初一数学1-4有理数的混合运算、科学计数法和近似数知识点、经典例题及练习题带答案(最新整理)
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案【解题技巧】主要是要注意混合运算的运算顺序。
一级运算:加减法;二级运算:乘除法;三级运算:乘方运算。
规定:先算高级运算再算低级运算同级运算从左到右依次进行。
(1)有括号先算括号里面的运算按小括号、中括号、大括号依次进行;(2)先乘方、再乘除、最后加减;(3)同级运算按从左往右依次进行。
当然在准守上述计算原则的前提下也需要灵活使用运算律以简化运算。
1.(2022·广西崇左·七年级期末)计算:(1)3312424⎛⎫⎛⎫-⨯÷-⎪ ⎪⎝⎭⎝⎭;(2)2014281|5|(4)(8)5⎛⎫-+-⨯---÷-⎪⎝⎭.【答案】(1)12(2)-7【分析】(1)原式从左到右依次计算即可求出值;(2)原式先算乘方及绝对值再算乘除最后算加减即可求出值.(1)原式9489⎛⎫⎛⎫=-⨯-⎪ ⎪⎝⎭⎝⎭12 =;(2)原式=﹣1+5×(85-)﹣16÷(﹣8)=﹣1﹣8+2=﹣7.【点睛】本题考查了有理数的混合运算熟练掌握运算法则是解本题的关键.2.(2022·内蒙古·七年级期末)计算:(1)31125(25)25424⎛⎫⨯--⨯+⨯-⎪⎝⎭(2)4211(1)3[2(3)]2---÷⨯--【答案】(1)25(2)1 6【分析】(1)根据乘法分配律、有理数乘法法则、减法法则和加法法则计算即可;(2)根据有理数的运算顺序和各个运算法则计算即可.(1)解:原式311252525424⎛⎫=⨯+⨯++- ⎪⎝⎭31125424⎛⎫=⨯+- ⎪⎝⎭251=⨯25=;(2)解:原式111(29)23=--⨯⨯- 11(7)6=--⨯- 761=-+ 16=. 【点睛】此题考查了有理数的混合运算.解题的关键是掌握有理数的混合运算的运算顺序和每一步的运算法则.3.(2022·山东东营·期末)计算: (1)11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭; (2)42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 【答案】(1)34- (2)5 【分析】(1)原式先算括号内的 再算乘除;(2)原式先乘方 再中计算括号内及绝对值内的减法 再计算乘法 最后计算加减即可求出值.(1)解:11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭ 433328⎛⎫=⨯-⨯ ⎪⎝⎭ 34=- (2)解:42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 111436623=-++-⨯+⨯ 14332=-++-+5=【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.4.(2022·安徽阜阳·七年级期末)计算:(1)()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭. (2)2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 【答案】(1)16(2)-2312 【分析】先计算乘方及小括号内的运算 再计算乘法 最后计算加减法.【详解】(1)解:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭=()111723--⨯⨯- =716-+ =16. (2)解:2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 19(924)34=-⨯-+⨯- 19(1)34=-⨯-- 1934=- =-2312. 【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数的运算法则及运算顺序是解题的关键. 5.(2022·湖南娄底·七年级期末)计算:(1)()()220211110.5233⎡⎤---⨯⨯--⎣⎦; (2)()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦【答案】(1)16(2)6 【分析】(1)原式先计算乘方运算 再计算乘除运算 最后算加减运算即可得到结果.(2)先算乘方 再算乘除 最后算减法;同级运算 应按从左到右的顺序进行计算.【详解】(1)解:原式()117112912366⎛⎫=--⨯⨯-=---= ⎪⎝⎭ (2)解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦ ()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭ 21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭410=-+6=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键 运算顺序为:先乘方 再乘除 最后算加减 有括号先计算括号内的运算.6.(2022·天津北辰·七年级期末)(1)24(3)5(2)6⨯--⨯-+;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭. 【答案】(1)52;(2)-52. 【分析】(1)先算乘方 然后计算乘除 最后算加减即可;(2)先算乘方 然后计算乘除 最后算加减即可.【详解】解:(1)24(3)5(2)6⨯--⨯-+=4×9+10+6=52;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭=-16÷8-12=-2-12=-52. 【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.7.(2022·广西百色·七年级期末)计算:(1)()()22241322⎡⎤---⨯÷⎣⎦.(2)33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭. 【答案】(1)8(2)-2【分析】根据有理数的混合运算法则计算即可;含乘方的有理数混合运算法则:1、先乘方 再乘除 最后加减;2、同级运算 从左往右进行;3、如果有括号 先做括号内的运算 按小括号、中括号、大括号依次进行.【详解】(2)解:原式()161924=--⨯÷⎡⎤⎣⎦()16824=--⨯÷⎡⎤⎣⎦8=.解:原式()()51411=÷--+⨯-()551=÷--11=--2=-.【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2022·河南周口·七年级期末)计算: (1)2022211(1)(1)(32)23-+-⨯+-+ (2)23220213(4)(2)(2)(1)-⨯-+-÷--- 【答案】(1)556- (2)35 【分析】(1)原式先计算乘方运算及括号内的运算 再计算乘除运算 最后计算加减运算即可求出值;(2)先计算乘方运算 再计算乘除运算 最后计算加减运算即可求出值.(1)解:原式=111(92)23+⨯+-+ =1176+- =556-; (2)解:原式=9(4)(8)4(1)-⨯-+-÷--=3621-+=35【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.9.(2022·江苏扬州·七年级期末)计算: (1)3(6)( 1.55) 3.25(15.45)4---+++-; (2)()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)-7 (2)98- 【分析】(1)先算同分母分数 再算加减法即可求解;(2)先算乘方 再算乘除 最后算加法;同级运算 应按从左到右的顺序进行计算.(1)解:3(6)( 1.55) 3.25(15.45)4---+++-(6.75 3.25)( 1.5515.45)=++--1017=-7=-;(2)解:()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 254(8)1425=÷-⨯- 2514()14825=⨯-⨯- 118=-- 98=-. 【点睛】本题考查了有理数的混合运算 解题的关键是掌握有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算.进行有理数的混合运算时 注意各个运算律的运用 使运算过程得到简化.19.(2022·河南南阳·七年级期末)计算(1)243(6)()94-⨯-+; (2)33116(2)()(4) 3.52÷---⨯-+.【答案】(1)11 (2)1【分析】(1)先计算乘方 再利用乘法分配律计算即可;(2)先计算乘方 再计算乘除 最后计算加减即可.(1)解:原式4336()94=⨯-+4336()3694=⨯-+⨯ 1627=-+11=;(2)解:原式116(8)()(4) 3.58=÷---⨯-+20.5 3.5=--+ 1=.【点睛】本题主要考查有理数的混合运算 解题的关键是掌握有理数的混合运算顺序和运算法则.11.(2022·河北邯郸·七年级期末)计算:()()20212132311234⎛⎫-+⨯---⨯- ⎪⎝⎭. 【答案】12-【详解】解:原式()44311213123=-⨯-++⨯⨯- 434912=--+-=-.【点睛】本题考查了有理数的混合运算 熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方 再算乘除 最后算加减;同级运算 按从左到右的顺序计算.如果有括号 先算括号里面的 并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.12.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= ==; (3) = 71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭= = =; (4) = = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.13.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= 14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭12489459-⨯⨯+⨯445-+16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭==; (3) = = = =; (4) = =12489459-⨯⨯+⨯ =445-+ =165 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.14.(2022·浙江七年级期末)计算:(1). (2). (3). (4). 【答案】(1)3;(2)1;(3)927;(4)1【分析】(1)先化简符号和括号 再计算加减法;(2)将除法转化为乘法 再约分计算;(3)先算括号内的 再算乘除 最后算加减;(4)先算乘方和括号 再算乘除 最后算加减. ()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦94(81)(16)49-÷⨯÷-11304(3)1556⎛⎫÷--⨯-+ ⎪⎝⎭422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭【详解】解:(1) = = ==3;(2) = =1;(3) = ==927;(4) = ==1 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序. 28.(2021·湖北恩施·七年级期末)计算下列各题:(1)2(35)(3)(13)--+-⨯-; (2)32422()93-÷⨯-. 【答案】(1)-16 (2)-8【分析】(1)先算括号中的减法 再算乘方 乘法 以及加减即可得到结果; (2)先算乘方 再算乘除即可得到结果.(1)解:原式=359(2)-++⨯-11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦11552 4.84566⎛⎫--+ ⎪⎝⎭145154425566+--107-94(81)(16)49-÷⨯÷-441819916⨯⨯⨯11304(3)1556⎛⎫÷--⨯-+⎪⎝⎭301215301÷++9001215++422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭()23168(15)(15)35-÷-+⨯--⨯-2109-+218=- =16-;(2)解:原式=94849-⨯⨯=8-.【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键. 15.(2022·河南驻马店·七年级期末)计算:(1)()22112 2.25554⎛⎫---+-- ⎪⎝⎭; (2)2220212111132322⎛⎫--⨯--+÷⨯ ⎪⎝⎭.【答案】(1)1-;(2)54-【分析】(1)先化简绝对值、去括号 再计算加减法即可得;(2)先计算乘方、除法 再化简绝对值、乘法 然后计算加减法即可得. 【详解】 解:(1)原式2 2.2275.2555--+=- 7255=- 1=-;(2)原式4143111322=--⨯-+⨯3134344=--⨯+-4331344=--⨯+3114=--+ 54=-.【点睛】本题考查了含乘方的有理数混合运算 熟练掌握运算法则是解题关键. 16.(2022·山东青岛·七年级期末)计算: (1)123()3035--+; (2)431116(2)()48-+÷---⨯. 【答案】(1)110; (2)52-【分析】(1)原式利用减法法则变形 计算即可得到结果; (2)原式先算乘方 再算乘除 最后算加减即可得到结果. (1) 原式=1233035+- =12018303030+- =1201830+- =330=110; (2)原式=()1116848⎛⎫-+÷---⨯ ⎪⎝⎭=1122--+=52-.【点睛】本题考查了有理数的加、减、乘、除、乘方的混合运算 正确理解运算顺序并细心计算是解决本题的关键;运算顺序:先乘方、再乘除、后加减 有括号的先算括号里面的. 17.(2022·福建福州·七年级期末)计算: (1)()()()()2356---++-+; (2)()2202241235⎛⎫-+-÷--- ⎪⎝⎭.【答案】(1)0 (2)9-【分析】(1)根据有理数加减混合运算法则进行计算即可; (2)根据有理数的混合运算法则进行计算即可. (1)解:()()()()2356---++-+2356=-++-88=-+0=(2)解:()2202241235⎛⎫-+-÷--- ⎪⎝⎭51434⎛⎫=-+⨯-- ⎪⎝⎭153=--- 9=-【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则 有乘方的先算乘方 再算乘除 最后算加减 有括号的先算小括号里面的 是解题的关键. 18.(2022·湖北孝感·七年级期末)计算:(1)(-5)×(-6)-40+2. (2)(-3)2-|-8|-(1-2×35)÷25.【答案】(1)8- (2)32【分析】(1)先计算有理数的乘法 然后计算加减即可;(2)先计算乘方及绝对值及小括号内的运算 然后计算除法 最后计算加减即可. (1)原式=30-40+2 =-8; (2)原式=9-8-65152⎛⎫-⨯ ⎪⎝⎭=9-8-1552⎛⎫-⨯ ⎪⎝⎭=9-8+12=32. 【点睛】题目主要考查含乘方的有理数的混合运算 绝对值化简 熟练掌握运算法则是解题关键. 19.(2022·山东枣庄·七年级期末)计算(1)22(2)31(0.2)4-+-⨯-÷-+- (2)222172(3)(6)()3-+⨯---÷-【答案】(1)-1 (2)23【分析】(1)先计算乘方 再计算乘除 最后算加减 可得答案;(2)先计算乘方 再计算乘除 最后计算加减 即可得到答案. (1)解:22(2)31(0.2)4-+-⨯-÷-+-4(6)54=-+-++1=-(2)222172(3)(6)()3-+⨯---÷-4929(6)9=-+⨯--⨯491854=-++ 23=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键.20.(2022·湖北荆州·七年级期末)计算:(1)﹣14﹣5+30﹣2 (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| 【答案】(1)9 (2)-3【分析】(1)根据有理数的加减法运算法则计算即可求解; (2)先算乘方 再算乘除 最后算加法求解即可. (1)解:-14-5+30-2 =(-14-5-2)+30 =-21+30 =9; (2)-32÷(-3)2+3×(-2)+|-4| =-9÷9-6+4 =-1-6+4 =-3.【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算. 21.(2022·河南驻马店·七年级期末)计算:(1)1|2|4--(34-)+11|1|2--; (2)16+(﹣2)319-⨯(﹣3)2﹣(﹣4)4.【答案】(1)312 (2)-249【分析】(1)先求绝对值 再按有理数加减法法则计算即可; (2)先计算乘方 再计算乘法 最后计算加减即可. (1)解:原式=13121442++-=312; (2)解:原式=16-8-19×9-256=16-8-1-256 =-249.【点睛】本题考查有理数混合运算 求绝对值 熟练掌握有理数运算法则是解题的关键. 22.(2022·四川广元·七年级期末)计算:220221256(4)(1)2⎛⎫---+÷-+-⨯- ⎪⎝⎭.【答案】-6 【详解】解:原式()()41241=--⨯-+-⨯ =()()424---+- =()424-++-6=-.【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数混合运算法则是解题的关键. 23.(2022·广西崇左·七年级期末)计算(1)2312130.25343-+-- (2)()22122332⎡⎤-+⨯--÷⎢⎥⎣⎦【答案】(1)-1812 (2)2 (1)解∶原式=-2123-13+334-14= -22+312 =-1812 (2)解:原式=()42932-+⨯-⨯ = -4+2×(9-6) =-4+6 =2【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则是解题的关键. 24.(2022·陕西·西安七年级期中)计算: (1)()()2132----+- (2)22212(32)243⎡⎤⨯+-÷⎣⎦ (3)152(18)369⎛⎫-+⨯- ⎪⎝⎭ (4)3202141(1)(13)82⎛⎫-+-÷⨯ ⎪⎝⎭【答案】(1)6-(2)0(3)5(4)34-【分析】(1)利用有理数加法和减法法则按照从左到右的顺序依次计算;(2)先算乘方 并把带分数化成假分数 再计算乘除 最后计算加减 同时按照先算小括号再算中括号的运算顺序计算即可;(3)利用乘法分配律进行计算即可;(4)先计算乘方 再计算乘除 最后计算加法即可.(1)原式=21326-+--=-; (2)原式=()2934294⎡⎤⨯+-÷⎣⎦ =1122⎛⎫+- ⎪⎝⎭=0;(3)原式=()121829⎛⎫-+⨯- ⎪⎝⎭=()()12181829⎛⎫-⨯-+⨯- ⎪⎝⎭=94- =5;(4)原式=()411288-+-÷⨯=111688-+÷⨯=1128-+⨯=114-+=34-. 【点睛】本题考查有理数的加减乘除及乘方的混合运算 解题关键是牢记运算法则 掌握运算顺序. 25.(2022· 绵阳市·九年级专项)计算:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭;(5)111532⎛⎫÷-- ⎪⎝⎭; (6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【答案】(1)218-;(2)9-;(3)712-;(4)177;(5)18-;(6)22-;(7)307;(8)16. 【分析】(1)先计算除法 再计算加法 两个有理数相除 同号得正;(2)乘除法 同级运算 从左到右 依次将除法转化为乘法 先确定符号 再将数值相乘; (3)先将除法转化为乘法 再利用乘法分配律解题 注意符号;(4)先算乘除 再算减法 结合加法结合律解题;(5)先算小括号 再算除法;(6)先算小括号 再算中括号;(7)先将除法转化为乘法 再利用乘法分配律的逆运算解题; (8)先算小括号 再算中括号 结合乘法交换律解题. 【详解】解:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1477833⎛⎫⎛⎫⎛⎫=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2414493=-+24218=-; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭()1=(3)3(3)3⨯-⨯-⨯- =9;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭5165101566⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭111123=-++ 712=-; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭617324()762874⎛⎫⎛⎫=--⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭1437=++177=; (5)111532⎛⎫÷-- ⎪⎝⎭6155⎛⎫=÷- ⎪⎝⎭5156⎛⎫=⨯- ⎪⎝⎭18=-;(6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦2378261323998⎡⎤⎛⎫=-⨯⨯-÷ ⎪⎢⎥⎝⎭⎣⎦2782241399⎡⎤⎛⎫=--÷ ⎪⎢⎥⎝⎭⎣⎦282223992⎡⎤⎛⎫=-÷ ⎪⎢⎥⎝⎭⎣⎦ 982094⎛⎫=-+⨯ ⎪⎝⎭22442-=22=-;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2115128103337⎡⎤⎛⎫⎛⎫⎛⎫=---++⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2115128103337⎡⎤=-++⨯⎢⎥⎣⎦567=⨯307=; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦162113171713388⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯-⨯-+÷ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2113(16)33881⎡⎤⎛⎫⎛⎫=⨯-⨯-+⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()332286⎛⎫=-⨯ ⎪⎝⎭863=⨯16=.【点睛】本题考查有理数的四则混合运算 涉及加法结合律、乘法分配律等知识 是重要考点 掌握相关知识是解题关键.26.(2022·娄底市第二中学七年级期中)请你先认真阅读材料: 计算 解:原式的倒数是=12112()()3031065-÷-+-21121-+()3106530⎛⎫-÷- ⎪⎝⎭2112()(30)31065-+-⨯-=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣再根据你对所提供材料的理解 选择合适的方法计算:. 【答案】. 【分析】根据题意 先计算出的倒数的结果 再算出原式结果即可.【详解】解:原式的倒数是:故原式. 【点睛】本题主要考查了有理数的除法 读懂题意 并能根据题意解答题目是解决问题的关键. 27.(2022·黑龙江绥化·期中)计算:(1)()()()6.5 3.3 2.5 4.7-+----+; (2)()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭; (3)22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)()2449525⨯- (5)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭【答案】(1)12- (2)63 (3)9- (4)24954-(5)99900【分析】根据有理数的加减乘除运算法则求解即可. (1)解:()()()6.5 3.3 2.5 4.7-+----+23110162511011322()()4261437-÷-+-114-113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-114=-6.5 3.3 2.5 4.7=--+-()6.5 3.3 4.7 2.5=-+++14.5 2.5=-+12=-;(2)解:()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭ 3761246=⨯⨯⨯ 63=;(3)解:22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ()9244=-+⨯-9=-;(4)解:()2449525⨯- ()2449525⎛⎫=+⨯- ⎪⎝⎭ 24495525=-⨯-⨯ 242455=-- 42495=-; (5)解:41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭ 41399911818555⎛⎫=⨯+--- ⎪⎝⎭ 999100=⨯99900=.【点睛】本题考查有理数的加减乘除混合运算 熟练掌握相关运算法则及运算顺序是解决问题的关键. 28.(2022·河北邯郸·七年级期中)能简算的要简算(1)122 6.6 2.5325⨯+⨯ (2)44444999999999955555++++ (3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ (4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦【答案】(1)25;(2)11110;(3)16;(4)10 【分析】(1)先把小数化为分数 然后根据乘法的结合律进行计算求解即可;(2)先把分数部分和整数部分分别相加然后得到()()()()19199199919999+++++++由此求解即可;(3)直接根据分数的混合计算法则进行求解即可;(4)先把小数化为分数 然后根据分数的混合计算法则进行求解即可.【详解】解:(1)131226232525⨯+⨯132=263255⎛⎫⨯+ ⎪⎝⎭1=2102⨯=25;(2)44444999999999955555++++()44444=999999999955555⎛⎫++++++++ ⎪⎝⎭=49999999999++++()()()()=19199199919999+++++++=10100100010000+++=11110;(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦1633=977⎡⎤÷+⎢⎥⎣⎦1696=77÷167=796⨯1=6;(4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦1631825=58512⎛⎫⨯+⨯ ⎪⎝⎭61825=5512⎛⎫+⨯ ⎪⎝⎭2425=512⨯ =10.【点睛】本题主要考查了分数与小数的混合计算 分数的混合计算 解题的关键在于能够熟练掌握相关计算法则.29.(2022·浙江七年级期中)计算(1) (2) (3) (4) (5) (6) (7) (8) 【答案】(1);(2);(3)-8;(4);(5)8;(6);(7)161;(8) 【分析】根据有理数的混合运算法则分别计算.【详解】解:(1) = = =; (2) = = 3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭()22012201121(0.25)4522--⨯+-÷-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112123123100+++++++++++13-174-49613-2001013233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭3112123124451034⎛⎫⎛⎫⎛⎫⨯-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭110441015153-⨯⨯⨯13-()22012201121(0.25)4522--⨯+-÷-()2012220111422554⎛⎫--⨯+-÷- ⎪⎝⎭2012201151424254⎛⎫-⨯-⨯⎪⎝⎭= =; (3) = = ==-8;(4) = = ==; (5) = = = =8;(6) 2011411444⎛⎫-⨯⨯- ⎪⎝⎭174-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭111866412⎛⎫⨯--⨯ ⎪⎝⎭1114848486412⨯-⨯-⨯8124--()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()91116(32)349⎡⎤-÷--⨯--⎢⎥⎣⎦111423⎛⎫--- ⎪⎝⎭12323+49622222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44411.35 1.057.7999⨯-⨯+⨯()411.35 1.057.79-+⨯4189⨯2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭= = = =; (7) = = = =160+1=161;(8) == = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序 以及一些常用的简便运算方法.30.(2022·河北邯郸·二模)淇淇在计算:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭时 步骤如下: 解:原式()11=202266623---+÷-÷①=202261218-++-① ()5112246274-+⨯+-⨯14125625-+⨯⨯213-+13-222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦3531345254⎛⎫⨯⨯+⨯+ ⎪⎝⎭35141254⎛⎫⨯++⎪⎝⎭511284⨯+111112123123100+++++++++++()()()11111221331100100222+++++⨯+⨯+⨯2222122334100101++++⨯⨯⨯⨯11112122334100101⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝⎭11111112122334100101⎛⎫⨯-+-+-++- ⎪⎝⎭200101=2048-①(1)淇淇的计算过程中开始出现错误的步骤是________;(填序号)(2)请给出正确的解题过程.【答案】(1)①; (2)见解析.【分析】(1)根据有理数的运算法则可知从①计算错误;(2)根据有理数的运算法则计算即可.(1)解:由题意可知:()20223111(1)(2)6=186236⎛⎫---+÷---+÷ ⎪⎝⎭; 故开始出现错误的步骤是①(2)解:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭()1=1866--+÷ =1836++=45.【点睛】本题考查含乘方的有理数的运算 解题的关键是掌握运算法则并能够正确计算.。
初一数学1-4有理数的混合运算、科学计数法和近似数知识点、经典例题及练习题带答案(最新整理)
环球雅思教育学科教师讲义讲义编号: GE—ZBM 副校长/组长签字:签字日期:学员编号:年级:课时数:3学员姓名:辅导科目:学科教师:课题有理数的混合运算、科学计数法和近似数授课日期及时段教学目的掌握混合运算的运算法则和近似数重难点有理数的混合运算【考纲说明】1、掌握有理数的加减法法则和有理数混合运算的运算步骤。
2、注意有理数混合运算符号混淆问题。
3、掌握科学计数法的表示方法和近似数的表示。
4、本部分在中考中占3-5分。
【趣味链接】科学计数法的前身我们追溯到五千年到八千年前看一看,这时,四大文明古国都早已从母系社会过渡到父系社会了,生产力的发展导致国家雏形的产生,生产规模的扩大则刺激了人们对大数的需要.比如某个原始国家组织了一支部队,国王陛下总不能老是说:“我的这支战无不胜的部队共计有9名士兵!”于是,慢慢地就出现了“十”、“百”、“千”、“万”这些符号.在我国商代的甲骨文上就有“八日辛亥允戈伐二千六百五十六人”的刻文.即在八日辛亥那天消灭敌人共计2656人.在商周的青铜器上也刻有一些大的数字.以后又出现了“亿”、“兆”这样的大数单位. 而在古罗马,最大的记数单位只有“千”.他们用M表示一千.“三千”则写成“MMM”.“一万”就得写成“MMMMMMMMMM”.真不敢想象,如果他们需要记一千万时怎么办,难道要写上一万个M不成?然而,古希腊有一位伟大的学者,他却数清了“充满宇宙的沙子数”,那就是阿基米德.他写了一篇论文,叫做《计沙法》,在这篇文章中,他提出的记数方法,同现代数学中表示大数的方法很类似.他从古希腊的最大数字单位“万”开始,引进新数“万万(亿)”作为第二阶单位,然后是“亿亿”(第三阶单位),“亿亿亿”(第四阶单位),等等,每阶单位都是它前一阶单位的1亿倍.【知识梳理】一、有理数的混合运算1、有理数的加法法则:2、有理数的加法运算定律:.3、有理数减法法则及表达式:.4、有理数减法符号的确定及表示:.5、有理数加减法混合运算应注意的问题:.二、科学计数法1、把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数,且0<a<10),使用的是科学记数法。
初一数学计算题有理数的混合运算
初一数学计算题有理数的混合运算篇一:哎呀,说起初一数学的有理数混合运算,那可真是让不少同学又爱又恨啊!还记得我刚上初一的时候,第一次接触有理数的混合运算,那感觉就像是走进了一个充满神秘符号和数字的迷宫。
老师在黑板上刷刷地写着算式,我的眼睛都快看花啦!“来,同学们,咱们看这道题,负2 加上3 乘以负4 ,这可怎么算呀?”老师的声音在教室里回荡。
“先算乘法呗!”同桌小李小声嘟囔着。
“对啦,小李同学说得没错!先算乘法,3 乘以负4 等于负12 ,然后再算加法,负2 加上负12 ,这结果是多少呢?”老师笑着问大家。
同学们纷纷低下头开始计算,我也在本子上快速地写着。
“是负14 !”班长小王自信地站起来回答。
“太棒啦,小王同学答对啦!”老师开心地鼓掌。
有理数的混合运算啊,就像是一场数字的舞蹈。
有加有减,有乘有除,它们交织在一起,构成了一道道复杂又有趣的题目。
比如说,有这样一道题:负5 的平方除以负2 的立方乘以3 。
这道题里既有平方又有立方,还有除法和乘法,是不是感觉有点晕头转向啦?其实啊,只要咱们按照先算乘方,再算乘除,最后算加减的顺序,一步一步来,就像走楼梯一样,一阶一阶地走,就不会出错啦。
就像咱们平时做游戏,总得有个规则不是?有理数混合运算的规则就是咱们解题的法宝。
你想想,要是没有这些规则,数字们不就乱成一锅粥啦?那还怎么算出正确的结果呢?而且啊,有理数的混合运算可不光是在试卷上出现,在咱们的生活中也到处都有它的影子呢!比如说,你去买东西,计算折扣和找零;或者计算家里水电费的支出,这些都离不开有理数的混合运算呀!所以,同学们,可别小瞧了这有理数的混合运算,它可是咱们数学世界里的重要基石呢!总之,有理数的混合运算虽然有时候会让咱们感到头疼,但只要咱们掌握了方法,多做练习,就一定能在这个数字的舞台上跳出精彩的舞步!篇二:《有理数混合运算的奇妙之旅》嘿,朋友!你可曾想过,在初一数学的世界里,有理数的混合运算就像是一场精彩绝伦的冒险?就拿我自己来说吧,刚开始接触有理数混合运算的时候,那感觉,简直就像走进了一个迷雾重重的森林,完全找不到方向。
有理数的混合运算及科学记数法
(1)括号前带负号,去掉括号后括号内各项要变号,即 (a b) a b , (a b) a b 。
(2)括号前带正号,去括号后括号内各项不变号,即 (a b) a b 。 (a b) a b
3. 带着符号搬家 在同级运算中,有时为了方便计算可以带着数字前面的符号搬家。
1989 1988 1987 1986 1985 1984 1983 1982 1981 6 5 4 3 2 1 解:原式 331 9 6 2985。
16
19
19
19
3. 计算
1 2 3 4 5 6 7 8 9 10 11 12 2005 2006 2007 2008
4. 计算: 1.5 2.2 0.8 ; 2.5 1.1 1.8
5. 计算: 2 2 4 2 2 6.2 5.8 2 2 1 2 2 9 ;
【巩固与提高】 1. 计算
(1) (12) (3) (15) 5
(3) (12) (3) (15) 5
(2) (12) (3) (15) 5
2. 计算下列各题
(1) (1.25) (4) 8 ( 1 ) 25 10
(3) (2 1 3 1 1 4 ) ( 7 ) 3 2 45 6
2
1 2
(3 8
1 6
3) 4
24
(32
4)
(1)2013 ;
4
3.已知 a 5 和 (b 4)2 互为相反数,求[ 4ab ( a b ) ( 1 1 )] (a 2 2ab b2 ) ; ab b a a b
有理数的混合运算(2)
【知识回顾】 1. 有理数混合运算的顺序:先乘方,后乘除,再加减;同级运算从左到右;如果有括号,先算小括号,
人教版七年级数学上册知识点总结1-4章
第一章有理数1.1 正数和负数(1)大于0的数叫正数,在正数前面加上负号“- ”的数叫负数,负数小于0(根据需要我们有是时会在正数前面加上”+ ”表示正数,但通常不加,负数一定加“- ”);(2)0是正数与负数的分界,0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a不一定是负数,+a也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 a是正数; a≥0 a是正数或0 a是非负数;a<0 a是负数; a≤ 0 a是负数或0 a是非正数.例题:1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;正分数,负分数统称为分数;(3)用一条直线上的点表示数,这条线叫做数轴;在数轴上任取一个点表示数0,这个点叫做原点 ; 通常规定直线上从原点向右为正方向,从原点向左为负方向;选取适当的长度为单位长度;(4)一般地,当a是正数时,则数轴上表示数a的点在原点的右边,距离原点a个单位长度;表示数-a的点在原点的左边,距离原点a个单位长度;(5)两点关于原点对称:一般地,设a是正数,则在数轴上与原点的距离为a的点有两个,它们分别在原点的左右,表示-a和a,我们称这两个点关于原点对称;(6只有符号不同的两个数叫做互为相反数;(7)一般地,a的相反数是-a;特别地,0的相反数是0;在任意一个数前面填上”- ”,就得到了这个数的相反数;(8)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(9)a、b互为相反数 a+b=0 ;(即相反数之和为0)(10)a、b互为相反数或;(即相反数之商为-1)(11)a、b互为相反数 |a|=|b|;(即相反数的绝对值相等)(12)绝对值:一般地,在数轴上表示数a的点与原点的距离叫做a的绝对值,记做|a|(|a|≥0);(13)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(14)绝对值可表示为:当a>0时,|a|=a, 当a=0时,|a|=0,当a<0时,|a|=-a(15)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
人教版七年级数学上册第一章1.4第4课时 有理数的四则混合运算2
(2)(-3.85)×(-13)+(-13)×(-6.15)+0.79×175+185×0.79. 解:原式=(-13)×[(-3.85)+(-6.15)]+0.79×175+185 =(-13)×(-10)+0.79×1
=130.79.
9 【2021·沈阳第七中学月考】阅读材料:
计算:-310÷23-110+16-25. 解:原式的倒数为23-110+16-25÷-310=23-110+16-25 ×(-30)=-20+3-5+12=-10.故原式=-110.
人教版 七年级上
第1章 有理数
课1题. 42 有 理 数 的 乘 除 法
第5课时 有理数的加减乘除 混合运算
习题链接
温馨提示:点击 进入讲评
1D 2C 3C 4D
5D 6B 70 8
答案呈现
9
1 下列计算正确的是( D )
A.-9÷2×12=-9 B .6÷13-12=-1
C.14-14÷56=0
-10 (2)(-7)×(-5)-90÷(-15);
41 (3)42×-23+-34÷(-0.25). -25
小结:一般把减法转化为加法、除法转化为乘法来计算.统 一运算后,合理运用运算律.
变式练习 7.计算: (1)29-14+118÷-316; -1 (2)(-9)×(-5)-20÷4;
40
ห้องสมุดไป่ตู้
1.计算: (1)15÷(-3); -5 (3)(-2)÷3; -23
对点训练
(2)(-48)÷6; -8 (4)3÷(-0.3); -10
(5)-12÷-14; 2
(6)0÷(-1.5). 0
知识点二:有理数的四则运算 (1)有理数的加减乘除混合运算,如无括号,按照先 乘除 , 后 加减的顺序进行;有括号应先算 括号 里面的.同级运算 中,要按 从左到右 的顺序进行计算. 切记:只有加法和乘法才有交换律和分配律,除法没有这两 个运算律.
第1章有理数有理数混合运算知识点讲解及练习课件人教版七年级数学上册
解:原式 4 1 2
2
(2) 2.5 2 1 ;
3
解:原式 2.5 2 1
3
35 6
两数相乘,同号得正,异号得负,并把绝对值相乘.
【例2】计算:
(3) 30 6 ;
解:原式 30 6
5
能整除,可用有理数除法的法则2
法则2:两数相除,同号得正, 异号得负,并把绝对值相除
2.4
1 5
3.8
3 5
3.7
0.4 2.4 0.2 3.8 0.6 3.7
0.4 2.4 0.2 3.8 0.6 3.7
2 4 4.3 2 4.3 4
6.3 4
6.3 4
2.3
【巩固】
3. 计算:
(7) 5.13 4.62 8.57 2.3;
; 2 2 的倒数是
3 8
.
3
2 2. 化简: 2 3
3
; 12 -4 ; 6
3
7
6 7
; 0 0 85
;
1 1. 3. 已知 a,b,c,d 是非零有理数,若 a 1 , b 1 ,则 a 6 ;
b2 c3 c
【巩固】
4. 计算:
(1) 2.25 4 ;
5
解(:1)
2.25
2. 乘法运算律: 乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc) 乘法分配律:a(b+c)=ab+ac
3. 有理数的除法 法则1:除以一个不等于0的数,等于乘这个数的倒数. 法则2:两数相除,同号得正,异号得负,并把绝对值相除.
0除以任何一个不等于0的数,都得0.
【例2】计算:
(1) 4 1 ;
解:原式
专题 有理数的混合运算计算题(50题提分练)(解析版)
七年级上册数学《第2章有理数及其运算》专题 有理数的混合运算计算题(50题)一、有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.二、有理数混合运算的四种运算技巧:1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.1.(2023秋•易县期末)计算:(1)25÷23−25×(−12);(2)(﹣3)2×(12−56)+|﹣4|. 【分析】(1)先把除法转化为乘法,再逆用乘法的分配律进行求解即可;(2)先算乘方,括号里的减法,绝对值,再算乘法,最后算加法即可.【解答】解:(1)25÷23−25×(−12)=25×32+25×12=25×(32+12) =25×2=50;(2)(﹣3)2×(12−56)+|﹣4| =9×(−13)+4=﹣3+4=1.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.2.(2023秋•广宗县期末)计算(1)(14−13−1)×(﹣12) (2)﹣22×14+(﹣3)3×(−827) 【分析】(1)利用乘法分配律展开,再计算乘法,最后计算加减可得;(2)先计算乘方,再计算乘法,最后计算加减可得.【解答】解:(1)原式=14×(﹣12)−13×(﹣12)﹣1×(﹣12) =﹣3+4+12=13;(2)原式=﹣4×14+(﹣27)×(−827) =﹣1+8=7.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.3.(2022秋•黄石港区期末)计算与化简:(1)﹣22+|﹣18﹣(﹣3)×2|÷4;(2)(14−49)×(﹣6)2+7÷(−12). 【分析】(1)根据有理数的乘除法和加法可以解答本题;(2)根据乘法分配律、有理数的乘除法和加法可以解答本题.【解答】解:(1)﹣22+|﹣18﹣(﹣3)×2|÷4=﹣4+|﹣18+6|÷4=﹣4+12÷4=﹣4+3=﹣1;(2)(14−49)×(﹣6)2+7÷(−12) =(14−49)×36+7×(﹣2) =9+(﹣16)+(﹣14)=﹣21.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.4.(2024•昭平县三模)计算:5÷[(﹣1)3﹣4]+32×(﹣1).【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=5÷(﹣1﹣4)+9×(﹣1)=5÷(﹣5)+(﹣9)=﹣1+(﹣9)=﹣10.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.5.(2024•仙居县二模)计算:(−18)×[23−(−12)]−22.【分析】先算乘方,再算乘法,然后算减法即可.【解答】解:(−18)×[23−(−12)]−22=(﹣18)×23−(﹣18)×(−12)﹣4=(﹣12)﹣9﹣4=﹣25.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.6.(2024•西乡塘区校级三模)计算:2×(﹣5+3)﹣42÷(﹣8).【分析】先算括号内的式子和乘方,再算括号外的乘除法,然后算减法即可.【解答】解:2×(﹣5+3)﹣42÷(﹣8)=2×(﹣2)﹣16÷(﹣8)=﹣4+2=﹣2.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.7.(2024春•秀屿区校级月考)计算:(−3)2÷[2−(−7)]+6×(−12 ).【分析】按照先计算乘方,再计算乘除法,最后计算加减法,有括号先计算括号的运算顺序求解即可.【解答】解:(−3)2÷[2−(−7)]+6×(−1 2 )=9÷(2+7)+6×(−12)=9÷9+(﹣3)=1+(﹣3)=﹣2.【点评】本题主要考查了含乘方的有理数混合计算,注意先计算乘方,再计算乘除法是关键.8.(2024•前郭县三模)计算:−14÷(−3)2×(−92)−|12−2|.【分析】先算乘方,再算乘除,后算加减,即可解答.【解答】解:−14÷(−3)2×(−92)−|12−2|=﹣1÷9×(−92)−32=−19×(−92)−32=12−32=﹣1.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.9.(2024春•长宁区期中)计算:−52÷1916−(118)×(−23)2.【分析】先算乘方,再算乘除法,然后算减法即可.【解答】解:−52÷1916−(118)×(−23)2=﹣25×1625−98×49=﹣16−1 2=−332. 【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.10.(2024春•长宁区期中)计算:(−1112+34)×(−42)+(213)÷(−312);【分析】先算乘方和括号内的式子,再算括号外的乘除法,然后计算加法即可.【解答】解:(−1112+34)×(−42)+(213)÷(−312)=(−1112+912)×(﹣16)+73×(−27)=(−212)×(﹣16)+(−23) =83+(−23) =2.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.11.(2023春•闵行区期中)计算:2×(−12)3−3×(−12)2+3×(−12)−1.【分析】先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算.【解答】解:原式=2×(−18)﹣3×14−32−1=−14−34−32−1=﹣312. 【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.12.(2023秋•安次区期末)计算:(1)(﹣20)﹣(﹣8)﹣7+(﹣2);(2)(﹣1)4×|3﹣7|÷(−3)×34.【分析】(1)减法转化为加法,再进一步计算即可;(2)先计算乘方和绝对值,并将除法转化为乘法,再约分即可得出答案.【解答】解:(1)原式=﹣20+8﹣7﹣2=﹣21;(2)原式=1×4×(−13)×34=﹣1.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.13.(2023秋•永善县期末)计算:(1)1356+34−56−(−14);(2)(−2)3+13×(−3)−|(﹣9)÷3|.【分析】(1)利用加法交换律和结合律进行计算,即可解答;(2)先算乘方,再算乘除,后算加减,即可解答.【解答】解:(1)1356+34−56−(−14)=1356+34−56+14 =(1356−56)+(34+14)=13+1=14;(2)(−2)3+13×(−3)−|(﹣9)÷3|=﹣8+(﹣1)﹣3=﹣9﹣3=﹣12.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.14.(2023秋•安州区期末)计算:(1)24+(﹣14)+(﹣16)+8;(2)(﹣81)÷94×49÷(﹣8).【分析】(1)把正数和负数分别相加,再求和;(2)把除法转化为乘法,运用乘法法则求积即可.【解答】解:(1)24+(﹣14)+(﹣16)+8=24﹣14﹣16+8=32﹣30=2;(2)(﹣81)÷94×49÷(﹣8)=81×49×49×18=2.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解决本题的关键.15.(2023春•香坊区校级期中)计算:(1)(−23)﹣(+13)﹣|−34|﹣(−14);(2)﹣12−15×[2﹣(﹣3)2].【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘法和加减法可以解答本题.【解答】解:(1)(−23)﹣(+13)﹣|−34|﹣(−14)=(−23)+(−13)−34+14=−32;(2)﹣12−15×[2﹣(﹣3)2]=﹣1−15×(﹣7)=﹣1+7 5=25.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.16.(2023秋•高碑店市期末)计算:(1)−24×(13−34+58);(2)−22÷[2+(−6)]−4×(−12)2.【分析】(1)利用乘法分配律进行计算,即可解答;(2)先算乘方,再算乘除,后算加减,有括号先算括号里,即可解答.【解答】解:(1)−24×(13−34+58)=﹣24×13+24×34−24×58=﹣8+18﹣15=10﹣15=﹣5;(2)−22÷[2+(−6)]−4×(−1 2 )2=﹣4÷(﹣4)﹣4×1 4=1﹣1=0.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.17.计算:(1)(﹣7)×5﹣(﹣36)÷4;(2)﹣14﹣(1﹣0.4)×13×(2﹣32).【分析】(1)首先计算乘法、除法,然后计算减法即可.(2)首先计算乘方和小括号里面的运算,然后计算小括号外面的乘法和减法即可.【解答】解:(1)(﹣7)×5﹣(﹣36)÷4=﹣35﹣(﹣9)=﹣35+9=﹣26.(2)﹣14﹣(1﹣0.4)×13×(2﹣32)=﹣1﹣0.6×13×(2﹣9)=﹣1﹣0.2×(﹣7)=﹣1+1.4=0.4.【点评】此题主要考查了有理数的混合运算,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.18.(2023秋•连山区期末)计算:(1)﹣23÷8−14×(﹣2)2;(2)(−112−116+34−16)×(﹣48).【分析】(1)先算乘方,再算乘除法,最后算减法即可;(2)根据乘法分配律计算即可.【解答】解:(1)﹣23÷8−14×(﹣2)2=﹣8÷8−14×4=﹣1﹣1=﹣2;(2)(−112−116+34−16)×(﹣48)=−112×(﹣48)−116×(﹣48)+34×(﹣48)−16×(﹣48) =4+3+(﹣36)+8=﹣21.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.19.(2023秋•西丰县期末)计算:(1)(56−14+13)÷(−112); (2)(﹣2)3×(−12)﹣|﹣1﹣5|.【分析】(1)先把有理数的除法转化为乘法,然后再利用乘法分配律进行计算,即可解答;(2)先算乘方,再算乘法,后算加减,即可解答.【解答】解:(1)(56−14+13)÷(−112) =(56−14+13)×(﹣12) =﹣12×56+12×14−12×13=﹣10+3﹣4=﹣11;(2)(﹣2)3×(−12)﹣|﹣1﹣5|=﹣8×(−12)﹣6=4﹣6=﹣2.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.20.(2023秋•忻州期末)计算:(1)3÷(−12)﹣(25−13)×15;(2)(﹣3)2﹣(﹣2)3×(−14)﹣(﹣1+6);【分析】(1)先将除法转化为乘法、计算括号内的运算,再计算乘法,最后计算减法即可;(2)先计算乘方和括号内的运算,再计算乘法,最后计算减法即可.【解答】解:(1)原式=3×(﹣2)−115×15=﹣6﹣1=﹣7;(2)原式=9﹣(﹣8)×(−14)﹣5=9﹣2﹣5=2.【点评】本题主要考查有理数的运算,解题的关键是掌握有理数的混合运算顺序和运算法则.21.(2023秋•成武县期末)计算:(1)﹣32+|5﹣8|+24÷(−3)×1 3;(2)(﹣10)2﹣5×(﹣3×2)2+22×10.【分析】(1)先算乘方及绝对值,再算乘除,最后算加法即可;(2)先算乘方及括号里面的,再算乘法,最后算加减即可.【解答】解:(1)原式=﹣9+|﹣3|+24×(−13)×13=﹣9+3−8 3=−263;(2)原式=100﹣5×(﹣6)2+4×10=100﹣5×36+40=100﹣180+40=﹣40.【点评】本题考查有理数的混合运算,熟练掌握相关运算法则是解题的关键.22.(2024春•东坡区期末)(1)计算:(−34−59+712)÷(−136).(2)计算:−12022−|12−1|÷3×[2−(−3)2].【分析】(1)把除法变乘法后用乘法分配律进行求解即可;(2)根据有理数混合运算的顺序和法则进行计算即可.【解答】解:(1)原式=(−34)×(−36)−59×(−36)+712×(−36)=27+20﹣21=26;(2)原式=−1−12×13×(2−9)=−1+76=16.【点评】本题考查了含乘方的有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.23.(2023秋•满城区期末)计算题:(1)−2+(−65)×(−23)+(−65)×173;(2)﹣14﹣5×[2﹣(﹣3)2].【分析】(1)先计算乘法运算,再计算加减运算即可;(2)先计算乘方运算,再计算乘法运算,最后算加减运算即可.【解答】解:(1)−2+(−65)×(−23)+(−65)×173=−2+45−345=﹣8;(2)﹣14﹣5×[2﹣(﹣3)2]=﹣1﹣5×(2﹣9)=﹣1﹣5×(﹣7)=﹣1+35=34.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(2023秋•綦江区期末)计算:(1)(−13+12)×6÷|−15|;(2)(−1)2024+(−10)÷12×2−[(−3)3−2].【分析】(1)根据有理数的四则混合运算法则进行计算即可;(2)根据有理数的四则混合运算法则进行计算即可.【解答】解:(1)(−13+12)×6÷|−15|=(−26+36)×6÷15 =16×6×5=5;(2)(−1)2024+(−10)÷12×2−[(−3)3−2]=1+(﹣10)×2×2﹣(﹣27﹣2)=1﹣40+29=﹣10.【点评】本题考查了有理数的混合运算,熟练掌握运算法则与运算顺序是解此题的关键.25.(2023秋•青山区期末)计算:(1)(﹣11)﹣7+(﹣8)﹣(﹣6);(2)﹣16﹣(1−23)÷13×[﹣2﹣(﹣3)2].【分析】(1)直接利用有理数的加减的法则进行运算即可;(2)先算乘方,除法转化为乘法以及括号里的运算,最后算加减即可.【解答】解:(1)(﹣11)﹣7+(﹣8)﹣(﹣6)=﹣11﹣7﹣8+6=﹣18﹣8+6=﹣26+6=﹣20;(2)﹣16﹣(1−23)÷13×[﹣2﹣(﹣3)2]=﹣1−13×3×(﹣2﹣9)=﹣1−13×3×(﹣11)=﹣1+11=10.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.26.(2023秋•关岭县期末)计算:(1)(﹣3)2﹣|﹣2|+(﹣1)2024×(﹣4);(2)(79+56−34)÷(−136).【分析】(1)先算乘方,去绝对值,再算乘法,最后算加减;(2)把除化为乘,用乘法分配律计算即可.【解答】解:(1)原式=9﹣2+1×(﹣4)=9﹣2﹣4=3;(2)原式=79×(﹣36)+56×(﹣36)−34×(﹣36)=﹣28﹣30+27=﹣31.【点评】本题考查有理数混合运算,解题的关键是掌握有理数相关运算的法则.27.(2024春•南岗区校级月考)计算:(1)﹣12÷2﹣2×(﹣3)+(﹣1)2024(2)(﹣3)2×5﹣(﹣2)3÷8【分析】(1)先运算有理数的乘方,然后运算有理数的乘除,最后运算加减计算即可;(2)先运算有理数的乘方,然后运算有理数的乘除,最后运算加减计算即可.【解答】解:(1)﹣12÷2﹣2×(﹣3)+(﹣1)2024=﹣6﹣(﹣6)+1=﹣6+6+1=1;(2)(﹣3)2×5﹣(﹣2)3÷8=9×5﹣(﹣8)÷8=45﹣(﹣1)=46.【点评】本题考查有理数的混合运算,熟练掌握有理数混合运算法则是关键.28.(2023秋•游仙区期末)计算:(1)4+(﹣2)3×5﹣(﹣0.28)÷4;(2)−14−16×[2−(−3)2].【分析】(1)先算乘方,再算乘除法,然后计算加减法即可;(2)先算乘方和括号内的式子,再算乘法,然后计算减法即可.【解答】解:(1)4+(﹣2)3×5﹣(﹣0.28)÷4=4+(﹣8)×5+0.07=4+(﹣40)+0.07=﹣35.93;(2)−14−16×[2−(−3)2]=﹣1−16×(2﹣9)=﹣1−16×(﹣7)=﹣1+76=16.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.29.(2023秋•太康县期末)计算:(1)(14+38−712)÷124; (2)﹣14﹣(1−12)2×15×[2+(﹣3)3].【分析】(1)先把除法转化为乘法,再根据乘法分配律计算即可;(2)先计算乘方,再计算乘除,后计算加减法,有括号的先计算括号内的.【解答】解:(1)原式=(14+38−712)×24=14×24+38×24−712×24=6+9﹣14=1;(2)原式=﹣1−(12)2×15×(2﹣27)=﹣1−14×15×(−25)=﹣1+5 4=14.【点评】本题考查了有理数的混合运算,掌握相关运算法则是解答本题的关键.30.(2023秋•河东区期末)计算:(1)(﹣1)2023×|﹣3|−(−2)3+4÷(−23)2;(2)−32×(−13)2+(34+16+38)×(−24).【分析】各个小题均按照混合运算法则,先算乘方,再算乘除,最后算加减即可.【解答】解:(1)原式=−1×3−(−8)+4÷4 9=−1×3+8+4×94=﹣3+8+9=9+8﹣3=17﹣3=14;(2)原式=−9×19−24×34−24×16−24×38=﹣1﹣18﹣4﹣9=﹣32.【点评】本题主要考查了有理数的混合运算,解题关键是熟练掌握有理数的加减乘除法则.31.(2023秋•江西期末)计算:(1)|−2|+(−1)2019−(−12)2;(2)16÷(−2)3−(−18)×(−4).【分析】(1)先算乘方,去绝对值符号,再算加减即可;(2)先算乘方,再算乘除,最后算加减即可.【解答】解:(1)|−2|+(−1)2019−(−1 2 )2=2−1−14 =34;(2)16÷(−2)3−(−18)×(−4)=16÷(−8)−12=−2−12=−52.【点评】本题主要考查了有理数的混合运算,熟知有理数混合运算的法则是解题的关键.32.计算:(1)−22÷15×5−(−10)2−|−3|;(2)(−1)2023+(−5)×[(−2)3+2]−(−4)2÷(−12 ).【分析】(1)先算乘方,乘除法和绝对值,再算加减;(2)先算括号里面的运算及乘方,乘除法,后算加减即可.【解答】解:(1)−22÷15×5−(−10)2−|−3|=﹣4×5×5﹣100﹣3=﹣100﹣100﹣3=﹣203;(2)(−1)2023+(−5)×[(−2)3+2]−(−4)2÷(−1 2 )=−1+(−5)×(−8+2)−16÷(−12)=﹣1+(﹣5)×(﹣6)+32=﹣1+30+32=61.【点评】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.33.(2024春•南岗区校级月考)计算:(1)﹣12÷2﹣2×(﹣3)+(﹣1)2024(2)(﹣3)2×5﹣(﹣2)3÷8【分析】(1)先运算有理数的乘方,然后运算有理数的乘除,最后运算加减计算即可;(2)先运算有理数的乘方,然后运算有理数的乘除,最后运算加减计算即可.【解答】解:(1)﹣12÷2﹣2×(﹣3)+(﹣1)2024=﹣6﹣(﹣6)+1=﹣6+6+1=1;(2)(﹣3)2×5﹣(﹣2)3÷8=9×5﹣(﹣8)÷8=45﹣(﹣1)=46.【点评】本题考查有理数的混合运算,熟练掌握有理数混合运算法则是关键.34.(2023秋•邹平市期末)计算:(1)2023+(﹣5)3×8﹣|﹣2024|÷(﹣4);(2)−156−(−13)2×[(−2)3+(−6)2−1].【分析】(1)先算乘方和去绝对值,然后算乘除法,再算加减法即可;(2)先算乘方和括号内的式子,再算括号外的乘法,最后算减法即可.【解答】解:(1)2023+(﹣5)3×8﹣|﹣2024|÷(﹣4)=2023+(﹣125)×8﹣2024÷(﹣4)=2023+(﹣1000)+506=1529;(2)−156−(−13)2×[(−2)3+(−6)2−1]=﹣1−19×(﹣8+36﹣1)=﹣1−19×27=﹣1﹣3=﹣4.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.35.(2024春•阿荣旗校级月考)计算:(1)(−48)×(−12−58+712); (2)﹣14+9÷(﹣3)2×|﹣3﹣1|.【分析】(1)利用乘法运算律计算求解即可;(2)先计算有理数的乘方,绝对值,然后进行乘除运算,最后进行加减运算即可.【解答】解:(1)(−48)×(−12−58+712)=(−48)×(−12)+(−48)×(−58)+(−48)×712 =24+30﹣28=26;(2)﹣14+9÷(﹣3)2×|﹣3﹣1|=﹣1+9÷9×4=﹣1+4=3.【点评】本题考查了乘法分配律,有理数的乘方,绝对值,有理数的混合运算,熟练掌握以上运算法则是解题的关键.36.(2023秋•长寿区期末)计算:(1)﹣22﹣|﹣7|+3﹣2×(−12);(2)﹣14+[4﹣(38+16−34)×24]÷5. 【分析】(1)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣4﹣7+3+1=﹣7;(2)原式=﹣1+(4﹣9﹣4+18)÷5=﹣1+95=45.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.37.(2023秋•杜尔伯特县期末)计算:(1)﹣22﹣(﹣2)2﹣8+(﹣2)3﹣42+|﹣4|;(2)(−4)×(−57)÷(−47)−(12)2.【分析】(1)先算乘方和化简绝对值,再算有理数的加减混合运算:(2)先算乘方,再算有理数的乘除,最后运算有理数的加减混合运算.【解答】解:(1)﹣22﹣(﹣2)2﹣8+(﹣2)3﹣42+|﹣4|=﹣4﹣4﹣8﹣8﹣16+4=﹣36;(2)(−4)×(−57)÷(−47)−(12)2=−4×(−57)×(−74)−14=−5−14=−514.【点评】本题考查了含有理数的混合运算、化简绝对值,熟练掌握运算法则是关键.38.(2023秋•台儿庄区期末)计算:(1)−24÷(−4)3−(−12)3×|﹣4|;(2)−6÷(−13)2−52+2×(−4)2.【分析】(1)先算乘方,再算乘除,后算加减,即可解答;(2)先算乘方,再算乘除,后算加减,即可解答.【解答】解:(1)−24÷(−4)3−(−12)3×|−4|=−16÷(−64)−(−18)×4 =14−(−12)=14+12=34;(2)−6÷(−13)2−52+2×(−4)2=﹣6÷19−25+2×16=﹣6×9﹣25+32=﹣54﹣25+32=﹣79+32=﹣47.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.39.(2023秋•浚县期末)计算:(1)−8×(−16+34−112)÷16;(2)−12022−[2−(−2)3]÷(−25)×52.【分析】(1)先将除法转化为乘法,再利用乘法运算律进行简便计算即可;(2)先算乘方,再算乘除,最后算加减;如果有括号,要先做括号内的运算.【解答】解:(1)−8×(−16+34−112)÷16=﹣8×(−16+34−112)×6=﹣48×(−16+34−112)=﹣48×(−16)﹣48×34−48×(−112)=8﹣36+4=﹣24;(2)−12022−[2−(−2)3]÷(−25)×52=﹣1﹣[2﹣(﹣8)]×(−52)×52=﹣1﹣10×(−52)×52=﹣1+125 2=1232.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.40.(2023秋•海南期末)计算:(1)(12−13)×6÷|−15|;(2)−12022+(−10)÷12×2−[2−(−3)3].【分析】(1)先将除法转化为乘法,然后根据有理数的乘法进行计算即可求解;(2)先计算括号内的,有理数的乘方,然后计算乘除,最后计算加减即可求解.【解答】解:(1)原式=(36−26)×6×5=16×6×5=5;(2)原式=﹣1+(﹣10)×2×2﹣(2+27)=﹣1﹣20×2﹣29=﹣1﹣40﹣29=﹣41﹣29=﹣70.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则以及运算顺序是解题的关键.41.(2023秋•文峰区期末)计算:(1)(﹣1)2÷12+(7﹣3)×34−|﹣2|;(2)﹣14﹣0.5÷14×[1+(﹣2)2].【分析】(1)先算乘方,除法转化为乘法,括号里的减法运算,绝对值,再算乘法,最后算加减即可;(2)先算乘方,除法转化为乘法,再算括号里的运算,接着算乘法,最后最加减即可.【解答】解:(1)(﹣1)2÷12+(7﹣3)×34−|﹣2|=1×2+4×34−2=2+3﹣2=5﹣2=3;(2)﹣14﹣0.5÷14×[1+(﹣2)2]=﹣1﹣0.5×4×(1+4)=﹣1﹣0.5×4×5=﹣1﹣10=﹣11.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.42.(2023秋•陇县期末)计算:(1)﹣9+(﹣32)﹣(﹣27)﹣(﹣4);(2)(−1.5)×(−2)÷(−23)÷(−15);(3)−32÷(−2)2×|−1−13|−(−2)3.【分析】(1)根据减去一个数,等于加上这个数的相反数,即可求得结果;(2)根据除以一个数等于乘以这个数的倒数,两个负数相乘结果为正,即可得到结果;(3)先将含有乘方的化简,然后求出数的绝对值,然后进行计算.【解答】解:(1)﹣9+(﹣32)﹣(﹣27)﹣(﹣4)=﹣9﹣32+27+4=﹣41+27+4=﹣10;(2)(−1.5)×(−2)÷(−23)÷(−15)=3×(−32)×(−5) =452;(3)−32÷(−2)2×|−1−13|−(−2)3=−9÷4×|−43|−(−8)=−9×14×43−(−8)=﹣3﹣(﹣8)=﹣3+8=5.【点评】本题考查了含有乘方的有理数混合运算、求一个数的绝对值,正确计算是解题的关键.43.(2023秋•仁怀市期中)计算:(1)(﹣23)﹣59+(﹣41)﹣(﹣59);(2)−5×2+3÷13−(−1);(3)−12+(3−5)2−|−14|÷(−12)3;(4)(−48)×(18−13+14)+(−2)2÷12.【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)先算乘除法,再算加减法即可;(3)先算乘方和括号内的式子,然后计算括号外的除法,最后算加减法即可;(4)先算乘方,再算乘除法,最后算加减法即可.【解答】解:(1)(﹣23)﹣59+(﹣41)﹣(﹣59)=(﹣23)+(﹣59)+(﹣41)+59=﹣64;(2)−5×2+3÷13−(−1)=﹣10+3×3+1=﹣10+9+1=0;(3)−12+(3−5)2−|−14|÷(−12)3=﹣1+(﹣2)2−14÷(−18)=﹣1+4−14×(﹣8)=﹣1+4+2=5;(4)(−48)×(18−13+14)+(−2)2÷12=﹣48×18+48×13−48×14+4×2=﹣6+16﹣12+8=6.【点评】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.44.(2024春•香坊区校级月考)计算:(1)15+(﹣27)+(﹣5)+27;(2)−14−16×[3−(−3)2];(3)7×34−(−7)×12+7×(−14);(4)(−2557)÷5.【分析】(1)根据有理数的加法计算法则求解即可;(2)按照先计算乘方,再计算乘除法,最后计算加减法,有括号先计算括号的运算顺序求解即可;(3)先去括号,然后利用乘法分配律的逆运算法则求解即可;(4)把原式变形为(−25−57)÷5,进一步变形得到−25÷5−57÷5,据此计算求解即可.【解答】解:(1)15+(﹣27)+(﹣5)+27=15﹣27﹣5+27=10;(2)−14−16×[3−(−3)2]=−1−16×(3−9) =−1−16×(−6)=﹣1+1=0;(3)7×34−(−7)×12+7×(−14)=7×34+7×12−7×14 =7×(34+12−14)=7×1=7;(4)(−2557)÷5=(−25−57)÷5 =−25÷5−57÷5 =−25÷5−57÷5 =−5−17=−517.【点评】本题主要考查了有理数的混合计算,熟练掌握有理数混合运算法则是关键.45.计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷13; (3)(34−13−56)×(﹣12); (4)﹣12021﹣(−13)×(﹣22+3)+12×|3﹣1|.【分析】(1)先把减法转化为加法,然后根据有理数加法法则计算即可;(2)先算乘方、再算乘除法即可;(3)根据乘法分配律可以解答本题;(4)先算乘方和括号内的式子,再算括号外的乘法和加减法即可.【解答】解:(1)3+(﹣6)﹣(﹣7)=3+(﹣6)+7=4;(2)(﹣22)×(﹣114)÷13 =(﹣4)×(−54)×3=15;(3)(34−13−56)×(﹣12) =34×(﹣12)−13×(﹣12)−56×(﹣12)=(﹣9)+4+10=5;(4)﹣12021﹣(−13)×(﹣22+3)+12×|3﹣1|=﹣1﹣(−13)×(﹣4+3)+12×2=﹣1+13×(﹣1)+1=﹣1+(−13)+1=−13.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.46.计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9);(2)−12021×[4−(−3)2]+3÷(−34 );(3)(512−79+23)÷136;(4)−316×7−316×(−9)+(−196)×(−8).【分析】(1)先把减法转化为加法,然后根据有理数的加法法则计算即可;(2)先算乘方和括号内的式子,然后计算括号外的乘除法、最后算加法即可;(3)先把除法转化为乘法、然后根据乘法分配律计算即可;(4)先将带分数化为假分数,然后根据乘法分配律计算即可.【解答】解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=(﹣5)+(﹣4)+(﹣101)+9=﹣101;(2)−12021×[4−(−3)2]+3÷(−3 4 )=﹣1×(4﹣9)+3×(−4 3)=﹣1×(﹣5)+(﹣4)=5+(﹣4)=1;(3)(512−79+23)÷136=(512−79+23)×36=512×36−79×36+23×36=15﹣28+24=11;(4)−316×7−316×(−9)+(−196)×(−8)=−196×7−196×(﹣9)−196×(﹣8)=−196×[7+(﹣9)+(﹣8)] =−196×(﹣10)=953.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序,注意乘法分配律的应用.47.(2024春•南岗区校级月考)计算:(1)﹣4.2+5.7﹣8.4+10;(2)76×(16−13)×314÷35; (3)﹣22×5﹣(﹣2)3÷4;(4)(﹣10)3+[(﹣4)2﹣(1﹣3)2×2].【分析】(1)根据有理数的加减混合运算法则求解即可;(2)根据有理数的混合运算法则求解即可;(3)先计算乘方,然后计算乘除,最后计算加减;(4)先计算乘方,然后计算乘除,最后计算加减.【解答】解:(1)﹣4.2+5.7﹣8.4+10=1.5+1.6=3.1;(2)76×(16−13)×314÷35 =76×(−16)×314×53=−736×514=−572;(3)﹣22×5﹣(﹣2)3÷4=﹣4×5﹣(﹣8)÷4=﹣20﹣(﹣2)=﹣18;(4)(﹣10)3+[(﹣4)2﹣(1﹣3)2×2]=﹣1000+(16﹣4×2)=﹣1000+8=﹣992.【点评】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序.48.(2024春•海陵区校级月考)计算:(1)[3−(−2)2]×|−6|÷2 3;(2)(56−12−712)÷(−124).【分析】(1)先算乘方和绝对值,最后算除法即可求解;(2)先通分算括号内的,最后算除法即可求解.【解答】解:(1)[3−(−2)2]×|−6|÷2 3=(3−4)×6÷23 =−1×6×32=﹣9.(2)(56−12−712)÷(−124)=(1012−612−712)÷(−124)=(−14)÷(−124)=14×24=6.【点评】本题考查了有理数的混合运算,正确掌握有理数的混合运算顺序是解题的关键.49.(2024春•南岗区校级月考)计算:(1)8+(−14)−5−(−0.25);(2)−24×(−12+34−13);(3)25×34+(−25)×12−25×(−14);(4)−22+8÷(−2)3−2×(18−12).【分析】(1)原式利用减法法则变形,然后利用加法交换律和结合律计算即可得到结果;(2)原式利用乘法分配律解题即可得到结果;(3)原式利用乘法分配律的逆运算即可得到结果;(4)原式先运算乘方和括号,然后乘除,最后加减计算即可得到结果.【解答】解:(1)8+(−14)−5−(−0.25)=(8−5)+[(−14)−(−0.25)]=3;(2)−24×(−12+34−13)=−24×(−12)−24×34−24×(−13)=12﹣18+8=2;(3)25×34+(−25)×12−25×(−14)=25×(34−12+14)=25×12=252;(4)−22+8÷(−2)3−2×(18−12)=−4+8÷(−8)−2×(−38)=−4−1+34=−414.【点评】本题考查有理数的混合运算,掌握运算顺序和运算法则是解题的关键.50.计算:(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣2467)÷6 (3)(﹣18)÷214×49÷(﹣16)(4)43−{(−3)4−[(−1)÷2.5+214×(−4)]÷(24815−27815)}.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式利用除法法则变形,约分即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣5+4+7﹣6=2;(2)原式=(﹣24−67)×16=−4−17=−417; (3)原式=﹣18×49×49×(−116)=29; (4)原式=64﹣81+(﹣925)÷(﹣3)=64﹣81+4715=−131315.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。
初中七年级数学上册-《有理数的混合运算》典型例题一
典型例题一
例题1某个家庭为了估计自己家6月份的用电量,对月初的一周每天电表的读数进
估计6月份大约用多少度电.
分析通过对一周电度表的读数的记载可以算出这一周各天的用电量,从而算出这一周的平均每天用电量,用这周的平均每天用电量乘以30,就可以估算出6月份大约用多少度电.
解解法一〔(118-115)+(122-118)+(127-1220+(133-127)+(136-133)+(140-136)+(143-140))÷7×30
=(-115+143)÷7×30
=120(度)
解法二(143-115)÷7×30=120.
说明(1)方法二是根据本周日电表的读数减去上周日电表的读数就是一周的用电量,来求出每天的平均用电量的;(2)电表显示的数是累计用电量不是当日用电量,只有减去上一天电表显示的数才能得到当日的用电量;(3)解法一的好处是可以计算出在这一周内每天的用电量,这样可以发现一周内日用电量变化的大小,如果日用电量变化不大,用本周日平均用电量作为本月的日平均用电量去估算本月的用电量误差就小,否则误差就大.。
初一数学有理数混合运算计算题
初一数学有理数混合运算计算题
(实用版)
目录
1.初一数学有理数混合运算的概念
2.有理数混合运算的运算法则
3.有理数混合运算的解题技巧
4.例题解析
5.总结与建议
正文
【1.初一数学有理数混合运算的概念】
初一数学有理数混合运算,是指将有理数的加、减、乘、除四种运算混合在一起进行的运算。
这种运算不仅需要掌握有理数的基本运算法则,还需要理解运算的优先级和括号的作用。
【2.有理数混合运算的运算法则】
有理数混合运算的运算法则主要包括以下几点:
(1)先乘除,后加减。
即先计算乘法和除法,再进行加法和减法。
(2)同级运算,从左到右。
即同级运算按照从左到右的顺序进行。
(3)有括号的先算括号内。
即先计算括号内的运算。
【3.有理数混合运算的解题技巧】
(1)注意运算顺序,合理运用运算法则。
(2)善于利用括号改变运算顺序。
(3)灵活运用运算律简化运算。
【4.例题解析】
例题:计算表达式 (-3+5)×2-4÷2 的值。
解:先算括号内的加法,得 2,再乘以 2,得 4。
然后计算除法,4÷2=2。
最后进行减法,4-2=2。
所以,表达式的值为 2。
【5.总结与建议】
有理数混合运算是初中数学中的基本内容,对于学生来说,掌握有理数混合运算的运算法则和解题技巧是提高数学运算能力的关键。
初一【有理数及其运算】完整版
个性化备课笔记教学主题:有理数及其运算教学重难点:重点·1.有理数的概念理解及分类;2.有理数与数轴对应关系;3.绝对值相关问题;4.有理数运算法则;5.有理数乘方难点·1.数的分类;2.对数轴的理解;3.绝对值意义理解以及相关计算; 4.有理数的四则运算规律授课内容一、有理数及其运算:知识框架:知识点一:有理数概念及分类1.有理数分类:①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.有理数判断:所有的有限小数和无限循环小数都可以化成分数的形式,属于有理数;而无限不循环小数,不能化成分数形式,因而不属于有理数.3.有理数易错点:(1) 0既不是正数也不是负数;(2)当a表示正数时,-a表示负数;当a表示负数时,-a表示正数;(3)引入负数后,奇数和偶数的范围扩大了;(4)π不是有理数经典例题一:附:易错常考题目1、在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升2、下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数3、把下面的有理数填在相应的大括号里:(★友情提示:将各数用逗号分开)15,,0,﹣30,0.15,﹣128,,+20,﹣2.6(1)正数集合﹛…﹜(2)负数集合﹛…﹜(3)整数集合﹛…﹜(4)分数集合﹛…﹜4、将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“15cm”分别对应数轴上的﹣3.6和x,则()A.9<x<10 B.10<x<11 C.11<x<12 D.12<x<135、在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1 B.3 C.±2 D.1或﹣36、如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C表示的数是()A.﹣0.5 B.﹣1.5 C.0 D.0.57、如图,数轴上的点A、O、B、C、D分别表示﹣3,0,2.5,5,﹣6,回答下列问题.(1)O、B两点间的距离是.(2)A、D两点间的距离是.(3)C、B两点间的距离是.(4)请观察思考,若点A表示数m,且m<0,点B表示数n,且n>0,那么用含m,n的代数式表示A、B两点间的距离是.8、若x的相反数是3,|y|=5,则x+y的值为()A.﹣8 B.2 C.8或﹣2 D.﹣8或29、若=﹣1,则a为()A.a>0 B.a<0 C.0<a<1 D.﹣1<a<010、若ab>0,则++的值为()A.3 B.﹣1 C.±1或±3 D.3或﹣111、已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于()A.﹣1 B.0 C.1 D.212、已知|a|=3,|b|=5,且ab<0,那么a+b的值等于()A.8 B.﹣2 C.8或﹣8 D.2或﹣213、已知a,b,c的位置如图,化简:|a﹣b|+|b+c|+|c﹣a|=.。
人教版七年级数学上册1.4.有理数的四则混合运算
新课导入 • 在小学里同学们学过正数和0的哪些运算呢?
它们有怎样的运算顺序?有理数的加、减、 乘、除混合运算又该怎样进行呢?学习本课 时内容后我们就会进行有理数的四则混合运 算了.
推动新课
知识点 有理数的四则混合运算 复习回顾:
化简分数的方法是怎样的? 分子分母同时除以它们的最大公约数.
有理数乘除混合运算:
乘除混合运算往往先将除法化为
,然乘后法确定积的
,最符后号求出
结果.
例1 计算:
(1) 8 4 2;
(2) 75 90 15;
分析: 本例3小题是 有理数加减 乘除法混合 运算.
(3)
1
1 24
3 8
1 6
3 4
24
5加减; 同级运算从左往右依次计算; 如有括号,先算括号内的; 能用运算律的,应利用运算律.
=3.7. 答:这个公司去年全年盈利3.7万元.
课堂小结
有理数加减乘除混合运算顺序:
先算乘除,再算加减; 同级运算从左往右依次计算; 如有括号,先算括号内的; 能用运算律的,应利用运算律.
课后作业 1.从课后习题中选取;
例2、某公司去年1-3月平均每月亏损1.5万元,4-6月 平均盈利2万元,7-10月平均盈利1.7万元,11-12月平 均亏损2.3万元,这个公司去年总的盈亏情况如何?
解:记盈利额为正数,亏损额为负数,公司去年全年 总的盈亏(单位:万元)为:
(-1.5)×3+2×3+1.7×4+(-2.3)×2
=-4.5+6+6.8-4.6
人教版七年级有理数的混合运算练习题40道(带答案)
人教版七年级有理数的混合运算练习题40道(带答案)有理数的混合运算专题训练以下是一些有理数的混合运算题目,需要按照以下顺序进行运算:1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
1.1241/141 + (-) + (+) + (-) + 2/先算括号内的正负号,得到-1,然后按照顺序进行运算,得到2/3.2.(-81) ÷ (-2.25) × (-) ÷ 16先算括号内的正负号,得到正,然后按照顺序进行运算,得到9.3.11 + (-22) - 3 × (-11)按照顺序进行运算,得到56.4.(+12) × (-) - 15 × (-1)按照顺序进行运算,得到-3.5.(-) × [-32 × (-)2 - 2]先算括号内的正负号,得到正,然后按照顺序进行运算,得到64.6.(-23) ÷ (-4)3先算括号内的正负号,得到正,然后按照顺序进行运算,得到-1/8.7.12 ÷ [(-)2 - 8]先算括号内的正负号,得到-6,然后按照顺序进行运算,得到-2.8.[(-2)2 × (-3)] × (-)先算括号内的正负号,得到正,然后按照顺序进行运算,得到6.9.[(-0.5)-] × (-6)先算括号内的正负号,得到正,然后按照顺序进行运算,得到3.10.|-| × (-) ÷ 2先算绝对值,得到0,然后按照顺序进行运算,得到0.11.-2² - (-2)² - 2³ + (-2)³先算括号内的正负号,得到-8,然后按照顺序进行运算,得到0.12.(-6)² - (-3)² ÷ (-1/2)³ × (-3)先算括号内的正负号,得到正,然后按照顺序进行运算,得到-108.13.-(-1)¹⁹⁹⁷ - (1 - 0.5) × 3 ÷ (-12)¹⁴先算括号内的正负号,得到正,然后按照顺序进行运算,得到-1.14.(-1)³ - (-8½) × 4/17 + (-3)³ ÷ [(-2)⁵ + 5]先算括号内的正负号,得到-1,然后按照顺序进行运算,得到-2.5.15.-10 + 8 ÷ (-2)² - (-4) × (-3)先算括号内的正负号,得到正,然后按照顺序进行运算,得到-4.16.-49 + 2 × (-3)² + (-6) ÷ (-1/9)先算括号内的正负号,得到正,然后按照顺序进行运算,得到-47.17.-14 + (1 - 0.5) × 1/3 × [2 × (-3)²]先算括号内的正负号,得到正,然后按照顺序进行运算,得到-10.18.[(-1/2)² - 3 × 3/4] ÷ 1/5先算括号内的正负号,得到-7/16,然后按照顺序进行运算,得到-8.75.19.5 × (-6) - (-4)² ÷ (-8)先算括号内的正负号,得到正,然后按照顺序进行运算,得到-25.20.(-2)² - 2 × [(-3)² ÷ (-4)] + (-5) × (-4)²先算括号内的正负号,得到正,然后按照顺序进行运算,得到-82.21.(7/12 - 5/6 + 3/4) × (-12) ÷ 6先算括号内的正负号,得到-1,然后按照顺序进行运算,得到2.22.(-7) ÷ 6 + (-5)³ - 3 ÷ (-2)³先算括号内的正负号,得到-125/8,然后按照顺序进行运算,得到-51.875.23.(-)² + (-)(-2)先算括号内的正负号,得到正,然后按照顺序进行运算,得到-2.24.-42 × [(-7) ÷ 6] + (-5)³ - 3 ÷ (-2)³先算括号内的正负号,得到-35,然后按照顺序进行运算,得到-124.875.25.6 - (-12) ÷ (-2)²先算括号内的正负号,得到正,然后按照顺序进行运算,得到2.26.(-5) ÷ (-1/2)²先算括号内的正负号,得到正,然后按照顺序进行运算,得到-20.27.42 × (-2/3) + (-4) ÷ 0.25按照顺序进行运算,得到-94.最终答案:1.2/32.93.564.-35.646.-1/87.-28.69.310.011.012.-10813.-114.-2.515.-416.-4717.-1018.-8.7519.-2520.-8221.222.-51.87523.-224.-124.87525.226.-2027.-941.删除明显有问题的段落,文章内容不完整,无法进行改写。
七年级数学(上)有理数的混合运算练习题40道(带答案)
七年级数学(上)有理数的混合运算练习题40道(带答案)嘿,同学们,今天咱们来聊聊数学这门神奇的学科。
说到数学,尤其是七年级的数学,那可是我们人生中第一次接触到有理数的混合运算。
今天,我就给大家带来了40道有理数混合运算的练习题,还有答案哦!准备好了吗?咱们就开始吧!1. 3 + 5 2 = ?2. 7 4 + 2 × 3 = ?3. 6 ÷ 2 + 3 × (2) = ?4. 8 (3) + 4 ÷ 2 = ?5. (5) × (2) + 3 1 = ?(答案:1. 0,2. 8,3. 7,4. 9,5. 7)怎么样,这些题目简单吗?其实,有理数的混合运算并没有那么难,关键是要掌握好运算顺序。
下面,我们再来挑战一些稍微有点难度的题目。
6. 2 × (3) + 4 (2) ÷ 2 = ?7. (1) × (4) 5 + 2 ÷ (2) = ?8. 6 (3) × 2 + 5 ÷ (1) = ?9. (2) ÷ 3 + 4 × (1) 5 = ?10. 7 3 × (2) + (4) ÷ 2 = ?(答案:6. 3,7. 3,8. 3,9. 7,10. 8)同学们,看到这里,你们是不是觉得有点头绪了呢?其实,数学就像一场游戏,只要我们用心去玩,就能找到其中的乐趣。
下面,我们再来挑战一些更有难度的题目。
11. (3) × (2) + 4 ÷ 2 5 = ?12. 6 (3) × 2 + (4) ÷ (1) = ?13. 7 × (1) + 4 (2) ÷ 2 = ?14. (2) × (3) + 5 4 ÷ 2 = ?15. 6 3 × (2) + (4) ÷ (1) = ?(答案:11. 4,12. 10,13. 7,14. 5,15. 10)怎么样,这些题目是不是有点意思了?其实,数学的世界是无穷无尽的,只要我们勇于挑战,就能发现其中的奥秘。
七年级数学有理数除法、乘方运算及混合运算;近似数和科学记数法人教实验版知识精讲
七年级数学有理数除法、乘方运算及混合运算;近似数和科学记数法人教实验版【本讲教育信息】一. 教学内容:有理数除法、乘方运算及混合运算 近似数和科学记数法二. 重点、难点: 1. 有理数混合运算; 2. 乘方运算意义和符号法则; 3. 科学记数法中的负指数幂的意义; 4. 有效数字、近似数的意义和精确度。
三. 教学过程:1. 除法:除以一个数等于乘以这个数的倒数。
(零不能作除数) 即:a b a bb /()=≠·1另一种说法:两数相除,同号得正,异号得负,并把绝对值相除;零除以任何一个不等于零的数,都得零。
提示:把除法转化为乘法进行运算,又一次体现了数学中的转化思想。
特别地:0不能做除数。
2. 倒数:乘积得1的两个数互为倒数。
即:若a b ·=1,则a 与b 互为倒数,且反之也成立。
(或:a b=1) 提示:零没有倒数。
互为倒数的两个数的符号相同。
要与相反数区别开:相加为0的两个数互为相反数。
即:a b +=0,则a 与b 互为相反数,且反之也成立。
3. 乘方的定义:求几个相同因数积的运算。
乘方的结果叫做幂。
在a n中a 叫做底数,n 叫做指数。
a n读作a 的n 次方,a n看作是a 的n 次方的结果时,也可读作a 的n 次幂。
幂指数底数结论:乘方是乘法的特例,因此乘方运算可转化成乘法法则,由乘法法则又得到了乘方符号法则,即正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶数次幂是正数。
0的任何次幂都是0。
注:(1)乘方是一种运算,幂是乘方运算的结果。
五种运算:加、减、乘、除、乘方; (2)有两种读法:次方或次幂。
(3)()-32与-32的区别。
底数不同,结果不同。
(4)分式形式需加括号。
例如:-⎛⎝ ⎫⎭⎪232与-232的意义不同且运算结果也不同。
4. 有理数的混合运算:含有有理数的加、减、乘、除、乘方多种运算的算式。
根据几种运算的法则可知:减法、除法可以转化成加法和乘法,乘方是利用乘法法则来定义的,所以有理数混合运算的关键是加法和乘法。
初一预学课次7科学计数法、有理数的混合运算
初一上学期数学预学讲学案课题科学计数法、有理数的混合运算课次第7次授课教师上课日期和时段教学形式手机号码科学记数法、有理数的混合运算第1部分重难点分析、知识图解1.学习目标:理解科学记数法的实际意义,会用科学计数法表示较大的数以及科学记数法在实际生活中的作用;掌握有理数的混合运算顺序,能准确地进行有理数的混合运算。
学习的重难点:理解与灵活运用科学记数法解决实际问题;掌握与灵活运用有理数的运算法则、运算律解决有理数的有关运算问题。
2.知识图解:图解1:科学意义把一个大于10的数写成a×10n(其中1≤a<10,n是正整数)记数的形式,这种记数方法叫做科学记数法法用途用科学记数法能比较方便地表示一个较大的数图解2:有理数的基本方法加减运算统一为加法运算,乘除运算统一为乘法运算混合运算运算顺序先算乘方,再算乘除,最后算加减;有括号的要先算括号里面的第2部分教材详解知识点一、用科学记数法表示大数科学记数法:把一个大于10的数写成a×10n(其中1≤a<10,n是正整数)的形式,这种记数方法叫做科学记数法。
例1 (1)用科学记数法表示下列各数。
700000000 500900000 6980000000(2)天文学常用“光年”作为距离单位,规定“1光年”为光在1年内走过的距离,大约等于94600亿千米,那么用科学记数法可表示为多少千米?知识点二、将科学记数法表示成a ×10n的数还原为原数 例2 (1)写出下列用科学记数法所表示的原数。
①预计到21世纪中期,世界人口总数达到9×109人。
②俄罗斯陆地面积居世界第一,约为1.707×107平方千米。
(2)地球的表面积约为5.1×108平方千米,则这个数字的原数是 平方千米。
知识点三、用科学记数法解决实际问题例3 (1)据统计,我国平均每人每天大约产生1.5千克的垃圾,你可能觉得并不多,假若从我国的家庭、商店、工厂等地方产生的垃圾可压缩成棱长为0.5米的垃圾,每个这样的立方体约由100千克垃圾组成,问我国每天的垃圾将产生多少个这样的立方体?有多少千克?(按13亿人口计算)(2)光的速度是300000000米/秒,用科学记数法表示为 ;那么光1小时所走的路程用科学记数法表示为 ;光年就是光一年(按365天计算)所走的路程,用科学记数法表示为 。
七年级数学上册 第1章 有理数 1.4 有理数的加减 1.4.4 加减混合运算—加、减法统一成加法学
加减混合运算——加减法统一成加法
【学习目标】:
1、理解加减法统一成加法运算的意义;
2、会将有理数的加减混合运算转化为有理数的加法运算;
【重点难点】:有理数加减法统一成加法运算;
【导学指导】
一、知识链接
1、一架飞机作特技表演,起飞后的高度变化如下表: 降升3.2
请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了 千米。
2、你是怎么算出来的,方法是
二、自主探究
1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!
2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导。
3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为 .再把加号记在脑子里,省略不写
如:(-20)+(+3)-(-5)-(+7) 有加法也有减法
=(-20)+(+3)+(+5)+(-7) 先把减法转化为加法
= -20+3+5-7 再把加号记在脑子里,省略不写
可以读作:“负20、正3、正5、负7的 ”或者“负20加3加5减7”.
4、师生完整写出解题过程
5、补充例题:计算-4.4-(-451)-(+221)+(-2107
)+12.4;
【课堂练习】
计算:
(1)1—4+3—0.5;
(2)-2.4+3.5—4.6+3.5 ;
(3)(—7)—(+5)+(—4)—(—10);
(4)3712
()()1 4263
-+----
;
【要点归纳】:【拓展训练】:1、计算:
1)27—18+(—7)—32 2)
245
()()()(1) 799
++--+-+
【总结反思】:。
初中一年级数学有理数的混合计算题
初中一年级数学有理数的混合计算题
一、有理数混合运算的知识点
1. 运算顺序
- 先算乘方,再算乘除,最后算加减。
- 同级运算,从左到右进行。
- 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
2. 有理数的基本运算规则
- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
- 减法:减去一个数等于加上这个数的相反数。
- 乘法:同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
- 除法:除以一个数等于乘以这个数的倒数(0不能作除数);同号得正,异号得负,并把绝对值相除。
二、有理数混合运算题目及解析
1. 计算:公式
- 解析:
- 按照运算顺序,先算乘除。
- 公式,公式。
- 原式变为公式。
- 再算加减,公式,公式。
2. 计算:公式
- 解析:
- 先算乘方。
- 公式(这里注意指数运算优先级高于负号,公式,再加上负号得公式)。
- 公式(公式),公式(因为公式是奇数,公式的奇数次方为公式)。
- 原式变为公式。
- 再算乘法公式。
- 最后算减法公式。
3. 计算:公式
- 解析:
- 先算小括号内的式子。
- 在公式中,先算公式,则公式。
- 在公式中,公式,则公式。
- 原式变为公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环球雅思教育学科教师讲义讲义编号: GE—ZBM 副校长/组长签字:签字日期:学员编号:年级:课时数:3学员姓名:辅导科目:学科教师:课题有理数的混合运算、科学计数法和近似数授课日期及时段教学目的掌握混合运算的运算法则和近似数重难点有理数的混合运算【考纲说明】1、掌握有理数的加减法法则和有理数混合运算的运算步骤。
2、注意有理数混合运算符号混淆问题。
3、掌握科学计数法的表示方法和近似数的表示。
4、本部分在中考中占3-5分。
【趣味链接】科学计数法的前身我们追溯到五千年到八千年前看一看,这时,四大文明古国都早已从母系社会过渡到父系社会了,生产力的发展导致国家雏形的产生,生产规模的扩大则刺激了人们对大数的需要.比如某个原始国家组织了一支部队,国王陛下总不能老是说:“我的这支战无不胜的部队共计有9名士兵!”于是,慢慢地就出现了“十”、“百”、“千”、“万”这些符号.在我国商代的甲骨文上就有“八日辛亥允戈伐二千六百五十六人”的刻文.即在八日辛亥那天消灭敌人共计2656人.在商周的青铜器上也刻有一些大的数字.以后又出现了“亿”、“兆”这样的大数单位. 而在古罗马,最大的记数单位只有“千”.他们用M表示一千.“三千”则写成“MMM”.“一万”就得写成“MMMMMMMMMM”.真不敢想象,如果他们需要记一千万时怎么办,难道要写上一万个M不成?然而,古希腊有一位伟大的学者,他却数清了“充满宇宙的沙子数”,那就是阿基米德.他写了一篇论文,叫做《计沙法》,在这篇文章中,他提出的记数方法,同现代数学中表示大数的方法很类似.他从古希腊的最大数字单位“万”开始,引进新数“万万(亿)”作为第二阶单位,然后是“亿亿”(第三阶单位),“亿亿亿”(第四阶单位),等等,每阶单位都是它前一阶单位的1亿倍.【知识梳理】一、有理数的混合运算1、有理数的加法法则:2、有理数的加法运算定律:.3、有理数减法法则及表达式:.4、有理数减法符号的确定及表示:.5、有理数加减法混合运算应注意的问题:.二、科学计数法1、把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数,且0<a<10),使用的是科学记数法。
2、用科学记数法表示一个n位整数,其中10的指数是n-1。
三、近似数1、接近实际数目,但与实际数目还有差别的数叫做近似数。
2、精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
3、从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字。
4、对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。
5、一个近似数的位数与精确度有关,不能随意添上或去掉末位的零。
6、确定有效数字时一定要弄清起始位置和终止位置,初学时可分别做上记号,以免出错7、要求精确到某一位的近似值时,只需把下一位的数四舍五入,而不看后面各数位上的数的大小。
【经典例题】【例1】(2009•泰安)下列各式,运算结果为负数的是( )A.-(-2)-(-3)B.(-2)×(-3)C.(-2)-2D.(-3)-3【解析】D【例2】计算:-12+(-1)3÷(-1)-1×(-1)3=( )A.-1B.1C.-3D.3【解析】B【例3】(2012•乐山)如图,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是( )A.ab>0B.a+b<0C.(b-1)(a+1)>0D.(b-1)(a-1)>0【解析】C【例4】(2013•遵义)遵义市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游.据有关部门统计报道:2012年全市共接待游客3354万人次.将3354万用科学记数法表示为( )A .3.354×106B .3.354×107C .3.354×108D .33.54×106【解析】B【例5】已知:a 、b 、c 在数轴上位置如图,O 为原点,则下列正确的是( )A .abc >0B .|a|>|c|C .|a|>|b| D.0cab 【解析】A【例6】(2010•常德)2008年常德GDP 为1050亿元,比上年增长13.2%,提前两年实现了市委、市政府在“十一五规划”中提出“到2010年全年GDP 过千亿元”的目标.如果按此增长速度,那么我市今年的GDP 为( )A .1050×(1+13.2%)2B .1050×(1-13.2%)2C .1050×(13.2%)2D .1050×(1+13.2%)【解析】A【例7】(2013•百色)百色市人民政府在2013年工作报告中提出,今年将继续实施十项为民办实事工程.其中教育惠民工程将投资2.82亿元,用于职业培训、扩大农村学前教育资源、农村义务教育学生营养改善计划、学生资助等项目.那么数据282 000 000用科学记数法(保留两个有效数字)表示为( )A .2.82×108B .2.8×108C .2.82×109D .2.8×109【解析】A【例8】(2012•通辽)将0.0006049保留两位有效数字并用科学记数法表示正确的是( )A .6.0×10-4B .6.0×10-3C .6.1×10-4D .6.1×10-3【解析】A【例9】(2012•达州)今年我市参加中考的学生人数约为6.01×104人.对于这个近似数,下列说法正确的是( )A .精确到百分位,有3个有效数字B .精确到百位,有3个有效数字C .精确到十位,有4个有效数字D .精确到个位,有5个有效数字【解析】D 【例10】农村里种粮的农户均按每亩年产量750公斤,且按每公斤售价1.1元来计算每亩的年产值,年产值乘以农业税的税率就是应缴的农业税,另外还要按农业税的20%上缴农业税附加.(用于村级组织的正常运作需要).(1)今年该农村农业税的税率为7%,王老汉一家种了10亩水稻,他一共要上缴多少元?(2)随着两会的召开,温家宝总理在政府工作报告中指出,为了减轻农民负担,鼓励种粮,决定免收农业税,并且每亩水稻由国家直接补贴20元,王老汉明年还是种10亩水稻的情况下,收入比今年增加的百分率是多少(保留三个有效数字).【解析】(1)10×750×1.1×7%×(1+20%)=75×1.1×7×1.2=90×7.7=693(元).(2)今年的收入:750×1.1×10-693=7557元,明年的收入:750×1.1×10+10×20=8450元,增加的百分率:(8450-7557)÷7557=11.8%.【课堂练习】1.计算:1-×[3×(-)2-(-1)4]+ ÷(-)2.122314122.计算:(-)2÷(-1)5×(-3)2-(1+2-3)×(-24).133813343.规定*是一种运算符号,且a*b=ab -2a ,试计算4*(-2*3).4.观察下列等式.1×3+1=4=22; 2×4+1=9=32;3×5+1=16=42; 4×6+1=25=52;… 观察后,你发现有何规律?请用含n 的式子表示出来.5.(大连)计算:++++=________.12141811611113264128256+++6.(青岛)下表是某报纸公布的我国“九五”期间国内生产总值(GDP )的统计表,那么这几年我国的国内生产总值平均每年比上一年增长( )万亿元. 年 份19961997199819992000国内生产总值(万亿元)6.67.3 7.98.2 8.9 A .0.46 B .0.575 C .7.78 D .9.7257.(西宁)甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,那么顾客在( )超市买这种商品更合算.A .甲B .乙C .丙D .一样【课后作业】1.计算:(1)-1÷3×=_______ ;(2)-24-│-4│=_____.132.(-)÷(-3)×(-1)×_______=1.56453.若a=-2,b=-3,c=-4,则(a -b )c=_____.4.若│x+3│+(y -2)2=0,则=________.32xy x y-5.-24÷×(-)2等于( ).4932 A .-16B .-81C .16D .816.(-1)4×(-5)×(-)3等于( ).12 A .- B .- C .+ D .+581818587.下列各式中,计算正确的是( ).A .-8-2×6=(-8-2)×6B .2÷×=2÷(×)43344334C .(-1)2006+(-1)2007=-1D .-(-3)2=-98.下列计算中,正确的数量是( ).①+=-1; ②-2÷×=-2; ③-1-=-1; ④12÷(-+)=-1.5616344318181314A .0个B .1个C .2个D .3个9.下列式子正确的是( ).A .-24<(-2)2<(-2)3B .(-2)3<-24<(-2)2C .-24<(-2)3<(-2)2D .(-2)2<(-2)3<-2410.计算:(1)-2+4-+2 (2)13+59.8-12-30-8.1231256164515(3)-23÷×(-)2÷()2 (4)-22÷(-1)3×(-5)942323(5)5×(-6)-(-4)2÷(-8) (6)-24-(-3+7)2-(-1)2×(-2)【课后反馈】本次 同学课堂状态: 本次课后作业: 需要家长协助: 家长意见: 【参考答案】【课堂练习】1.原式=1-×(3×-1)+×4=1-×+1=11249141213562.原式=×(-1)×9+×24=-1+33+56-90=-219117152424834⨯+⨯-3.4*(-2*3)=4*[-2×3-2×(-2)]=4*(-2)=4×(-2)-2×4=-164.n×(n+2)+1=(n+1)5. 255256点拨:原式=+++++-12141811611113264128256+++12561256=+++++++-121418116132164112811281256=++++++-=1-=121418116132164164125612562552566.B 点拨:[(7.3-6.6)+(7.9-7.3)+(8.2-7.9)+(8.9-8.2)÷4=(0.7+0.6+0.3+0.7)÷4=2.3÷4=0.575.7.B 点拨:甲:(1-20%)2=0.64;乙:1-40%=0.6;丙:(1-30%)(1-10%)=0.63.【课后作业】1.(1)- 19(2)-20 点拨:(1)原式=-1××=-;(2)原式=-16-4=-20.131319 2.-23.-4 点拨:(a -b )c=[(-2)-(-3)]×(-4)=-4.4.点拨:x=-3,y=2.6135.B 点拨:原式=-16××=-81.9494 6.D7.D 点拨:2÷×=2××,(-1)2006+(-1)2007=0,-8-2×6=-8-12.433434348.A9.C 点拨:-24=-16,(-2)3=-8,(-2)2=4.10.(1)原式=-2-+4+-+2+23125616=(-2+4+2)+(-+-+)23125616=4-=35616 (2)原式=13+(59.8-12.8)+(-30.2-8.1)=13+47-38.3=21.7(3)原式=-8×××=-849498116(4)原式=-4×(-1)×(-5)=-20(5)原式=-30+2=-28(6)原式=-16-16+2=-30“时间就像海绵里的水,只要挤总是有的。