同时打开1号和2号阀门,那么当A池水深0.4米时,B池有()立方米的水.A.0.9 B.1.8 C.3.6 D.7.2【分析】根据题意,设水池A和B的容积为“1”,1号阀门A池每分钟进水效率,2号阀门B池每分钟进水效率,A池每分钟放水效率也是,同时打开1号和2号阀门,则A池每分钟进水效率为,B池每分钟进水效率.A池水深0.4米,则A池进水0.4÷1.2=,需要时间分钟,B池进水24×=1,所以B池有水3×2×1.2=7.2m3.【解答】解:设水池A和B的容积为“1”,同时打开1号和2号阀门,则A池每分钟进水效率为:,A池水深0.4米,则A池进水:0.4÷1.2=,需要时间:分钟,B池进水:24×=1,所以B池有水:3×2×1.2=7.2(立方米).故选:D.二、填空题(每小题10分,满分40分)7.(10分)小明、小华、小刚三人分363张卡片,他们决定按年龄比来分.若小明拿7张,小华就要拿6张;若小刚拿8张,小明就要拿5张.最后,小明拿了105 张;小华拿了90 张;小刚拿了168 张.【分析】根据题意,可知小明的张数:小华的张数=7:6,小明的张数:小刚的张数=5:8,进而把这两个比写成连比,即小明的张数:小华的张数:小刚的张数=(7×5):(6×5):(8×7)=35:30:56;再根据“小明、小华、小刚三人分363张卡片”,也即要分配的总量为363,是按照35:30:56进行分配的,从而按照比例分配的方法求解.【解答】解:小明的张数:小华的张数:小刚的张数为:(7×5):(6×5):(8×7)=35:30:56,小明拿的张数:363×=105(张),小华拿的张数:363×=90(张),小明拿的张数:363×=168(张).答:小明拿了105张;小华拿了90张;小刚拿了168张.故答案为:105,90,168.8.(10分)某公司的工作人员每周都工作5天休息2天,而公司要求每周从周一至周日,每天都至少有32人上班,那么该公司至少需要45 名工作人员.【分析】根据题意,该公司一周总上班人次至少为32×7=224(人次),把它看做224个元素,而每人每周上5次,把它看做5个抽屉,考虑最值:224÷5=44(名)…4名,所以至少需要44+1=45人.【解答】解:根据题干分析可得:32×7÷5=44(名)…4名,44+1=45(名),答:那么该公司至少需要45名工作人员.故答案为:45.9.(10分)图中,AB是圆O的直径,长6厘米,正方形BCDE的一个顶点E 在圆周上,∠ABE=45°.那么圆O中非阴影部分的面积与正方形BCDE 中非阴影部分面积的差等于10.26 平方厘米(取π=3.14)【分析】连接EO,圆O中非阴影部分的面积﹣正方形BCDE中非阴影部分面积=(圆O中非阴影部分的面积+阴影部分面积)﹣(正方形BCDE中非阴影部分面积+阴影部分面积)=S圆﹣S正.然后,根据,∠ABE=45°可得正方形的边长等于圆的半径,进而推导出BE2=r2=(6÷2)2×2,再根据前面的关系式代入数据解答即可.【解答】解:如图,连接EO,S正=EB×EB=EO2+BO2=(6÷2)2×2=18cm2所以圆O中非阴影部分的面积与正方形BCDE中非阴影部分面积的差:π×(6÷2)2﹣18=10.26(平方厘米);答:圆O中非阴影部分的面积与正方形BCDE中非阴影部分面积的差等于10.26平方厘米.故答案为:10.26.10.(10分)圣诞老人有36个同样的礼物,分别装在8个袋子中.已知8个袋子中礼物的个数至少为1且各不相同.现要从中选出一些袋子,将选出的袋子中的所有礼物平均分给8个小朋友,恰好分完(每个小朋友至少分得一个礼物).那么,共有31 种不同的选择.【分析】36个同样的礼物装在8个袋子中,每个袋子礼物的个数至少为1且各不相同,而1+2+3+…+8=(1+8)×8÷2=36,明确8个袋子分别装的礼物数是1~8.根据题意要求选出袋子里装的礼物数为8的倍数,分情况枚举即可.【解答】解:如果每人分1个礼物:8=<8=1+7=2+6=3+5=1+2+5=1+3+4,6种;如果每人分2个礼物:16=1+7+8=2+6+8=3+5+8=3+6+7=4+5+7=1+2+5+8=1+2+6+7=1+3+4+8=1+3+5+7=1+4+5+6=2+3+4+7=2+3+5+6 =1+2+3+4+6,共13种;如果每人分3个礼物,拆分24,与拆分36﹣24=12是一样的.12=4+8=5+7=1+3+8=1+4+7=1+5+6=2+3+7=2+4+6=3+4+5=1+2+3+6=1+2+4+5,共10种;如果每人分4个礼物,同理拆分36﹣32=44=4=1+3,共2种;所以,共有6+13+10+2=31种不同的选择.故答案为:31.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 10:56:29;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800第11页(共11页)。
2013年第十八届华罗庚金杯少年数学邀请赛小高组ABC试卷及详解
第十八届华罗庚金杯少年数学邀请赛初赛试题A(小学高年级组)第十八届华罗庚金杯少年数学邀请赛初赛试题C (小学高年级组)(时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn =+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ). (A )1243 (B )1343 (C )4025 (D )4029解答:B 。
在考试中,选择恰当的方法很重要。
这道题,看到这道题后,我第一个想法就是归纳。
2222315=+、2231422=+、2244537=+、2255648=+、写完前三个,发现第二个算式很不和谐,又写出了第四个,仔细一想,原来第二个可以写成2233426=+,规律找到了,分子是原式中分子部分的一个因数,分母比分子大3!答案一定是20132016,很简单,第一题是很容易的年份题,等等,年份2013这个数是我们非常熟悉的,2013=3×11×61,是3的倍数,那么加3不还是3的倍数么?可以约分,所以最后的答案是20136712016672=所以选B ! 如果本题需要详细的过程,那么用规纳的方法是不合适的,因为这是不完全归纳法,你这么知道前几个适用的情况下,最后的2013也适用呢,所以最正确的方法是这样思考:如果这道题直接计算,分别算出分子分母,然后必然需要一个约分的过程(从选项可以看出),那么就太麻烦了,如果不计算出最后结果就可以约分,是件好事儿,那么转化分子还是转化分母呢?我们都知道,当分子分母都是乘法的形式,是比较好约分的,所以要转化分母,要在分母中“凑”出2013.具体过程是这样的:201320132014(20131)2012201320132014201320142012201320132014201320132201320132013671,2013(20142)2016672⨯=⨯++⨯=⨯++⨯=⨯+⨯⨯===⨯+原式 6716721343.m n +=+=这个题做完了,很容易得分的一道题,也是容易马虎的一个题,如果不仔细读题,忽略了“m 与n 为互质的自然数”,那么就容易把答案写成D 。
2013年第十八届华杯复赛小学高年级组A卷(含解析)
62
8
9
10
11
12
13
(4 4 4) 4 3
4 (4 4) 4 4
54
25
1.375 不能
5
(4 4 4) 4 5
4 (4 4) 4 6
参考解析
一、填空题(每小题 10 分,满分 80 分) 1.计算:19 0.125 281 1 12.5 _______.
14.不为零的自然数 n 既是 2010 个数字和相同的自然数之和,也是 2012 个数字和相同的自 然数之和,还是 2013 个数字和相同的自然数之和,那么 n 最小是多少?
3 / 11
第十八届华罗庚金杯少年数学邀请赛 决赛试卷 A(小学高年级组) 参考答案
1
2
3
4
5
6
25
2,3
316
153
12
10.小明与小华同在小六(1)班,该班学生人数介于 20 和 30 之间,且每个人的出生日期均 不相同.小明说:“本班比我大的人数是比我小的人数的两倍”小华说:“本班比我大的 人数是比我小的人数的的三倍”,问这个班有多少名学生?
11.小虎周末到公园划船,九点从租船处出发,计划不超过十一点回到租船处.已知,租船 处在河的中游,河道笔直,河水流速 1.5 千米/小时; 划船时,船在静水中的速度是 3 千米/小时,每划船半小时,小虎就要休息十分钟让船顺水漂流.问: 小虎的船最远可 以离租船处多少千米?
5 7 9 11
35
2 , 2 ,则满足条件且大于 1 的最小整数是_______. 79
【考点】数论——余数+周期问题
【难度】☆☆☆
4 / 11
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十八届华罗庚金杯少年数学邀请赛
决赛试题A (小学高年级组)
(时间: 2013年4月20日10:00~11:30)
一、填空题(每小题 10分, 共80分)
1. 计算: =-⨯+⨯5.128
1281125.019________. 2.农谚‘逢冬数九’讲的是, 从冬至之日起, 每九天分为一段, 依次称之为一九, 二九, ……, 九九, 冬至那天是一九的第一天. 2012年12月21日是冬至, 那么2013年的元旦是________九的第________天.
3.某些整数分别被53, 11
9,97,75除后, 所得的商化作带分数时, 分数部分分别是9
2,72,52,32, 则满足条件且大于1的最小整数是________.
4.如右图, 在边长为12厘米的正方形ABCD 中, 以AB 为
底边作腰长为10厘米的等腰三角形P AB . 则三角形P AC
的面积等于________平方厘米.
5.有一筐苹果, 甲班分, 每人3个还剩11个; 乙班分, 每人4个还剩10个; 丙班分, 每人5个还剩12个. 那么这筐苹果至少有________个.
6.两个大小不同的正方体积木粘在一起, 构成右图所示的立体图形,
其中, 小积木的粘贴面的四个顶点分别是大积木的粘贴面各边的一个三等分点.如果大积木的棱长为3, 则这个立体图形的表面积为________.
7.设n 是小于50的自然数, 那么使得4n +5和7n +6有大于1
的公约数的所有n 的可能值之和为 .
8.由四个完全相同的正方体堆积成如右图所示的立体, 则立体的表面上(包括
底面)所有黑点的总数至少是________.
二、解答下列各题(每题10分, 共40分, 要求写出简要过程)
9.用四个数字4和一些加、减、乘、除号和括号, 写出四个分别等于3, 4, 5和
6的算式.
10.小明与小华同在小六(1)班, 该班学生人数介于20和30之间, 且每个人的出
生日期均不相同. 小明说: “本班比我大的人数是比我小的人数的两倍”, 小华说: “本班比我大的人数是比我小的人数的三倍”. 问这个班有多少名学生?
11.小虎周末到公园划船, 九点从租船处出发, 计划不超过十一点回到租船处.
已知, 租船处在河的中游, 河道笔直, 河水流速1.5千米/小时; 划船时, 船在静水中的速度是3千米/小时, 每划船半小时, 小虎就要休息十分钟让船顺水漂流. 问: 小虎的船最远可以离租船处多少千米?
12.由四个相同的小正方形拼成右图. 能否将连续的24个自然数
分别放在图中所示的24个黑点处(每处放一个, 每个数只
使用一次), 使得图中所有正方形边上所放的数之和都相等?
若能, 请给出一个例子; 若不能, 请说明理由.
三、解答下列各题(每小题15分,共30分,要求写出详细过程)
13.用八个右图所示的1
4⨯的正方形.
2⨯的小长方形可以拼成一个4
若一个拼成的正方形图形经过旋转与另一个拼成的正方形图形相
同, 则认为两个拼成的正方形相同. 问: 在所有可能拼成的正方
形图形中, 上下对称、第一行有两个空白小方格且空白小方格相邻
的图形有多少种?
14.不为零的自然数n既是2010个数字和相同的自然数之和, 也是2012个数字
和相同的自然数之和, 还是2013个数字和相同的自然数之和, 那么n最小是多少?。