高中数学等比数列听课记录
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
听 课 记 录 一、导入(由教材例题直接引入,PPT 展示) 1. (必修5P 55习题2(1)改编)设S n 是等比数列{a n }的前n 项和,若a 1=1,a 6=32,则S 3=________. 2. (必修5P 49习题1改编) {a n }为等比数列,a 2=6,a 5=162,则{a n }的通项公式a n =________. 3. (必修5P 49习题6改编)等比数列{a n }中,a 1>0,a 2a 4+2a 3a 5+a 4a 6=36,则a 3+a 5=________. 4. (必修5P 49习题7(2)改编)已知两个数k +9和6-k 的等比中项是2k ,则k =________. 5. (必修5P 51例2改编)等比数列{a n }中,S 3=7,S 6=63,则a n =________. 二、知识点回顾 1.等比数列相关概念 2.等比数列相关性质 三、典例分析 题型1 等比数列的基本运算 例1 等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列. (1) 求{a n }的公比q ;(2) 若a 1-a 3=3,求S n . 解:(1) ∵ S 1,S 3,S 2成等差数列,∴ 2S 3=S 1+S 2,即2(a 1+a 2+a 3)=a 1+a 1+a 2, ∴ 2a 3=-a 2,∴ q =a 3a 2=-12. (2) a 3=a 1q 2=14a 1,∴ a 1-14a 1=3,∴ a 1=4,∴ S n =4⎣⎡⎦⎤1-()-12n 1+12=83-83()
-12n . 变式训练 已知数列{a n }的前n 项和为S n ,a 1=1,且2a n +1=S n +2(n ∈N ). (1) 求a 2,a 3的值,并求数列{a n }的通项公式; (2) 求解S n (n ∈N ). 题型2 等比数列的判定与证明 例2 已知数列{a n }的前n 项和为S n ,3S n =a n -1(n ∈N ). (1) 求a 1,a 2; (2) 求证:数列{a n }是等比数列; (3) 求a n 和S n . (1) 解:由3S 1=a 1-1,得3a 1=a 1-1,∴ a 1=-12.又3S 2=a 2-1,即3a 1+3a 2=a 2-1,得a 2=14. (2) 证明:当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12,所以{a n }是首项为-12,公比为-12的等比数列. (3) 解:由(2)可得a n =⎝⎛⎭⎫-12n ,S n =⎝⎛⎭⎫-12⎣⎡⎦⎤1-⎝⎛⎭⎫-12n 1-⎝⎛⎭⎫-12=-13⎣⎡⎦⎤1-⎝⎛⎭⎫-12n .