数学建模及典型案例分析
数学建模竞赛成功经验分享与案例分析
数学建模竞赛成功经验分享与案例分析在数学建模竞赛中,取得成功并非易事。
除了扎实的数学基础和分析能力外,团队合作与沟通、解题思维的总结与拓展、时间管理等方面的因素同样重要。
本文将分享一些数学建模竞赛的成功经验,并分析一些经典的案例。
一、团队合作与沟通在数学建模竞赛中,团队合作和沟通是关键。
合理分工,高效协作可以提高团队整体的工作效率。
团队成员之间需要及时沟通与交流,将个人的想法和观点分享出来,以便找到最佳的解决方案。
同时,团队需要制定明确的计划与目标,并进行有效的组织与调度。
案例分析:在某数学建模竞赛中,一支团队面对一个复杂的实际问题,团队成员通过深入讨论,在共同努力下确定了问题的解决思路,并把该思路转化为数学模型。
通过团队成员之间的合作与沟通,大大提高了解题的效率,并且最终获得了竞赛的好成绩。
二、解题思维的总结与拓展数学建模竞赛中的问题往往是实际问题,需要将问题进行数学化建模,设定适当的假设和变量,确定合适的求解方法。
有效的解题思维总结与拓展是成功的关键。
案例分析:在一场数学建模竞赛中,一支团队面对一个涉及交通拥堵的问题。
他们通过总结以往的经验,提出了一种创新的解题思路:将交通拥堵问题看作流体力学问题,并借鉴计算机模拟技术进行仿真实验。
这种新颖的思路帮助他们从一个全新的角度解决问题,并在竞赛中获得好成绩。
三、时间管理数学建模竞赛的时间限制通常较为紧张,在有限的时间内完成解题过程是一项挑战。
因此,良好的时间管理能力对于竞赛中的成功非常重要。
合理规划时间,掌握解题进度,合理分配时间用于建模、求解和分析是必备的能力。
案例分析:在一场数学建模竞赛中,一支团队遇到了一个非常复杂的优化问题。
经过初步分析后,他们立刻制定了详细的时间安排,明确每个环节所需的时间,并进行了合理分配。
这使得他们能够在有限时间内完成建模和求解,最终取得较好的成绩。
综上所述,数学建模竞赛的成功需要团队合作与沟通、解题思维的总结与拓展、以及良好的时间管理能力。
数学建模的实例与分析
数学建模的实例与分析在现代社会中,数学建模作为一种重要的科学方法,被广泛应用于各个领域。
通过数学模型的构建和分析,我们能够深入了解问题的本质,预测未来的趋势,并为决策提供科学依据。
本文将为大家介绍两个关于数学建模的实例,并对其进行详细分析。
实例一:股票价格预测股票市场一直以来都备受人们的关注,因为其价格的波动会对投资者的财富造成重大影响。
为了帮助投资者更好地预测股票价格,数学建模成为了一种重要的工具。
在股票价格预测的建模过程中,一般使用时间序列分析方法。
首先,我们需要获取一段时间内的历史股票数据,包括每日的股票价格和交易量。
然后,通过统计学方法对这些数据进行分析,例如平均值、标准差等。
接下来,我们可以利用时间序列模型,如ARIMA模型,来对未来的股票价格进行预测。
除了时间序列分析,机器学习算法也可以应用于股票价格的预测。
例如,可以使用支持向量机(SVM)或人工神经网络(ANN)等算法,通过训练模型来捕捉股票价格的变化规律,并进行预测。
这些算法能够根据历史数据中的模式和趋势,预测未来股票价格的走势。
通过数学建模,我们能够更好地理解股票市场的运行规律,并及时预测股票价格的变化,为投资者提供决策参考。
实例二:交通拥堵模拟随着城市化的发展,交通拥堵成为了一个普遍存在的问题。
为了有效地缓解交通拥堵,数学建模可以帮助我们研究交通流的特性,并设计出更好的交通管理策略。
在交通拥堵模拟中,常常使用微观模型和宏观模型相结合的方法。
微观模型关注个体车辆的行为,例如车辆的加速度、减速度以及车头间距等。
而宏观模型则关注整体交通流的特性,例如道路容量、流量以及速度等。
通过对交通流的建模和仿真,我们可以模拟城市道路网络中交通流的变化,以及拥堵的产生和扩散过程。
借助于数学建模,我们可以预测在不同交通管理策略下,拥堵情况的变化以及交通状况的优化效果。
此外,数学建模还可以结合其他领域的知识,如人工智能和大数据分析,来进一步提高交通拥堵模拟的准确性和可靠性。
数学建模与应用案例
数学建模与应用案例数学建模是一种将数学方法和技巧应用于实际问题求解的过程。
它通过建立数学模型,对问题进行抽象和描述,然后利用数学工具进行分析和求解,最终得出问题的解决方案。
数学建模在各个领域都有广泛的应用,本文将介绍几个数学建模与应用的案例。
案例一:交通流量预测交通流量预测是城市交通规划和管理中的重要问题。
通过对交通流量进行预测,可以合理安排交通资源,提高交通效率。
数学建模可以通过分析历史交通数据,建立交通流量预测模型。
以某城市的交通流量预测为例,可以采用时间序列分析方法,通过对历史交通数据的分析,建立交通流量与时间的关系模型。
然后利用该模型对未来的交通流量进行预测,从而为交通规划和管理提供科学依据。
案例二:股票价格预测股票价格预测是金融领域的重要问题。
通过对股票价格进行预测,可以帮助投资者做出更明智的投资决策。
数学建模可以通过分析历史股票数据,建立股票价格预测模型。
以某股票的价格预测为例,可以采用时间序列分析方法,通过对历史股票数据的分析,建立股票价格与时间的关系模型。
然后利用该模型对未来的股票价格进行预测,从而为投资者提供参考。
案例三:疾病传播模型疾病传播是公共卫生领域的重要问题。
通过建立疾病传播模型,可以预测疾病的传播趋势,制定有效的防控策略。
数学建模可以通过分析疾病传播的规律,建立疾病传播模型。
以某传染病的传播为例,可以采用传染病动力学模型,通过对疾病传播的机理进行建模,预测疾病的传播速度和范围。
然后利用该模型对疾病传播进行预测,从而为公共卫生部门提供决策支持。
案例四:物流配送优化物流配送是供应链管理中的重要问题。
通过优化物流配送方案,可以降低物流成本,提高物流效率。
数学建模可以通过分析物流配送的需求和约束条件,建立物流配送优化模型。
以某物流公司的配送问题为例,可以采用线性规划方法,通过对物流配送的需求和约束进行建模,优化配送方案。
然后利用该模型对物流配送进行优化,从而为物流公司提供最佳配送方案。
数学建模案例分析【精选文档】
案例分析1:自行车外胎的使用寿命问题:目前,自行车在我国是一种可缺少的交通工具。
它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。
但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。
扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。
为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换?分析:分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断.若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。
这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。
产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。
我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。
寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。
本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。
如换成自行车的路程寿命来比较,就好得多。
产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。
弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。
自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。
8.27课上数学建模案例分析解析
微分方程模型
实验目的
1.学会用MATLAB分析求解微分方程模型.
实验内容
1. 数学建模实例. 鸭子过河问题 慢跑者与狗的问题 导弹追踪问题
2.实验作业.
Байду номын сангаас 为什么要建立模型来解决 问题呢?
• 我认为可用“曹冲称象”的例子来说明,如图3。 变
大 象
• •
石 头
小称
大象重量
图 3
dx dt dy dt
X x , Y y
0
(2)
消去参数 ,可得狗的运动轨迹的参数方程
w dx (10 20cos t x) dt 2 2 (10 20cos t x ) (20 15sin t y ) w dy (20 15sin t y ) dt 2 2 (10 20cos t x ) (20 15sin t y ) y(0) 0 x(0) 0,
15 16
17 18 19 20 21 22
1.9217 1.8160 1.6721 1.4913 1.2759 1.0300 0.7591 0.4702
2.0937 1.6516 1.2479 0.8891 0.5818 0.3329 0.1484 0.0333
计算(1.3)的Matlab代码
a=1;b=2;h=10;dt=0.3; i=1; p=[0,h]; while p(2)>0 i=i+1; v=[a-b.*p(1)./sqrt(p(1).^2+p(2).^2),-b.*p(2)./sqrt(p(1).^2+p(2).^2)]; p=p+v.*dt; hold on plot(p(1),p(2),'p') end p
数学建模-第四篇-典型案例分析
v
gL
§1.5 空气阻力的影响
只考虑水平方向的阻力,且阻力与速度成正比
水平方向运动 x k x 0 , x ( 0 ) 0 , x ( 0 ) v c
解得 x(t)vcos1ekt
x(t)vco ks tkc vo s t2
y(t)vsintg2t
2
2
不考虑篮球和篮框大小,确定球心命中框心的条件
★ 球入篮框时的入射角度 计算公式
d
0 D
tan dx
dy XL
yxtanx2 g 2v2c o2s
tantan2(Hh)
L
★ 考虑篮球和篮框的大小,球心命中框心且球
入框的条件为
sin d
D
将 d24.6cmD45.0cm代入得 33.10
§1.4 出手角度和出手速度最大偏差估计
球入框时球心偏前(偏后)的最大距离 x D d
17.93 19.04 19.96 20.84 22.014 22.96 23.88 24.99 25.91 892 866 843 822 // /单位时间流出的水的体积.
★水泵不工作时段流量计算:水位对时间的变化率. ★水泵供水时段的流量计算:(1) 数值微分、拟合;
1.8 62.4099 63.1147 63.7281 64.2670
8.0
1.9 42.7925 40.9188 39.1300 37.4017 2.0 53.8763 55.8206 57.4941 5809615
2.1 20.9213 201431 19.6478 19.3698
1.8 67.6975 68.0288 68.3367 68.6244
vcostkcvost2L0 vsi ntg2t2 (Hh)0
数学建模与实践案例集
数学建模与实践案例集数学建模是一种将实际问题抽象化为数学问题,并通过建立数学模型来解决实际问题的方法。
数学建模既是一门学科,也是一种实践活动。
下面将介绍一个数学建模的实践案例集。
案例一:环境资源优化分配地区存在多个工业企业,这些企业需要使用环境资源,例如水、土地、能源等。
然而,这些资源有限,如何合理地将资源分配给各个企业,以保证资源的最大化利用率和企业的最大化生产效益,就是一个重要的问题。
数学建模可以通过建立数学模型来解决这一问题。
首先,需要确定各个企业对资源的需求量以及资源供应的限制条件。
然后,通过线性规划模型来求解最优资源分配方案。
除此之外,还可以采用动态规划、整数规划、网络流等方法来求解。
案例二:物流配送路径优化物流配送是一个复杂的系统工程,如何找到最优的配送路径,以降低配送成本、提高配送效率,是物流公司和电商企业关注的重点问题。
案例三:股票价格预测股票价格的波动性很大,如何准确预测股票价格的变动趋势,对于投资者来说是一个重要的问题。
数学建模可以通过建立时间序列模型来解决这一问题。
首先,需要收集历史股票价格数据,对其进行分析,提取相关的特征变量。
然后,通过回归分析、ARIMA模型、神经网络模型等方法来建立股票价格预测模型。
最后,可以利用建立的模型对未来的股票价格进行预测。
以上是三个数学建模的实践案例集。
通过数学建模,可以将实际问题转化为数学问题,并通过建立合适的数学模型来进行求解,实现对问题的优化和预测,为实践提供了一种有效的方法。
数学建模具有广泛的应用领域,不仅可以应用于工程技术、经济管理等领域,还可以应用于生物医学、气象预报等领域。
数学建模各类实际问题实例
一 北京飞至底特律的航程计算北京0A (北纬40°,东经116°),底特律坐标11A (北纬43°,西经83°), 纬度以北为正,南为负;经度以东为正,西为负。
而且以下计算中,飞机航线途中站点经纬度用表一的数据。
表一站点 A 0 A 1 A 2 A 3 A 4 A 5 纬度B (°) 40 31 36 53 62 59 经度L (°)116 122 140 -165 -150 -140 站点 A 6 A 7 A 8 A 9 A 10 A 11 纬度B (°) 55 50 47 47 42 43 经度L (°)-135-130-125-122-87-83设椭球体上任意两点10,2,1,0),,(),,(111 =+++i L B A L B A i i i i i i ,⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-=-=+++++).sin(),cos (cos )(),sin (sin )(1311221121i i i i i i i i i i L L n tgB L tgB L a b n tgB L tgB L a b n 其中a =6388千米,b =6367千米,21032221,||n n arctgn n n n =+=ϕ ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+++=++=++=2022202022220222)(sin )sin(sin )(sin cos )(sin b L n a L abn z L b L n a ab y Lb L n a ab x ϕϕϕϕ曲面上两点的弧长公式用|)()()(|21222dL L z L y L x S L L ⋅'+'+'=⎰。
试求北京至底特律的航程,你能对上述公式进行简化处理吗?精度如何?二 抢渡长江选手的竞游路线图用⎪⎪⎩⎪⎪⎨⎧=+=θθsin )(cos u dt dy y v u dt dx,初始条件为:⎪⎪⎩⎪⎪⎨⎧====HT y L T x y x )()(0)0(0)0( 画出)(x y y =的图像 。
简单数学建模应用例子
5
建模实例
图中椅脚连线为正 方形ABCD,对角线 AC与x轴重合 椅子 绕中心点旋转角度 后,正方形ABCD转 至A`B`C`D`的位置, 所以对角线AC与x
2024/5/10
6
建模实例
轴的夹角 表示了椅子的位置。 其次要把椅子脚着地,用数学符号表示出 来,如果用某个变量表示椅脚与地面的竖 直距离,那么当这个距离为零时就是椅脚 着地了,椅子在不同的位置椅脚与地面的 距离不同,所以这个距离就是位置变量 的 函数。
2024/5/10
27
建模实例
阻滞增长模型(Logistic模型)
将增长率r表示为人口x(t)的函数r(x),按照前 面的分析,r(x)应是x的减函数。一个最简单的 假设是设 r(x)为x的线性函数, r(x)=r-sx, s>0, 这里r相当于x=0时的增长率,称为固有增长率, 它与指数模型中的增长率r不同,显然,对于 任意的x>0,增长率r(x)<r。为确定系数s的意 义,引入自然资源和环境条件所能容纳的最大 人口数量xm, 称为最大人口容量。
2024/5/10
15
建模实例
安全渡河条件下的状态集称为允许状态集合, 记作S,不难写出
S={(x,y)|x=0, y=0, 1, 2, 3; x=y=1,2} - (1)
记第k次渡船上的商人数为uk ,随从数为vk ,将 二维向量dk = (uk,vk)定义为决策,允许决集合 记作D,由小船的容量可知
2024/5/10
14
建模实例
用状态变量表示某一岸的人员状况,决策变量 表示船上的人员状况,可以找出状态随决策变 化的规律。问题转化为在状态的充许变化范围 内,确定每一步的决策,达到渡河的目标 模型的过成: 记第k次渡河前此岸的商人数为xk随从数为yk, k=1,2,……,xk , yk =0,1,2,3,将二维向量 sk=(xk,yk)定义为状态,
小学生数学建模的案例分析
小学生数学建模的案例分析在现如今的教育体系中,数学建模已经逐渐成为培养学生创新能力和解决实际问题能力的重要手段之一。
尤其是对小学生来说,通过数学建模的学习,可以培养孩子们的观察力、分析能力和问题解决能力。
本文将通过分析一个小学生数学建模的案例,探讨数学建模对于小学生学习的意义和作用。
案例:小明的帽子小明是一个小学三年级的学生,他喜欢戴帽子。
有一天,他在帽子店捡到了一个袋子,里面有一些帽子。
小明好奇地打开袋子,发现里面没有标签,也没有告诉他帽子的数量。
于是小明决定通过数学建模的方法来解决这个问题。
第一步,观察和收集信息。
小明先将帽子逐个取出,并用一张纸记录下每个帽子的特征,如颜色、形状、大小等。
同时,他还用一个小本子记录下袋子里帽子的数量。
第二步,分析问题。
小明在观察后发现,每个帽子的特征都不同,但是某些特征可能会重复出现,如颜色和形状。
他决定以颜色和形状为主要特征进行分类,并将每个帽子分到相应的类别中。
第三步,构建模型。
小明将问题简化为将帽子分成不同的类别,即颜色和形状。
他用彩色的纸条代表不同的颜色,用不同形状的图案代表帽子的形状。
然后,他用这些纸条和图案在桌上进行组合排列,找到合适的分类方法。
第四步,解决问题。
通过观察彩色纸条和图案在桌上的排列,小明发现可以将帽子分为四类:红色、蓝色、绿色和黄色;三种形状:圆形、方形和三角形。
于是他得出结论,袋子里有四顶红色的帽子、三顶蓝色的帽子、五顶绿色的帽子和两顶黄色的帽子。
同时,他还计算出袋子里共有14顶帽子。
通过这个案例,我们可以看出数学建模对于小学生的学习是有着积极意义和作用的。
首先,数学建模可以培养小学生的观察力和分析能力。
在这个案例中,小明通过观察和分析帽子的特征,运用数学的方法进行分类,并最终找到解决问题的方法。
这个过程培养了小明的观察和分析能力,提高了他的逻辑思维能力。
其次,数学建模可以培养小学生的问题解决能力。
通过这个案例,小明面临的问题是如何确定帽子的数量,他通过构建模型和合理的排列组合方法,最终解决了问题。
数学建模例题及解析
例1差分方程——资金的时间价值问题1:抵押贷款买房——从一则广告谈起每家人家都希望有一套(甚至一栋)属于自己的住房,但又没有足够的资金一次买下,这就产生了贷款买房的问题。
先看一下下面的广告(这是1991年1月1日某大城市晚报上登的一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心的是:如果一次付款买这栋房要多少钱呢?银行贷款的利息是多少呢?为什么每个月要付1200元呢?是怎样算出来的?因为人们都知道,若知道了房价(一次付款买房的价格),如果自己只能支付一部分款,那就要把其余的款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说的房子作出决策了。
现在我们来进行数学建模。
由于本问题比较简单无需太多的抽象和简化。
a.明确变量、参数,显然下面的量是要考虑的:需要借多少钱,用记;月利率(贷款通常按复利计)用R记;每月还多少钱用x记;借期记为N个月。
b.建立变量之间的明确的数学关系。
若用记第k个月时尚欠的款数,则一个月后(加上利息后)欠款,不过我们又还了x元所以总的欠款为k=0,1,2,3,而一开始的借款为。
所以我们的数学模型可表述如下(1)c. (1)的求解。
由(2)这就是之间的显式关系。
d.针对广告中的情形我们来看(1)和(2)中哪些量是已知的。
N=5年=60个月,已知;每月还款x=1200元,已知A。
即一次性付款购买价减去70000元后剩下的要另外去借的款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策的困难。
然而,由(2)可知60个月后还清,即,从而得(3)A和x之间的关系式,如果我们已经知道银行(3)表示N=60,x=1200给定时0A。
例如,若R =0.01,则由(3)可算得的贷款利息R,就可以算出053946元。
如果该房地产公司说一次性付款的房价大于70000十53946=123946元的话,你就应自己去银行借款。
数学专业的数学建模案例
数学专业的数学建模案例数学建模是数学应用的重要领域之一,也是数学专业学生必备的技能。
通过数学建模,我们可以探索和解决各种实际问题,为决策提供科学依据。
本文将介绍数学专业中的数学建模案例,展示数学在现实生活中的应用。
1. 圆桌问题在宴会上,主办方需要安排N个人坐在一个圆桌周围,要求每个人旁边至少有一个人坐着,并且相邻两个人的学术研究领域尽量不同。
为了满足这些要求,数学建模可以采用图论的方法进行模拟和求解。
通过构建关系矩阵、定义优化目标函数,并借助线性规划等工具,我们可以得到最优的座位安排方案。
2. 物流路径优化物流路径优化是物流领域中的一个重要问题。
假设有N个物流节点需要连接,每个节点之间有不同的运输距离和运输成本。
数学建模可以通过图论中的最短路径算法来解决这个问题。
通过构建图模型,利用Dijkstra算法或Floyd-Warshall算法,可以找到使总运输成本最小的最优路径。
3. 疾病传播模型疾病传播模型是流行病学研究中的一个重要课题。
数学建模可以使用传染病模型,如SIR模型(易感者-感染者-康复者模型),来描述疾病在人群中的传播过程。
通过设置各项参数,如感染率、康复率等,并结合微分方程的求解,可以预测疾病传播的趋势,为疫情防控提供科学依据。
4. 金融风险评估金融风险评估是金融领域中的一个重要问题。
数学建模可以使用随机过程和蒙特卡洛模拟来评估金融资产的风险。
通过建立数学模型,模拟不同的金融市场变动情景,并进行大量的随机模拟试验,可以计算出不同风险水平下的资产价值和风险价值,为投资决策提供科学参考。
总结:数学建模是数学专业学生必备的技能之一,广泛应用于各个领域。
本文介绍了数学专业中的数学建模案例,包括圆桌问题、物流路径优化、疾病传播模型和金融风险评估。
这些案例展示了数学在现实生活中的重要应用,通过数学建模,我们可以更好地理解和解决实际问题,为社会发展提供科学支持。
数学专业的学生应该学习并掌握数学建模技能,以应对未来的挑战。
【精选】数学建模案例分析
数学建模案例分析模型1 蠓虫分类问题背景 两种蠓虫和已由生物学家W.L.Grogon 和W.W.Wirth (1981)根据Af Apf 它们的触角长度、翅膀长度加以区分. 现测得只和只的触长、翅膀长的数据6Apf 9Af 如下:Apf()1.14,1.78()1.18,1.96()1.20,1.86()1.26,2.00()1.28,2.00()1.30,1.96Af()1.24,1.72()1.36,1.74()1.38,1.64()1.38,1.82()1.38,1.90()1.40,1.70()1.49,1.82()1.54,1.82()1.56,2.08问题 ⑴如何根据以上数据,制定一种方法正确区分两种蠓虫?⑵将你的方法用于触长、翅长分别为的个样本()()()1.24,1.80,1.28,1.84,1.40,2.043进行识别.如何考虑?该问题属于统计模型范畴!(属于黑洞问题)1.首先对已有数据进行分析.(测试)画出相应的散点图什么启发?从图中可以看出,两类蠓虫有明显的差别.问题是该如何识别.法1 用最小二乘法得到回归线:结果不理想.法2 用斜率的平均值构造直线结果?图中不同类别的蠓虫的区别还是比较明显的.如何做进一步的识别?用此方法对给定的三个蠓虫进行识别,若点在直线的上方,则判定为Apf,否则定为Af.由此建立识别函数dist.m. 对给定的样本进行识别,如果样本点在直线上方,则将该蠓虫识别为Apf(标示为1),否则识别为Af(标示为0).clear,clcApf1=[1.14,1.18,1.20 1.26 1.28 1.30];Apf2=[1.78 1.96 1.86 2.00 2.00 1.96];Af1=[1.24 1.36 1.38 1.38 1.38 1.40 1.48 1.54 1.56]; Af2=[1.72 1.74 1.64 1.82 1.90 1.70 1.82 1.82 2.08]; x=[Apf1,Af1];y=[Apf2,Af2];n=length(x);k=sum(y./x)/n;A=[1.24,1.80;1.28,1.84;1.40,2.04];n=size(A,1);p=[];for i=1:nd=A(i,2)-k*A(i,1);if d>0p=[p,1];elsep=[p,0];endenddisp(p)结果为1 1 1即:三个新样本的判定结果均为Apf!这样的判定是否有效?(模型解释)为解释判别法的有效性,引入交叉误判率.交叉误判率是每次剔除一个样品,利用其余的训练样本建立判别准则,根据建立的判别准则对删除的样品进行判定,以其误判的比例作为误判率. 具体过程如下:①从总体为的训练样本开始,剔除其中每一个样品,剩余的个样品与中的1G 1m -2G 全部样品建立判别函数;②用建立的判别函数对剔除的样品进行判别;③重复上述步骤,直到中的全部样品依次被剔除、判别,其误判的总数记为;1G 12m ④对的样品重复步骤①②③,直到中的样品全部被剔除、判别,其误判的个数2G 2G 记为21,m 交叉误判率的估计值为1221ˆ.m m pm n+=+程序为clear,clcApf1=[1.14,1.18,1.20 1.26 1.28 1.30];Apf2=[1.78 1.96 1.86 2.00 2.00 1.96];Af1=[1.24 1.36 1.38 1.38 1.38 1.40 1.48 1.54 1.56]; Af2=[1.72 1.74 1.64 1.82 1.90 1.70 1.82 1.82 2.08]; x=[Apf1,Af1];y=[Apf2,Af2];m1=length(Apf1);m2=length(Af1);n=length(x);k=sum(y./x)/n;A=[x',y'];p1=[];p2=[];for i=1:m1b=A(i,:);B=A;B(i,:)=[];b1=B(:,1);b2=B(:,2);k=sum(b2./b1)/(n-1);d=b(2)-k*b(1);if d>0p1=[p1,1];elsep1=[p1,0];endendfor i=m1+1:nb=A(i,:);B=A;B(i,:)=[];b1=B(:,1);b2=B(:,2);k=sum(b2./b1)/(n-1);d=b(2)-k*b(1);if d>0p2=[p2,1];elsep2=[p2,0];endenddisp(p1),disp(p2)结果为1 1 1 1 1 10 0 0 0 0 0 0 0 0结论:在这样的判定法则下,交叉误判率为零,说明方法还是有效的.模型2 饮酒驾车问题一、问题背景据报道,2003年全国道路交通死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例.针对这种严重的道路交通情况,国际质量监督检查检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阀值与检验》国家标准,新标准规定:车辆驾驶人员血液中的酒精含量大于或等于毫克/百毫升、小于毫克/百毫升为饮酒驾车;2080血液中的酒精含量大于或等于毫克/百毫升为醉酒驾车.大李在中午点喝了一瓶啤酒,8012下午点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为保险起见他6呆到凌晨点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,2为什么喝同样多的酒,两次检查结果却会不一样?请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:1.对大李的情况做出解释;2.在喝了瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情3况下回答:⑴酒是自很短时间内喝的;⑵酒是在较长一段时间(比如小时)内喝的.23.怎样估计血液中的酒精含量在什么时间内最高?4.根据你的模型论证;如果天天喝酒,是否还能开车?5.根据你的论证并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车的忠告.参考数据⑴人的体液占人的体重左右,其中血液只占体重的7%左右.而药物(包括65%70%:酒精)在血液中的含量与在体液中的含量大致相同.⑵体重在的某人在短时间内喝下瓶啤酒后,隔一定时间测量他的血液中酒精含70kg 2量(毫克/百毫升),得到数据如下:时间/小时0.250.50.751 1.252 2.53 3.544.55酒精含量306875828277686858515041时间/小时678910111213141516酒精含量3835282518151210774(酒精含量单位:毫克/百毫升)二、问题分析显然,该问题是微分方程模型.饮酒后,酒精先从肠胃吸收进入血液与体液中,然后从血液与体液向外排泄.由此建立二室模型:大李在喝酒以后,酒精先从吸收室(肠胃)进入中心室(血液也体液),然后从中心室向体外排除.设在时刻时,吸收室的酒精含量为,中心室的酒精含量为,酒精t ()1x t ()2x t 从吸收室进入中心室的速率系数为,分别表示在时刻时两室的酒精含量1k ()()12,y t y t t (毫克/百毫升),为中心室的酒精向外排泄的速率系数.在适度饮酒没有酒精中毒的条2k 件下,都是常量,与饮酒量无关.12,k k假定中心室的容积(百毫升)是常量,在时刻时中心室的酒精含量为,而吸V 0t =0收室的酒精含量为,酒精从吸收室进入中心室的速率与吸收室的酒精含量成正比;大02g 李第二次喝一瓶啤酒是在第一次检查后的两小时后.三、建模与解模1.模型建立由已知条件得到吸收室酒精含量应满足的微分方程为,()111d d x k x t t=-做学相应的初始条件是;而中心室酒精含量应满足的微分方程为()1002x g =()()21122d d x k x t k x t t=-相应的初始条件为.()20x t =由此建立问题的数学模型:()()()()()11121122102,,02,00.x k x t x k x t k x t x g x ⎧=-⎪=-⎨⎪==⎩2.解模调用MatLab 下的求解函数,输入下面语句syms x1 x2 k1 k2 g0[x1,x2]=dsolve('Dx1=-k1*x1','Dx2=k1*x1-k2*x2','x1(0)=2*g0','x2(0)=0');x=simple([x1,x2]);该微分方程组的解为()()()12110012122e ,2e e .k t k t k t x t g g k x t k k ---⎧=⎪⎨=-⎪-⎩中心室的酒精含量(百毫升)()()()()21210122e e e e V k t k t k t k t g k y t k k k ----=---:其中,上式即为短时间内喝完两瓶啤酒后中心室酒精含量率所对应()()0112122V g k k k k k k =≠-的数学模型.为得到模型中的未知参数,采用非线性拟合方法.编写求解程序:k0=[2,1,80];fun=inline('k(3)*(exp(-k(2)*t)-exp(-k(1)*t))','k','t');[k,r]=nlinfit(t,x,fun,k0);disp(k)hold onx1=k(3)*(exp(-k(2)*t)-exp(-k(1)*t));plot(t,x1)此时相应的值为k 2.00790.1855 114.4325图形为图形表明,拟合效果不错.再画出相应的残差图:残差分析表明模型比较理想.将计算结果代入表达式,得到在时刻时中心室酒精含量(百毫升)的函数表达式t .()()0.1855 2.00792114.4325e e t t y t --=- 模型应用若大李仅喝一瓶酒,此时,因此相应的模型为12k k '=()()0.1855 2.0079257.2163e e t t y t --=-再将代入得6t =()()0.18556 2.0079626114.4325e e 18.799320y -⨯-⨯=-≈<即大李此时符合驾车标准.假设大李在晚上点迅速喝完一瓶啤酒,以和分别代表在时刻时吸收室及8()1z t ()2z t t 中心室的含酒量(代表晚上点),则,由此得到微分方程:0t =8()()10108z g x =+一)题()()()()()()()()()1112112210122d ,d d ,d 08,08.z t k z t t z t k z t k z t tz g x z x ⎧=-⎪⎪⎪⎪=-⎨⎪=+⎪⎪=⎪⎩而由前面计算结果知:.将其代入到前面微分方()()()12188801102128e ,8e e k k k g k x g x k k ---==--程的初值问题中,则有()()()()()()()()1211112112281008801212d ,d d ,d 0e ,0e e .k k k z t k z t t z t k z t k z t t z g g g k z k k ---⎧=-⎪⎪⎪=-⎪⎨⎪=+⎪⎪=-⎪-⎩在MatLab 下,编写相应的求解程序:clear,clcsyms z1 z2 k1 k2 g0[z1,z2]=dsolve('Dz1=-k1*z1','Dz2=k1*z1-k2*z2', ...,'z1(0)=g0*(1+exp(-8*k1))','z2(0)=(k1*g0/(k1-k2))*(exp(-8*k2)-exp(-8*k1))');z=simple([z1,z2]);此时问题的解为()()()1122118108802121e e ,1e e 1e e .k k t k k t k k tz g g z k k ------⎧=+⎪⎨⎡⎤=+-+⎪⎣⎦-⎩记,()()()()()2211221188880121e e 1e e 1e e 1e e V k k t k k t k k t k k tg z k k k --------⎡⎤⎡⎤'=+-++-+⎣⎦⎣⎦-:最后代入得到在时刻时大李中心室的酒精含量函数122.0079,0.1855,57.2163k k k '===t .()()1.48400.185516.0632 2.007957.21631e e 1e e t tz ----⎡⎤=+-+⎣⎦取,即有6t = z=57.2163*((1+exp(-1.4840))*exp(-0.1855*6)-(1+exp(-16.0632))*exp(-2.0079*6))返回值23.0618即此时中心室的酒精含量率大于规定标准,属于饮酒驾车.用同样的方法可以讨论其它问题,在此不一一叙述.。
数学建模与实例分析的案例展示
数学建模与实例分析的案例展示数学建模是一种将实际问题通过数学方法进行描述、分析、求解的过程。
通过建立数学模型,可以对问题进行系统、科学的研究和分析。
本文将通过实例展示数学建模的应用,以及如何进行实例分析。
【引言】数学建模的目的在于用数学的语言和方法来解释和解决实际问题,可以应用于各个领域,如经济、金融、环境、物流等。
下面将分别从不同领域的实例进行展示。
【实例一:经济领域】在经济领域中,数学建模可以帮助我们理解经济运行机制、预测市场走势等。
以股票市场为例,我们可以通过建立数学模型来分析股市变动的规律和预测未来的趋势。
通过对历史数据的分析和统计,我们可以选取合适的模型,并通过参数估计和预测方法来得出结果。
这种方法可以为投资者提供决策依据,帮助其降低风险、提高收益。
【实例二:环境领域】在环境领域中,数学建模可以帮助我们分析和解决一些环境问题,如空气质量监测、水资源管理等。
以空气质量监测为例,我们可以利用数学建模来预测和评估空气质量的变化趋势。
通过对大量的监测数据进行分析,我们可以建立空气质量模型,并通过模型的模拟和验证来预测和评估不同因素对空气质量的影响。
这种方法可以帮助环保部门及时采取措施,改善和保护环境质量。
【实例三:物流领域】在物流领域中,数学建模可以帮助我们提高物流效率、降低成本。
以物流路径规划为例,我们可以利用数学建模来确定最优的物流路径和调度方案。
通过建立数学模型,我们可以考虑到不同的约束条件,如时间、成本、距离等,以及考虑不同的变量和参数,如车辆数量、货物数量等。
通过模型求解的过程,我们可以得到最优的物流路径和调度方案,从而提高物流效率、降低成本。
【结论】数学建模是一种将实际问题转化为数学问题的过程,通过建立数学模型来分析和解决问题。
本文通过经济、环境和物流领域的实例展示,说明了数学建模的应用和意义。
通过数学建模,我们可以更加科学地理解和解决实际问题,为决策提供参考和支持。
因此,数学建模在现代社会中具有重要的推广和应用价值。
数学建模及典型案例分析
d dt [ p(t)V (t)] p1(t)r1(t) p2 (t)r2 (t)
下面讨论池中盐水体积的变化。
t t
t t
V (t t) V (t) t
r1( )d t
r2 ( )d
由积分中值定理,存在η∈(t, t+Δt), 使得
进一步讨论
如果只测量一次尸体的温度, 你能估计出死亡的时间吗?
例2 湖水污染浓度
有一个小湖, 水容量为2000m3, 分别有一 入水口和出水口, 水流量都为0.1m3/s. 在 上午11:05时, 因交通事故一个盛有毒性 化学物质Z的容器倾翻, 在入口处注入湖 中. 于11:35时事故得到控制, 但已有数量 不详的化学物质泻入湖中, 初步估计为 5~20m3. 建立一个模型, 估计湖水污染程 度随时间的变化规律, 并估计
z rT
rT
(e V
1).
这样就可以得到物质Z在时刻t的浓度为
c(t)
z
rT
z
rT
rt
(1- e V ), 0 t
rT
rt
(e V -1)e V , T
T, t.
c(t)在[0,T]内是增函数,在[T,∞)内是减函数, 且c(t)是连续
的, 所以c(t)的最大值为
V (t t) V (t) [r1(t t) r2 (t t)]t
于是有
d dt
V
(t
)
r1
(t
)
r2
(t
)
t
V (t) V0 0 [r1( ) r2 ( )]d
d dt
数学建模及典型案例分析
天数
3
9
13
22
32
35
20
15
8
2
假设
报童天购进量为n, 平均每天收入为G(n). 设报纸每份的购进价为b,零售价为 a,退回价为c. 报纸每天的需求量r是随机的, 概率为f(r).
模型建立
报童每天购进n份报纸时的平均收入为G(n),如果这天 的需求量r≤n,则他售出r份,退回n-r份;如果这天的 需求量r>n,则n份将全部售出.考虑到需求量为r的概 率是f(r),所以
P( k ) Cnk pk qnk
二项分布
称该随机变量服从二项分布。 0.25
0.2
0.15
0.1
0.05
0
0
1
2
3
4
5
6
7
8
9 10
常见概率分布
泊松分布
设离散型随机变量x的概率为
P(x k) ke , k 0,1,2,
k! 泊松分布
则称随机变量x服从参数为λ的 0.35 0.3
布可以用它来近似;还有一些常用的概率分布是由它直 接导出的,例如对数正态分布、t分布、F分布等.
1.伯努利试验(或称贝努里试验)概念:是在同样的条件下重复
几何分布地2(.特、G征各e:次o这之m种间e试t相ri验互c中独d,i立s每t地ri一进b次u行t试i的o验一n只)种有试两验种。结果,即某事件A要么 几何分发布生是,要离么散不发型生概。并率且分每次布发。生其的概中率一都是种相定同的义。为:在
总体可看作一个随机变量,记作x,每个个体作为这 个随机变量的一个实现,记作xi(i=1,2,…,n), 看作与总体 有相同分布的随机变量, 样本则是一组相互独立的、同 分布的随机变量,记作x=(x1,x2,…,xn).
数学模型及典型案例分析1
1
0.95
0.9
0.85
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
多项式插值
当插值数据点个数为n+1时,需要用一个n次多项式进行 插值。 当n较大时,会出现龙格(Runge)现象。
分段多项式插值
1. 分段线性插值
所谓分段线性插值就是利用每两个相邻插值节点作 线性插值.
2 1.8
1.6
多项式插值
线性插值
寻求直线方程f(x)=ax+b, 满足
解得
ax0 b g ( x0 ), ax1 b g ( x1 ).
3 2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 1
g ( x1 ) g ( x0 ) a , x1 x0 x1 g ( x0 ) x0 g ( x1 ) b . x1 x0
(1.4)
示例1 鸭子过河
(1.4)可以看成是另一种形式的微分方程模型. 它是一个 的常微分方程初值问题. 求解它可以得到精确解
a a 1 1 h y b y b x , 0 y h. 2 h h
(1.5)
具体使用哪一种要根据实际问题来定. 这样就一共有4n个线性方程,构成一个4n元线性方程组。 求解就可以得到s(x)各段的系数。
最小二乘拟合
已知一批离散数据 (xi, yi), i=0,1,...,n,且 x0<x1<…<xn, 寻 找一个函数f(x), 使
[ f ( xi ) yi ]2
(1.3)
示例1 鸭子过河
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雅加达
上海
东京
层次结构图
准则层的两两比较矩阵 SO2 SPM
NOX 1 1/3
1 1/4
CO 4 2
4 1
SO2 SPM
NOX CO
1 1/3
1 1/4
3 1
3 1/2
λmax=4.0206, CI=0.0069, RI=0.9, CR=0.0077<0.1 ω1=(0.3849,0.1428,0.3849,0.0874)
6 层次分析法
层次分析法的基本原理 2. 层次分析法的一般步骤 3. 城市空气质量分析 4. 层次分析法在求解某些优化问题中的应用
1.
层次分析法是由美国数学家T.L. Saaty于20世纪70年代
初首先提出的一种定性与定量分析相结合的多准则决 策方法。
层次分析法的基本思路是:在决策过程中,首先把复
杂问题分解成因素,然后把这些因素按支配关系分组 形成有序的递阶层次结构,并衡量各方面的影响,最 后综合人的判断,以决定决策诸因素相对重要性的先 后优劣次序,这就是。
6.1 层次分析法的基本原理
层次分析法的核心问题是排序,包括递阶层次结 构原理、测试原理和排序原理。 (1) 递阶层次结构原理 一个复杂的结构问题可分解为它的组成部分或因 素,即目标、准则、方案等。按照属性的不同把这 些元素分组形成互不相交的层次,上一层次的元素 对相邻的下一层次的全部或部分元素起支配作用, 形成按层次自上而下的逐层支配关系。
目标层
选拔干部
准则层
品德
才能
资历
年龄
群众关系
方案层
侯选人1
侯选人2
侯选人3
侯选人4
侯选人5
侯选人6
目标层
选拔队员
数学 接受 知识 能力
Y11 数学 定理 Y12 数学 推理 Y21 接受 新知 识 Y22 接受 新方 法
准则层
建模能 力
Y31 创新 能力 Y32 想像 能力 Y33 洞察 能力
团队 协作
若判断矩阵A为一致矩阵,则各元素的权重可由A的最大 特征值(主特征值)λmax所对应的特征向量 ω=(ω1, ω2,…, ωn) (主特征向量,归一化后的) 来确定。 定理1 对于正矩阵A, 1) A的最大特征根是正单根λ; 2) λ所对应的特征向量ω为正的. 定理2 n阶正互反矩阵A的最大特征根λ≥n; 当λ=n时A是一 致阵.
方案层两两比较矩阵 SPM
曼谷 曼谷 北京 加尔各答 雅加达 上海 东京 1 1 1 1 1 1/5 北京 1 1 1 1 1 1/5 加尔各答 1 1 1 1 1 1/5 雅加达 1 1 1 1 1 1/5 上海 1 1 1 1 1 1/5 东京 5 5 5 5 5 1
λmax=6, CI=0, RI=1.24, CR=0<0.1 ω22=(0.1923,0.923, 0.1923,0.923, 0.1923,0.0385)
方案层两两比较矩阵 NOx
曼谷 曼谷 北京 加尔各答 雅加达 上海 东京 1 1/3 1/3 1 1/3 1/3 北京 3 1 1 3 1 1 加尔各答 3 1 1 3 1 1 雅加达 1 1/3 1/3 1 1 1/3 上海 3 1 1 3 1 1 东京 3 1 5 3 1 1
层次分析法的一般步骤
分析系统中各因素间的关系,建立层次结构模型。 2. 由上而下, 对每一层构造两两比较矩阵, 并做一致性 检验。 3. 计算各层中各元素的权重 4. 计算最后一层对于目标的组合权重。
1.
6.3 城市空气质量分析
城市 曼谷
北京 加尔各答 德里 卡拉奇 雅加达 马尼拉 孟买 汉城 上海 东京
二氧化硫SO2 !
!!! ! ! ! ! ! ! !!! !! !
悬浮颗粒物SPM !!!
!!! !!! !!! !!! !!! !!! !!! !!! !!! !
氮氧化物NOX !!
! ! ! !! ! !! ! ! ! !
一氧化碳CO !
! ! ! !! ! ! ! ! ! !
模型假设
在上面的表格中, 我们可以看到有许多城市的各项数据 都相同, 虽然!, !!, !!!只是实际数据与WHO标准的比较所 得到的, 而这些原始数据并不一定完全相同, 但是为了简 化问题, 我们在这里做如下假设. a. 表格中的数据具有权威, 值得相信, 具有使用价值. b. 不同城市的!, !!, !!!所代表的污染程度相同, 不再加以 区分. c. 由表格中的数据可得到相对污染程度!/!=1, !!/!!=1, !!!/!!!=1, !!!/!=5, !!!/!!=4, !!/!=3; 这样, 问题就由11个城市的排名问题简化成6个城市的排 名问题.
6个城市的空气质量
城市 曼谷
北京 加尔各答 雅加达 上海 东京
二氧化硫SO2 !
!!! ! ! !! !
悬浮颗粒物SPM !!!
!!! !!! !!! !!! !
氮氧化物NOX !!
! ! ! ! !
一氧化碳CO !
! ! ! ! !
建模
目标层
城市排名
准则层
SO2
SPM
NOx
CO
方案层
曼谷
北京
加尔各答
计算机 应用
Y51 数学 软件 Y52 算法 设计 Y53 排序 软件
写作
子准则层
Y41 分工
Y42 合作
Y61 语言 准确
Y62 语言 精练
方案层
队员1
队员2
队员3
队员4
队员5
பைடு நூலகம்
…
队员n
(2) 测度原理 (3) 排序原理 层次分析法的排序问题,实质上是一组元素两两比较其 重要性,计算元素相对重要性的测度问题。设由元素两 两比较得到的更要性测度表示为判断矩阵: A (aij )nn 显然,判断矩阵具有性质 1 aij 0, aij a ji 称满足此性质的矩阵为正互反阵。若一个n阶正互反阵A 满足: aij a jk aik , i, j, k 1,2,...,n. 则称A为一致性矩阵。
方案层两两比较矩阵 SO2
曼谷 曼谷 北京 加尔各答 雅加达 上海 东京 1 5 1 1 3 1 北京 1/5 1 1/5 1/5 ¼ 1/5 加尔各答 1 5 1 1 3 1 雅加达 1 5 1 1 3 1 上海 1/3 4 1/3 1/3 1 1/3 东京 1 5 1 1 3 1
λmax=6.0881, CI=0.0176, RI=1.24, CR=0.0142<0.1 ω21=(0.0789,0.4748,0.0789,0.0789,0.2049,0.0789)