利用导数研究函数的单调性 ppt课件
合集下载
函数的单调性与导数课件(共13张PPT)
a
b用导数确定函数大致图象
已知导函数的下列信息:
分析:
当2 x 3时,f '( x) 0; f ( x)在此区间递减 当x 3或x 2时,f '( x) 0; f ( x)在此区间递增
当x 3或x 2时,f '( x) 0. f ( x)图象在此两处
归纳小结
1.“导数法” 求单调区间的步骤:
①求函数定义域
②求 f '( x)
③令f '( x) 0解不等式 f ( x)的递增区间
f '( x) 0解不等式 f ( x)的递减区间
2.如果函数具有相同单调性的单调区间不止一个,
如何表示单调区间?
不能用“∪”连接,应用“,”隔开
水以匀速注入下面四种底面积相同的容器中, 请分别找出与各容器对应的水的高度h与时间t的函 数关系图象.
(1)→B (2)→A (3)→D (4)→C
问题 若函数f(x)在区间(a,b)内单调递增, 那么f′(x)一定大于零吗?
如f(x)=x3,x∈(-1,1)
不一定,应是 f′(x)≥0.
结论 若函数单调递增,则
若函数单调递减,则
已知 ,函数
在区间
上是增函数,求实数 的取值范围.
求下列函数的单调区间
在(, 0)上递减
o
在(0, )上递增
x
导数的正负
f '(x) 1 0
f '(x) 1 0 f '(x) 2x 0 f '(x) 2x 0
在某个区间(a, b)内,
f '( x) 0 f ( x)在(a, b)内单调递增 f '( x) 0 f ( x)在(a, b)内单调递减
函数的单调性与导数-图课件
单调减函数的性质
03
04
05
函数图像从左至右下降 。
若$f(x)$在区间$I$上单 调递减,且$a, b in I$, 且$a < b$,则有$f(a) geq f(b)$。
若函数$f(x)$在区间$I$ 上单调递减,则其反函 数在相应的区间上单调 递增。
单调性与导数的关系
01
导数与单调性的关系
如果函数在某区间的导数大于0,则该函数在此区间单调递增;如果导
数小于0,则函数在此区间单调递减。
02
导数不存在的点
对于使导数不存在的点,需要单独判断其单调性。
03
高阶导数与单调性的关系
高阶导数的符号可以提供关于函数单调性更精细的信息。例如,二阶导
数大于0表示函数在相应点处有拐点,即由单调递增变为单调递减或反
之。
02 导数在判断函数单调性中 的应用
导数大于0与函数单调性的关系
定义法判断单调性
• 定义法判断单调性是指通过比较函数在某区间内任意两点x1和x2的函数值f(x1)和f(x2),来判断函数在该区间内的单调性。 如果对于任意x1<x2,都有f(x1)<f(x2),则函数在该区间内单调递增;如果对于任意x1<x2,都有f(x1)>f(x2),则函数在该 区间内单调递减。
03 导数在实际问题中的应用
导数在经济学中的应用
边际分析
导数可以用来分析经济函数的边 际变化,例如边际成本、边际收 益等,帮助企业做出更好的经济
决策。
最优化问题
导数可以用来解决最优化问题,例 如最大利润、最小成本等,为企业 提供最优的资源配置方案。
需求弹性
导数可以用来分析需求弹性,例如 价格敏感度、需求变化等,帮助企 业制定更加精准的市场策略。
导数与函数的单调性ppt课件
x1x2 x1 - x2
x0x
一般地,设函数y=f(x)在某个区间内可导,则函数在
该区间有下面的结论:
如果在某区间上f/(x)>0,则f(x)为该区间上的增函数;
如果在某区间上f/(x)<0,则f(x)为该区间上的减函数.
引例:讨论函数y=x2-4x+3的单调性.
(方法3:导数法)
解:函数的定义域为R, f/(x)=2x-4 令f /(x)>0,解得x>2, 则f(x)的单增区间为(2,+∞). 再令f /(x)<0,解得x<2, 则f(x)的单减区间(-∞,2).
上是单调递增的,求a的取值范围. a 16
f
(x) 2x
a x2
0对任意x [2, )恒成立.
2x3 a 0对任意x [2, )恒成立.
2x3 a对任意x [2, )恒成立.
变式:(2已x3)知min函数a对f (任x)意xx2[2,a(a)恒 R成)立在.x (, 2] x
课外作业
教材P84页 习题4-1 第1题
步骤:根据导数确定函数的单调性
1.确定函数f(x)的定义域.
. 2.求出函数的导数f/(x)
3.解不等式f/(x)>0,得函数单增区间; 解不等式f/(x)<0,得函数单减区间.
例5:已知函数f (x) x2 a (a R)在x [2, ) x
解:函数的定义域为x>0, f/(x)=lnx+1.
当lnx+1>0时,解得x>1/e.则f(x)的 单增区间是(1/e,+∞). 当lnx+1<0时,解得0<x<1/e.则f(x) 的单减区间是(0,1/e).
导数的应用(第1课时)利用导数研究函数的单调性(课件)高二数学(沪教版2020选择性必修第二册)
图 ( 1 ) 中的曲线越来越 “ 陡峭 ”, 在区间 ( 0 , 1 ) 上各点处 的切线斜率始终大于 1 ; 图 ( 2 ) 中的曲线由 “ 陡峭 ” 变得 “ 平缓 ”, 在区间 ( 0 , 1 ) 的右半段的切线斜率小于 1 ; 图 ( 3 ) 中的曲线由 “ 平缓 ” 变得 “ 陡峭 ”, 在区间 ( 0 , 1 ) 的左半段的切线斜率小于 1 ; 图 ( 4 ) 中的曲线越来越 “ 平缓 ”, 在区间 ( 0 , 1 ) 上各点处 的切线斜率始终小于 1. 因此 , 只有图 5-3-1 ( 1 ) 中的图像有可能表示函数 y = f( 可能成为严格递增区间与严格 递减区间的分界点 .
例4.确定函数(f x)=x2的单调区间 .
解函数在x 0处没有定义 .当x 0时,f (x)=-2x3,
方程f′( x )=0 无解 , 所以函数 f( x )没有驻点 . 但当 x >0 时 ,f′( x ) <0 ,f( x ) 单调递减 ; 当 x <0 时 ,f′( x) >0 , f( x ) 单调递增 . 可 见 , 函数 f ( x ) 的严格递增区间为 (-∞,0), 严格 递减区间为(0,+∞)
课本练习 宋老师数学精品工作室
1. 利用导数研究下列函数的单调性 , 并说明所得结果与你 之前的认识是否一致 :
宋老师数学精品工作室 2. 确定下列函数的单调区间 :
随堂检测 宋老师数学精品工作室
1、函数y=x2cos 2x的导数为( )
A.y′=2xcos 2x-x2sin 2x
B.y′=2xcos 2x-2x2sin 2x
上面我们用导数值的正负判断函数在某区间的单调性 . 但导数值还可 以进一步用以判断函数变化速度的快慢 : 导数f′( x 0 ) 是函数 f( x ) 在点 x 0 的切线的斜率 , 所以它描述了曲线 y=f( x ) 在点 x0 附近相 对于x轴的倾斜程度 : 当f′( x 0 ) >0 时 ,f′( x0 ) 越大 , 曲线 y = f ( x ) 在点 x 0 附近相对于 x 轴倾斜得越厉害 ,f( x ) 递增得 越快 ; 而当f′( x 0 ) <0 时 ,f′( x 0 ) 越小 , 曲线y = f ( x ) 在点 x0 附近相对于x轴倾斜得越厉害 , f ( x ) 递减得越快 . 综合这 两个方面 , 导数的绝对值越大 , 函数图像就越 “ 陡峭 ”, 也就是 函数值变化速度越快 .
利用导数研究含参函数的单调性【公开课教学PPT课件】
3
2
y
y
y
-1 0 x
-1 a 0 x a -1 0 x
①当a=-1时
②当a>-1时
③当a<-1时
小结:当两根的大小不确定时,应进行分类讨论.
探究二
变式二:讨论函数f ( x) 1 x2 +(1 a)x a ln x的单调性. 2
y
y
0a
x a0 x
①当a>0时
②当a≤0时
小结:当根大小不确定时,应讨论根的大小及根是否在定义域内.
2、已知函数f ( x) ln x a ,求f ( x)的单调区间 x
3、已知函数f ( x) 1 ax2 x (a 1)ln x,讨论f ( x)的单调性 2
感谢您的指导
邱奉美
第三章 导数应用
利用导数研究含参函数的单调性
(第1课时)
探究一
变式一:讨论函数f ( x) 1 x3 1 a x2 ax 1的单调性.
3
2
探究一
变式一:讨论函数f ( x) 1 x3 1 a x2 ax 1的单调性.
0,x2
1
1)当 1 1即a 1时,f (x)在(0, )上递增.
a
10 0a1 00
10
1 1
x 11
xx
1
xx
aa
2)当1 1即a 1时,f (x)在(0,1)和(1, )上递增; f (x)在( 1 ,1)上递减.
a
a
a
3)当1 1即0 a 1时,f (x)在(0,1)和(1, )上递增; f (x)在(1,1 )上递减.
探究二
变式三:讨论函数f ( x) 1 x2 (a 1)x a ln x的单调性. 2
高考数学一轮复习-用导数研究函数的单调性ppt课件
恒成立,即 ≥
恒成立,又 =
在 , +∞ 上单调递减,故
< ,所以
+
+
+
≥ ,当 = 时,导数不恒为0.故选D.
02
研考点 题型突破
题型一 不含参数的函数的单调性
典例1 函数y = xln x(
D )
A.是严格增函数
B.在
1
0,
e
上是严格增函数,在
1
, +∞
e
上是严格减函数
为 , .故选A.
(2)函数f x
[解析] 函数
或 =
2
x2
0,
= x 的增区间为________.
ln 2
2
⋅ − ⋅ ⋅
= ,则′ =
,当
.
.令′ = ,解得 =
∈ −∞, 时,′ < ,函数 单调递减,当 ∈ ,
(2)已知函数f x = ex − e−x − 2x + 1,则不等式f 2x − 3 >
3
, +∞
1的解集为_________.
2
[解析] = − − − + ,其定义域为,
∴ ′ = + − − ≥ ⋅ − − = ,当且仅当 = 时取“=”,∴ 在
在 a, b 上单调递减,则当x ∈ a, b 时,f′ x ≤ 0恒成立.
2.若函数f x 在 a, b 上存在增区间,则当x ∈ a, b 时,f′ x > 0有解;若函数f x
在 a, b 上存在减区间,则当x ∈ a, b 时,f′ x < 0有解.
函数的单调性与导数-图课件
函数的单调性与导数-图 课件
通过图示方式深入探讨函数的单调性单调性
定义
函数单调性是指函数在 定义域内逐渐增大或逐 渐减小的趋势。
单调递增的函数图像
函数图像由左下向右上 倾斜。
单调递减的函数图像
函数图像由左上向右下 倾斜。
如何判断函数的单调性
一阶导数与函数单调性的关系
当函数的一阶导数永远大于零时,函数递增; 当一阶导数永远小于零时,函数递减。
二阶导数与函数凹凸性的关系
当函数的二阶导数大于零时,函数凹;当二 阶导数小于零时,函数凸。
导数与函数单调性的应用
1 极值问题
利用导数找出函数的 极值点,从而解决实 际问题。
2 函数最大值最小
值问题
导数能够帮助我们判断函数的单调性和凹凸 性。
如何应用导数解决实际问题
导数不仅仅是理论工具,还可以解决许多实 际问题。
学习建议
1 深入理解导数的概念
掌握导数的定义和性质,加深对导数与函数关系的理解。
2 多做练习题
通过大量的练习题巩固导数与函数单调性的知识。
通过导数的性质,求 出函数的最大值和最 小值。
3 拐点问题
使用导数的变化来确 定函数的拐点。
实例分析
对给定函数F(x)进行单调性分析
通过分析函数F(x)的导数,确定函数F(x)在不同 区间的单调性。
利用导数求函数的最值
运用导数的概念和性质,求出函数的最大值和 最小值。
总结与思考
函数单调性与导数的关系
通过图示方式深入探讨函数的单调性单调性
定义
函数单调性是指函数在 定义域内逐渐增大或逐 渐减小的趋势。
单调递增的函数图像
函数图像由左下向右上 倾斜。
单调递减的函数图像
函数图像由左上向右下 倾斜。
如何判断函数的单调性
一阶导数与函数单调性的关系
当函数的一阶导数永远大于零时,函数递增; 当一阶导数永远小于零时,函数递减。
二阶导数与函数凹凸性的关系
当函数的二阶导数大于零时,函数凹;当二 阶导数小于零时,函数凸。
导数与函数单调性的应用
1 极值问题
利用导数找出函数的 极值点,从而解决实 际问题。
2 函数最大值最小
值问题
导数能够帮助我们判断函数的单调性和凹凸 性。
如何应用导数解决实际问题
导数不仅仅是理论工具,还可以解决许多实 际问题。
学习建议
1 深入理解导数的概念
掌握导数的定义和性质,加深对导数与函数关系的理解。
2 多做练习题
通过大量的练习题巩固导数与函数单调性的知识。
通过导数的性质,求 出函数的最大值和最 小值。
3 拐点问题
使用导数的变化来确 定函数的拐点。
实例分析
对给定函数F(x)进行单调性分析
通过分析函数F(x)的导数,确定函数F(x)在不同 区间的单调性。
利用导数求函数的最值
运用导数的概念和性质,求出函数的最大值和 最小值。
总结与思考
函数单调性与导数的关系
利用导数判断函数的单调性课件
热传导分析
利用导数分析热量在物体中的传递规律,研究热 力学中的热传导问题。
弹性力学分析
通过导数分析弹性物体的应力应变关系,研究弹 性力学中的问题。
练习题与答案解析
练习题
01
判断函数$f(x) = x^{3} - 3x^{2} + 4$的单调性。
02
判断函数$g(x) = ln(x + sqrt{x^{2} + 1})$的单调性。
导数的几何意义
总结词
导数的几何意义是函数图像在某 一点的切线斜率。
详细描述
导数的几何意义是函数图像在某 一点的切线斜率。在函数图像上 取一点,在该点处作切线,切线 的斜率即为该点的导数值。
导数的性质
总结词
导数具有一些重要的性质,如可加性、可乘性、链式法则等。
详细描述
导数具有一些重要的性质,如可加性、可乘性、链式法则等。 这些性质在判断函数的单调性、极值、拐点等方面具有重要 作用。通过掌握这些性质,可以更好地理解和应用导数。
利用导数判断函数的 单调性课件
• 导数的定义与性质 • 导数与函数单调性的关系 • 利用导数判断函数单调性的方法 • 实际应用举例 • 练习题与答案解析
目录
导数的定义与性质
导数的定义
总结词
导数描述了函数在某一点处的切线斜 率。
详细描述
导数是函数在某一点处的切线斜率, 表示函数在该点的变化率。通过求导, 可以得到函数在某一点的0,即$f'(x) leq 0$。
函数单调性的判定
根据导数的符号判断函数单调性:若$f'(x) > 0$,则函数单调递增;若$f'(x) < 0$,则函数
单调递减。
对于分段函数,需要分别求出各段函数的导数,再根 据导数的符号判断分段函数的单调性。
利用导数分析热量在物体中的传递规律,研究热 力学中的热传导问题。
弹性力学分析
通过导数分析弹性物体的应力应变关系,研究弹 性力学中的问题。
练习题与答案解析
练习题
01
判断函数$f(x) = x^{3} - 3x^{2} + 4$的单调性。
02
判断函数$g(x) = ln(x + sqrt{x^{2} + 1})$的单调性。
导数的几何意义
总结词
导数的几何意义是函数图像在某 一点的切线斜率。
详细描述
导数的几何意义是函数图像在某 一点的切线斜率。在函数图像上 取一点,在该点处作切线,切线 的斜率即为该点的导数值。
导数的性质
总结词
导数具有一些重要的性质,如可加性、可乘性、链式法则等。
详细描述
导数具有一些重要的性质,如可加性、可乘性、链式法则等。 这些性质在判断函数的单调性、极值、拐点等方面具有重要 作用。通过掌握这些性质,可以更好地理解和应用导数。
利用导数判断函数的 单调性课件
• 导数的定义与性质 • 导数与函数单调性的关系 • 利用导数判断函数单调性的方法 • 实际应用举例 • 练习题与答案解析
目录
导数的定义与性质
导数的定义
总结词
导数描述了函数在某一点处的切线斜 率。
详细描述
导数是函数在某一点处的切线斜率, 表示函数在该点的变化率。通过求导, 可以得到函数在某一点的0,即$f'(x) leq 0$。
函数单调性的判定
根据导数的符号判断函数单调性:若$f'(x) > 0$,则函数单调递增;若$f'(x) < 0$,则函数
单调递减。
对于分段函数,需要分别求出各段函数的导数,再根 据导数的符号判断分段函数的单调性。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x>
3
a2-3时,f′(x)>0,函数
f(x)单调递增,
当-a-3
a2-3 -a+
<x<
3
a2-3时,f′(x)<0,函数
f(x)单调递减.
此时函数的单调增区间为
(-∞,-a-3
a2-3),-a+3
a2-3,+∞;
单调递减区间为
-a-
3
a2-3,-a+
3
a2-3.
故若- 3≤a≤ 3,f(x)在 R 上为增函数;若 a> 3或 a<- 3函数
二、课程讲解 题型一 判断或证明函数的单调性 【例 1】 证明:函数 f(x)=lnxx在区间(0,e)上是增函数.
证明
∵f(x)=lnx
x,∴f′(x)=x·1x-x2ln
x=1-xl2n
x .
又0<x.∴f′(x)=
1-ln x2
x
>0,故f(x)在区间
(0,e)上是单调递增函数.
又∵x>0,∴0<x< 33,
∴f(x)=3x2-2ln
x
的增区间为
33,+∞,减区间
为0,
3
3
.
题型三 已知单调性求参数的取值范围
【例 3】 已知函数 f(x)=x3+ax2+x+1,a∈R.
(1)讨论函数 f(x)的单调区间;
(2)设函数 f(x)在区间-23,-13内是减函数,求 a 的取值范围. 解 (1)f(x)=x3+ax2+x+1,f′(x)=3x2+2ax+1,
思考:可导函数f(x)在(a,b)上递增(减)的充要条件是什 么?
提示 可导函数f(x)在(a,b)上递增(减)的充要条件是 f′(x)≥0(f′(x)≤0)在(a,b)上恒成立,且f′(x)在(a,b)的任意子区间 内都不恒等于零.这就是说,函数f(x)在区间上的单调性并不排 斥在区间内的个别点处有f′(x)=0.
2.求函数f(x)=x2-2ln x的单调区间.
解 f′(x)=2x-2x=2x2x-1,
又 f(x)的定义域为{x∈R|x>0},
∴x,f′(x)、f(x)的取值变化情况如下表:
x (0,1) 1 (1,+∞)
f′(x) - 0 +
f(x)
1
由上表可知,函数 f(x)在区间(0,1)上是减函数,在区间(1,+
∞)上是增函数或直接由 f′(x)>0,
得2x2x-1>0, ∴xx2>-0,1>0, 得x>1; 由f′(x)<0,即x2-x 1<0, 由xx2>-0,1<0, 解得0<x<1. 故f(x)的递增区间为(1,+∞),递减区间为(0,1).
3.若函数f(x)=x3+x2+mx+1是R上的单调函数,求实数m 的取值范围.
A.(-∞,-1),(0,+∞) B.(0,+∞)
C.(-1,0)
D.(-1,1)
解析 ∵f′(x)=1+1x=x+x 1,
∴由于f′(x)>0,且由f(x)的定义域:{x|x>0},知x>0时,f′(x)>0 恒成立.
答案 B
3.函数y=x3-3x的单调递减区间是________.
解析 ∵y′=3x2-3=3(x2-1), ∴令y′<0,即3(x+1)(x-1)<0,解得-1<x<1. 答案 (-1,1)
预习效果检查
1.若 f(x)在[a,b]上连续且在区间(a,b)内,f′(x)>0,且 f(a)≥0, 则在(a,b)内有( ).
A.f(x)>0 C.f(x)=0
B.f(x)<0 D.不能确定
解析 因f(x)在(a,b)上为增函数, ∴f(x)>f(a)≥0.
答案 A
2.函数f(x)=x+ln x的单调增区间为( ).
3.3 导数在研究函数中的应用 3.3.1 利用导数研究函数的单调性
一、预习检查
1.设函数 y=f(x)在某个区间上的导数为 f′(x) , 如果f′(x)>0 ,那么函数 y=f(x)递增,如果 f′(x)<0 ,那 么函数 y=f(x)递减. 2.从导数定义看,函数的导数就是函数值关于自变量 的 变化率 ,变化率的绝对值越大说明变得越快,绝对值越 小说明变得越慢;从函数的图象看,导数是切线的 斜率,斜率的 绝对值大说明切线 陡 ,曲线也就陡,斜率的绝对值小说明切线 较 平 ,曲线也就平缓一些.
(2)解
f′(x)=xcos
x-sin x2
x,令g(x)=xcos
x-sin
x,
则g′(x)=cos x-xsin x-cos x=-xsin x,
∵x∈(0,π),∴g′(x)<0,故g(x)是减函数,
∴g(x)<g(0)=0,∴x∈(0,π)时,f′(x)<0,
∴f(x)=sinx x在区间(0,π)上是减函数.
f(x)单调递增区间为-∞,-a-3
a2-3,
-a+
3
a2-3,+∞
;
函
数
f(x) 单 调 递 减 区 间 为
-a-
3
a2-3,-a+3
a2-3.
(2)若函数在区间-23,-13内是减函数,则说明 f′(x)=3x2
+2ax+1=0 两根在区间-23,-13外, 因此 f′-23≤0,且 f′-13≤0,由此可以解得 a≥2. 因此 a 的取值范围是[2,+∞).
三、课堂练习
1.(1)试证明:函数 f(x)=sinx x在区间π2,π上单调递减. (2)试问:若将题中区间改为(0,π),函数 f(x)的单调性如何?
(1)证明
f′(x)=xcos
x-sin x2
x,又
x∈π2,π,
则 cos x<0,∴xcos x-sin x<0,
∴f′(x)<0,∴f(x)在π2,π上是减函数.
题型二 求函数的单调区间
【例 2】 求函数 f(x)=3x2-2ln x 的单调区间.
解 函数定义域为(0,+∞),
f′(x)=6x-2x=2·3x2x-1=6x-
33x+ x
33,
令 f′(x)>0 则 x> 33或- 33<x<0,
又∵x>0,∴x> 33,
令 f′(x)<0,则 x<- 33或 0<x< 33,
解 ∵f′(x)=3x2+2x+m,由于f(x)是R上的单调函数,∴
f′(x)>0恒成立或f′(x)<0恒成立,由于3>0,
当 Δ=(2a)2-3×4=4a2-12≤0,即- 3≤a≤ 3时,f′(x)≥0 恒
成立,
此时 f(x)为单调递增函数,单调区间为(-∞,+∞).
当 Δ=(2a)2-3×4=4a2-12>0,即 a> 3或 a<- 3时,函数 f′(x)
存在零解,
此时当
-a-
x<
3
a2-3时,f′(x)>0,
当
-a+