数字图像处理复习资料

合集下载

数字图像处理期末考试复习资料

数字图像处理期末考试复习资料

《数字图像处理》复习指南选择题1、采用幕次变换进行灰度变换时,当幕次取大于1时,该变换是针对如下哪一类图像进行增强。

(B )A图像整体偏暗B图像整体偏亮C图像细节淹没在暗背景中D图像同时存在过亮和过暗背景2、图像灰度方差说明了图像哪一个属性(B )A平均灰度B图像对比度C图像整体亮度D图像细节3、计算机显示器主要采用哪一种彩色模型(A )A、RGBB、CMY 或 CMYKC、HSID、HSV4、采用模板[-1 1] T主要检测(A )方向的边缘。

A.水平B.45 0C.垂直D.135 05、下列算法中属于图象锐化处理的是:( C )A.低通滤波B.加权平均法C.高通滤波D.中值滤波6、维纳滤波器通常用于( C )A、去噪B、减小图像动态范围C、复原图像D、平滑图像7、彩色图像增强时,( C )处理可以采用 RGB彩色模型。

A.直方图均衡化B.同态滤波C.加权均值滤波D.中值滤波8、B_滤波器在对图像复原过程中需要计算噪声功率谱和图像功率谱。

A.逆滤波B.维纳滤波C.约束最小二乘滤波D.同态滤波9、高通滤波后的图像通常较暗,为改善这种情况,将高通滤波器的转移函数加上一常数量以便引入一些低频分量。

这样的滤波器叫( B )。

A.巴特沃斯高通滤波器 B.高频提升滤波器C.高频加强滤波器D.理想高通滤波器10、图象与灰度直方图间的对应关系是( B )A.——对应B.多对一C. 一对多D.都不11、下列算法中属于图象锐化处理的是:( C)A.低通滤波B.加权平均法C.高通滤波D.中值滤波12、一幅256*256的图像,若灰度级数为 16,则存储它所需的比特数是:(A )A. 256KB.512KC. 1M C.2M13、一幅灰度级均匀分布的图象,其灰度范围在[0, 255],则该图象的信息量为:(D)18、对椒盐噪声抑制效果最好的是下列那种图像增强技术? (DA 低通滤波B Laplace 微分C 邻域平均D 中值滤波 19、将图像“ name.tif”存储到文件中的命令(C )A 、 imread( ’ name.tif ’)B 、 loadC 、 imwrite( ’ name.tif ’ )20 . 计算机显示设备使用的颜色模型是( A )A. RGBB. HSVC. CMYD. 以上都 不对 21 .下列关于直方图的叙述错误的是 ( D )A. 描绘了各个灰度级像素在图像中出现的概率B. 描述图像中不同灰度级像素出现的次数C. 没有描述出像素的空间关系D. 直方图均衡化不能增强图像整体对比度的效果 22 . 锐化滤波器的主要用途不包括 ( B) A. 突出图像中的细节增强被模糊了的细节B. 超声探测成像分辨率低可以通过锐化来使图像边缘模糊C. 图像识别中分割前的边缘提取D. 锐化处理恢复过度钝化、暴光不足的图像23 .假设f(x,y)是一幅图像,则下列有关 f(x,y)的傅里叶变换说法中不正确 (C )A. 在原点的傅里叶变换等于图像的平均灰度级B . 一个二维傅里叶变换可以由两个连续一维的傅里叶运算得到 C. 图像频率域过滤可以通过卷积来实现 D. 傅里叶变换具有线性移不变性24. 列有关图像复原和图像增强的说法错误的是 (D )A. 与图像增强不同,图像复原的目的是提供给用户喜欢接收的图像B.图像增强主要是一个客观过程,而图像复原主要是一个主观过程C.图像增强被认为是一种对比度拉伸,图像复原技术追求恢复原始图像的一种近似 估计值D.图像复原技术只能使用频率域滤波器实现a. 0b.255 14 、下列算法中属于局部处理的是:a.灰度线性变换b.二值化15、下列算法中属于点处理的是:(a.梯度锐化b.二值化c.6d.8D)c.傅立叶变换d.中值滤波 )c.傅立叶变换d.中值滤波16、下列算法中属于图象平滑处理的是:( C)a.梯度锐化b.直方图均衡c.中值滤波placian 增强17、设灰度图中每一个像素点由1 个字节表示,则可表示的灰度强度范围是B) A . 128 B. 256 C. 36 D. 96)D 、 imshow( ’25、下列哪一个模板可用于图像平滑 (A26、对于含有孤立线噪声的图像,既要保证图像的边缘,又要去除噪声应该用那种滤波器 (B)判别正确、错误1 .图像按其亮度等级的不同,可以分为二值图像和灰度图像两种。

(完整word版)数字图像处理期末复习资料

(完整word版)数字图像处理期末复习资料

1图像的特点:1)直观形象2)易懂3)信息量大2 图像的分类:1)按灰度分类:二值图像,多灰度图像2)按色彩分类:单色图像,动态图像3)按运动分类:静态图像,动态图像4)按时空分布分类:二维图像,三维图像3 数字图像处理的主要内容:1)图像获取2)图像变换3)图像增强4)图像复原5)图像编码6)图像分析7)图像识别8)图像理解4数字图像处理方法:1)空域法2)变换域法5什么是数字图像的采样和量化?采样:将模拟图像在空间上连续的点按照一定的规则变换成离散点的操作。

量化:由于采样图像被分割成空间上离散的像素,但其灰度是连续的,还不能用计算机进行处理,所以要对采样后的图像进行量化,即将连续的像素灰度值转换成离散的整数值的过程。

6图像像素间的邻接、连接和连通的区别?邻接:两个像素是否邻接就看它是否接触,一个像素和在它邻域中的像素是邻接的。

邻接仅仅考虑了像素间的空间关系。

连接:对两个像素,要确定它们是否连接,要考虑两点:①空间上要邻接;②灰度值要满足某个特点的相似准则第二章1 试述图像采集系统的结构及其各部分的功能?2 连续图像随机过程可以用哪些数字特征来描述?概率密度,一阶矩或平均值,二阶矩或自相关函数,自协方差,方差3 为什么说只要满足采样定理,就可以有离散图像无失真的重建元连续图像?这是由图像的连续性决定的,由图像上某一点的值可以还原出该点的一个小邻域里的值,这个图像连续性越好,这个邻域就可以越大,抽样次数可以很少就可以无失真还原。

而抽样定理对应这个邻域最小的情况即抽样次数最多的情况,大概是每周期两个样本4与标量量化相比,向量量化有哪些优势?合理地利用样本间的相关性,减少量化误差提高压缩率,5 Matlab图像处理工具箱提供了哪几类类型的数字图像?它们之间能否转换?如果可以如何转换?二进制图像,索引图像,灰度图像,多帧图像,RGB图像,它们之间可以相互转换,转换函数(23页6 数字图像的空间分辨率和采样间隔有什么联系?采样间隔是决定图像分辨率的主要参数1 FFT的基本思想是什么??利用DFT系数的特性,合并DFT运算中的某些项,把长序列DFT变成短序列DFT,从而减少其运算量。

数字图像处理复习资料

数字图像处理复习资料

图像是对客观对象的一种相似性的、生动性的描述或写真。

数字图像是一种空间坐标和灰度均不连续的、用离散数字表示的图像。

数字图像处理就是利用计算机对数字图像进行系列操作,从而达到某种预期目的的技术。

数字图像处理可分为狭义图像处理、图像分析、图像理解。

图像内容随时间变化的系列图像称为运动图像,反之为静止图像。

将空间上连续的图像变换成离散点的操作称为采样。

将像素灰度转换成离散的整数值的过程叫量化。

采样、量化、数字图像化间的关系:采样间隔越大,所得图像像素数越少,空间分辨率越低,质量差,严重是出现像素呈块状的国际棋盘效应,反之相反但数据量大;量化等级越多,所得图像层次越丰富,灰度分辨率越高,质量越好,但数据量大,反之相反;极少情况下当图像大小固定时,减少灰度级能改善质量,产生这种情况最可能的原因是减少灰度级一般会增加图像的对比度。

灰度直方图以灰度级为横坐标,纵坐标为灰度级的频率,绘制频率同灰度级的关系图。

直方图的性质:只能反映图像的灰度分布情况,而不能反映图像像素的位置,丢失了像素的位置信息;一幅图像对应唯一的灰度直方图,反之不成立;一幅图像分成多个区域,多个区域的直方图之和即为原图像的直方图。

熵,熵反映了图像信息丰富程度,在图像编码和图像质量评价中有重要意义。

在对输入图像进行处理时,计算某一输出图像值由输入图像像素的小邻域中的像素值确定,这种处理称为局部处理,包括图像的移动平均平滑法和空间域锐化。

图像对比度增强、图像二值化属于点处理。

傅里叶变换属于全局处理。

细化处理属于迭代处理。

图像特征包括自然特征和人工特征。

自然特征包括光谱特征、几何特征、时相特征。

人工特征包括直方图特征、灰度边缘特征等。

噪声就是妨碍人的视觉器官或系统传感器对所接收图像信息进行理解或分析的各种因素。

可分为内部噪声和外部噪声。

图像变换的目的:使图像处理问题简化;有利于图像特征提取;有助于从概念上增强对图像信息的理解。

正交变换的特点是在变换域中图像能量集中分布在低频率上,边缘、线信息反映在高频率成分上。

数字图像处理复习材料

数字图像处理复习材料

图像处理复习材料一、选择填空题1、采样是指将在空间上连续的图像转换成离散的采样点(即像素)集的操作。

2、量化是将各个像素所含的明暗信息离散化后,用数字来表示。

一般的量化值为整数。

3、采样间隔越大,图像质量越差,图像所占空间越小。

4、数字图像处理是指用数字计算机及其它有关数字技术,对图像施加某种运算和处理,从而达到某种预想目的的技术.5、数字图像的描述(三种图像的颜色数目的比较)二值图像:指图像的每个像素只能是黑或白,没有中间过渡,故称为2值图像,2值图像的像素值为0、1。

灰度图像:是指每个像素的信息由一个量化的灰度级来描述的图像,没有彩色信息。

彩色图像:指每个像素的信息由RGB 三原色构成的图像,其中RGB 由不同的灰度级来描述。

彩色图像不能用一个矩阵来描述,一般是用三个矩阵同时描述。

6、图像输出设备:显示器、打印机、投影仪等7、一幅图像对应唯一的灰度直方图,但是多幅图像可以对应同一个直方图。

(直方图与图像之间的关系) 8、直方图均衡化后,图像亮度、对比度发生变化,颜色数目不变。

9、图像平滑使用的是低通滤波器;图像锐化使用的是高通滤波器。

10、图像平滑使用的算子(或模板):均值滤波器模板、中值滤波器模板。

图像锐化使用的算子(或模板):Laplacian 算子、Sobel 算子。

11、梯度算子是一阶微分方程,其他(Laplac ian 、Sobel 等)是二阶微分方程。

12、图像压缩算法的好坏的评价(几个等级对应的图像质量) 等级0→差;等级5→好二、填空题:1、假设图像的灰度级概率密度如图所示。

其中p 1 (z )对应于目标, p 2 (z )对应于背景。

如果P 1 = P 2 ,试求分割目标与背景的最佳门限。

解:由图可以看出p 1 (z ) = (z −1)/2,p 2 (z )=1−z /2 将其代入式P 1 = P 2, 有p 1 (z ) = p 2 (z ) ∴2121z z -=-⇒ 23=z解得最优阈值为T = 3/ 2 。

数字图像处理复习资料

数字图像处理复习资料

一、填空题(每空1分,共10分)填空题主要是一些常见知识。

三、论述题(每小题8分,共40分)下面的内容包括简答和论述题的部分1.简述线性位移不变系统逆滤波恢复图像原理。

答:设退化图象为g(x,y),其傅立叶变换为G(u,v),若已知逆滤波器为1/H(u,v)则对G(u,v)作逆滤波得F(u,v)=G(u,v)/H(u,v) (2分)对上式作逆傅立叶变换得逆滤波恢复图象f(x,y)f(x,y)=IDFT[F(u,v)]以上就是逆滤波恢复图象的原理。

(2分)若存在噪声,为避免H(u,v)=0,可采用两种方法处理。

(0.5分)①在H(u,v)=0时,人为设置1/H(u,v)的值;②使1/H(u,v)具有低同性质。

即H-1(u,v)=1/H(u,v) 当D≤DH-1(u,v)=0 当D>D(0.5分)2.直方图均衡化。

如果对一幅图像已经用直方图均衡化方法进行了处理,那么对处理后的图像再次应用直方图均衡化,处理结果会不会更好?答:1. 直方图均衡化的基本思想是对原始图像中的像素灰度图做某种映射变换,使变换后图像灰度的概率密度是均匀分布的,即变换后图像是一幅灰度级均匀分布的图像,这意味着图像灰度的动态范围得到了增加,从而可提高图像的对比度。

2.处理结果与处理前结果大致相同,没有太大的变化,只是平均值稍有所变。

3. 图像锐化与图像平滑有何区别与联系?答:区别:图象锐化是用于增强边缘,导致高频分量增强,会使图象清晰;(2分)图象平滑用于去噪,对图象高频分量即图象边缘会有影响。

(2分)联系:都属于图象增强,改善图象效果。

(1分)4.什么是中值滤波,有何特点?答:中值滤波法是一种非线性平滑技术,它将每一象素点的灰度值设置为该点某邻域窗口内的所有象素点灰度值的中值.中值滤波是非线性的处理方法,在去噪的同时可以兼顾到边界信息的保留。

中值滤波首先选一个含有奇数点的窗口W,将这个窗口在图像上扫描,把该窗口中所含的像素点按灰度级的升(或降)序排列,取位于中间的灰度值,来代替该点的灰度值。

(完整版)数字图像处理复习整理

(完整版)数字图像处理复习整理

(完整版)数字图像处理复习整理《数字图像处理》复习第⼀章绪论数字图像处理技术的基本内容:图像变换、图像增强、图象恢复、图像压缩编码、图像分割、图像特征提取(图像获取、表⽰与描述)、彩⾊图像处理和多光谱及⾼光谱图像处理、形态学图像处理第⼆章数字图像处理基础2-1 电磁波谱与可见光1.电磁波射波的成像⽅法及其应⽤领域:⽆线电波(1m-10km)可以产⽣磁共振成像,在医学诊断中可以产⽣病⼈⾝体的横截⾯图像☆微波(1mm-1m)⽤于雷达成像,在军事和电⼦侦察领域⼗分重要红外线(700nm-1mm)具有全天候的特点,不受天⽓和⽩天晚上的影响,在遥感、军事情报侦察和精确制导中⼴泛应⽤可见光(400nm-700nm)最便于⼈理解和应⽤最⼴泛的成像⽅式,卫星遥感、航空摄影、天⽓观测和预报等国民经济领域☆紫外线(10nm-400nm)具有显微镜⽅法成像等多种成像⽅式,在印刷技术、⼯业检测、激光、⽣物学图像及天⽂观测X射线(1nm-10nm)应⽤于获取病⼈胸部图像和⾎管造影照⽚等医学诊断、电路板缺陷检测等⼯业应⽤和天⽂学星系成像等伽马射线(0.001nm-1nm)主要应⽤于天⽂观测2-2 ⼈眼的亮度视觉特征2.亮度分辨⼒——韦伯⽐△I/I(I—光强△I—光照增量),韦伯⽐⼩意味着亮度值发⽣较⼩变化就能被⼈眼分辨出来,也就是说较⼩的韦伯⽐代表了较好的亮度分辨⼒2-3 图像的表⽰3.⿊⽩图像:是指图像的每个像素只能是⿊或⽩,没有中间的过渡,⼀般⼜称为⼆值图像(⿊⽩图像⼀定是⼆值图像,⼆值图像不⼀定是⿊⽩图像)灰度图像:是指图像中每个像素的信息是⼀个量化了的灰度级的值,没有彩⾊信息。

彩⾊图像:彩⾊图像⼀般是指每个像素的信息由R、G、B三原⾊构成的图像,其中的R、B、G是由不同的灰度级来描述的。

4.灰度级L、位深度k L=2^k5.储存⼀幅M×N的数字图像所需的⽐特 b=M×N×k例如,对于⼀幅600×800的256灰度级图像,就需要480KB的储存空间(1KB=1024Byte 1Byte=8bit)2-4 空间分辨率和灰度级分辨率6.空间分辨率是图像中可分辨的最⼩细节,主要由采样间隔值决定,反映了数字化后图像的实际分辨率。

数字图像处理复习

数字图像处理复习

数字图像处理复习第一章概述1. 图像的概念及数字图像的概念。

图-是物体透射或反射光的分布,是客观存在的。

像-是人的视觉系统对图的接受在大脑中形成的印象或反映,图像是图和像的有机结合,是客观世界能量或状态以可视化形式在二维平面上的投影。

数字图像是物体的一个数字表示,是以数字格式存放的图像。

2. 数字图像处理的概念。

数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程,以提高图像的实用性。

3. 数字图像处理的优点。

精度高、再现性好、通用性、灵活性强第二章数字图像处理基础1. 人眼视觉系统的基本构造P14 图2.1人眼横截面简图2. 亮度的适应和鉴别人眼对光亮度的适应性非常高,一般情况下跨度达到10的10次方量级,从伸手不见五指到闪光灯强曝光。

3.光强度与主观亮度曲线。

P15 图2.4光强度与主观亮度的关系曲线4. 图像的数字化及表达。

(采样和量化的概念)图像获取即图像的数字化过程,包括扫描、采样和量化。

采样:将空间上连续的图像变成离散点的操作 量化:将像素灰度转换成离散的整数值的过程5. 图像采样过程中决定采样空间分辨率最重要的两个参数。

采样间隔、采样孔径6. 图像量化过程中量化级数与量化灰度取值范围之间的关系量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.7. 像素的相邻领域概念(4领域,8领域)。

设为位于坐标处的一个像素(x+1,y ),(x-1,y ),(x,y+1),(x,y-1) 组成的4邻域,用)(4p N 表示。

(x+1,y+1),(x+1,y-1),(x-1,y+1),(x-1,y-1) 像素集用)p (N D 表示)(4p N 和)p (N D 合起来称为p 的8邻域,用)(8p N 表示。

8. 领域空间内像素距离的计算。

(欧式距离,街区距离,棋盘距离) p 和q 之间的欧式距离定义为: 22)()(),(t y s x q p D e -+-=p 和q 之间的4D 距离(也叫城市街区距离)定义为: t y s x q p D -+-=),(4p 和q 之间的8D 距离(也叫棋盘距离)定义为: ),max(),(8t y s x q p D --=第三章 图像的基本运算(书后练习3.2,3.9 ) 1. 线性点运算过程中各参数表示的含义(k ,b )。

数字图像处理复习

数字图像处理复习

1、图像工程的三个层次。

图像处理、图像分析、图像理解2、距离计算3、描述数字图像的基本参数并说明其物理意义。

(分辨率、像素深度、图像大小)图像的空间坐标的离散化叫做空间采样,灰度的离散化叫做灰度量化。

1:分辨率:是指区分图象细节的程度,通常表示一个像素所代表的实际象元的大小,假设1个M*N数组中等间距的采样来近似一幅连续的图像大小为Lx,Ly的f(x,y).,则分辨率为Lx/M,Ly/N2:像素深度:在灰度离散的灰度量化过程中,每个离散的灰度级数为G=2k ,k称为像素深度.3:图像大小: 存储一副图象的大小所需要的位数b(单位bit), 则b=M*N*k.4、说明数字图像的亮度函数I=f(x, y, z, wavelength, t),说明可以表示的图像类型。

对于一般从客观景物的得到的图像是二维的,这种离散化了的图像可以用I=f(x,y)来表示某一具体位置(像素)的某种性质的数值。

因此我们可以根据图像内的不同位置的不同性质来利用图形。

客观世界的空间是三维的,因此我们可以利用I=f(x,y,z)来表示三维图像中的不同体素的不同性质的数值。

由于所观测的物体的某一位值得性质与电磁波的波长有关,所以可以用I=f(x, y, z, wavelength)来表示物体的某一位值的随电磁波波长而变化的某种性质的数值。

而I=f(x, y, z, wavelength, t)反映了时间的变化带来的数值的变化。

5、简述数字图像处理系统的主要组成及其作用。

硬件组成:图像输入设备、输出设备、计算机和显示器。

存储方式:(1)位映射–每个象素存为一个数据。

存储空间大,放大产生模糊;(2)向量存储(矢量存储)-- 图像内容的轮廓存储时计算量大、算法复杂。

适合图表/工程制图等,显示慢。

软件:Photoshop, mat lab, IDL, ….采集:对某种电磁波敏感的物理器件。

电磁波能-----电信号、数字化器常用的器件:显微密度计micro-densitometers、析象管image dissector、视像管光敏感的固态CCD、NTSC 30 frames/sec PAL25frame/sec、CCD 512-4096 线阵列存储:内存、帧缓存、磁盘、MO、光盘显示:电视显示器(液晶、CRT、等离子体、投影仪等)、打印机【主要组成:采集,存储,计算,显示和输出等几部分;作用:采集主要是采集数字图像;图像包含大量的信息,所以存储图像需要大量的空间,而存储器是必不可少的;计算一般是对算法的形式描述,而大多数的算法可以用软件实现;显示和输出是将处理的结果给人看的,对图像处理和分析系统来说非常的重要。

数字图像处理复习资料课件

数字图像处理复习资料课件

1.谢谢聆 听
03
均值滤波
通过将每个像素的值设置 为邻近像素值的平均值, 减少图像的噪声和细节, 提高图像的平滑度。
中值滤波
将每个像素的值设置为邻 近像素值的中值,有效去 除椒盐噪声,保护图像边 缘。
高斯滤波
通过使用高斯函数对图像 进行平滑处理,减少噪声 和细节,提高图像的平滑 度。
图像边缘检测算法
Sobel算子
多尺度图像处理
02
多尺度图像处理技术可以更好地描述图像的局部特征和纹理信
息,近年来得到了广泛的应用和研究。
稀疏表示和压缩感知
03
稀疏表示和压缩感知理论在图像去噪、压缩和重构等方面具有
很大的优势,成为数字图像处理领域的重要研究方向。
深度学习在图像处理中的应用
卷积神经网络(CNN)
CNN是深度学习在图像处理中最常用的模型之一,具有平移不变性和强大的特征表达能 力,广泛应用于图像分类、目标检测、分割等任务。
场景。
K均值聚类分割
通过将像素分为K个聚类,根据聚 类中心表示像素的颜色信息,实现 图像分割。
基于区域的分割
根据像素的颜色和空间信息,将图 像分割成若干个区域,实现图像分 割。
数字图像处理的实际应用
04
医学图像分析
医学影像诊断
利用CT、MRI等医学影像 ,通过图像处理技术辅助 医生进行疾病诊断。
总结词
理解边缘检测原理,掌握常见算法实现 。
VS
详细描述
边缘检测是数字图像处理中的重要环节之 一,其目的是检测图像中的边缘和轮廓。 常见的边缘检测算法包括Sobel、Prewitt 、Roberts等。在实验中,需要理解各种 算法的原理和实现方法,并针对具体应用 场景选择合适的算法进行实验。

数字图像处理复习资料

数字图像处理复习资料

数字图像处理复习资料数字图像处理基础知识电磁波谱特性电磁波为横波,在真空中以光速传播,具有波粒二象性。

地物的波谱特性任何地物都有自身的电磁辐射规律,如反射,发射,吸收等特性,少数具有透射的特性,而地物的这些特性被称为地物的波谱特性。

(地物发出的波谱主要以反射太阳辐射为主。

达到地面的太阳辐射能量=反射能量+吸收能量+透射能量)常用卫星传感器CCD、MODIS、VISSR、IKONOS、TM、MSS、AVHRR、ETM、QuickBird、HRV. 数字图像的分辨率、像元、直方图、记录方式等数字图像的空间分辨率是指单位尺寸能够采集的像素。

像元是是组成数字化影像的最小单元。

灰度直方图反映的是一幅图像中各灰度级像素出现的频率,以灰度级为横坐标,纵坐标为灰度级的频率,绘制频率同灰度级的关系图就是灰度直方图。

数字图像的记录方式有印刷和照相。

几何校正遥感图像的几何投影类型.单中心投影和多中心投影几何误差的来源传感器成像方式引起的图像变形传感器外方位元素变化的影响地形起伏引起的像点位移地球曲率引起的图像变形大气折射引起的图像变形地球自转的影响基于共线方程的几何校正共线方程校正法是建立在图像坐标与地面坐标严格数学变换基础上的(即成像瞬间像点、地面点以及传感器投影中心3点共线)基于多项式的几何校正回避成像的空间几何过程,直接对图像变形的本身进行数学模拟,把遥感图像的总体变形看作是平移、缩放、旋转、偏扭、弯曲以及更高次的基本变形的综合作用结果基于多项式的几何校正的步骤:1.确定校正的多项式模型2.选择若干个控制点,利用有限个地面控制点的已知坐标,解求多项式的系数3.将各像元的坐标代入多项式进行计算,便可求得校正后的坐标4.位置进行变换,变换的同时进行灰度重采样5.对结果进行精度评定辐射校正辐射误差的来源1.传感器本身的性能引起的辐射误差2.大气的散射和吸收引起的辐射误差3.地形影响和光照条件的变化引起的辐射误差传感器端的辐射校正1.传感器端的畸变主要是由其光学系统,或者光电变换系统的特征所形成的在使用透镜的光学系统中,由于镜头光学特性的非均匀性,在其成像面存在着边缘部分比中心部分发暗的现象(边缘减光)在扫描方式的传感器中,光电变换系统的灵敏度造成的畸变,其校正一般是通过定期地面测定,根据测量值进行校准2.传感器端的辐射校正也称为辐射定标,是把只具有相对意义的离散亮度值转换为具有物理意义的辐亮度或反射率的过程3.辐射定标分为相对定标和绝对定标大气校正1.消除大气影响的校正过程称为大气校正2.大气对辐射的影响大气吸收大气散射3.大气纠正基于辐射传输方程的大气校正基于地面场地数据或辅助数据进行辐射校正利用特殊波段进行大气校正日地距离和太阳高度角校正在相同的大气条件、地表条件和传感器几何条件下,传感器接收到的辐射强度还受到大气顶层的太阳辐射强度和入射几何条件(太阳高度角)的影响太阳高度角校正:考虑太阳在地球上的相对位置的季节变化,通过这个过程,不同太阳高度角照射下的图像数据的像元亮度值,被标准化到假设太阳在天顶时的像元亮度值日地距离校正:用于标准化地球和太阳间的距离的季节变化。

数字图像处理总复习

数字图像处理总复习

34
图像的旋转

算法流程 (1) 以图像的中心为原点,旋转一定的角度。 根据下图,将坐标系Ⅰ变成坐标系Ⅱ;
屏幕中的坐标一般是以左上角为 原点,向右为x轴正方向、向下为y 轴正方向,设其为坐标系Ⅰ。 旋转是绕中心坐标轴原点(a,b)进 行的,向右为x轴正方向,向上为y 轴正方向,设其为坐标系Ⅱ; 如果是绕一个指定点(a,b)旋 转,则先要将坐标系平移到该点, 再进行旋转,然后平移回新的坐标 原点。 35
图像的旋转

算法流程 (2)根据旋转公式,将该点顺时针旋转α角; (3)将坐标系Ⅱ变成坐标系Ⅰ

36
第四部分 图像灰度变换

图像线性变换 灰度变换方程为:
g ( x, y) T [ f ( x, y)] a f ( x, y) b





22
图像的特效显示
图像渐显
图像渐显的思路是先记录下图像的每个像素点的灰度值, 显示的时候先将屏幕置黑,将循环显示图像n次,这里设 n从0,1,2 ,…,256。每一次显示像素灰度值的 n/256倍,图像的像素点计算一遍后,显示一次,重复执 行上述过程,直至每一个屏幕上的像素点的灰度值全部 和记录中的值相同为止。渐显特效虽然不需要对图像进 行分块,但是需要开辟两块内存空间,一块用来存储图 像的原始灰度值,另一块用来存储每次计算后的像素灰 度值。
25
第三部分 图像的几何变换
图像平移算法流程: (1) 取得原图的数据区指针。 (2) 通过对话框输入偏移量tx,ty。 (3) 开辟一个同样大小的缓冲区。 (4) 对原图依次循环每个像素,每读入一个像素点 (x0,y0) , 根 据 它 的 坐 标 , 找 到 目 标 图 像 的 位 置 ( x1=x0-tx,y1=y0-ty ),将像素( x0,y0 )处的颜 色值赋给新图中的(x示

数字图像处理复习资料

数字图像处理复习资料

第一章图像处理:是对图像信息进行加工处理,以满足人的视觉心理和实际应用的需求。

图像处理方法:光学方法、电子学方法。

模拟图像:连续的,采用数字化(离散化)表示和数字技术出现之前,图像是连续的,这一类图像称模拟图像或连续图像。

连续的:指从时间上和从数值上是不间断的。

数字图像:由连续的模拟图像采样和量化而得。

组成数字图像的基本单位是像素,所以数字图像是像素的集合。

像素为元素的矩阵,像素的值代表图像在该位置的亮度,称为图像的灰度值。

数字图像像素具有整数坐标和整数灰度值。

图像分类:按波段多少,图像可分为单波段、多波段和超波段图像。

单波段图像在每个点只有一个亮度值。

多光谱图像上每一个点不只一个特性。

从人眼的视觉特点看,图像分为可见图像和不可见图像。

(模拟)图像分类维数:二维图像、三维图像颜色:黑白图像、彩色图像时间:静止图像、活动图像数字图像:数字图像可以理解为图像的数字表示,是时间和空间的非连续函数(信号),是为了便于计算机处理的一种图像表示形式。

它是由一系列离散单元经过量化后形成的灰度值的集合,即像素(Pixel)的集合。

数字图像处理的特点1信息量大:512×512×8bit=256KB 256KB×25帧/s=6400KB=6.25MB2占用的频带较宽:电视图像的带宽5~6MHz,而语言带宽4KHz,频带越宽,技术实现难度越大3像素相关性大:压缩潜力大4评价受人的影响大图像处理对图像进行一系列的操作以达到预期的目的的技术称作图像处理。

图像处理可分为模拟图像处理和数字图像处理两种方式。

特点:主要在像素级进行处理,处理的数据量非常大。

图像分析图像分析主要是对图像中感兴趣的目标进行检测和测量,从而建立对图像的描述。

特点:是一个从图像到数据的过程,可以看作是中层处理。

图像工程的内涵可分为图像处理、图像分析和图像理解三个层次数字图像的处理方法根据对图像作用域的不同,数字图像处理方法可分为:空域算法和变换域算法。

数字图像处理复习资料

数字图像处理复习资料

数字图像处理复习资料第1章绪论第2章数字图像处理基本概念1. 解答题(1)什么叫数字图像?答:数字图像,又称为数码图像或数位图像,是二维图像用有限数字数值像素的表示。

数字图像是由模拟图像数字化得到的、以像素为基本元素的、可以用数字计算机或数字电路存储和处理的图像。

(2)数字图像处理包括哪些内容?答:图像数字化;图像变换;图像增强;图像恢复;图像压缩编码;图像分割;图像分析与描述;图像的识别分类。

(3)数字图像处理系统包括哪些部分?答:输入(采集);存储;输出(显示);通信;图像处理与分析。

(4)从“模拟图像”到“数字图像”要经过哪些步骤?答:图像信息的获取;图像信息的存储;图像信息处理;图像信息的传输;图像信息的输出和显示。

(5)什么叫数字图像的“空间分辨率”和“幅度分辨率”?各由数字化哪个过程决定?答:空间分辨率是指图像可辨认的临界物体空间几何长度的最小极限;幅度分辨率是指幅度离散,每个像素都有一个强度值,称该像素的灰度,一般量化采用8。

(6)数字图像1600´1200什么意思?灰度一般取值范围0~255,其含义是什么?答:数字图像1600x1200表示空间分辨率为1600x1200像素;灰度范围0~255指示图像的256阶灰阶,就是通过不同程度的灰色来来表示图像的明暗关系,8的灰度分辨率。

(7)P42:2,3,6(直方图概念),10,112.图像的数字化包括哪两个过程?它们对数字化图像质量有何影响?答:采样;量化采样是将空间上连续的图像变换成离散的点,采样频率越高,还原的图像越真实。

量化是将采样出来的像素点转换成离散的数量值,一幅数字图像中不同灰度值得个数称为灰度等级,级数越大,图像越是清晰。

3数字化图像的数据量与哪些因素有关?答:图像分辨率;采样率;采样值。

6.什么是灰度直方图?它有哪些应用?从灰度直方图中你可可以获得哪些信息?答:灰度直方图反映的是一幅图像中各灰度级像素出现的频率之间的关系;它可以用于:判断图像量化是否恰当;确定图像二值化的阈值;计算图像中物体的面积;计算图像信息量。

复习资料-数字图像处理

复习资料-数字图像处理

一、名词解释1.数字图像数字图像是将一幅画面在空间上分割成离散的点(或像元),各点(或像元)的灰度值经量化用离散的整数来表示,形成计算机能处理的形式。

2.图像锐化图像锐化(image sharpening)就是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,亦分空域处理和频域处理两类。

3.中值滤波值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。

4.数据压缩数据压缩是指在不丢失有用信息的前提下,缩减数据量以减少存储空间,提高其传输、存储和处理效率,或按照一定的算法对数据进行重新组织,减少数据的冗余和存储的空间的一种技术方法。

数据压缩包括有损压缩和无损压缩。

5.图像图像是客观对象的一种相似性的、生动性的描述或写真,是人类社会活动中最常用的信息载体。

或者说图像是客观对象的一种表示,它包含了被描述对象的有关信息。

它是人们最主要的信息源图像根据图像记录方式的不同可分为两大类:模拟图像和数字图像6.无损压缩所谓无损压缩格式,是利用数据的统计冗余进行压缩,可完全恢复原始数据而不引起任何失真灰度直方图灰度直方图是灰度级的函数,它表示图像中具有某种灰度级的像素的个数,反映了图像中某种灰度出现的频率。

如果将图像总像素亮度(灰度级别)看成是一个随机变量,则其分布情况就反映了图像的统计特性,这可用probability density function (PDF)来刻画和描述,表现为灰度直方图。

7.无失真编码无失真编码是指压缩图象经解压可以恢复原图象,没有任何信息损失的编码技术。

8.像素的邻域9.采样采样(sampling)其他名称:取样,指把时间域或空间域的连续量转化成离散量的过程10.像素的邻域11.细化细化是提取线宽为一个像元大小的中心线的操作12.直方图均衡化它的基本思想是对图像中像素个数多的灰度级进行展宽,而对图像中像素个数少的灰度进行压缩,从而扩展像原取值的动态范围,提高了对比度和灰度色调的变化,使图像更加清晰。

数字图像处理考试复习资料

数字图像处理考试复习资料

数字图像处理考试复习资料第⼀章:图像的概念: 图像是对客观存在的物体的⼀种相似性的、⽣动的写真或描述。

图像处理:对图像进⾏⼀系列操作,达到预期⽬的处理。

数字图像处理的三个层次:(1)狭义的图像处理:(图像——图像的过程)指对图像进⾏各种操作以改善图像的视觉效果或进⾏压缩编码减少存储空间和传输时间等。

(2)图像识别与分析:(图像——数值或符号的过程)对图像中感兴趣的⽬标进⾏检测和测量,建⽴对图像的描述。

(3)图像理解:(图像——描述及解释)在图像处理与识别的基础上,基于⼈⼯智能和认知理论,研究图像中各⽬标的性质和它们之间的相互联系,对图像内容的含义加以理解以及对原来景观场景加以描述,从⽽指导和规划⾏动。

数字图像处理的特点:(1)精度⾼:对于⼀幅图像⽽⾔,数字化时不管是⽤4⽐特还是8⽐特和其它⽐特表⽰,只需改变计算机中程序的参数,处理⽅法不变。

所以从原理上讲不管对多⾼精度的数字图像进⾏处理都是可能的。

⽽在模拟图像处理中,要想使精度提⾼⼀个数量级,就必须对装置进⾏⼤幅度改进。

(2)再现性好:不管是什么数字图像,均⽤数组或数组集合表⽰。

在传送和复制图像时,只在计算机内部进⾏处理,这样数据就不会丢失或遭破坏,保持了完好的再现性。

⽽在模拟图像处理过程中,就会因为各种⼲扰因素⽽⽆法保持图像的再现性。

(3)通⽤性、灵活性强:不管是可视图像还是X光图像、热红外图像、超声波图像等不可见光图像,尽管这些图像⽣成体系中的设备规模和精度各不相同,但当把这些图像数字化后,对于计算机来说,都可同样进⾏处理,这就是计算机处理图像的通⽤性。

第⼆章图像数字化是将⼀幅画⾯转化成计算机能处理的形式——数字图像的过程。

采样:将空间上连续的图像变换成离散点的操作称为采样。

采样间隔和采样孔径的⼤⼩是两个很重要的参数。

量化:将像素灰度转换成离散的整数值的过程叫量化。

⼀幅数字图像中不同灰度值的个数称为灰度级数,⽤G表⽰。

图像数字化⼀般采⽤均匀采样和均匀量化⽅式。

2024数字图像处理复习材料

2024数字图像处理复习材料

图像处理复习简答题1:1.图像锐化与图像平滑有何区分与联系?答:图象锐化是用于增加边缘,导致高频重量增加,会使图象清楚; 图象平滑用于去噪,对图象高频重量即图象边缘会有影响。

都属于图象增加,改善图象效果。

2.频域空间的增加方法对应的三个步骤:(平滑与锐化)答:假定原图像为f(x,y),经傅立叶变换为F(u,v),输出图像为g(x,y),则频率域锐化过程描述为:(1) 将图像f(x,y)从图像空间转换到频域空间,得到F(u,v);(2) 在频域空间中通过不同的??滤波函数H(u,v)对图像进行不同的增加,得到G(u,v) (3) 将增加后的图像再从频域空间转换到图像空间,得到图像g(x,y)。

(平滑—>低通滤波器, 锐化—>高通滤波器)3.图像数据压缩的必要性答:(1)数字图像的浩大数据对计算机的处理速度、存储容量都提出过高的要求。

因此必需把数据量压缩。

(2)从传送图像的角度来看,则更要求数据量压缩。

在信道带宽、通信链路容量肯定的前提下,采纳编码压缩技术,削减传输数据量,是提高通信速度的重要手段 。

4.图像锐化滤波的常用方法? 答:○1以梯度值代替原来像素值;○2给定一个阈值,若梯度值小于这个阈值,则修改这个像素的灰度值,反之则保持不变; ○3给图像背景给予一个固定的灰度值; ○4给图像前景给予一个固定的灰度值;○5通过一个阈值,给图像的前景和背景分别给予不同的固定的灰度值。

简答题2 1. 图像滤波的主要目的是什么?主要方法有哪些? 2. 图像噪声有哪些主要类型,主要特点是什么? 3. 如何理解中值滤波的不变性? 4. 什么是梯度倒数加权法平滑?5. 什么是Laplacian 算子?它有哪些特征?6. 罗伯特梯度与Sobel 梯度有什么区分?7. 依据像素的梯度值生成不同的梯度图像的方法有哪些? 8. 定向检测的模板有哪些?9. 频率域滤波的主要滤波器有哪些?各有什么特点? 10.同态滤波的基本操作有哪些?简答题2(答案)1. 图像滤波可以从图像中提取空间尺度信息,突出图像的空间信息,压抑其它无关的信息,或者去除图像的某些信息,复原其它的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理复习资料第1章绪论第2章数字图像处理基本概念1. 解答题(1)什么叫数字图像?答:数字图像,又称为数码图像或数位图像,是二维图像用有限数字数值像素的表示。

数字图像是由模拟图像数字化得到的、以像素为基本元素的、可以用数字计算机或数字电路存储和处理的图像。

(2)数字图像处理包括哪些内容?答:图像数字化;图像变换;图像增强;图像恢复;图像压缩编码;图像分割;图像分析与描述;图像的识别分类。

(3)数字图像处理系统包括哪些部分?答:输入(采集);存储;输出(显示);通信;图像处理与分析。

(4)从“模拟图像”到“数字图像”要经过哪些步骤?答:图像信息的获取;图像信息的存储;图像信息处理;图像信息的传输;图像信息的输出和显示。

(5)什么叫数字图像的“空间分辨率”和“幅度分辨率”?各由数字化哪个过程决定?答:空间分辨率是指图像可辨认的临界物体空间几何长度的最小极限;幅度分辨率是指幅度离散,每个像素都有一个强度值,称该像素的灰度,一般量化采用8bit。

(6)数字图像1600⨯1200什么意思?灰度一般取值范围0~255,其含义是什么?答:数字图像1600x1200表示空间分辨率为1600x1200像素;灰度范围0~255指示图像的256阶灰阶,就是通过不同程度的灰色来来表示图像的明暗关系,8bit的灰度分辨率。

(7)P42:2,3,6(直方图概念),10,112.图像的数字化包括哪两个过程?它们对数字化图像质量有何影响?答:采样;量化采样是将空间上连续的图像变换成离散的点,采样频率越高,还原的图像越真实。

量化是将采样出来的像素点转换成离散的数量值,一幅数字图像中不同灰度值得个数称为灰度等级,级数越大,图像越是清晰。

3数字化图像的数据量与哪些因素有关?答:图像分辨率;采样率;采样值。

6.什么是灰度直方图?它有哪些应用?从灰度直方图中你可可以获得哪些信息?答:灰度直方图反映的是一幅图像中各灰度级像素出现的频率之间的关系;它可以用于:判断图像量化是否恰当;确定图像二值化的阈值;计算图像中物体的面积;计算图像信息量。

从灰度直方图中你可可以获得:暗图像对应的直方图组成成分几种在灰度值较小的左边一侧明亮的图像的直方图则倾向于灰度值较大的右边一侧对比度较低的图像对应的直方图窄而集中于灰度级的中部对比度高的图像对应的直方图分布范围很宽而且分布均匀10.什么是点处理?你所学算法中哪些属于点处理?答:在局部处理中,输出值仅与像素灰度有关的处理称为点处理。

如:图像对比图增强,图像二值化。

11.什么是局部处理?你所学算法中哪些属于局部处理?答:在对输入图像进行处理时,计算某一输出像素值由输入图像像素的小领域中的像素值确定,这种处理称为局部处理。

如:图像的移动平均平滑法,空间域锐化法。

第4章 图像增强、平滑去躁(空域)1. 解答题(1)图像增强的目的是什么?答:图像增强的目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的的增强图像的整体或局部特性,将原来不清晰的图像变得清晰或增强某些感兴趣的特征,扩大图像中不同物体的特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,将强图像判读和识别效果,满足某些特征分析的需求。

(2)什么是灰度图像的直方图?简述用它可以简单判断图像质量?答:灰度直方图定义为数字图像中各灰度级与其出现的频数间的统计关系,它能描述该图像的概貌,例如图像的灰度范围,每个灰度级出现的频率,灰度级的分布,整幅图像的平均明暗和对比度等。

(3)常用图像增强方法有哪些?答:图像的线性变换;图像的非线性变化;图像的直方图均衡化和规定化。

(4)“平均模板”对图像做哪种处理?写出 3´3和5´5“平均模板”。

答:抑制噪声,改善图像质量。

3´3“平均模板”H =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11111111191 ;5´5“平均模板”H =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1111111111111111111111111251 (5)“中值滤波”对图像做哪种处理?是如何运算的?答:中值滤波是对一个滑动窗口内的诸像素灰度值排序,用其中值代替窗口中心像素的灰度值的滤波方法,它是一种非线性的平滑法,对脉冲干扰及椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。

(6)什么叫点处理、局部处理、全局处理?3´3平均模板、直方图修正、灰度反转各属于哪种处理?答:局部处理:计算某一输出像素值由输入图像像素的小领域中的像素值确定,这种处理称为局部处理。

(灰度反转)点处理:输出值仅与像素灰度有关的处理称为点处理。

(直方图修正)全局处理:图像某一像素灰度的变化与图像全部像素灰度值有关。

(3´3平均模板) 2.计算题(1)P100:9、10 中值滤波处理与领域平均,见后面(2)P102:26、左表是8级灰度数字图像原始数据,右表是规定直方图。

要求:(1)完成本题要求的“直方图规定化”处理,同时完成“直方图均衡化”处理。

(2)只要求画出表格,数据放在表格中,不要计算过程。

表格可以按照课堂横表,也可以按照课表设计为纵表。

要求画出原始图像、直方图均匀化和直方图规定化处理后图像的直方图,直方图画法参考如下。

第3章图像变换及频域处理(频域)常用图像变换算法:(1)图像的几何变换(图像畸变校正*、图像缩放、旋转*、拼接*)图像缩放:双线性插值(2)图像变换(傅立叶、余弦、沃尔什-哈达玛、K-L变换、小波变换)(3)图像频域处理(增强算法:高频率提升、同态滤波;平滑去噪:增强算法:高频提升、同态滤波;平滑去噪:低通滤波解答题(1)说出数字图像处理中有哪几种图像变换?答:傅里叶;余弦;沃尔什;哈达玛;K-L变换;小波变换。

(2)简述为什么要进行图像变换?各种变换应用在图像什么处理上?答:图像变换在数字图像处理与分析中起着很重要的作用,是一种常用的、有效的分析手段。

图像变换的目的在于:使图像处理问题化;有利于图像特征提取;有助于从概念上增强对图像信息的理解。

(3)简述快速傅里叶变换算法(FFT)原理。

答:(4)长度为N的一维信号的离散傅里叶变换(DFT)其计算量 = N2次乘法 + N(N-1)次法;快速傅里叶变换(FFT)其计算量 = N/2 log2N次乘法 + N log2N加法。

(5)解释图像处理空域与频域。

答:(6)频域进行图像增强、去噪、边缘检测分别用哪种滤波器?(高通、低通、带通或其它?)答:增强------------同态滤波器去噪------------低通滤波器边缘检测------高通滤波器(7)频域处理图像的步骤?答: a.清除噪声,改善图像的视觉效果 b.突出边缘有利于识别和处理(8)图像增强可以在“空域”和“频域”进行,什么叫“空域”和“频域”?两种域各采用什么处理方法?答:空域法:直接对图像的像素灰度进行操作。

常用算法:图像的灰度变换;直方图修正(均衡化、规定化);平滑和锐化处理;彩色增强。

频域法:在图像的变换域中,对图像的变换值进行操作,然后经逆变换获得所需要的增强结果。

常用算法:低通滤波;高频提升滤波;同态滤波。

(9)频域处理图像的步骤?答:第4章图像复原常用图像变换算法:(1)逆滤波;(2)维纳滤波(Wiener Filter);(3)盲卷积*1. 解答题(1)什么叫图像复原?与图像增强有什么区别?答:图像在形成、传输和记录中,由于成像系统、传输介质和设备的不完善,导致图像质量下降,这一现象称为图像退化。

图像复原和图像增强是有区别的,虽然二者的目的都是为了改善图像的质量,但图像增强不考虑图像是如何退化的,只通过试探各种技术来来增强图像的视觉效果。

因此,图像增强可以不顾增强后的图像是否失真,只要看着舒服就行。

而图像复原则完全不同,需知道图像退化的机制和过程等先验知识,据此找出一种相应的逆过程解算方法,从而得到复原的图像。

如果图像已退化,应先做复原处理,再做增强处理。

(2)说出几种图像退化。

答:图像模糊、失真、有噪声等(3)什么是维纳滤波器?答:是一种以最小平方为最优准则的线性滤波器,在一定的约束条件下,其输出与给定函数的差的平方达到最小,通过数学运算最终可变为可变为一个拖布列兹方程的求解问题,是利用平稳随机过程的相关特性和频谱特性混有噪声的信号进行滤波。

(4)说出几种常用的图像复原方法?答:代数恢复方法:无约束复原;约束最小二乘法频域恢复方法:逆滤波恢复法;去除由均匀运动引起的模糊;维纳滤波复原法第5章图像压缩编码常用图像变换算法:(1)哈夫曼编码;(2)算术编码;(3)预测编码;(4)变换编码1.解答题(1)图像为什么可以压缩?(即数字图像中存在哪几种冗余?)答:图像数据之所以可以被压缩,是因为数据中存在着冗余。

在图像压缩中,有三种基本的数据冗余:编码冗余;像素间冗余;视觉冗余。

(2)什么是有损和无损压缩?答:无损压缩:是对文件本身的压缩,和其它数据文件的压缩一样,是对文件的数据存储方式进行优化,采用某种算法表示重复的数据信息,文件可以完全还原,不影响文件内容,对于数字图像而言,也不会使图像细节有任何损失。

有损压缩:是对图像本身的改变,在保存图像时保留了较多的亮度信息,而将色相和色纯度的信息和周围的像素进行合并,合并的比例不同,压缩的比例也不同,由于信息量减少了,所以压缩比可以很高,图像质量也会相应的下降。

(3)霍夫曼编码算法的基本思想是什么?答:是根据源数据符号发生的概率进行编码的。

在源数据中出现概率越大的符号,分配的码字越短;出现概率越小的信号,其码长越长,从而达到用尽可能少的码表示源数据。

(4)无损和有损预测编码算法不同之处?各在哪个环节对数据实现了压缩?答:无损(亦称无失真、无误差、信息保持)编码中删除的仅仅是图像数据中冗余的数据,经解码重建的图像和原始图像没有任何失真。

有损(亦称有误差、有失真)编码是指解码重建的图像与原图像相比有失真,不能精确的复原,但视觉效果上基本相同,是实现高压缩比的编码方式。

(5)简述统计编码、算术编码、预测编码、变换编码算法的基本原理。

答: 统计编码:根据信源的概率分布可变长码,使平均码长非常接近于熵。

算数编码:利用编码符号的联合概率,用一个单独的浮点数来代替一串输入符号。

预测编码:不是直接对信号编码,而是对图像预测误差编码。

实质上是对新的信息进行编码,以消除相邻像素之间的相关性和冗余性。

变换编码算法:是通过正交变换把图像从空间域转化为能量比较集中的变换域系数,然后对变换系数经行编码,从而达到压缩数据的目的。

(6)各种压缩方法分别在哪个环节上实现了数据压缩?答:(7)压缩效果如何评价?答:2. 计算题(五)(1)P139:3 霍夫曼编码,并计算信源的熵、平均码长、编码效率及冗余度。

相关文档
最新文档