红外光谱原理及仪器
红外光谱测试原理
![红外光谱测试原理](https://img.taocdn.com/s3/m/a5537b082a160b4e767f5acfa1c7aa00b52a9d03.png)
红外光谱测试原理红外光谱测试原理基于物质的分子振动。
物质中的原子和分子与红外辐射相互作用时,会发生分子振动,即原子相对位置和键长的周期性变化。
根据量子力学理论,这些分子振动的频率正好在红外光波段,因此物质对红外辐射具有吸收特性。
红外光谱测试中常用的是傅里叶红外光谱仪。
该仪器包括光源、样品室、分光装置和探测器等组件。
首先,光源发出连续的宽频谱红外辐射,经过分光装置后,红外辐射会被分成不同频率的光束,进一步通过样品室时,样品会对不同频率的红外辐射吸收不同程度的能量。
在红外光谱测试中,样品的红外光谱图通常以光密度(Transmission)或吸收强度(Absorbance)为纵坐标,波数或波长为横坐标。
红外光谱图中的各个峰表示样品在不同波数下吸收辐射的程度。
不同的化学成分和化学键类型在红外光谱图上表现出不同的吸收峰,通过对红外光谱图的分析,可以确定样品中存在的化学组分。
红外光谱测试具有许多应用。
在有机化学中,红外光谱测试可以用于鉴定有机物分子结构,识别官能团和确定化学键类型。
在药物研发中,红外光谱测试可以用于药物成分的分析和质量控制。
此外,红外光谱测试还被广泛应用于食品、环境监测、材料表征等领域。
红外光谱测试具有许多优点。
首先,它是一种无损检测方法,可以对样品进行非接触式测试,无需对样品进行处理或破坏。
其次,红外光谱测试具有高灵敏度和快速性,可以在短时间内获取大量信息。
此外,红外光谱测试还可以进行定量分析,通过对吸收峰的积分计算可以确定样品中的化学组分的含量。
然而,红外光谱测试也存在一些限制。
样品的表面特性和光学性质可能会对测试结果产生影响,因此需要对样品进行适当的样品制备和操作。
此外,红外光谱测试对样品的吸光性要求较高,不同波长下的吸收强度差异较大的样品可能需要进行稀释或加大样品的量。
总的来说,红外光谱测试是一种重要的分析技术,用于研究和确定样品中的化学组分。
它基于红外光的吸收特性,通过测量样品对红外辐射的吸收程度,获取样品的红外光谱图,并通过对光谱图的分析来确定样品中的化学组成。
红外光谱仪的原理及应用
![红外光谱仪的原理及应用](https://img.taocdn.com/s3/m/aec3be07e3bd960590c69ec3d5bbfd0a7956d50b.png)
红外光谱仪的原理及应用
红外光谱仪是一种利用红外光谱技术来测试物质或物质表面的一种仪器。
它的原理是利用物质在不同波长红外线下吸收或散射不同程度的光来分析物质的性质。
红外光谱仪主要有两种工作方式:吸收光谱和反射光谱。
吸收光谱是利用物质吸收红外光的能量来分析物质的性质,反射光谱是利用物质反射红外光的能量来分析物质的性质。
红外光谱仪应用非常广泛,主要应用在化学、石油、农业、食品、医药、环境、生物等领域。
如分析石油中的含量,鉴定药物成分,检测食品中毒素,监测环境污染等。
红外光谱仪的原理
红外光谱仪的原理是利用物质在不同波长红外线下吸收或散射不同程度的光来分析物质的性质。
红外线是一种电磁波,其频率在可见光之外,波长在700纳米到1纳米之间。
当红外线照射到物质上时,物质中的分子会吸收其中的能量。
每种物质都有其特有的吸收光谱,因此可以利用这些吸收光谱来分析物质的性质。
红外光谱仪通常包括一个红外光源、一个分光仪、一个探测器和一个计算机控制系统。
红外光源发出红外线,分光仪将红外线分成不同波长的光束,探测器检测物质对不同波长的吸收程度,计算机控制系统将检测数据处理成可视化的光谱图。
红外光谱仪还可以进行反射光谱和透射光谱的测试,其原理是一样的。
反射光谱是利用物质对红外线的反射能力来分析物质的性质。
而透射光谱是利用物质对红外线的透射能力来分析物质的性质。
红外光谱技术是一种非接触式的分析方法,不会对样品造成破坏,可以在试样的原始状态下进行测试,因此被广泛应用于各种领域。
红外光谱仪的工作原理与应用
![红外光谱仪的工作原理与应用](https://img.taocdn.com/s3/m/73edc1be9f3143323968011ca300a6c30c22f1b4.png)
红外光谱仪的工作原理与应用红外光谱仪(Infrared Spectrometer)是一种重要的分析仪器,广泛应用于物质的表征和定性分析领域。
它利用物质与红外辐射的相互作用,通过检测光谱图像,得到物质的特征信息。
本文将详细介绍红外光谱仪的工作原理与应用。
一、工作原理红外光谱仪的工作原理基于物质对红外辐射的吸收特性。
红外辐射由红外光源产生,经过样品后,被红外探测器接收。
探测器将吸收的红外辐射信号转化为电信号,进而得到光谱图像。
1. 光源红外光谱仪常用的光源包括炽热丝灯、硅化钨灯和Nernst灯等。
不同类型的光源适用于不同的红外波段,可以提供适合的辐射强度和波长范围。
2. 样品样品置于红外光源与探测器之间,红外辐射通过样品后会发生吸收、散射和透射等过程。
样品的化学结构、纯度和浓度等特性会影响其对红外辐射的响应特点。
3. 分光装置分光装置用于将入射的红外光分解成不同波长的光束,以获取样品吸收光谱。
常见的分光装置包括棱镜和光栅,它们具有不同的光谱分辨率和波长范围。
4. 探测器红外探测器将样品吸收的红外光转化为电信号。
常用的红外探测器包括热偶极化物(如热电偶、热电阻)、半导体和光学检测器(如光电二极管、荧光探测器)等。
5. 数据采集与处理探测器输出的电信号通过数据采集系统进行数字化处理,得到样品的红外吸收光谱。
数据处理包括数据滤波、峰识别和谱图解析等步骤,以提取样品的化学信息并进行定性或定量分析。
二、应用领域红外光谱仪在众多领域发挥着重要作用,以下将介绍其几个主要应用领域。
1. 化学分析红外光谱仪可用于化学物质的分析和鉴别。
每种化学物质都有独特的红外吸收谱,通过与已知物质的光谱图进行比对,可以快速确定未知物质的成分和结构。
2. 药物研究红外光谱仪在药物研究中有广泛应用。
通过红外光谱技术,可以对新型药物进行结构表征和质量控制,同时还可以研究药物与载体的相互作用以及释放行为等。
3. 食品安全红外光谱仪可以用于食品中有害成分的检测与分析,如重金属、农药残留和添加剂等。
红外光谱仪的原理及应用化学知识
![红外光谱仪的原理及应用化学知识](https://img.taocdn.com/s3/m/9a21e8b69f3143323968011ca300a6c30c22f1c0.png)
红外光谱仪的原理及应用化学知识1. 红外光谱仪的原理红外光谱仪是一种用于研究物质分子结构和化学键信息的仪器。
它基于红外光的作用,通过测量物质吸收、透射或散射红外辐射来得到样品的红外光谱。
下面将介绍红外光谱仪的基本原理。
1.1 受激辐射红外光谱仪的工作原理基于量子物理学中的受激辐射现象。
当物质受到一定波长范围的红外光照射时,物质分子中原本处于低能级的分子能级会吸收光子的能量,使分子跃迁到一个高能级的较稳定状态,这称为受激辐射。
1.2 分子振动和红外光分子在不同情况下会发生不同类型的振动,包括伸缩振动、弯曲振动和扭转振动等。
而这些分子振动的频率恰好与红外光的频率范围相对应,因此红外光谱可以被用来探测和分析这些分子振动。
1.3 红外光谱仪的光学系统红外光谱仪的光学系统包括光源、样品室、光栅、探测器等组件。
光源会发出一定波长范围内的红外光,样品室中的样品会与光发生相互作用,通过样品吸收或散射后的光信号,经过光栅分散,在探测器上产生信号,进而转化为样品的红外吸收光谱。
2. 应用化学知识红外光谱仪在化学分析中具有广泛的应用。
下面将介绍红外光谱仪在一些化学领域的应用知识。
2.1 有机化学红外光谱仪在有机化学中的应用非常重要。
通过观察和分析样品的红外光谱,可以确定有机物中的官能团和化学键的类型,从而确定有机物的结构和组成。
例如,红外光谱可以用来识别酮、醛、羧酸等官能团,确定有机化合物的基本结构。
2.2 药物分析红外光谱仪在药物分析中也起着重要作用。
药物中的各种成分可以通过红外光谱进行定性和定量分析。
通过红外光谱仪可以确定药物中的官能团和化学键,进而分析药物的纯度、含量等参数。
这对于药物质量控制和药效评估非常重要。
2.3 食品分析红外光谱仪在食品分析中也得到了广泛应用。
利用红外光谱仪可以对食品中的各种成分进行分析和鉴别,包括脂肪、蛋白质、糖类等。
通过红外光谱可以检测食品中的添加剂、污染物等有害物质,从而保证食品的质量和安全性。
红外光谱仪的原理及应用方法
![红外光谱仪的原理及应用方法](https://img.taocdn.com/s3/m/6dfd42ae5ff7ba0d4a7302768e9951e79b8969fe.png)
红外光谱仪的原理及应用方法1. 红外光谱仪的原理红外光谱仪是一种用于分析样品中化学物质的仪器。
它基于红外光谱技术,通过测量样品在红外光波段的吸收特性,来确定样品中的化学物质的成分和结构。
红外光谱仪的原理主要包括以下几个方面:•红外辐射源:红外光谱仪使用的红外辐射源通常为热电偶或钨丝灯。
这些辐射源能够产生红外光波段的辐射光。
•样品室:红外光谱仪的样品室通常是一个封闭的空间,用于放置样品和测量光的传输。
样品室通常可以保持恒定的温度和湿度,以确保准确的测量结果。
•光学系统:红外光谱仪的光学系统主要包括红外光源、样品和检测器。
光源发出的红外光通过样品,被检测器接收并转换为电信号。
•检测器:红外光谱仪的检测器通常是一种能够测量红外光强度的器件。
常见的检测器包括热电偶、半导体探测器和光电倍增管。
检测器接收到的光信号经过放大和处理后,可用于生成红外光谱图。
•数据处理:红外光谱仪的数据处理部分主要包括光谱图的绘制和分析。
通过对光谱图进行峰值分析、峰位标定和谱图匹配,可以确定样品中的化学物质的种类和含量。
2. 红外光谱仪的应用方法红外光谱仪在化学、生物、医药、环保等领域有着广泛的应用。
下面列举几种常见的应用方法:2.1 定性分析红外光谱仪可以通过样品在红外光谱范围内的吸收特性,确定样品中存在的化学官能团和化学键。
通过与已知化合物的光谱图对比,可以判断未知样品的化学成分和结构。
2.2 定量分析红外光谱仪也可以用于定量分析。
通过测量红外光谱图中特定吸收峰的峰值强度与样品中物质浓度的关系,可以建立定量分析模型。
这种方法对于含有特定官能团的化合物的定量分析非常有效。
2.3 有机物鉴定红外光谱仪可以用于有机物的鉴定。
不同有机物在红外光谱图上有特征性的吸收峰,可以通过识别和比对特征峰来确定样品中有机物的种类和含量。
2.4 质谱结合将红外光谱仪与质谱仪结合可以得到更为详细的化学信息。
红外光谱提供了化学键类型和官能团的信息,而质谱则可以确定特定化合物的分子量和分子结构。
第2章 红外光谱
![第2章 红外光谱](https://img.taocdn.com/s3/m/90ae993be2bd960590c6775c.png)
共轭效应使 电子离域,双键性 ,K
(3)中介效应(使振动频率移向低波数区) 含有孤对电子的 O、N 和 S 等原子,能与 相邻的不饱和基团共轭(p-π共轭),其结果 使不饱和基团的振动频率降低,而自身连接 的化学键振动频率升高。
羰基的双键性
K
3、空间效应
(1)环的张力:环减小→环张力增大 →环内各键 被削弱→伸缩振动频率降低→环外的键却增强→ 伸缩振动频率升高。 环酮:环张力增大, 羰基v 增大。 环烯:环张力增大, 双键v 减小。 (2)空间障碍:共轭体系的共平面性被偏离或被 破坏时, v 增大。
O-H(缔合)
2843 cm-1
~ (游离) 3615~3605 cm-1 O-H
2.3 红外光谱仪及样品制备技术
一、红外光谱仪
红外光谱按其发展历程分为三代: 第一代是以棱镜作为单色器 第二代是以光栅作为单色器 第三代干涉型分光光度计
1、色散型红外光谱仪
(1)仪器的工作原理
仪器组成:光源,吸收池,单色器、 检测器、放大器和记录器。 仪器的工作原理:依据“光学零位平衡”
分子振动频率有以下规律:
(1)K:化学键的力常数是衡量价键性质的一个重要 参数(质量相近的基团)。 因 Kc≡c>Kc=c>Kc-c 则红外频率νc≡c>ν c=c> νc-c
(2)与氢原子相连的化学键的折合质量都小,红外吸
收在高波数区(X—H),C-H伸缩振动吸收位于
3000cm-1,O-H伸缩振动吸收位于3000-3600 cm-1,NH伸缩振动吸收位于3300 cm-1。
化学键弯曲振动的类型
弯曲振动
面内弯曲振动 剪式振动 面内摇摆振动 面外弯曲振动 面外摇摆振动 面外扭曲振动
红外光谱分析仪基础知识
![红外光谱分析仪基础知识](https://img.taocdn.com/s3/m/219554f5f021dd36a32d7375a417866fb84ac0ad.png)
用于研究生物分子结构和功能,辅助药物研发和 疾病诊断。
3
农业领域
检测农产品中的营养成分和农药残留,保障食品 安全。
行业标准与规范建立
制定统一的仪器性能评价标准
01
规范不同厂商生产的红外光谱分析仪的性能指标。
建立数据共享与互操作标准
02
促进不同仪器之间的数据交换与共享,提高分析结果的可靠性。
样品不纯
采用纯度较高的样品进行 测试,或采用内标法进行 校正。
光谱干扰
检查光谱图是否存在其他 物质的干扰,如水蒸气、 二氧化碳等。
仪器误差
定期对仪器进行校准,确 保仪器性能稳定。
样品制备技巧与注意事项
样品量控制
根据测试需求选择合适的样品量,避免过多或过少。
样品处理
对于不透明的样品,需要进行适当处理以获得准确的 光谱图。
制定安全操作与维护规范
03
确保仪器使用过程中的安全,延长仪器使用寿命。
THANKS FOR WATCHING
感谢您的观看
应用领域与优势
应用领域
化学、医药、食品、环保、农业、能源等领域。
优势
能够快速准确地分析物质成分和结构,提供丰富的分子结构和化学信息,有助 于科研和生产过程中的质量控制、产品开发以及环境监测等。
02 红外光谱分析仪的基本组 成
ቤተ መጻሕፍቲ ባይዱ
光源系统
总结词
光源系统是红外光谱分析仪的核心部分,负责产生入射到样品的光线。
工作原理
当红外光与物质相互作用时,物质分 子吸收特定波长的红外光,产生分子 振动和转动能级跃迁,通过测量吸收 光谱,可以分析物质成分和结构。
分类与特点
分类
根据应用领域和测量精度,红外 光谱分析仪可分为傅里叶变换红 外光谱仪、色散型红外光谱仪、 光声光谱仪等。
红外光谱原理及仪器剖析
![红外光谱原理及仪器剖析](https://img.taocdn.com/s3/m/2b648bd0dc88d0d233d4b14e852458fb770b3885.png)
红外光谱原理及仪器剖析红外光谱是研究物质分子结构、官能团及分子间相互作用的重要方法之一、它通过测量物质在红外辐射下的吸收、散射、透射等现象得到的信息,来揭示物质的化学、物理性质。
红外光谱的原理是基于物质吸收和发射红外辐射的现象。
在物质的红外光谱图谱中,吸收峰对应着物质分子中不同官能团振动状态的特征,通过对标准物质的红外光谱图谱进行比对,可以确定待测样品的化学成分和结构。
红外光谱仪是用于测量物质红外光谱的专用仪器,主要由光源、样品室、光学系统和检测器等部分组成。
光源可以采用红外灯、光电导、红外激光等,它会发射红外光,在光学系统中被聚焦后通过样品室中的待测样品。
样品室是红外光谱仪的核心部件,通常包括样品支架和透明窗口。
待测样品经过样品支架放置在样品室中,透明窗口能够让红外光通过并与样品发生作用。
样品室的设计还考虑了对样品温度和气氛的控制,以保证测量的准确性和可靠性。
光学系统是将从光源发出的红外光聚焦到样品上,并将样品经过红外光照射后产生的信号转换为电信号。
它主要包括光栅、透镜、反射镜等光学元件,通过精确的光学调节,可以将红外光的信息传递到检测器上。
检测器是红外光谱仪的另一个重要部件,它将从样品中散射或透射出来的红外光信号转换为电信号。
常用的检测器有热电偶、半导体探测器和光电二极管等。
这些检测器对不同波段的红外光有不同的响应特性,可以适应不同光谱测量的需求。
红外光谱仪的工作过程通常包括样品的准备、测量条件的设定和数据分析等步骤。
首先,将待测样品制备成适当形式,如固体样品经过研磨、液体样品经过稀释等。
然后,设定红外光谱仪的测量条件,包括光源的选择、采集光线的范围和速度等。
最后,将测量到的红外光谱数据进行分析,通常通过与标准物质光谱图谱的比对来确定样品的组成和结构。
红外光谱在有机化学、生化分析、材料科学等领域有着广泛的应用。
通过红外光谱技术,可以快速、准确地确定复杂化学物质的结构和官能团。
此外,红外光谱还可以用于研究物质的溶解、聚合、脱附等过程,为新材料的设计和开发提供参考。
红外光谱仪原理
![红外光谱仪原理](https://img.taocdn.com/s3/m/a74e0a2f1fd9ad51f01dc281e53a580216fc5090.png)
红外光谱仪原理红外光谱仪是一种用于分析物质分子结构和化学键的仪器。
它利用物质吸收、散射、透射、反射或者发射红外光的特性,来确定物质的成分和结构。
红外光谱仪原理主要包括光源、样品、检测器和数据处理四个部分。
首先,光源产生红外辐射,通常是通过加热钨丝或者使用红外激光器来实现。
这些光源产生的红外光通过样品,样品吸收特定波长的红外光,其余的波长则通过样品。
吸收的红外光与样品的分子结构和化学键有关,因此可以通过检测吸收光的强度和波长来确定样品的成分和结构。
其次,检测器接收通过样品的红外光,并将其转换成电信号。
常用的检测器有热电偶和半导体探测器。
这些电信号会随着波长的变化而变化,通过测量电信号的强度和波长,可以得到样品对不同波长红外光的吸收情况。
最后,数据处理部分对检测到的电信号进行处理和分析,通常使用计算机进行数据采集和处理。
数据处理可以通过比较样品的光谱图与标准库中的光谱图来确定样品的成分和结构。
此外,还可以通过峰位和峰面积的测量来定量分析样品中各成分的含量。
红外光谱仪原理的核心在于利用样品对红外光的吸收特性来确定其成分和结构。
通过光源产生红外光,样品吸收特定波长的红外光,检测器接收并转换成电信号,最后通过数据处理来分析样品的光谱图。
这一原理在化学、生物、药物、食品等领域都有着广泛的应用,成为了分析和研究物质的重要工具。
总之,红外光谱仪原理的理解对于正确操作和应用红外光谱仪具有重要意义。
只有深入理解红外光谱仪的工作原理,才能更好地利用红外光谱仪进行物质分析和研究。
希望本文的介绍能够帮助大家更好地理解红外光谱仪的工作原理,从而更好地应用于实际工作中。
红外光谱基本原理
![红外光谱基本原理](https://img.taocdn.com/s3/m/37aaa39c3086bceb19e8b8f67c1cfad6195fe9e8.png)
红外光谱基本原理
红外光谱基本原理是通过测量物质对红外辐射的吸收和散射来分析物质的分子结构和化学键信息。
红外辐射是电磁波的一种,其波长范围为0.78-1000微米。
红外光谱仪器由三个主要部分组成:光源、样品室和检测器。
光源发出红外辐射,经过样品室中的样品后,辐射被检测器接收并转换为电信号进行分析。
在红外光谱中,物质分子会吸收特定波长的红外辐射能量,这是由于不同分子之间的化学键具有不同的振动和转动模式。
每个化学键都对应着一定的波数,而波数与波长呈反比关系。
红外光谱图是以波数为横坐标、吸光度为纵坐标的图形,用于描述物质在红外波段的吸光度变化。
图谱中的吸收峰对应着物质中的特定化学键振动或转动模式的吸收。
通过与已知物质的红外光谱对比,可以确定未知物质的组成和结构。
红外光谱广泛应用于有机化学、无机化学、生物化学等领域,用于分析和鉴定物质、检测化学反应、研究分子结构和键的性质。
在红外光谱分析中,需要注意的是样品的制备和处理。
样品应该被均匀地涂布在红外吸收性能良好的基质上,并尽量减少水分和有机溶剂的干扰。
此外,样品的浓度和厚度也会对谱图的强度和形状产生影响,因此需要进行优化和标定。
总之,红外光谱基于物质对特定波数红外辐射的吸收特性,可用于分析物质的结构和化学键信息。
它是一种快速、非破坏性的分析方法,在科学研究和工业应用中有着广泛的应用前景。
仪器分析红外光谱法
![仪器分析红外光谱法](https://img.taocdn.com/s3/m/954eb441cd1755270722192e453610661ed95aa4.png)
仪器分析红外光谱法红外光谱法是一种常用的仪器分析方法,可以用于分析物质的组成和结构。
本文将详细介绍红外光谱法的原理、仪器设备和应用领域,并对其中的一些关键技术进行探讨。
红外光谱法是一种基于化学键振动的分析技术。
通过测量样品在红外辐射下的吸收光谱,可以获得有关样品分子的信息。
红外辐射的波长范围为0.78-1000微米,对应的频率范围为12.82-3000THz。
在这个频率范围内,物质的分子会吸收特定波长的辐射能量,这些吸收峰对应着不同的化学键振动。
通过比较样品的吸收光谱和标准库中的光谱,可以确定样品的组分或结构。
红外光谱仪是进行红外光谱分析的关键设备。
它主要由光源、样品室、光谱分束系统和探测器组成。
常见的光源有红外灯、光纤波导和测量系统本体产生的光源,它们的特点是辐射能量可见、红外或拉曼光谱区域。
光谱分束系统可以将样品吸收的红外光谱分解为连续光的波长与光强分布的结果,常用的分束器有棱镜和光栅两种。
光谱分束系统将被分解的光聚集到一个探测器上进行测量,常见的探测器有热电偶、焦平面阵列、差分红外探测器等。
根据实际需要,还可以配备测光计、计算机等辅助设备,以提高测量的准确性和效率。
红外光谱法在实际应用中有广泛的用途。
它可以用于各种领域的研究和分析,如化学、材料科学、制药、食品科学等。
红外光谱法可以用于分析有机化合物、无机物质、生物大分子等类型的样品。
在有机化合物分析中,红外光谱法可以确定化学键的类型、鉴别不同的功能基团、判断化学结构等。
在材料科学中,红外光谱法可以用于表面分析、结构表征、聚合物反应动力学等研究。
在制药和食品科学中,红外光谱法可以用于药物质量控制、药物配方优化、食品成分分析等。
为了提高红外光谱法的测量精度和灵敏度,一些关键技术被引入到了仪器分析中。
其中,ATR技术(全反射红外光谱技术)是一种常用的技术。
它通过将样品直接置于晶体表面进行测量,避免了传统方法中液体制备和气体膜片制备的麻烦。
此外,荧光红外光谱技术也是一项重要的技术。
红外光谱仪工作原理
![红外光谱仪工作原理](https://img.taocdn.com/s3/m/4b40ed66bdd126fff705cc1755270722182e5942.png)
红外光谱仪工作原理
红外光谱仪(FTIR)是一种用于分析物质的仪器,它基于红
外光谱的工作原理。
红外光谱是指在红外波段的电磁辐射,其波长范围约为0.78-1000微米。
红外光谱仪的工作原理涉及三个主要部分:光源,样品和探测器。
首先,光源产生一束宽频谱的红外光。
常用的红外光源有石英灯、钽灯和硅灯等。
这些光源具有特定的波长范围,并且能够在几乎所有的红外区域发射光线。
其次,红外光通过样品。
样品可以是固体、液体或气体。
当红外光通过样品时,样品中的分子会吸收特定波长的红外光,形成一个吸收光谱。
不同的化学物质对红外光的吸收方式和程度各不相同,因此通过分析吸收光谱可以确定样品的组成。
最后,探测器接收通过样品后的红外光,并将其转换为电信号。
常用的红外光谱仪探测器有热电偶、半导体探测器和光电二极管等。
这些探测器灵敏度高,能够将红外光信号转换为可测量的电信号。
红外光谱仪通过将样品的吸收光谱与一个参考光谱进行比较,可以确定样品的成分和结构。
通常使用傅立叶变换红外光谱仪(FTIR),它可以同时测量多个波长的红外光,提供高分辨
率和更准确的结果。
红外光谱仪广泛应用于化学、生物、材料科学等领域的研究和分析。
它可以帮助科学家们研究物质的结构、功能和反应机理,在医药、环境监测、食品安全等领域也有重要的应用。
红外光谱仪的原理和应用
![红外光谱仪的原理和应用](https://img.taocdn.com/s3/m/7d7a87163d1ec5da50e2524de518964bcf84d2e0.png)
红外光谱仪的原理和应用1. 红外光谱仪的原理红外光谱仪是一种能量分析仪器,可用于研究和分析材料的分子结构、化学成分和功能。
红外光谱仪基于材料对红外光的吸收和发射特性进行测量和分析。
1.1 红外光的特性红外光是电磁波谱中的一部分,具有比可见光波长更长的波长。
红外光的波长范围通常为0.78至1000微米(μm),可进一步分为近红外、中红外和远红外三个区域。
1.2 材料吸收红外光的原理当材料暴露在红外辐射下时,它会吸收红外光中特定波长的能量。
这是因为红外辐射能够引起材料中原子和分子之间的振动和转动。
不同的化学键和各种功能基团具有特定的振动频率,这些频率与吸收红外光的波长相对应。
1.3 红外光谱仪的工作原理红外光谱仪包括光源、样品室、光学系统、检测器和数据处理部分。
下面是红外光谱仪的工作原理的基本步骤:1.光源发出宽谱的红外光;2.红外光通过光学系统进入样品室;3.样品室中的样品吸收一部分红外光,其余部分被透过;4.透过的红外光进入检测器,被转换成电信号;5.检测器将电信号发送给数据处理部分进行处理和显示。
2. 红外光谱仪的应用红外光谱仪在许多领域具有广泛的应用,包括材料科学、化学、生物医学、环境科学等。
以下列举了红外光谱仪的一些主要应用:2.1 物质鉴定和分析红外光谱仪能够通过测量材料的红外吸收谱来鉴定和分析物质的结构和组成。
通过与已知谱图进行比较,可以确定未知物质的成分。
这在药物分析、食品安全检测、环境监测等领域非常有用。
2.2 药物研发红外光谱仪在药物研发中起着重要的作用。
它可以用于分析药物的纯度、结构和功能基团,以确保药物的质量和有效性。
此外,红外光谱仪还可以用于药物微胶囊的监测和释放行为的研究。
2.3 生物医学研究红外光谱仪在生物医学研究中用于研究生物分子的结构和功能,例如蛋白质、核酸和糖类。
通过红外光谱仪的分析,可以获取关于分子结构、折叠状态以及与其他分子的相互作用信息,这对于理解生物分子的生理和病理过程非常重要。
红外光谱原理及仪器
![红外光谱原理及仪器](https://img.taocdn.com/s3/m/6836d27166ec102de2bd960590c69ec3d5bbdbfe.png)
红外光谱原理及仪器红外光谱是一种常用的分析技术,可以用于研究物质分子之间的相互作用以及它们的结构。
红外光谱原理及仪器的了解对于理解红外光谱分析的过程和结果有着重要的意义。
红外光谱原理基于分子的振动和转动。
当物质受到红外辐射时,分子中的键振动或分子整体的转动会吸收特定的红外波长。
红外光谱谱图是以波数或波长为横坐标,吸收强度为纵坐标的图像,可以提供物质内部结构信息和化学键的类型。
红外光谱仪器主要由光源、样品室、分光器、探测器和数据处理系统组成。
常见的红外光源包括红外灯和四极矩阵,它们可以产生红外光谱所需的波数范围。
样品室用于放置样品,并保证样品在红外辐射下的稳定性。
分光器负责分离不同波数的红外光,通常采用光栅或光柱的结构,可以选择不同的波数范围进行分析。
探测器用于测量样品对红外辐射的吸收,常见的探测器包括热电偶和半导体探测器。
数据处理系统可以将探测到的信号转化为谱图,并进行数据处理和分析。
红外光谱仪器有多种类型,包括紫外-可见-红外光谱仪、傅里叶变换红外光谱仪和激光光谱仪等。
紫外-可见-红外光谱仪可以覆盖广泛的波数范围,可以进行吸收谱和透射谱的测量。
傅里叶变换红外光谱仪利用傅里叶变换技术将时间域的信号转换为频率域的信号,具有高分辨率和高灵敏度,广泛应用于红外光谱分析。
激光光谱仪利用激光器产生的单色激光进行谱线选择和测量,具有高分辨率和高灵敏度,适用于对微量样品的分析。
红外光谱仪通过测量样品与红外光的相互作用,可以提供丰富的信息。
红外光谱可以用于确定物质的结构和组成,识别有机化合物的官能团和键的类型,检测无机物质的配位化学和晶体结构。
此外,红外光谱还可以用于研究化学反应的动力学和机理,以及分析样品中的杂质和探测污染物。
总之,红外光谱原理及仪器是一种重要的分析技术,可以用于研究物质的结构和组成。
通过选择适当的红外光源、样品室、分光器、探测器和数据处理系统,红外光谱仪可以提供高分辨率、高灵敏度和广泛的波数范围,适用于多种样品和应用领域的分析。
红外光谱原理及仪器
![红外光谱原理及仪器](https://img.taocdn.com/s3/m/cc20062543323968011c92ee.png)
型号:Frontier 参考报价: 50万-100万
ThermoFisher( 赛默飞)
型号:Nicolet 5700
型号:is 50 参考报价: 50万-100万
型号:Nicolet iS5 参考报价: 30万-40万
型号:Antaris II 参考报价: 50万-100万
天津港东
型号:FTIR-650 参考报价: 10万-15万
衰减全反射傅里叶变换红外光谱仪
• 衰减全反射不需要通过透过样品的信号, 而是通 过样品表面的反射信号获得样品表层有机成分的 结构信息,因此 ,衰减全反射具有如下特点: • 1)不破坏样品 ,不需要象透射红外光谱那样要将 样品进行分离和制样 。对样品的大小, 形状没 有 特殊要求 ,属于样品表面无损测量 。 2)可测量含水和潮湿的样品 。 3)检测灵敏度高 , 测量区域小 ,检测点可为数 微米 。 4)能得到测量位置处物质分子的结构信息、某化 合物或官能团空间分布的红外光谱图像及微区的 可见显微图象。 5)能进行红外光谱数据库检索以及化学官能团辅 助分析,确定物资和种类和性质。 6)操作简便, 自动化, 用计算机进行选点、定位、 聚集、测量。
• 到目前为止,红外光谱仪已经发展了三代: 棱镜色散型红外光谱仪 光栅型色散式红外光谱仪 干涉型红外光谱仪(傅里叶变换红外光谱仪)
色散型红外与傅里叶变换红外光谱仪
• 傅里叶红外光谱仪:光学部件简单;测量波段宽; 测量精度高;光通量大;多路通过特点,所有频 率同时测量;扫描速度快
傅里叶变换红外光谱仪(FTIR) 光源发出的光被分束器(类似半透半反镜)分为两束, 一束经透射到达动镜,另一束经反射到达定镜。两束光 分别经定镜和动镜反射再回到分束器,动镜以一恒定速 度作直线运动,因而经分束器分束后的两束光形成光程 差,产生干涉。干涉光在分束器会合后通过样品池,通 过样品后含有样品信息的干涉光到达检测器,然后通过 傅里叶变换对信号进行处理,最终得到透过率或吸光度 随波数或波长的红外吸收光谱图。
红外反射光谱原理实验技术及应用
![红外反射光谱原理实验技术及应用](https://img.taocdn.com/s3/m/4ea5e031f56527d3240c844769eae009581ba2df.png)
红外反射光谱原理实验技术及应用一、红外反射光谱原理红外反射光谱的原理基于物质对红外光的吸收和反射。
在红外光谱图中,纵坐标表示样品吸收或反射的光强,横坐标表示光波数,即1/λ。
红外光通过样品表面时,一部分被吸收,一部分被反射。
反射光谱是指测量反射光的光谱,可分为全光谱反射和透射反射两种形式。
二、红外反射光谱实验技术1.仪器设备2.实验步骤(1)样品制备:将待测样品均匀涂覆在透明的反射基底上,如KBr片、硅片或玻璃片等。
(2)样品安装:将样品底部与透明基底紧密接触,避免空气或其它外界物质的干扰。
(3)光谱测量:将红外光源发出的红外光照射到样品,通过光学系统将反射光收集,经过光谱仪器进行检测和记录。
(4)数据分析:对得到的光谱图进行数据处理,如寻峰定性、峰位确定、峰强度计算等。
三、红外反射光谱应用1.物质鉴定:红外反射光谱可以通过比较样品的光谱图与数据库中已知物质的光谱图,快速鉴定未知化合物的成分。
2.质量控制:红外反射光谱可以用于药品、食品、化妆品等行业的质量控制,通过检测样品中的成分和质量指标,保证产品的质量稳定性。
3.表面分析:红外反射光谱可以对材料表面的化学成分和结构进行分析,用于材料表面的污染分析和材料界面的相互作用研究。
4.生物医学应用:红外反射光谱可以用于生物组织和细胞的研究,通过分析生物样品的红外反射光谱,可以了解生物体内的化学成分和分子结构。
总之,红外反射光谱是一种全面、快速、非破坏性的分析方法,具有广泛的应用前景。
随着仪器设备和数据处理技术的不断发展,红外反射光谱在化学、材料科学、生物医学等领域的重要性将不断提升。
bruker红外光谱仪的工作原理
![bruker红外光谱仪的工作原理](https://img.taocdn.com/s3/m/9860fb113069a45177232f60ddccda38376be12b.png)
Bruker红外光谱仪是一种用于分析物质的仪器,它基于红外光谱技术。
其工作原理如下:
1. 光源:红外光谱仪使用一种称为红外辐射源的光源,通常是一种发射红外光的热源,如石英灯。
2. 样品:待测样品被放置在红外光谱仪的样品室中。
样品可以是固体、液体或气体。
3. 光路:红外光从光源发出,经过一系列的光学元件,如反射镜和光栅,被聚焦到样品上。
4. 吸收:样品中的分子会吸收特定波长的红外光。
吸收的波长与样品中的化学键振动频率有关。
5. 探测器:经过样品后的光被聚焦到一个探测器上,通常是一种称为光电二极管的器件。
探测器测量吸收光的强度。
6. 光谱图:探测器将测量到的光强度转换为电信号,并通过计算机处理,生成一个称为红外光谱图的图形。
红外光谱图显示了样品在不同波长下的吸收强度。
7. 分析:通过比较样品的红外光谱图与已知物质的光谱图,可以确定样品中的化学成分和结构。
总的来说,Bruker红外光谱仪利用样品对红外光的吸收特性来分析样品的化学成分和结构。
通过测量样品在不同波长下的吸收强度,可以得到样品的红外光谱图,从而进行分析和鉴定。
红外光谱的原理
![红外光谱的原理](https://img.taocdn.com/s3/m/7ae311f4f021dd36a32d7375a417866fb94ac042.png)
红外光谱的原理红外光谱是一种用于分析物质结构和成分的重要工具,它利用物质对红外辐射的吸收特性来获取样品的信息。
红外光谱分析是基于分子在吸收红外辐射时发生的振动和转动的原理,通过测定物质在红外光谱范围内的吸收特性,可以得到物质的结构、组成和性质等信息。
红外光谱的原理主要包括以下几个方面:1. 分子振动和转动。
分子在吸收红外辐射时会发生振动和转动。
分子内部的原子围绕共振频率进行振动,而整个分子则围绕其自身的转动轴进行转动。
不同的化学键和官能团对红外辐射的吸收具有特定的频率和强度,因此可以通过观察样品在不同频率下的吸收情况来确定其化学结构和成分。
2. 红外光谱图谱。
红外光谱图谱是以波数(频率的倒数)为横坐标,吸收强度为纵坐标的图谱。
不同的化学键和官能团在红外光谱图谱上呈现出特定的吸收峰,通过对比样品的光谱图谱和标准物质的光谱图谱,可以确定样品的结构和成分。
3. 红外光谱仪。
红外光谱仪是用于测定样品红外光谱的仪器,它通常由光源、样品室、光学系统和检测器等部分组成。
光源产生红外辐射,样品室将样品置于辐射中,光学系统将样品吸收的辐射转换为信号,检测器将信号转化为光谱图谱。
红外光谱仪通常具有高分辨率、高灵敏度和高稳定性,能够准确地测定样品的红外光谱。
4. 红外光谱的应用。
红外光谱在化学、生物、材料、环境等领域具有广泛的应用价值。
在化学分析中,红外光谱可以用于确定化合物的结构和成分;在生物医学领域,红外光谱可以用于检测生物分子的结构和功能;在材料科学中,红外光谱可以用于研究材料的性能和应用;在环境监测中,红外光谱可以用于分析大气、水体和土壤中的污染物。
总之,红外光谱的原理是基于分子在红外辐射下的振动和转动特性,通过测定样品在不同频率下的吸收情况来获取样品的结构和成分信息。
红外光谱具有广泛的应用价值,为化学、生物、材料和环境等领域的研究和应用提供了重要的技术支持。
红外光谱知识点总结
![红外光谱知识点总结](https://img.taocdn.com/s3/m/d4de3ece70fe910ef12d2af90242a8956aecaa52.png)
红外光谱知识点总结一、红外光谱的基本原理1. 红外辐射红外光波长范围为0.78~1000微米,是可见光和微波之间的一部分光谱。
物质在光谱范围内会吸收、散射和发射红外光。
这些过程可以用来获取物质的结构信息。
2. 分子振动分子在吸收红外辐射时,分子内部的振动模式会发生变化,这些振动模式会导致物质对不同波长的红外光有不同的吸收峰。
根据分子结构、键的类型和位置不同,红外吸收峰会出现在不同的波数位置。
3. 红外吸收谱红外吸收谱是将物质对不同波数的红外光的吸收强度绘制成图谱。
在红外吸收谱中,不同的振动模式会对应不同的吸收峰,通过谱图的解析可以得到物质的结构信息。
4. 红外光谱仪红外光谱仪是用于测定物质的红外吸收光谱的仪器,它主要包括光源、分光器、样品室、检测器和数据处理系统等部分。
常见的红外光谱仪有光散射型、光路差型和干涉型等。
二、红外光谱的仪器分析技术1. 光散射型红外光谱仪光散射型红外光谱仪是通过散射光进行分析的,它适用于固态样品和粉末样品的分析。
该仪器操作简单,对样品的要求不高,但是分辨率较低。
2. 光路差型红外光谱仪光路差型红外光谱仪利用干涉光进行分析,可以获得高分辨率的红外光谱。
它适用于高精度的定量分析和结构鉴定,但是对样品的平整度和光路的稳定性要求较高。
3. 干涉型红外光谱仪干涉型红外光谱仪采用光源产生的连续光通过光栅或凸透镜分散成各个不同波数的光线,对于样品吸收光线的强度进行检测,然后通过计算机进行数据处理。
其优点是分辨率高、峰型窄、精确度高,适用于各种样品的定性、定量和成分分析。
4. 远红外光谱和近红外光谱远红外光谱仪可以用于检测液体样品和气态样品,其波数范围在4000~400 cm-1之间。
而近红外光谱则适用于固态和半固态样品的分析,波数范围在12500~4000 cm-1之间。
三、红外光谱的谱图解析1. 物质的结构信息根据红外光谱谱图的解析可以获得物质的结构信息,如键的种类、键的位置、分子的构型等。
红外光谱法(仪器分析课件)
![红外光谱法(仪器分析课件)](https://img.taocdn.com/s3/m/ea639b107275a417866fb84ae45c3b3567ecddc3.png)
z
目录
Contents
1 红外光谱法基本原理 2 红外光谱仪 3 红外光谱实验技术 4 红外光谱仪虚拟仿真训练 5 红外光谱法在结构分析中的应用
红外光谱法
能力目标
• 能够熟练的操作傅立叶红外光谱仪; • 能够根据样品的状态、性质选择合适
的样品处理方法; • 能够根据谱图确定常见有机化合物的
—NH2,—NH(游离) —NH2,—NH(缔合)
—SH
C—H伸缩振动
一
不饱和C—H
≡C—H(叁键) ═C—H(双键) 苯环中C—H
区
饱和C—H
域
—CH3 —CH3
—CH2
—CH2
吸收频率 (cm-1)
3650—3580 3400—3200 3500—3300 3400—3100 2600—2500
近红外、中红外、远红外区域。
概述
红外谱图的表示法
样品的红外吸收曲线称为红外吸收光谱,多用百分透射比与波数或百分透
射比与波长曲线来描述。
纵坐标为吸收强度,横坐标为波长λ (μm)和波数1/λ,单位:cm-1
有机化合物的结构解析;定性(基团的特征吸收频率);定量(特征峰的强度)
红外光谱法原理 红外吸收光谱产生的条件
C=O、C=C、C=N、NO2、苯环等的伸缩振动
1500~400cm-1
C-C、C-O、C-N、C-X等的伸缩振动及含氢基团的弯曲振动
• 基团特征频率区的特点和用途
• 吸收峰数目较少,但特征性强。不同化合物中的同种基团振动吸收 总是出现在一个比较窄的波数范围内。
• 主要用于确定官能团。
• 指纹区的特点和用途
振动形式
伸缩 伸缩 伸缩 伸缩 伸缩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
漫反射傅里叶变换红外光谱仪
• 由于傅里叶变换红外光谱仪具有如下缺陷: 无论是添加红外惰性物质或是压制自支撑片 , 都会给粉末状态的样品造成形态变化或表面污染, 使其在一定程度上失去其“本来面目”。 漫反射技术对固体粉末样品进行直接测量,因 此漫反射傅里叶变换红外光谱法可以避免由于压 片造成的扩散影响 ,很适合于散射和吸附性强的 样品。 具有如下优点 : 不需要制样、不改变样品的形 状、不会污染样品, 不要求样品有足够的透明度 或表面光洁度,也不需要破坏样品,不会对样品的 外观及性能造成任何损坏,可直接将样品放在样 品支架上进行测定,可以同时测定多种组分。这 些特点很适合对样品的无损检测,如对珠宝、钻 石、纸币、邮票的真伪进行鉴定。
红外光谱仪
• 一:红外光谱仪简介 • 二:傅里叶变换红外光谱仪 • 三:漫反射傅里叶变换红外光谱技术及衰减全反
射傅里叶变换红外光谱技术
简介:
• 红外光谱仪是利用物质对不同波长的红外 辐射的吸收特性,进行分子结构和化学组 成分析的仪器。
• 红外光谱仪通常由光源,单色器,探测器 和计算机处理信息系统组成。根据分光装 置的不同,分为色散型和干涉型。
Bruker( 布鲁克)
型号:VERTEX 70 参考报价: 50万-100万
型号:VERTEX 80/80v 参考报价: 暂无
PerkinElmer( 珀金埃尔默)
型号:Spectrum Two 参考报价: 25万-30万
易用、功能强大、小巧耐用 – Spectrum Two™ 是适用于任何人在任何地方日常使用 的首选红外光谱仪。Spectrum Two 系统适合于各种各样的应用。 Spectrum Two 具有完全一体化且可靠的通 用采样功能,轻松进行测量并提供便携选 配件,是适用于实验室和现场测试环境的 理想仪器。 PerkinElmer 拥有超过 65 年的光谱仪行 业经验,我们将这些专业知识浓缩在一台 仪器上,帮助您快速确保材料质量。为了 在日常检测中得到可信的红外结果,请选 择Spectrum Two。 PerkinElmer 的专利技术确保在任何应用 中都能提供出众的光谱。出众的信噪比、 领先的电子系统和最佳的灵敏度保证了 Spectrum Two 具有稳定性能。 专利的光学元件卫士(OpticsGuardTM)独特 的防湿设计可保护 Spectrum Two 免受环 境影响,因此,可在更恶劣的环境中使用。 我们的长效干燥剂可确保提供最长的仪器 正常运行时间,而不用考虑执行分析的场 所。
日本岛津公司的 DT-40 FT-IR
Bruker( 布鲁克)
ALPHA 傅立叶变换红外光谱仪 参考报价: 15万-50万
ALPHA 是一款只如A4纸般大小的傅立叶变换 红外光谱仪,却仍将在您的实验中发挥巨大 作用。即插即用型设计、操作简易的软件 与 QuickSnap™专利取样模块完美结合,为 您提供强大、可靠的傅立叶变换红外分析, 不负您对布鲁克高品质的期望。
ThermoFisher( 赛默飞)
型号:Nicolet 5700
型号:is 50 参考报价: 50万-100万
型号:Nicolet i: 50万-100万
天津港东
型号:FTIR-650 参考报价: 10万-15万
FTIR-650傅里叶变换红外光谱仪是 港东公司在上世纪90年代至今生产 WGH-30/30A红外分光光度计的基础 上,成功自主研发的傅里叶变换红外 光谱仪新产品,该产品借鉴了当今世 界上先进的设计理念,并积极引进国 外先进技术而研制完成,其中自主开 发的音圈直线电机驱动扫描系统具有 完全的自主知识产权,其产品性能及 主要技术指标均已达到国际同类产品 的水平,产品已通过国家计量认证 (津制00000544)。
衰减全反射傅里叶变换红外光谱仪
• 衰减全反射不需要通过透过样品的信号, 而是通 过样品表面的反射信号获得样品表层有机成分的 结构信息,因此 ,衰减全反射具有如下特点:
• 1)不破坏样品 ,不需要象透射红外光谱那样要将 样品进行分离和制样 。对样品的大小, 形状没 有 特殊要求 ,属于样品表面无损测量 。 2)可测量含水和潮湿的样品 。 3)检测灵敏度高 , 测量区域小 ,检测点可为数 微米 。 4)能得到测量位置处物质分子的结构信息、某化 合物或官能团空间分布的红外光谱图像及微区的 可见显微图象。 5)能进行红外光谱数据库检索以及化学官能团辅 助分析,确定物资和种类和性质。 6)操作简便, 自动化, 用计算机进行选点、定位、 聚集、测量。
奖项 2009 年设计金奖 2007 年仪器市场展望 — 分析仪器工业设计金奖 2007 年 PITTCON 撰稿人奖铜奖
Bruker( 布鲁克)
型号:TENSOR II 参考报价: 40万-50万
布鲁克光谱事业部推出研究级FTIR红外光谱仪 Tensor II系列,在原有的Tensor 系列基础上, Tensor II拥有更紧凑的设计、更时尚的外观、更 高的灵敏度及更强的拓展能力。 TENSOR II是 同类台式研究级红外光谱仪中率先采用先进的 二极管激光器的谱仪。此外,TENSOR II的红 外光源增设了一个全新的电子稳压处理功能。 这些创新极大延长了红外光谱仪上两个主要易 损部件的使用寿命,同时降低了您的维护成本 和耗时。 TENSOR II上使用的永久密封型 Perma-Vac MCT检测器,避免了常规MCT检测 器定期抽真空而造成的仪器停工的问题。从各 方面免去了您的后顾之忧。 作为仪器的核心部 分,TENSOR II沿用享誉盛名的RockSolid干涉 仪,提供高强度光通量及杰出的灵敏度。 布鲁 克的设计理念造就了即使仪器只被用于常规检 测,也具备高质量的光学系统和最佳的性能, 随时满足科研需要。我们相信,TENSOR II的 创新设计,将超越倍受青睐的TENSOR系列, 更上一层楼。
• 到目前为止,红外光谱仪已经发展了三代: 棱镜色散型红外光谱仪 光栅型色散式红外光谱仪 干涉型红外光谱仪(傅里叶变换红外光谱仪)
色散型红外与傅里叶变换红外光谱仪
• 傅里叶红外光谱仪:光学部件简单;测量波段宽; 测量精度高;光通量大;多路通过特点,所有频 率同时测量;扫描速度快
傅里叶变换红外光谱仪(FTIR) 光源发出的光被分束器(类似半透半反镜)分为两束, 一束经透射到达动镜,另一束经反射到达定镜。两束光 分别经定镜和动镜反射再回到分束器,动镜以一恒定速 度作直线运动,因而经分束器分束后的两束光形成光程 差,产生干涉。干涉光在分束器会合后通过样品池,通 过样品后含有样品信息的干涉光到达检测器,然后通过 傅里叶变换对信号进行处理,最终得到透过率或吸光度 随波数或波长的红外吸收光谱图。
PerkinElmer( 珀金埃尔默)
型号:Frontier 参考报价: 50万-100万
选择 PerkinElmer Frontier™一系列近红外、中红外和远红外傅里叶变 换光谱仪,可在高要求的应用中提供出色的光谱分析性能。 Frontier系列产品功能强大且可调整,能够满足您当前的所有分析需求, 并可随研究目标的演变而进行扩展。使用自动波段切换功能,您可以得 心应手地使用中红外、近红外或远红外技术。出众的信噪比和光谱性能 保证了最佳光谱分析性能,确保拥有最佳灵敏度。同时在服务年限内提 供稳定,可靠,一致的操作表现。任何测量都可获得标杆质量级别的结 果 • 拥有专利的高级大气补偿算法可实时自动清除因 H2O 和 CO2而导致 的光谱干扰,可提高光谱数据的可重现性并最大限度地减少吹扫需求 • 出众的光学设计,即使在使用室温检测器时,也能提供出众的灵敏度 • 利用固有的智能控制和测量值监控,可向用户通知可能出现的分析错 误 • 使用气体吸收光谱的独特仪器波长和线型标准化功能提供了卓越的准 确度和重现性 • 自动光束几何形状控制可优化灵敏度和光谱分辨率性能 • 高精度且耐用的零调整采样附件减少了测量的不一致性采样灵活性可 满足当今和未来的挑战 • 大量精巧的 PerkinElmer 和第三方采样附件可快速更换,大限度地 延长了仪器正常运行时间 • 联用技术,如 TG-IR • 外引光路和光路导出附件,适用于定制实验 • LCD 显示屏、执行按钮和样品表功能加快了大量样品分析速度 • 可升级的光学系统,允许升级至红外显微镜和成像系统,还支持光谱 范围升级,如从中红外升级到中近红外双光程系统 • 可在光具座中同时安装多个检测器(如 DTGS 和 MCT),支持快速且 可靠的检测器切换PerkinElmer Frontier 系统可在近红外、近中红外、 中红外、中远红外和远红外区域内提供出众的光谱。可在应用需求发生 变化时返回工厂进行装配或升级,独特的光谱范围自动切换功能,只需 单击按钮即可使用多种技术。灵活且完全可升级的光学系统,允许配置 多波段,显微镜和成像系统。只需一个开关即可在宏观、微观和图像分 析之间切换,这样,用户就可以集中精力研究科学而不用为光谱仪设置 而费神。