物理化学实验报告

合集下载

物理化学实验报告3

物理化学实验报告3

一、实验目的1、测定在常压下环己烷-乙醇系统的气液平衡数据,绘制系统的沸点-组成图2、确定系统的恒沸温度及恒沸混合物组成3、了解阿贝折射仪的测量原理,掌握阿贝折射仪的使用方法二、实验原理用沸点仪直接测定一系列不同组成液体混合物的气液平衡温度,并收集少量馏出物和馏出液,分别用阿贝折射仪测定折射率,利用折射率-组成工作曲线,查出对应于样品折射率的组成实验采用环己烷-乙醇系统,其沸点-组成图属于具有最低恒沸点的类型(如图所示)三、实验仪器、试剂仪器:沸点仪一套,NTY-2A型数字式温度计一套,YP-2B精密稳流电源一套,阿贝折射仪一套,HK-1D型恒温水槽一套试剂:无水乙醇(A,R),环己烷(A,R),不同组成环己烷-乙醇的混合物四、实验步骤1、开启恒温水槽,设定水温为30℃,供阿贝折射仪使用;2、加入试剂,盖好加料口塞子,使电热丝及温度传感器浸入液体中;3、开冷凝水,温度传感器连接NTY-2A数字式温度计,加热丝连接YP-2B精密稳流电源。

调节稳流电源电流,加热至沸腾。

液体沸腾后,蒸气逸出,经冷凝后流入球形小室。

最初在冷凝管下端球形小室的液体不能代表平衡时气相组成,为加速达到平衡可将球形小室内最初冷凝的液体倾回沸点仪内,反复2-3次,待温度读数恒定后记下沸点并停止加热4、长吸液管吸取气相冷凝管,迅速测其折光率;用短吸液管,吸取蒸馏液迅速测其折光率4、同法完成1、2、3、4、5、6、7、8,乙醇以及纯环己烷实验。

5、实验结束,关闭电源及水源。

五、数据记录与处理室温:21.7 ℃;大气压(实验前)101.45 kpa,大气压(实验后)101.45 kpa,大气压(平均值)101.45 kpa。

六、结果与讨论由图所示,得出,系统的最低恒沸点为63.5℃,最低恒沸混合物的组成为x B=0.4793.与书中所告诉我们的最低恒沸点为64.8,最低恒沸点混合物的组成(摩尔分数)为x B=0.55相比,相对偏小。

造成这种误差的可能原因:1、在给试剂加热的过程中,沸腾后,应将冷凝回流到球形小室的液体倾倒回沸点仪内,并反复3次,而在实验时,可能忘记倾倒或者少了几次,导致所测得气相和液相的折射率有少许误差。

物理化学实验实验报告九

物理化学实验实验报告九

界面移动法测定离子的迁移数一.实验目的1.掌握界面移动法测定离子迁移数的原理和方法 2.掌握图解积分测定电量的方法 二.实验原理离子迁移数是电解质溶液的一个重要传递性质。

电解质溶液的传递现象与一般系统所不同的是,在电势梯度或电场作用下离子的迁移,表现为能传导电流。

电流的传导由溶液中的正负离子共同承担。

离子迁移数的引入,衡量了正负离子的相对导电能力。

离子迁移数可以直接测定,方法有界面移动法、希托夫法和电动势法等。

本实验采用界面移动法测定H +的迁移数。

所谓离子迁移数,指的是某种离子传递的电量与总电量之比。

若正负离子在相反方向上迁移传递的电量分别为q +和q -,则溶液某个界面上通过的总电量为:Q= q ++q -,正、负离子的迁移数分别为:t += q +/Q t -= q -/Q t ++t -=1在包含数种正、负离子的混合电解质溶液中,一般增加某种离子的浓度, 则该种离子的传递电量的分数增加,其迁移数也增加。

对仅含一中电解质的溶液,浓度改变由于使离子间的相互作用力也发生了改变,难有普遍的规律。

温度改变,一般是温度升高,t +和t -的差别减小。

假定在溶液的垂直迁移管的下部某处存在一界面,在该界面以下没有H +存在,而是被其他的正离子所取代,则该界面将随着H +往上迁移而移动,界面的位置可通过界面上下性质的差异而测定。

例如利用pH 的不同指示剂显示颜色不同测出界面。

欲使界面保持清晰,必须使界面上下电解质不相混合,在本实验中Cd 2+能够满足这个要求,因为U (Cd 2+)〈U (H +)。

接通电极后,正极Cd 被氧化为Cd 2+,在电场的作用下,Cd 2+和H +离子从下向上运动,而Cl -从上向下运动,在管子的下部不断产生CdCl 2溶液,与指示剂作用产生一定的颜色来指示界面。

运动速度较低的Cd 2+离子永远也不会赶上H +离子,并且是紧紧地跟在H +离子的后面作为指示离子。

这样,对于本实验的原理就基本阐述完毕。

物理化学组合实验报告

物理化学组合实验报告

物理化学组合实验报告篇一:溶解热的测定实验报告溶解热的测定实验报告姓名/学号:何一白/XX011908 班级:化22 同组实验者姓名:苏剑晓实验日期:XX年12月4日提交报告日期:XX年12月10日带实验的老师姓名:王溢磊1 引言(简明的实验目的/原理)1.1 实验目的1.测量硝酸钾在不同浓度水溶液的溶解热,求硝酸钾在水中溶解过程的各种热效应。

2.掌握量热装置的基本组合及电热补偿法测定热效应的基本原理。

3.复习和掌握常用的测温技术。

1.2 实验原理物质溶于溶剂中,一般伴随有热效应的发生。

盐类的溶解通常包含着几个同时进行的过程:晶格的破坏、离子或分子的溶剂化、分子电离(对电解质而言)等。

热效应的大小和符号决定于溶剂及溶质的性质和它们的相对量。

在热化学中,关于溶解过程的热效应,需要了解以下几个基本概念。

溶解热在恒温恒压下,溶质B溶于溶剂A(或溶于某浓度溶液)中产生的热效应,用?solH表示。

摩尔积分溶解热在恒温恒压下,1mol溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。

用?solHm表示。

?solHm??solH(1) nB式中, nB为溶解于溶剂A中的溶质B的物质的量。

摩尔微分溶解热在恒温恒压下,1mol溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以(??solH??H)T,P,nA表示,简写为(sol)nA。

?nB?nB稀释热在恒温恒压下,一定量的溶剂A加到某浓度的溶液中使之稀释,所产生的热效应。

摩尔积分稀释热在恒温恒压下,在含有1mol溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液,这个过程产生的热效应,以?dilHm表示。

?dilHm??solHm2??solHm1(2)式中,?solHm2、?solHm1为两种浓度的摩尔积分溶解热。

摩尔微分稀释热在恒温恒压下,1mol溶剂加入到某一浓度无限量的溶液中所发生的热效应,以(??solH??H)T,P,nB表示,简写为(sol)nB。

物理化学实验报告

物理化学实验报告

物理化学实验报告实验名称:分光光度法测定溶液中的铁离子浓度实验目的:通过本次实验,掌握使用分光光度法测定铁离子浓度的实验方法,了解分光光度计的使用原理,掌握实验数据的处理和结果分析方法。

实验原理:本实验采用分光光度法测定溶液中的铁离子浓度。

铁离子在酸性条件下与邻菲罗啉形成淡黄色络合物,该络合物在特定波长下(510nm)具有最大吸收值。

通过测定溶液的吸光度,并根据铁离子与邻菲罗啉的摩尔反应比,计算出样品中铁离子的浓度。

仪器与试剂:分光光度计、铁标准溶液、邻菲罗啉试剂、苯乙醇、氢氧化钠、硫酸、乙醇。

实验步骤:1. 标定分光光度计:分别用制备好的铁标准溶液和制备好的邻菲罗啉试剂进行标定,根据标定结果确定测量铁离子浓度时所需的吸收波长和检测范围。

2. 样品处理:待测样品含铁离子的溶液经适当稀释或稀释后,与邻菲罗啉试剂一并加入苯乙醇,混合均匀后,定容至刻度线。

3. 测定吸光度:将处理好的样品溶液倒入比色皿中,置于分光光度计中测定吸光度值。

根据标定时所选波长进行测量。

4. 计算结果:根据吸光度值,结合标定结果和反应计算规律,计算出待测样品中铁离子的浓度。

5. 结果分析:对实验数据进行统计分析,比较不同样品的铁离子浓度,评价实验结果的准确性和可靠性。

实验数据与结果:通过实验测定,得到待测样品A中铁离子浓度为0.023mol/L,样品B中铁离子浓度为0.028mol/L。

两次测定结果的相对偏差在5%以内,说明实验结果较为准确可靠。

实验结论:本实验采用分光光度法成功测定了溶液中铁离子的浓度,通过标定和样品处理等步骤,得出的结果较为准确。

实验通过实际操作,加深了对分光光度法的理解,提高了实验操作技能和数据处理能力。

实验注意事项:1. 操作时要仔细,避免试剂的飞溅和吸入。

2. 分光光度计的操作要规范,保证数据准确性。

3. 实验后及时清洗实验器具,保持实验环境整洁。

4. 结果分析要仔细,排除测量误差对结果的影响。

通过本次实验,我对分光光度法测定铁离子浓度有了更深入的理解,也提高了实验技能和数据处理能力。

物理化学实验报告

物理化学实验报告

物理化学实验报告篇一:物理化学------各个实验实验报告参考1燃烧热的的测定一、实验目的1.通过萘和蔗糖的燃烧热的测定,掌握有关热化学实验的一般知识和测量技术。

了解氧弹式热计的原理、构造和使用方法。

2.了解恒压燃烧热与恒容燃烧热的差别和相互关系。

3.学会应用图解法校正温度改变值。

二、实验原理燃烧热是指1mol物质完全燃烧时所放出的热量,在恒容条件下测得的燃烧热为恒容燃烧热(QV),恒压条件下测得燃烧热为恒压燃烧热(Qp)。

若把参加反应的气体和生成气体视为理想气体,则Qp?QV??nRT。

若测得Qp或QV中的任一个,就可根据此式乘出另一个。

化学反应热效应(包括燃烧热)常用恒压热效应(Qp)表示。

在盛有定量水的容器中,放入装有一定量样品和样体的密闭氧弹,然后使样品完全燃烧,放出热量使水和仪器升温,若仪器中水量为W(g),仪器热容W?,燃烧前后温度为t0和tn,则m(g)物质燃烧热QV?(Cw?w’)t(n?t0。

若水的比热容)C =1。

摩尔质量为M的物质。

其摩尔燃烧热为QMV??m(W?W?)(tn?t0),热容W?可用已知燃烧热的标准物质(苯甲酸,QV=26.434J?g?1)来标定。

将其放入量热计中,燃烧测其始末速度,求W?。

一般因每次水量相同,可作为一个定量来处理。

QMV?m(tn?t0) 三.实验步骤1热容W?的测定1)检查压片用的钢模,用电子天平称约0.8g苯甲酸,倒入模具,讲样品压片,除去样品表面碎屑,取一段棉线,在精密天平上分别称量样品和棉线的质量,并记录。

2)拧开氧弹盖,擦净内壁及电极接线柱,用万用表检查两电极是了解燃烧热的定义,水当量的含义。

压片要压实,注意不要混用压片机。

否通路,将称好的棉线绕加热丝两圈后放入坩埚底部,并将样品片压,在棉线上旋紧弹盖,并再次检查电极是否通路,将氧弹放在充氧架上,拉动扳手充氧。

充毕,再次检查电极。

3)将氧弹放入热量计内桶,称取适量水,倒入量热计内桶,水量以没氧弹盖为宜,接好电极,盖上盖子,打开搅拌开关,开始微机操作。

物理化学实验报告_实验报告_

物理化学实验报告_实验报告_

物理化学实验报告不少朋友都会做实验但是不知道如何写实验报告,那么,今天,小编给大家介绍的是物理化学实验报告,供大家阅读参考。

物理化学实验报告格式一、实验目的内容宋体小四号行距:固定值20磅(下同)二、实验原理原理简明扼要(必须的计算公式和原理图不能少)三、实验仪器、试剂仪器:试剂:四、实验步骤步骤简明扼要(包括操作关键)五、实验记录与处理实验记录尽可能用表格形式六、结果与讨论物理化学实验报告范文一:目的要求绘制在p下环已烷-乙醇双液系的气----液平衡图,了解相图和相率的基本概念掌握测定双组分液系的沸点的方法掌握用折光率确定二元液体组成的方法二:仪器试剂实验讨论。

在测定沸点时,溶液过热或出现分馏现象,将使绘出的相图图形发生变化?答:当溶液出现过热或出现分馏现象,会使测沸点偏高,所以绘出的相图图形向上偏移。

讨论本实验的主要误差来源。

答:本实验的主要来源是在于,给双液体系加热而产生的液相的组成并不固定,而是视加热的时间长短而定因此而使测定的折光率产生误差。

三,被测体系的选择本实验所选体系,沸点范围较为合适。

由相图可知,该体系与乌拉尔定律比较存在严重偏差。

作为有最小值得相图,该体系有一定的典型义意。

但相图的液相较为平坦,再有限的学时内不可能将整个相图精确绘出。

四,沸点测定仪仪器的设计必须方便与沸点和气液两相组成的测定。

蒸汽冷凝部分的设计是关键之一。

若收集冷凝液的凹形半球容积过大,在客观上即造成溶液得分馏;而过小则回因取太少而给测定带来一定困难。

连接冷凝和圆底烧瓶之间的连接管过短或位置过低,沸腾的液体就有可能溅入小球内;相反,则易导致沸点较高的组分先被冷凝下来,这样一来,气相样品组成将有偏差。

在华工实验中,可用罗斯平衡釜测的平衡、测得温度及气液相组成数据,效果较好。

五,组成测定可用相对密度或其他方法测定,但折光率的测定快速简单,特别是需要样品少,但为了减少误差,通常重复测定三次。

当样品的折光率随组分变化率较小,此法测量误差较大。

物理化学实验报告 比表面积

物理化学实验报告 比表面积

物理化学实验报告溶液吸附法测量固体物质的比表面积一、实验目的1) 了解溶液吸附法测定固体比表面的原理和方法。

2) 用溶液吸附法测定活性炭的比表面。

3) 掌握分光光度计工作原理及操作方法。

二、实验原理本实验采用溶液吸附法测定固体物质的比表面。

在一定温度下,固体在某些溶液中吸附溶质的情况与固体对气体的吸附很相似Langmuir 单分子层吸附方程来处理。

其方程为KcKcm+Γ=Γ1式中,Γ为平衡吸附量,单位质量吸附剂达吸附平衡时,吸附溶质的物质的量,mol*g −1;Γm 为饱和吸附量,单位质量吸附剂的表面上吸满一层吸附质分子时所能吸附的最大量,mol*g −1;c 为达到吸附平衡时,吸附质在溶液本体中的平衡浓度,mol*g −1;K 为经验常数,与溶质(吸附质)、吸附剂性质有关。

若能求得Γm ,则可由下式求得吸附剂比表面S 比:S 比=Γm LA式中:L 是阿伏加德罗常数;A 是每个吸附质分子在吸附剂表面占据的面积。

将上式改写为:c Γ=1Γm c +1Γm K配制不同吸附质浓度c 0的样品溶液,测量达吸附平衡后吸附质的浓度c ,用下式计算各份样品中吸附剂的吸附量:mVc c )(0-=Γ 式中:c 0是吸附前吸附质浓度(mol ·dm −3);c 是达吸附平衡时吸附质浓度(mol ·dm −3);V 是溶液体积(dm 3);m 是吸附剂质量(g )。

根据改写的Langmuir 单分子层吸附方程,作cΓ−c 图,为直线,由直线斜率可求得Γm 。

亚甲基蓝的摩尔质量为373.9g ·mol -1。

假设吸附质分子在表面是直立的,A 值取为1.52×10−18m 2。

研究表明,在一定浓度范围内,大多数固体对亚甲基蓝的吸附是单分子层吸附。

本实验使用活性炭为吸附剂,亚甲基蓝为吸附质,溶剂为水。

如果溶液浓度过高时,可能出现多分子层吸附,实验中要选择合适的吸附剂用量及吸附质原始浓度。

物理化学实验报告-凝固点法

物理化学实验报告-凝固点法

物理化学实验报告凝固点降低法测定摩尔质量1.实验目的(1)用凝固点降低法测定萘的摩尔质量。

(2)掌握精密电子温差仪的使用方法。

2.实验原理非挥发性的二组分溶液,其稀溶液具有依数性,凝固点降低就是依数性的一种表现。

根据凝固点降低的数值,可以求溶质的摩尔质量。

对于稀溶液,如果溶质和溶液不生成固溶体,固体是纯的溶剂,在一定压力下,固体溶剂与溶液成平衡的温度叫做溶液的凝固点。

溶剂中加入溶质后,溶液的凝固点比纯溶剂的凝固点要低,其凝固点降低值∆T f与溶质质量摩尔浓度b成正比。

∆T f=T f0−T f=K f b式中T f0为纯溶剂的凝固点;T f为浓度为b的溶液的凝固点;K f为溶剂凝固点降低常数。

若已知某种溶剂的凝固点降低常数K f,并测得溶剂和溶质的质量分别为m a,m b的稀溶液的凝固点降低值∆T f,则可通过下式计算溶质的摩尔质量M BM B=K f m b ∆T f m A式中,K f的单位是K*kg*mol−1。

凝固点降低值得大小,直接反映了溶液中溶质有效质点的数目。

如果溶质在溶液中有离解,缔合,溶剂化和配合物生成等情况,这些均影响溶质在溶剂中的表观相对分子量。

因此凝固点降低法也可用来研究溶液的一些性质,例如电解质的电离度,溶质的缔合度,活度和活度系数等。

纯溶剂的凝固点为其液相和固相共存的平衡温度。

若将液态的纯溶剂逐步冷却,在未凝固前温度将随时间均匀下降,开始凝固后因放出凝固热而补偿了热损失,体系将保持液固两相共存的平衡温度不变,直至全部凝固,温度再继续下降。

但在实际过程中,当液体达到或稍低于凝固点时,晶体并不析出,这就是所谓的过冷现象。

此时加入搅拌或加入晶种,促使晶格形成,则大量晶体会迅速形成,并释放出凝固热,使体系温度回升到稳定的平衡温度;待液体全部凝固后温度再逐步下降。

溶液的凝固点是该溶液与溶剂共存的平衡温度,其冷却曲线与纯溶剂不同。

当有溶剂凝固析出时,剩余溶液的浓度逐渐增大,因而溶液的凝固点也逐渐下降。

物理化学实验报告-BZ振荡反应

物理化学实验报告-BZ振荡反应

物理化学实验报告-BZ振荡反应
BZ振荡反应是一种经典的化学振荡反应,其特点在于反应体系呈现周期性的颜色变化。

本实验通过观察和分析BZ振荡反应的颜色变化规律,探究了振荡反应机制以及影响反应速率的因素。

实验步骤:
1. 准备工作:准备好测量药品、试管、电子秤等实验装置。

2. 实验操作:将准备好的药品按比例加入试管中,同时加入适量的稀盐酸,用玻璃
棒搅拌均匀。

观察试管液体的颜色变化,当液体呈现蓝色时加入适量的碘离子,不断观察
颜色变化。

3. 观察结果:当反应发生时,液体的颜色会出现周期性变化,从蓝色开始逐渐变为
无色、黄色、橙色、红色等颜色,然后再逐渐回到蓝色。

4. 分析结果:在反应过程中,反应物和产物的浓度随时间而变化,从而导致反应速
率的变化。

此外,碘离子的加入可促进反应的发生,同时稀盐酸的存在也可能影响反应速率。

5. 实验探究:改变反应物的浓度、温度等因素,可以对BZ振荡反应进行更深入的探究,以了解其反应机制和影响因素。

结论:
BZ振荡反应是一种周期性的化学振荡反应,其反应速率随着反应物和产物的浓度变化而变化。

碘离子的加入可促进反应的发生,而稀盐酸的存在也可能影响反应速率。

通过改
变反应物的浓度、温度等因素,可以进一步探究BZ振荡反应的反应机制及影响因素。

物理化学实验报告_5

物理化学实验报告_5

物理化学实验报告实验名称:燃烧含的测定一、实验目的1、用氧弹式量热计测定萘的燃烧焓。

2、了解热量计中主要部分的作用,掌握氧弹量热计的实验技术。

二、实验原理反应为理想气体则:Qp =Qv +△nRT△rHm = △rUm + R T∑Vb(g)△U可表示为:△U = △cUb + △cU引燃丝+ △U量热计MbQv.b +lQ +K△T三、仪器和试剂氧弹量热计一台压片机一台万用表一只贝克曼温度计一支温度计(0℃-100℃)一支点火丝容量瓶(1000ml)一支氧气钢瓶及减压阀一只萘(A.R.)苯甲酸(A.R.)四、实验步骤1、热容量K的测定(1)截取15cm引燃丝,将其中部绕成环状。

(2)称取苯甲酸约0.8-10g,压成片状,并放桌上敲击2次,去除没压紧的部分,再次称量。

(3)拧开氧弹盖放在专用支架上,引燃丝两端固定在两电极柱上,药片放于坩埚中,使引燃丝与药片表面接触,盖上氧弹盖。

(4)将氧弹放于充氧器底盖上,充进1-2Mp的氧,1分钟后用放气阀将氧弹中的氧气放出,再充氧气约1分钟,查漏。

(5)量取3000ml的水倒入内桶,氧弹放于内桶底座上,点火插头插在氧弹电极上,将贝克曼温度计的传感器竖直插入量热计盖上的孔中。

打开电源,按“搅拌”。

(6)约5-10分钟后,开始初期的读数,隔半分钟读数一次,读第10次的同时按“点火”,仍半分钟读一次,直至两温差小于0.002℃时,再读数10次。

(7)停止搅拌,取出传感器,拔掉引火导线,取出氧弹并擦干外壳,用放气阀放掉氧气,打开氧弹盖,检查燃烧是否完全。

取出引燃丝,量其剩余长度。

(8)洗净并擦干氧弹内外壁,将水倒入储水桶,擦干全部设备。

等待设备和室温平衡做下一步实验。

2、萘的燃烧焓测定称取萘0.6g左右,实验步骤同上。

五、数据记录与处理室温:19.1℃大气压强:102.57KPa5-1、苯甲酸燃烧的记录苯甲酸的质量:0.8267 g 引燃丝初始长度:15.0cm 引燃丝剩余长度:0 cm5-2、萘燃烧的记录萘的质量:0.6028 g 引燃丝初始长度:15.0cm计算k的值:△cHm(苯甲酸)= -3226.7kj/mol Ql = -6.699j/cm△cUm(苯甲酸)=△cHm(苯甲酸)- △nRT=-3225.46KJ/mol△T=15.54-14.18= 1.36KK=-( mBQv,b+lQl)/ △ T=-(0.8267/122* (-3226.7)+(15*(-6.699)/1000)/1.36 =16.150k j/k(2)计算萘的燃烧焓:△T=16.66-15.09=1.57 KQv,B=-(lQl+K△T)/mB=-(15*(-6.699)/1000+16.150*1.57)/(0.6028/128)=-5362.71kj/molQp=Qv+△nRT=-5362.71-2*8.314*(19.1+273.15)/1000=-5367.56kj/mol六、注意事项1、压片时应不松不紧,以保证完全燃烧,且不会散开。

物理化学实践教学报告(3篇)

物理化学实践教学报告(3篇)

第1篇一、前言物理化学作为一门交叉学科,涉及物理学、化学、生物学等多个领域,旨在研究物质的结构、性质、变化规律以及它们在化学反应中的作用。

为了更好地理解和掌握物理化学的基本原理和方法,我们进行了一系列的实践教学。

以下是我对本次实践教学的总结和报告。

二、实践内容1. 实验室参观在实践开始之前,我们首先参观了物理化学实验室。

实验室配备了各种实验设备和仪器,如光谱仪、质谱仪、核磁共振仪等。

通过参观,我们了解了实验室的基本布局和设备功能,为后续实验打下了基础。

2. 基本实验操作(1)滴定实验:学习了酸碱滴定实验的基本原理和操作方法,掌握了滴定终点判断、数据记录和处理等技能。

(2)光谱分析实验:学习了紫外-可见光谱和红外光谱的基本原理,掌握了光谱仪的使用方法和数据分析技巧。

(3)电化学实验:学习了电化学实验的基本原理和操作方法,掌握了电极制备、电位测量、电流-电压曲线绘制等技能。

3. 复杂实验操作(1)动力学实验:学习了反应速率方程的建立和验证方法,掌握了反应速率常数的测定和反应机理分析。

(2)化学平衡实验:学习了化学平衡原理和实验方法,掌握了平衡常数的测定和平衡移动分析。

(3)热力学实验:学习了热力学基本原理和实验方法,掌握了热力学数据的测量和热力学函数的计算。

三、实践过程1. 实验前的准备在实验前,我们认真阅读了实验指导书,了解了实验目的、原理、步骤和注意事项。

同时,我们还对实验所需仪器和试剂进行了准备,确保实验顺利进行。

2. 实验过程中的注意事项(1)安全操作:严格遵守实验室安全规定,正确使用实验仪器和试剂,避免发生意外。

(2)规范操作:按照实验步骤进行操作,确保实验数据的准确性。

(3)团队协作:在实验过程中,相互协作,共同解决问题。

3. 实验后的数据处理实验结束后,我们对实验数据进行整理和分析,包括数据记录、误差分析、结果讨论等。

通过数据处理,我们验证了实验原理,掌握了实验方法。

四、实践成果1. 理论知识与实践相结合通过本次实践教学,我们深刻理解了物理化学的基本原理和方法,将理论知识与实践相结合,提高了我们的实验技能。

物理化学实验报告泡压法

物理化学实验报告泡压法

一、实验目的1. 理解表面张力、表面自由能和吉布斯吸附量的物理意义。

2. 掌握最大泡压法测定溶液表面张力的原理和操作方法。

3. 通过实验,提高对表面张力测定仪器的使用技能。

二、实验原理表面张力是指液体表面层分子间的相互作用力,表现为液体表面具有收缩趋势,使得液体表面积趋于最小。

最大泡压法是一种测定溶液表面张力的方法,其原理是在一定条件下,通过测量气泡的最大压力来确定溶液的表面张力。

三、实验仪器与试剂1. 仪器:最大泡压法表面张力仪、精密数字压力计、吸耳球、移液管(各种量程)、容量瓶(50mL)。

2. 试剂:正丁醇(分析纯)、蒸馏水。

四、实验步骤1. 准备工作:首先检查仪器设备是否完好,将最大泡压法表面张力仪调零,确保压力计读数准确。

2. 测定蒸馏水的表面张力:取50mL蒸馏水于容量瓶中,用移液管准确量取一定体积的蒸馏水,加入最大泡压法表面张力仪的样品池中。

调整气泡发生器的位置,使气泡在液体表面形成稳定的膜。

观察气泡膜的变化,待气泡膜稳定后,记录气泡的最大压力值P1。

3. 测定正丁醇的表面张力:重复上述步骤,用移液管准确量取一定体积的正丁醇,加入最大泡压法表面张力仪的样品池中。

调整气泡发生器的位置,使气泡在液体表面形成稳定的膜。

观察气泡膜的变化,待气泡膜稳定后,记录气泡的最大压力值P2。

4. 数据处理:根据最大泡压法表面张力的计算公式,计算蒸馏水和正丁醇的表面张力。

公式如下:表面张力γ = P R / (2 cosθ)其中,P为气泡的最大压力值,R为气泡半径,θ为气泡膜与液体表面的接触角。

五、实验结果与分析1. 蒸馏水的表面张力:根据实验数据,计算得出蒸馏水的表面张力为0.072N/m。

2. 正丁醇的表面张力:根据实验数据,计算得出正丁醇的表面张力为0.036N/m。

通过对比蒸馏水和正丁醇的表面张力,可以发现正丁醇的表面张力明显低于蒸馏水,这可能与正丁醇分子结构有关。

六、实验总结本次实验通过最大泡压法测定了蒸馏水和正丁醇的表面张力,掌握了最大泡压法测定溶液表面张力的原理和操作方法。

物理化学实验报告

物理化学实验报告

物理化学实验报告实验目的,通过本实验,掌握物理化学实验的基本操作技能,了解物理化学实验的基本原理和方法。

实验仪器,电子天平、容量瓶、分析天平、热力学仪器等。

实验原理,本实验主要涉及物理化学的热力学和动力学原理。

通过测量不同物质的密度、溶解度、热容量等物理化学性质,来探究物质的基本特性。

实验步骤:1. 密度测量,首先使用电子天平测量样品的质量,然后使用容量瓶测量样品的体积,通过质量和体积的比值计算出样品的密度。

2. 溶解度测量,将样品加入一定量的溶剂中,通过分析天平测量样品在溶剂中的溶解度,探究溶解度与温度、溶剂种类等因素的关系。

3. 热容量测量,利用热力学仪器测量样品在不同温度下的热容量,了解样品在不同温度下的热学特性。

实验结果与分析:通过实验数据的测量和分析,我们得到了样品的密度、溶解度和热容量等物理化学性质。

通过对实验结果的分析,我们可以得出一些结论:1. 样品的密度与其化学成分和结构有关,不同样品的密度差异较大。

2. 样品的溶解度受温度影响较大,随着温度的升高,溶解度也会增加。

3. 样品的热容量随着温度的变化而变化,不同样品的热容量差异较大。

结论:通过本实验,我们深入了解了物理化学实验的基本原理和方法,掌握了测量密度、溶解度和热容量等物理化学性质的技能。

这些知识和技能对我们进一步学习和研究物理化学领域具有重要的意义。

总结:物理化学实验是物理化学学科的重要组成部分,通过实验学习,我们不仅可以掌握基本的操作技能,还可以深入理解物质的基本性质和规律。

希望通过今后的学习和实践,我们能够进一步提高实验技能,为物理化学领域的研究和应用做出贡献。

物化实验报告_纯液体饱和蒸气压的测定

物化实验报告_纯液体饱和蒸气压的测定

物化实验报告_纯液体饱和蒸气压的测定目录一、实验目的 (2)1. 了解饱和蒸气压的概念及其在物理化学中的重要性 (2)2. 学会使用液体饱和蒸气压测定仪进行实验操作 (3)3. 分析实验数据,计算纯液体的饱和蒸气压 (4)二、实验原理 (4)1. 饱和蒸气压是指在一定温度下,液体与其上方的蒸汽达到动态平衡时,蒸汽所具有的压力52. 纯液体的饱和蒸气压可以通过克劳修斯方程式计算得出 (5)3. 实验通过测量液体在一定温度下的蒸发量,结合已知的液体质量和温度,计算出饱和蒸气压6三、实验仪器与试剂 (7)1. 液体饱和蒸气压测定仪 (7)2. 玻璃器皿 (8)3. 温度计 (9)4. 蒸馏水或待测液体 (9)5. 实验室安全防护用品 (10)四、实验步骤 (11)1. 准备实验器材,确保设备正常运行 (12)2. 根据待测液体的性质,设置实验温度 (13)3. 将液体倒入测定仪的蒸发皿中,注意不要超过最大刻度 (14)4. 连接好实验装置,打开电源,开始加热 (14)5. 观察蒸发皿内的液体变化,记录蒸发量、液体质量和温度 (15)6. 当液体蒸发完毕后,关闭电源,停止加热 (16)7. 根据实验数据,计算纯液体的饱和蒸气压 (17)五、实验数据记录与处理 (18)1. 记录实验过程中的蒸发量、液体质量和温度数据 (18)2. 将数据整理成表格,便于后续分析 (19)3. 利用克劳修斯方程式计算纯液体的饱和蒸气压 (19)六、实验结果与分析 (20)1. 展示实验数据,分析纯液体饱和蒸气压的变化趋势 (20)2. 与其他已知数据进行对比,验证实验结果的准确性 (21)3. 分析影响实验结果的因素,提出改进建议 (22)七、实验总结与讨论 (23)1. 总结实验过程,回顾实验要点 (24)2. 讨论实验中遇到的问题和解决方法 (25)3. 分析实验结果对理解饱和蒸气压概念的意义 (26)一、实验目的本次实验旨在通过测定纯液体饱和蒸气压,深入理解液体的相变过程以及相关的物理性质。

物理化学实验电池电动势的测定实验报告

物理化学实验电池电动势的测定实验报告

物理化学实验-电池电动势的测定实验报告物理化学实验报告:电池电动势的测定一、实验目的1.学习掌握原电池的工作原理。

2.掌握伏安法测定电池电动势的方法。

3.了解原电池在日常生活和工业中的应用。

二、实验原理电池电动势是电池在断路时两极之间的电位差,是衡量电池性能的重要参数。

通过测定电池电动势,可以了解电池的化学反应动力学和电学性质。

伏安法是一种常用的测定电池电动势的方法,通过测量电池在不同电流下的电压,绘制伏安曲线,从而得出电池的电动势。

三、实验步骤1.准备实验器材:伏特计(电压表)、电流表、原电池、导线、开关、搅拌器等。

2.将电流表和电压表与原电池连接,注意正负极的接法。

3.打开开关,逐渐增大电流,记录不同电流下的电压值。

4.绘制伏安曲线,横坐标为电流,纵坐标为电压。

5.根据伏安曲线得出电池的电动势。

四、实验结果与分析1.数据记录:2.根据数据绘制的伏安曲线图:略3.根据伏安曲线图计算电池电动势:根据伏安曲线的斜率,可以得出电池的电动势E约为_1.6_V。

这一结果符合预期值。

需要注意的是,实际测量的电动势可能受到内阻、温度等因素的影响,因此需要多次测量并取平均值以减小误差。

4.误差分析:在本实验中,可能存在的误差来源包括测量误差、读数误差、导线电阻等。

为了减小误差,可以采取以下措施:使用高精度的电压表和电流表;多次测量并取平均值;选择合适的导线以减小电阻影响。

此外,为了确保实验结果的可靠性,还需要控制实验条件如温度、湿度等,以避免对实验结果产生不良影响。

5.结果讨论:通过本实验,我们成功地测得了原电池的电动势。

实验结果表明,随着电流的增加,电压逐渐降低。

这一现象符合欧姆定律和能斯特方程的预测结果。

此外,通过比较不同电流下的伏安曲线,可以发现电流对电动势的影响较大。

在实际应用中,原电池的电动势往往决定着电子设备的性能和效率,因此对电池电动势的准确测定至关重要。

本实验不仅加深了我们对原电池工作原理的理解,还为我们提供了测定电池性能的新方法。

物理化学实验报告-燃烧热的测定(2)

物理化学实验报告-燃烧热的测定(2)

2)参与反应的气体均视为理想气体,则Q p =Q V +ΔnRT 。

Q V 为恒容燃烧热,Q p 为恒压燃烧热,Δn 为反应前后产物与反应物中气体的物质的量之差,R 为摩尔气体常量,T 为反应的热力学温度。

3)化学反应的热效应(包括燃烧热)通常用恒压热效应ΔH 来表示。

2.氧弹热量计和装置原理1)本实验采用恒温式氧弹热量计。

在下面的氧弹热量计装置图中,贝克曼温度计和外筒温度计在本实验中采用精密温差测定仪来代替。

2)测燃烧热原理:样品在纯氧气氛中完全燃烧放出的热量使氧弹周围介质温度升高,若已知仪器常数,测量其温差即可求算样品的恒容燃烧热。

燃烧热计算式:Q V W + q 1x + q 2 ≈ Q V W + q 1x = KΔh式中Q V (J/g )为萘(被测物质)的恒容燃烧热;W (g )为萘的质量;x (g )为烧掉点火丝(铜丝)的质量;已知铜丝的燃烧热q 1=-2510J/g ,此实验中由于q 2(即氧弹内的N 2生成硝酸时放出的热量)太小则可以忽略。

一般用已知燃烧热的标准物质苯甲酸来标定氧弹热量计的仪器常数K (J/mm ),已知苯甲酸的恒容燃烧热Q V =-3231.3KJ/mol 。

Δh (mm )为记录纸上曲线的峰高。

设苯甲酸和萘的恒容燃烧热分别为Q V1和Q V2,烧掉铜丝的质量分别为x 1和x 2,消耗样品质量分别为W 1和W 2,曲线记录的峰值分别为Δh 1和Δh 2,则萘的恒容燃烧热可由下式计算得:Q V2= Q V1W 1+q 1x 1 ∆h 2−q 1x 2∆h 1∆h 1W 2 此处燃烧热的单位为KJ/g ,注意单位的换算。

3)为了保证样品完全燃烧,氧弹中必须充足高压氧气(本实验要求在1.2-1.4MPa 之间)。

因此要求氧弹必须耐高压、密封、耐腐蚀,同时粉末样品必须压成片状,以免充气时冲散样品,使样品燃烧不完全。

必须使燃烧后放出的热量尽可能传递给介质,使水温升高,因此应尽量避免和减小由于辐射、对流以及传导等引起的能量散失。

大学物理化学实验报告-原电池电动势的测定

大学物理化学实验报告-原电池电动势的测定

篇一:原电池电动势的测定实验报告_浙江大学 (1)实验报告课程名称:大学化学实验p实验类型:中级化学实验实验项目名称:原电池电动势的测定同组学生姓名:无指导老师冷文华一、实验目的和要求(必填)二、实验内容和原理(必填)三、实验材料与试剂(必填)四、实验器材与仪器(必填)五、操作方法和实验步骤(必填)六、实验数据记录和处理七、实验结果与分析(必填)八、讨论、心得一、实验目的和要求用补偿法测量原电池电动势,并用数学方法分析二、实验原理:补偿法测电源电动势的原理:必须严格控制电流在接近于零的情况下来测定电池的电动势,因为有电流通过电极时,极化作用的存在将无法测得可逆电动势。

为此,可用一个方向相反但数值相同的电动势对抗待测电池的电动势,使电路中没有电流通过,这时测得的两级的电势差就等于该电池的电动势E。

如图所示,电位差计就是根据补偿法原理设计的,它由工作电流回路、标准回路和测量电极回路组成。

①工作电流电路:首先调节可变电阻RP,使均匀划线AB上有一定的电势降。

②标准回路:将变换开关SW合向Es,对工作电流进行标定。

借助调节Rp使得IG=0来实现Es=UCA。

③测量回路:SW扳回Ex,调节电势测量旋钮,直到IG=0。

读出Ex。

UJ-25高电势直流电位差计:1、转换开关旋钮:相当于上图中SW,指在N处,即SW接通EN,指在X1,即接通未知电池EX。

2、电计按钮:原理图中的K。

3、工作电流调节旋钮:粗、中、细、微旋钮相当于原理图中的可变电阻RP。

-1-2-3-4-5-64、电势测量旋钮:中间6只旋钮,×10,×10,×10,×10,×10,×10,被测电动势由此示出。

三、仪器与试剂:仪器:电位差计一台,惠斯登标准电池一只,工作电源,饱和甘汞电池一支,银—氯化银电极一支,100mL容量瓶5个,50mL滴定管一支,恒温槽一套,饱和氯化钾盐桥。

-1试剂:0.200mol·LKCl溶液四、实验步骤: 1、配制溶液。

物理化学实验实验报告二

物理化学实验实验报告二

燃烧热的测定一.实验目的1.熟悉弹式热量计的原理、构造及使用方法。

2.明确恒温燃烧热与恒容燃烧热的差别及相互关系。

3.掌握温差测量的实验原理和技术。

4.学会雷诺图解法校正温度的方法。

二.实验原理燃烧热随测定条件不同,分为两种:恒容燃烧热QV 和恒压燃烧热QP。

本实验采用体积确定的氧弹热量计,测得的是QV ,经计算可得QP。

测量热效应的仪器称为热量计,氧弹热量计分为恒温型和绝若型两类。

本实验采用恒温式氧弹计。

1.燃烧热与量热QP =QV+△nRT2.氧弹热量计样品在纯氧气氛中完全燃烧放出的能量使氧弹及周围介质温度升高,若已知仪器常数,测量其温差即可求算样品的恒容燃烧热。

一般用已知燃烧热的标准物质苯甲酸来标定氧弹热量计的仪器常数。

恒温式氧弹计的内水桶连同其中的氧弹、测温器件、搅拌器和水可近似看作绝热系统。

QV 〃W+q1〃x+q2=K〃△h为了保证样品的完全燃烧,氧弹中必须有充足的高压氧气。

因此要求氧弹必须耐高压密封、耐腐蚀,同时粉末样品必须压成片状,以免充气时冲散样品,使样品燃烧不完全。

必须使燃烧后放出的热量全部传递给介质,使水温升高,因此应尽量避免和减少由于辐射、对流以及传导等引起的能量损失,但漏热是无法完全避免的,因此测量值一般需用雷诺作图法进行校正。

3.热敏电阻测量温度原理用它测量温度时,利用电阻电桥原理,当热敏电阻值随系统温度发生变化时,电桥产生不平衡电势。

当温度变化不大时,热敏电阻的阻值变化与温度变化成正比关系,而不平衡电势又与热敏电阻值的变化成比例,因而不平衡电势反映在记录仪上就是量热曲线峰的高低。

4.计算机雷诺校正三.实验仪器和试剂仪器:氧弹式热量计1套,pt-1000温度计,点火器1台;SunyLAB200实验数据分析记录仪1台。

试剂:苯甲酸(A R),萘(AR)。

四.实验步骤1.仪器常数的测定包括压片、装样、充氧、点火燃烧和温度测定。

2.奈的燃烧热测定五.数据记录与数据处理室温:29.4℃大气压:100.84Kpa氧弹内充氧压力大约为1.2Mpa苯甲酸的恒容燃烧热QV=-3231.3KJ/mol铜丝的燃烧热为-2510J/g以下数据表格所有数据在excel中处理得到QV 〃W+q1〃x+q2=K〃△h(忽略q2项)样品(g)初始铜丝(g)剩余铜丝(g)铜丝消耗量(g)△h平均值苯甲酸一0.60200.05270.02120.0315 1.045K 15.3315.2335苯甲酸二0.51350.04930.02350.02580.90315.13萘一0.41760.05790.02520.0327 1.135QV 5274.4565156.868萘二0.33670.05320.01780.03540.8765039.279得到萘的燃烧热为:恒容燃烧热QV=5156.868KJ/molQP =QV+△nRT=5156868+2*8.31*302.4=5161.893888 KJ/mol得到萘的燃烧热为:恒压燃烧热QP=5161.894KJ/mol六.实验结果和讨论1.实验过程中,点火前要等足够的时间使基线走平,燃烧完全后也要等到基线走平后再停止记录,这样得到的峰高就准确,没有变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理化学实验报告实验人:*****学号:*********班级: **********实验日期:2012/3/17实验一计算机联用测定无机盐溶解热一、实验目的的积分溶解热。

(1)用量热计测定KNO3(2)掌握量热实验中温差校正方法以及与计算机联用测量溶解过程动态曲线的方法。

二、实验原理盐类的溶解过程通常包含着两个同时进行的过程:晶格的破坏和离子的溶剂化。

前者为吸热过程,后者为放热过程。

溶解热是这两种热效应的总和。

因此,盐溶解过程最终是吸热或放热,是由这两个热效应的相对大小决定的。

在恒压条件下,由于量热计为绝热系统,溶解过程所吸收的热或放出的热全部由系统温度的变化放映出来。

如下图:由图可知,恒压下焓变△H为△H1和△H2之和,即:△H=△H1+△H2绝热系统,Q p =△H1所以,在t1温度下溶解的恒压热效应△H为:△H=△H2=K(t1-t2)=-K(t2-t1) 式中K是量热计与KNO3水溶液所组成的系统的总热容量,(t2-t1)为KNO3溶解前后系统温度的变化值△t溶解。

设将质量为m的KNO3溶解于一定体积的水中,KNO3的摩尔质量为M,则在此浓度下KNO3的积分溶解热为:△sol Hm=△HM/m=-KM/m·△t溶解K值可由电热法求取。

K·△t加热=Q。

若加热电压为U,通过电热丝的电流强度为I,通电时间为τ则:K·△t加热=IUτ所以K =IUτ/△t加热真实的△t加热应为H与G两点所对应的温度tH与tG之差。

三、试剂与仪器试剂:干燥过的分析纯KNO3。

仪器:量热计,磁力搅拌器,直流稳压电源,半导体温度计,信号处理器,电脑,天平。

四、实验步骤1用量筒量取100mL去离子水,倒入量热计中并测量水温。

2称取2.7~2.9gKNO3(精确到±0.01g)。

3先打开信号处理器、直流稳压器,再打开电脑。

自动进入实验测试软件,在“项目管理”中点击“打开项目”,选择“溶解热测定”,再点击“打开项目”,输入自己学号和称取的样品重量。

4系统提示装入试样的后,立即装入待测试样;5等待测试结果,注意数据变化。

测试完毕,系统自动保存。

读取五、数据处理(1)作盐溶解过程和电加热过程温度一时间图,外推法求△t溶解与△t加热。

答:△t溶解 =2.091 △t加热=1.893(2)总热容量K=610.7 (3)积分溶解热△sol Hm=46105.5六、思考题(1)溶解热与哪些因素有关?本实验求得的KNO3溶解热所对应的温度如何确定?是否为溶解前后系统温度的平均值?答:温度压强由外推法求得不是(2)为什么要用作图法求得△t溶解与△t加热?如何求得?答:实验存在较大的误差,便于校正。

外推法作直线求得(3)本实验如何测定系统的总热容量K?若用先加热后加盐的方法是否可以?答:K·△t加热=IUτ K·△t加热=Q。

K =IUτ/△t加热不可以,有较大误差(4)在标定系统热容过程中,如果加热电压过大或加热时间过长,是否会影响实验结果的准确性?为什么?答:会因为是由 K·△t加热=IUτ K·△t加热=Q。

K =IUτ/△t加热实验二有机物燃烧热测定一、实验目的(1)用氧弹式量热计测定奈的恒容燃烧热。

(2)掌握氧弹式量热计的构造、原理和使用方法。

(3)掌握有关热化学实验中总热容量标定与温差校正的方法。

二、实验原理物质的燃烧热是指1摩尔物质在氧气中完全燃烧时释放出的热量。

若燃烧在恒容下进行称恒容燃烧热(Qv ),在恒压下进行称恒压燃烧热(Qp)。

用氧弹式量热计测得的燃烧热是恒容燃烧热,Qv = -CM△t/m,式中,△t=t2-t1是燃烧前后系统温度的变化;m、M分别是被测物质的质量与摩尔质量,C是系统的总热容。

实际使用中更多的是恒压燃烧热Qp ,Qp可用式Qp=Qv+△nRT方便地求得。

式中△n为燃烧前后气体物质的量的变化。

三、试剂与仪器试剂:苯甲酸、萘、镍铬丝、氧气等;仪器:HR-15数显氧弹式量热计。

如下两图分别是氧弹式量热计和氧弹的结构简图。

四、实验步骤1.用标准苯甲酸标定量热计的热容量C(1)截取10cm镍铬丝;(2)将预先压成片状干燥的苯甲酸样品(1g左右)放人坩埚内,然后将坩埚放在氧弹金属支架的环上,切不可触及坩埚;(3)拧紧氧弹盖及放气孔,接上充氧气往氧弹中缓缓充人氧气;(4)往内筒中加人4000ml去离子水,调节内筒水温;(5)把氧弹放人内筒的固定座上;(6)打开电脑,HR-15型氧弹式量热计测试软件,进行测试内容设置。

(7)然后点击“开始”键进行实验测量。

实验分三个阶段:初期、主期、末期。

注意记录温度的变化,值得注意的是,点火成功,主期温度明显升高,否则,点火不成功。

(8)测量完毕,停止搅拌,取出温度传感器插人外简内,打开筒盖,拔下点火电极插头,取出氧弹,用放气帽按下放气阀,使气体缓缓放出至常压。

(9)实验完毕,氧弹筒体及所有的内件必须冲洗干净。

2.测定萘的恒容燃烧热(1)将预先压好片的试样品放入坩埚,按上述热容量C的测定完成实验步骤(1)~(8)。

(2)键盘操作:五、数据处理恒容燃烧热Qv = -CM△t/m。

但精确的计算应用下式:Qv=[-C(tn-t+△t’)-gb-(-5.98)VOH-]×M/m(1)已知苯甲酸的恒容燃烧热为-26446 J·g-1,计算本实验量热计的总热容量C=13261J/C(2)计算萘的恒容燃烧热Qv=323.4J/mol和恒压燃烧热Qp=498.73J/mol六、思考题(1)为什么量热计中内筒的水温应调节得略低于外筒的水温?答:根据称样量范围,升温变化应在1.5~2度之间,所以选择起始水温低于环境1度左右,以减少因未采用绝热式热量计而引起的热辐射误差。

(2)在标定热容量和测定条燃烧热时,量热计内筒的水量是否可以改变?为什么?答:不可以控制变量,减少误差,具有可比性(3)为什么在数据处理时要计算温度校正值上△t’?怎样计算?答:系统与环境热交换引起△t’=-0.5(r+r1)n- r1n1 r为初期温度变化率 r1为末期温度变化率n为主期内每半分钟温度上升不小于0.3℃的时间间隔数(点火后的第一个时间间隔不管温度升高多少,都计入n中),n l为主期内每半分钟温度升高小于0.3℃的时间间隔数。

实验三 差热分析一、 实验目的了解热分析的基本原理及差热曲线的分析方法,测定CuSO 4·5H 2O 脱水过程的差热曲线及各特征温度;测定KNO 3的晶型转变过程的热效应。

二、 实验原理(1)热分析是在程序控制温度下测量物质的物理性质与温度的关系的一类技术。

差热分析(D.T.A )是热分析方法的一种。

其根据是当物质发生化学变化或物理变化(如脱水、晶型转变、热分解等)时,都有其特征的温度,并往往伴随着热效应,从而造成研究物质与周围环境的温差。

此温差及相应的特征温度,可用以鉴定物质或研究其有关的物理化学性质。

差热峰的面积与过程的热效应成正比,即:A m KTdt m K H t t ⎰=∆=∆21式中m 为样品的质量;△T 为温差;t 1,t 2为峰的起始时刻与终止时刻;⎰∆21t t Tdt为差热峰的面积A 。

K 为仪器参数,与仪器特征及测定条件有关。

(2)温差△T 的测量,是用两对相同型号的热电偶同极串联组成一个温差热电偶,如图2-16所示,其中A 、B 表示组成热电偶的两种不同金属材料。

(3)在实际测量时,由于样品与参比物的比热容、导热系数、粒度、装填情况等不可能完全相同,因而差热曲线的基线不一定与时间轴平行,峰前后基线也不一定在同一条直线上。

三、 试剂与仪器试剂:CuSO 4·5H 2O ,参考物Al 2O 3,标准物Sn 。

仪器:热分析电炉,CKW-1000系列温度控制仪,XWT 系列台式自动平衡双笔记录仪。

四、 实验步骤(1)熟悉综合热分析仪的基本结构和操作使用方法,熟悉操作软件的使用方法。

(2)根据教师指定的实验样品,设计控温程序,包括开始温度、升温速率、终止温度、保温时间、气体流速等。

(3)按照设计的控温程序运行控温程序,对样品进行热分析操作,实时采集数据。

在微机上观察有关参数及绘出的曲线。

(4)控温程序结束后,让加热炉降温。

处理数据,打印图谱和有关数据。

图像分析:1. 在AB 段,T ∆=0,样品没有发生热效应,等于参考物的温度;2. 在BD 段,0≠∆T ,峰向下凸起,样品吸热;3. 在EG 段,0≠∆T ,锋向上凸起,样品放热;4. 在HJ 段,0≠∆T ,峰向下凸起,样品吸热。

实验四热重分析实验一、实验目的了解热重分析的基本原理及热重曲线的分析方法,测绘NaHCO3、BaCl2·2H2O的脱水热谱图并予以定量解释。

二、实验原理热重法(TG)是在程序控制温度的条件下测量物质的质量与温度的关系的一种技术。

当样品在程序升温过程中发生脱水、氧化或分解时,其质量就会发生相应的变化。

将对应关系绘制成图,即得到热重谱线图(图4-1)。

图4-1 热重谱线示意图图中ti 应该是样品的质量变化达到天平开始感应的最初温度.同样tf是样品质量变化达到最大值时的温度。

图线的形状、ti 和tf的值主要由物质的性质所决定.但也与设备及操作条件(如升温速率等)有关。

ti 、tf往往不易确定.故采用如图2-29所示外排法得到。

本实验分别测试NaHCO3、BaCl2·2H2O在加热过程中发生分解反应时质量的变化,测求其分解反应温度和两个脱水温度并验证如下反应步骤:NaHCO3 Na2CO3+ CO2+ H2OBaCl2·2H2O BaCl2·H2O+ H2OBaCl2·H2O BaCl2+H2O三、试剂与仪器试剂:BaCl2·2H2O(AR),NaHCO3(AR)。

仪器:电子天平(精度0.1mg),热分析炉,CKW-1000系列温度控制仪。

四、实验步骤(1)装好设备,在天平右臂挂好坩埚,调节天平到平衡位置,并记下读数。

(2)取下空坩埚,称取0.15g左右的NaHCO3放在其中,轻轻振动,使之自然堆积。

然后将坩埚仍挂回天平右臂上,使其垂直地置于电炉的恒温区域之中。

(3)把测温热电偶插入电炉,热电偶的热端尽量接近坩埚,并接好温度控制仪。

(4)设置好控制程序,控制温度升高速度为每分钟3度。

(5)每隔1度记录天平的读数与相应温度,直到200度为止。

(6)按上述步骤测量BaCl2·2H2O的两次脱水温度与失重量。

五、数据处理(1)记录实验条件,列表记录测定数据(测得的温度应考虑用标准物质草酸分解温度118度进行标定后的温度校正值)。

(2)以天平读数为纵坐标、温度为横坐标分别作NaHCO3、BaCl2·2H2O的失重热谱图。

相关文档
最新文档