MATLAB矩阵实验报告

合集下载

matlab矩阵实验报告

matlab矩阵实验报告

matlab矩阵实验报告《MATLAB矩阵实验报告》摘要:本实验报告利用MATLAB软件进行了矩阵实验,通过对矩阵的运算、转置、逆矩阵、特征值等操作进行了分析和讨论。

实验结果表明,MATLAB在矩阵运算方面具有高效、准确的特点,能够满足工程和科学计算的需求。

引言:矩阵是线性代数中的重要概念,广泛应用于工程、物理、经济等领域。

MATLAB是一种强大的数学软件,能够对矩阵进行各种运算和分析。

本实验旨在利用MATLAB软件对矩阵进行实验,探讨其在矩阵运算中的应用和优势。

实验方法:1. 创建矩阵:利用MATLAB软件创建不同大小的矩阵,包括方阵和非方阵。

2. 矩阵运算:进行矩阵的加法、减法、乘法等运算,比较不同大小矩阵的计算效率和结果准确性。

3. 矩阵转置:对矩阵进行转置操作,观察转置后矩阵的性质和应用。

4. 逆矩阵:求解矩阵的逆矩阵,并分析逆矩阵在实际问题中的应用。

5. 特征值和特征向量:利用MATLAB软件求解矩阵的特征值和特征向量,分析其在物理、工程等领域的应用。

实验结果与讨论:通过实验发现,MATLAB软件在矩阵运算中具有高效、准确的特点。

对于大规模矩阵的运算,MATLAB能够快速进行计算并给出准确的结果。

在矩阵转置和逆矩阵求解方面,MATLAB也能够满足工程和科学计算的需求。

此外,通过求解矩阵的特征值和特征向量,可以得到矩阵的重要性质,为实际问题的分析和求解提供了有力支持。

结论:本实验利用MATLAB软件进行了矩阵实验,通过对矩阵的运算、转置、逆矩阵、特征值等操作进行了分析和讨论。

实验结果表明,MATLAB在矩阵运算方面具有高效、准确的特点,能够满足工程和科学计算的需求。

希望本实验能够对矩阵运算和MATLAB软件的应用有所启发,为相关领域的研究和应用提供参考。

实验二MATLAB矩阵分析与处理

实验二MATLAB矩阵分析与处理

实验二MATLAB矩阵分析与处理实验二MATLAB矩阵分析与处理一、实验目的(1)掌握生成特殊矩阵的方法。

(2)掌握矩阵分析的方法。

(3)用矩阵求逆法解线性方程组。

二、实验内容:1、设有分块矩阵A=[E3×3R3×2;O2×3 S2×2],其中E、R、O、S 分别为单位矩阵、随机矩阵、零矩阵和对角矩阵,试通过数值计算验证A2=[E R+RS;O S2]。

实验过程:>> E=eye(3)E =1 0 00 1 00 0 1>> R=rand(3,2)R =0.1389 0.60380.2028 0.27220.1987 0.1988>> O=zeros(2,3)O =0 0 00 0 0>> S=diag([2,3])S =2 00 3>> A=[E R;O S]A =1.0000 0 0 0.1389 0.60380 1.0000 0 0.2028 0.27220 0 1.0000 0.1987 0.19880 0 0 2.0000 00 0 0 0 3.0000>> B=(A^2==[E R+R*S;O S^2])B =1 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 12、建立一个5×5矩阵,求它的行列式的值、迹、秩和范数。

实验过程:>> A=10*rand(5)A =8.1472 0.9754 1.5761 1.4189 6.55749.0579 2.7850 9.7059 4.2176 0.35711.2699 5.4688 9.5717 9.1574 8.49139.1338 9.5751 4.8538 7.9221 9.33996.3236 9.6489 8.0028 9.5949 6.7874>> B=det(A)B =-2.5011e+003>> C=rank(A)C =5>> D=trace(A)D =35.2133>> V1=norm(A,1)V1 =33.9324>> V2=norm(A,2)V2 =33.1290>> V3=norm(A,inf)V3 =40.82463、已知A=[-29 6 18;20 5 12;-8 8 5],求A的特征值及特征向量,并分析其数学意义。

MATLAB实验报告

MATLAB实验报告

MATLAB实验报告一、实验目的本次 MATLAB 实验旨在深入了解和掌握 MATLAB 软件的基本操作和应用,通过实际编程和数据处理,提高解决问题的能力,培养编程思维和逻辑分析能力。

二、实验环境本次实验使用的是 MATLAB R2020a 版本,运行在 Windows 10 操作系统上。

计算机配置为英特尔酷睿 i5 处理器,8GB 内存。

三、实验内容(一)矩阵运算1、矩阵的创建使用直接输入、函数生成和从外部文件导入等方式创建矩阵。

例如,通过`1 2 3; 4 5 6; 7 8 9` 直接输入创建一个 3 行 3 列的矩阵;使用`ones(3,3)`函数创建一个 3 行 3 列元素全为 1 的矩阵。

2、矩阵的基本运算包括矩阵的加减乘除、求逆、转置等。

例如,对于两个相同维度的矩阵`A` 和`B` ,可以进行加法运算`C = A + B` 。

3、矩阵的特征值和特征向量计算通过`eig` 函数计算矩阵的特征值和特征向量,加深对线性代数知识的理解和应用。

(二)函数编写1、自定义函数使用`function` 关键字定义自己的函数,例如编写一个计算两个数之和的函数`function s = add(a,b) s = a + b; end` 。

2、函数的调用在主程序中调用自定义函数,并传递参数进行计算。

3、函数的参数传递了解值传递和引用传递的区别,以及如何根据实际需求选择合适的参数传递方式。

(三)绘图功能1、二维图形绘制使用`plot` 函数绘制简单的折线图、曲线等,如`x = 0:01:2pi; y = sin(x); plot(x,y)`绘制正弦曲线。

2、图形的修饰通过设置坐标轴范围、标题、标签、线条颜色和样式等属性,使图形更加清晰和美观。

3、三维图形绘制尝试使用`mesh` 、`surf` 等函数绘制三维图形,如绘制一个球面`x,y,z = sphere(50); surf(x,y,z)`。

(四)数据处理与分析1、数据的读取和写入使用`load` 和`save` 函数从外部文件读取数据和将数据保存到文件中。

矩阵的奇异值分解(MATLAB自编)实验报告

矩阵的奇异值分解(MATLAB自编)实验报告

end B=B(:,1:n); B=B.'; V=qr(B); V1=V(:,1:r); U(:,1:r)=A*V1*(inv(D(1:r,1:r))); U(:,r+1:m)=null(A*A'); end
2.5 运行与数据分析
以教材上的 A=[1 0;0 1;1 0]为例来验证上述求矩阵的奇异值分解 程序的正确性。在 matlab 运行结果如下: >> A=[1 0;0 1;1 0]; >> [U1,D1,V1] = SVDecom(A) U1 = 0.7071 0 0.7071 D1 = 1.4142 0 0 V1 = 1 0 0 1 0 1.0000 0 0 1.0000 0 0.7071 0 -0.7071
s11 1 1 即有 U1=AV1 .其中 =
s2 1
sr 1
第四步: 解方程组 AAHy = 0, 对基础解系单位正交化可以求得 γr+1, γr+2,…,γm,令 U =(γ1 , γ2 , … , γr , γr+1 , γr+2 , … , γm).
2 矩阵的奇异值分解
2.1 原理
设 A∈Cm×n,s1,s2,…,sr 是 A 的非零奇异值,则存在 m 阶酉矩 阵 U∈Cm×n 及 n 阶酉矩阵 V,m× n 矩阵 D,
s1 0 0 0 0 D= 0 0 sr 0 0 0 0 0 0 = 0 0 0 0
使得 A=UDVH 这就是矩阵 A 的奇异值分解.
2.2 算法
第一步:求出 AHA 的特征值 1 ≥ 2 ≥…≥ r >0= r 1 =…= n ,确定非 零奇异值 si = i ,i=1,2 …, r. 第二步:分别求出矩阵 AHA 的对应于特征值 i 的特征向量并将其 单位正交化,得到标准正交向量组 α1 , α2 , … , αn 令 V=(α1 , α2 , … , αn)=(V1 , V2) ,V1=(α1 , α2 , … , αr) ,V2= (αr+1 ,αr+2 , …, αn) 第三步:若 U=(γ1 , γ2 , … , γr , γr+1 , γr+2 , … , γm)=(U1 , U2) ,其 中 U1=(γ1 , γ2 , … , γr) , U2=(γr+1 , γr+2 , … , γm) , 则因(Aα1 , Aα2 , … , Aαr)=(s1γ1 , s2γ2 , … , srγratlab 自带求解矩阵奇异值分解函数: [U,S,V] = svd(A)其 中 U 就是所求的 U 矩阵,S 是所求的对角阵,V 就是所求的酉矩阵

MATLAB矩阵的分析与处理截图版实验报告

MATLAB矩阵的分析与处理截图版实验报告

MATLAB矩阵的分析与处理截图版实验报告实验名称:MATLAB矩阵的分析与处理
实验步骤:
(1)打开matlab软件,进行操作界面的基本设置,转到矩阵的工作空间;
(2)创建矩阵并进行矩阵的分析操作,包括将矩阵拆分成2部分:A矩阵和B 矩阵,并运用函数求和、求积、求最大值等操作;
(3)进行矩阵的处理操作,包括矩阵的相乘、运算求值等操作,实现矩阵的转置操作;
(4)并进行图形处理,将计算数据和结果以函数图、标尺图、表格等方式展现出来,并进行分析;
(5)最后,根据实验的结果,总结实验的感悟和体会。

实验结果:
实验过程中,使用了MATLAB矩阵的基本操作,包括矩阵的求和、求积、求最大值、相乘、求值等操作,实现了矩阵的处理,并且将计算数据以图形的方式展示出来,有利于我们更好的理解数据,作出更准确的判断:
我们创建的矩阵如下图所示:
![图1](./矩阵1.jpg)
综上所述,我在本次实验中,掌握了MATLAB矩阵的基本操作,及其运用函数求和求积求最大值、相乘运算求值等方法,也通过图像数据展现来更好的了解矩阵的变化和分析结果。

通过实验,我能够更好地掌握MATLAB矩阵的分析与处理方法,从而加深对MATLAB 矩阵的理解,并为以后的操作打下坚实的基础。

MATLAB矩阵实验报告

MATLAB矩阵实验报告

MATLAB程序设计实验班级:电信1104班姓名:龙刚学号:1404110427实验内容:了解MA TLAB基本使用方法和矩阵的操作一.实验目的1.了解MA TLAB的基本使用方法。

2.掌握MA TLAB数据对象的特点和运算规则。

3.掌握MA TLAB中建立矩阵的方法和矩阵的处理方法。

二.实验内容1.浏览MATLAB的start菜单,了解所安装的模块和功能。

2.建立自己的工作目录,使用MA TLAB将其设置为当前工作目录。

使用path命令和工作区浏览两种方法。

3.使用Help帮助功能,查询inv、plot、max、round等函数的用法和功能。

使用help命令和help菜单。

4.建立一组变量,如x=0:pi/10:2*pi,y=sin(x),在命令窗口显示这些变量;在变量窗口打开这些变量,观察其值并使用绘图菜单绘制y。

5.分多行输入一个MA TLAB命令。

6.求表达式的值)610.3424510w-=+⨯()22tanb ca eabcxb c aππ++-+=++,a=3.5,b=5,c=-9.8(20.5ln tz e t=,21350.65it-⎡⎤=⎢⎥-⎣⎦7.已知1540783617A--⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,831253320B-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦求A+6B,A2-B+IA*B,A.*B,B*AA/B,B/A[A,B],[A([1,3], :); B^2]8.已知23100.7780414565532503269.5454 3.14A -⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦ 输出A 在[10,25]范围内的全部元素取出A 的前三行构成矩阵B ,前两列构成矩阵C ,右下角3x2子矩阵构成矩阵D ,B 与C 的乘积构成矩阵E分别求表达式E<D ,E&D ,E|D ,(~E) | (~D)9.已知2961820512885A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦求A 的特征值和特征向量,分析其数学意义。

matlab矩阵运算实验报告

matlab矩阵运算实验报告

matlab矩阵运算实验报告Matlab矩阵运算实验报告一、引言矩阵运算是数学和工程领域中的重要概念之一,它在各个领域中都有广泛的应用。

Matlab作为一种强大的数学软件工具,提供了丰富的矩阵运算功能,可以帮助我们进行高效的数值计算和数据处理。

本实验报告将介绍Matlab中的矩阵运算功能,并通过实例展示其在实际问题中的应用。

二、矩阵运算的基本概念矩阵是由若干个数按照行和列排列形成的一个矩形阵列,它是线性代数中的基本工具。

在Matlab中,矩阵可以通过直接输入数值或使用内置函数生成。

矩阵运算包括加法、减法、乘法、转置等操作,这些操作可以对矩阵的每个元素进行运算,也可以对整个矩阵进行运算。

三、矩阵运算的实例分析1. 矩阵的创建与赋值在Matlab中,可以使用以下命令创建一个矩阵,并对其进行赋值操作:A = [1, 2, 3; 4, 5, 6; 7, 8, 9];这样就创建了一个3行3列的矩阵A,并对其进行了赋值。

可以通过输入A来查看矩阵A的内容。

2. 矩阵的加法与减法矩阵的加法和减法是按照对应元素进行运算的。

例如,对于两个3行3列的矩阵A和B,可以使用以下命令进行加法运算:C = A + B;同样地,可以使用以下命令进行减法运算:D = A - B;这样就得到了矩阵C和D。

3. 矩阵的乘法矩阵的乘法是按照行乘以列的方式进行的。

例如,对于一个3行2列的矩阵A和一个2行4列的矩阵B,可以使用以下命令进行乘法运算:C = A * B;这样就得到了一个3行4列的矩阵C。

4. 矩阵的转置矩阵的转置是将矩阵的行和列进行交换的操作。

例如,对于一个3行2列的矩阵A,可以使用以下命令进行转置操作:B = A';这样就得到了一个2行3列的矩阵B。

四、矩阵运算的应用实例矩阵运算在实际问题中有着广泛的应用。

以下是一个简单的实例,通过矩阵运算来解决线性方程组的问题。

假设有一个线性方程组:2x + y = 4x + 3y = 6可以将其表示为矩阵形式:A = [2, 1; 1, 3];B = [4; 6];通过矩阵运算可以求解出未知数x和y的值:X = A \ B;这样就得到了未知数x和y的值。

matlab实验报告

matlab实验报告

matlab实验报告实验1 熟悉matlab 的开发环境及矩阵操作⼀、实验的教学⽬标通过本次实验使学⽣熟悉MATLAB7.0的开发环境,熟悉MA TLAB ⼯作界⾯的多个常⽤窗⼝包括命令窗⼝、历史命令窗⼝、当前⼯作⽬录窗⼝、⼯作空间浏览器窗⼝等。

掌握建⽴表达式书写规则及常⽤函数的使⽤,建⽴矩阵的⼏种⽅法。

⼆、实验环境计算机、MATLAB7.0集成环境三、实验内容1、熟悉命令窗⼝的使⽤,⼯作空间窗⼝的使⽤,⼯作⽬录、搜索路径的设置。

命令历史记录窗⼝的使⽤,帮助系统的使⽤。

2、在当前命令窗⼝中输⼊以下命令:x=0:2:10 y=sqrt(x),并理解其含义。

3、求下列表达式的值(1)w=)1034245.01(26-?+?(2)x=ac b e abc cb a ++-+++)tan(22ππ,其中a=3.5,b=5,c=-9.8 四、实验总结1、熟悉了命令窗⼝的使⽤,⼯作空间窗⼝的使⽤。

2、了解了⼯作⽬录、搜索路径的设置⽅法。

---5317383399351542实验2 MATLAB 基本运算⼀、实验的教学⽬标通过本次实验使学⽣掌握向量和矩阵的创建⽅法;掌握矩阵和数组的算术运算、逻辑运算和关系运算;掌握字符数组的创建和运算;了解创建元胞数组和结构体的⽅法。

⼆、实验环境计算机、MATLAB7.0集成环境三、实验内容1、要求在闭区间]2,0[π上产⽣具有10个等距采样点的⼀维数组。

试⽤两种不同的指令实现。

(提⽰:冒号⽣成法,定点⽣成法)2、由指令rng('default'),A=rand(3,5)⽣成⼆维数组A ,试求该数组中所有⼤于0.5的元素的位置,分别求出它们的“全下标”和“单下标”。

(提⽰:find 和sub2ind )3、创建3阶魔⽅矩阵a 和3阶对⾓阵b ,c=a(1:3,1:3)(1)计算矩阵a,b 和c 的⾏列式、逆矩阵并进⾏最⼤值的统计。

(2)⽐较矩阵和数组的算术运算:b 和c 的*、/、^和.*、./、.^。

线性代数的MATLAB软件实验报告

线性代数的MATLAB软件实验报告

线性代数的MATLAB 软件实验一、实验目的1.熟悉矩阵代数主要MATLAB 指令。

2.掌握矩阵的转置、加、减、乘、除、乘方、除法等MATLAB 运算。

3.掌握特殊矩阵的MATLAB 生成。

4.掌握MATLAB 的矩阵处理方法。

5.掌握MATLAB 的矩阵分析方法。

6.掌握矩阵的特征值与标准形的MATLAB 验算。

7.掌握线性方程组的MATLAB 求解算法。

二、实验原理1.线性方程组 【基本观点】自然科学和工程实践很多问题的解决都涉及线性代数方程组的求解和矩阵运算.一方面,许多问题的数学模型本身就是一个线性方程组,例如结构应力分析问题、电子传输网分析问题和投入产出分析问题;另一方面,有些数值计算方法导致线性方程组求解,如数据拟合,非线性方程组求解和偏微分方程组数值解等.n 个未知量m 个方程的线性方程组一般形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.,,22112222212111212111m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a (3.1) 令,,,2121212222111211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=m n mn m m n n b b b b x x x x a a a a a aa a a A则得矩阵形式Ax=b. (3.2)若右端b=0,即Ax=0, (3.3)则称方程组为齐次的.方程组(3.1)可能有唯一解,可能有无穷多解,也可能无解,主要取决于系数矩阵A 及增广矩阵(A,b )的秩.若秩(A )=秩(A,b )=n,存在唯一解,其解理论上用Cramer 法则求出,但由于这种方法要计算n+1个n 阶行列式,计算量太大通常并不采用;若秩(A )=秩(A,b )<n,存在无穷多解,其通解可表示为对应齐次方程组(3.3)的一个基础解系与(3.2)的一个特解的叠加;若秩(A )≠秩(A,b ),则无解,这时一般寻求最小二乘近似解,即求x 使向量Ax-b 模最小.P50矩阵左除的数学思维:恒等变形Ax=b 方程两边的左边同时除以A ,得:b AAx A11=,即:b A b Ax 11-==MATLAB 的实现(左除):x=A\b 2.逆矩阵 【基本观点】方阵A 称为可逆的,如果存在方阵B ,使 AB=BA=E,这里E 表示单位阵.并称B 为A 的逆矩阵,记B=1-A .方阵A 可逆的充分必要条件是A 的行列式det A ≠0.求逆矩阵理论上的公式为*1det 1A AA =-, (3.4)这里*A 为A 的伴随矩阵.利用逆矩阵,当A 可逆时,(3.2)的解可表示为b A x 1-=.由于公式(3.4)涉及大量行列式计算,数值计算不采用.求逆矩阵的数值算法一般是基于矩阵分解的方法.3.特征值与特征向量 【基本观点】对于方阵A ,若存在数λ和非零向量x ,使,x Ax λ= (3.5) 则称λ为A 的一个特征值,x 为A 的一个对应于特征值λ的特征向量.特征值计算归结为特征多项式的求根.对于n 阶实数方阵,特征多项式在复数范围内总有n 个根。

MATLAB实验报告3

MATLAB实验报告3

MATLAB实验报告3MATLAB实验报告3一、实验目的1.掌握MATLAB程序的调试方法;2.掌握MATLAB中的矩阵操作;3.熟悉MATLAB中处理图像的基本操作。

二、实验内容1.用MATLAB调试程序;2.用MATLAB进行矩阵运算;3.用MATLAB处理图像。

三、实验原理及步骤1.MATLAB程序的调试方法在MATLAB中调试程序可以采用设置断点、逐行运行、单步调试等方法。

设置断点可以在程序中的其中一行上点击左键,会出现一个红色的圆点表示断点已设置。

逐行运行可以通过点击Editor界面上的运行按钮实现。

单步调试可以通过点击断点所在行的左侧按钮实现。

2.矩阵运算在MATLAB中,对于矩阵的运算可以使用一些基本的函数,如矩阵加法、减法、乘法等。

矩阵加法可以使用"+"操作符实现,减法可以使用"-"操作符实现,乘法可以使用"*"操作符实现。

另外,MATLAB还提供了一些更复杂的矩阵运算函数,如矩阵的转置、逆等。

3.图像处理在MATLAB中,可以使用imread函数加载图像文件,使用imshow函数显示图像,使用imwrite函数保存图像。

另外,还可以使用一些图像处理函数对图像进行处理,如灰度化、二值化、平滑滤波等。

四、实验步骤1.调试程序首先,在MATLAB的Editor界面中打开要调试的程序文件。

然后,在程序的其中一行上点击左键,即设置了一个断点。

最后,点击运行按钮,程序会在断点处停下,然后可以通过单步调试和逐行运行来逐步查看程序的执行过程和变量的取值。

2.矩阵运算首先,定义两个矩阵A和B,并赋值。

然后,使用"+"操作符对两个矩阵进行相加,得到矩阵C。

最后,使用disp函数显示矩阵C的值。

3.图像处理首先,使用imread函数加载一张图像。

然后,使用imshow函数显示加载的图像。

接着,使用rgb2gray函数将彩色图像转换为灰度图像。

matlab矩阵实验报告

matlab矩阵实验报告

matlab矩阵实验报告
《MATLAB矩阵实验报告》
摘要:
本实验报告利用MATLAB软件进行了一系列矩阵实验,包括矩阵的创建、运算、特征值分解和矩阵方程的求解等。

通过实验,我们深入了解了矩阵在MATLAB
中的操作方法,掌握了矩阵运算的基本原理和技巧。

1. 实验目的
本实验旨在通过MATLAB软件进行矩阵实验,掌握矩阵的基本操作和运算方法,加深对矩阵特征值分解和矩阵方程求解的理解,提高MATLAB软件的应用能力。

2. 实验内容
(1)矩阵的创建和赋值
(2)矩阵的运算:加法、减法、乘法
(3)矩阵的特征值分解
(4)矩阵方程的求解
3. 实验过程
首先,我们在MATLAB软件中创建了若干个矩阵,并对其进行了赋值操作。

然后,我们进行了矩阵的加法、减法和乘法运算,观察了不同矩阵之间的运算结果。

接着,我们利用MATLAB自带的函数对矩阵进行了特征值分解,并分析了
特征值分解的意义和应用。

最后,我们利用MATLAB解决了一些矩阵方程,验
证了矩阵方程求解的正确性。

4. 实验结果
通过实验,我们成功创建了各种矩阵,并对其进行了各种运算。

特征值分解和
矩阵方程的求解也得到了满意的结果,验证了MATLAB在矩阵操作方面的强大功能。

5. 实验结论
通过本次实验,我们进一步加深了对矩阵操作的理解,掌握了MATLAB软件在矩阵实验方面的应用技巧。

矩阵在数学和工程领域有着广泛的应用,MATLAB 软件的矩阵操作功能为矩阵相关问题的研究和解决提供了便利和支持。

综上所述,本次实验取得了圆满成功,为我们进一步学习和应用矩阵知识奠定了良好的基础。

matlab矩阵实验报告

matlab矩阵实验报告

Matlab 绘图实验报告楼宇11301 11034700 徐齐敏1.实验目的:matlab语言丰富的图形表现方法,使得数学计算结果可以方便地、多样性地实现了可视化,这是其它语言所不能比拟的,所以必须熟练地掌握matlab绘图。

2.实验环境:matlab软件,机房。

3.实验步骤:例1.以向量y=(1,2,5,4.5,3,6,1)的各个分量为纵坐标,分量序号为横坐标绘制顺序连接线。

解:输入命令>> y=[1 2 5 4.5 3 6 1];>> plot(y)例2.画出一条正弦曲线和一条余弦曲线。

>>x=0:pi/10:2*pi; %构造向量>>y1=sin(x); %构造对应的y1坐标>>y2=cos(x); %构造对应的y2坐标>>plot(x,y1,x,y2) %画出一个以x 为横坐标,y1,y2为纵坐标的图形例3.绘制函数f(x)=cos(tan(πx))的曲线。

解:>> fplot('cos(tan(pi*x))',[-0.4,1.4])>>-1-0.8-0.6-0.4-0.20.20.40.60.81例5.某次考试学生成绩优秀的占8%,良好的占20%,中等的占36%,及格的占24%,不及格的占12%。

分别用饼图和条形图表示。

解:>> x=[8 20 36 24 12];>> subplot(221);pie(x,[1 0 0 0 1]);>> title('饼图');>> subplot(222);bar(x,'group');>> title('垂直条形图');>> subplot(223);bar(x,'stack');>> title('累加值为纵坐标的垂直条形图');>> subplot(224);barh(x,'group');>> title('水平条形图');饼图12345010203040垂直条形图12345累加值为纵坐标的垂直条形图01020304012345水平条形图例6.用红色、点连线、叉号画出正弦曲线。

matlab实验报告

matlab实验报告

matlab实验报告《matlab 实验报告》一、实验目的通过本次实验,熟悉 MATLAB 软件的基本操作和功能,掌握使用MATLAB 进行数学计算、数据处理、图形绘制等方面的方法和技巧,提高运用 MATLAB 解决实际问题的能力。

二、实验环境1、计算机:_____2、操作系统:_____3、 MATLAB 版本:_____三、实验内容及步骤(一)矩阵运算1、创建矩阵在 MATLAB 中,可以通过直接输入元素的方式创建矩阵,例如:`A = 1 2 3; 4 5 6; 7 8 9`,创建了一个 3 行 3 列的矩阵 A。

还可以使用函数来创建特定类型的矩阵,如全零矩阵`zeros(m,n)`、全 1 矩阵`ones(m,n)`、单位矩阵`eye(n)`等。

2、矩阵的基本运算加法和减法:两个矩阵相加或相减,要求它们的维度相同,对应元素进行运算。

乘法:矩阵乘法需要满足前一个矩阵的列数等于后一个矩阵的行数。

转置:使用`A'`来获取矩阵 A 的转置。

(二)函数的使用1、自定义函数可以在 MATLAB 中自定义函数,例如定义一个计算两个数之和的函数:```matlabfunction s = add_numbers(a,b)s = a + b;end```2、调用函数在命令窗口中输入`add_numbers(3,5)`即可得到结果 8。

(三)数据的读取和写入1、读取数据使用`load`函数可以读取数据文件,例如`load('datatxt')`。

2、写入数据使用`save`函数可以将数据保存到文件中,例如`save('resulttxt',A)`,将矩阵 A 保存到`resulttxt`文件中。

(四)图形绘制1、二维图形绘制折线图:使用`plot(x,y)`函数,其中 x 和 y 分别是横坐标和纵坐标的数据。

绘制柱状图:使用`bar(x,y)`函数。

2、三维图形绘制三维曲线:使用`plot3(x,y,z)`函数。

matlab 实验报告

matlab 实验报告

matlab 实验报告Matlab实验报告引言:Matlab是一种强大的数值计算和可视化软件,广泛应用于科学、工程和经济等领域。

本实验报告将介绍我在使用Matlab进行实验过程中的一些经验和结果。

实验一:矩阵运算在这个实验中,我使用Matlab进行了矩阵运算。

首先,我创建了一个3x3的矩阵A和一个3x1的矩阵B,并进行了矩阵相乘运算。

通过Matlab的矩阵乘法运算符*,我得到了一个3x1的结果矩阵C。

接着,我对矩阵C进行了转置操作,得到了一个1x3的矩阵D。

最后,我计算了矩阵C和矩阵D的点积,并将结果输出。

实验二:数据可视化在这个实验中,我使用Matlab进行了数据可视化。

我选择了一组实验数据,包括时间和温度两个变量。

首先,我将数据存储在一个矩阵中,并使用Matlab的plot函数将时间和温度之间的关系绘制成曲线图。

接着,我使用Matlab的xlabel、ylabel和title函数添加了横轴、纵轴和标题。

最后,我使用Matlab的legend函数添加了图例,以便更好地理解图表。

实验三:数值积分在这个实验中,我使用Matlab进行了数值积分。

我选择了一个函数f(x)进行积分计算。

首先,我使用Matlab的syms函数定义了符号变量x,并定义了函数f(x)。

接着,我使用Matlab的int函数对函数f(x)进行积分计算,并将结果输出。

为了验证结果的准确性,我还使用了Matlab的diff函数对积分结果进行了求导操作,并与原函数f(x)进行了比较。

实验四:信号处理在这个实验中,我使用Matlab进行了信号处理。

我选择了一个音频文件,并使用Matlab的audioread函数读取了该文件。

接着,我使用Matlab的fft函数对音频信号进行了傅里叶变换,并将结果绘制成频谱图。

为了进一步分析信号的特征,我还使用了Matlab的spectrogram函数绘制了信号的时频图。

通过对信号的频谱和时频图的观察,我可以更好地理解信号的频率和时域特性。

MATLAB实验报告(二)矩阵代数

MATLAB实验报告(二)矩阵代数
从而向量组的秩为3,它的一个最大线性无关组是a1,a2,a4,且a3=0.5*a1-0.5*a2,a5=5*a1+a2-5*a4。
实验总结:
通过实际的上机操作,我熟悉了MATLAB的有关线性代数运算指令和矩阵代数的MATLAB指令,学会了如何分析并解决矩阵除法、线性方程组的通解和矩相似对角化的问题,以及通过建模实验解决投入产出分析、基因遗产等应用问题,这一章节的指令比较多,也比较杂,需要分门别类地区分开,并且上机运行熟练并且记忆。
ans =
3 3%秩相等且小于4,说明有无穷多解
>> x=A\b
x =%求得一特解
1.0000
0
1.0000
0.0000
>>x0=null(A)
x0= %得到Ax=0的基础解系
-0.6255
0.6255
-0.2085
0.4170
求得通解为kx0+x
改进或思考:
>> A=[2 1 -1 1;1 2 1 -1;1 1 2 1];b=[1;2;3];
姓名:学号:实验日期:
实验目的:
1、学习MATLAB的有关线性代数运算指令;
2、熟悉矩阵代数的MATLAB指令;
3、熟悉如何应用指令解决计算和建模实验问题。
实验项目:
1、学会应用矩阵代数的MATLAB指令解决问题;
2、通过实验解决矩阵除法、线性方程组的通解和矩相似对角化的问题;
3、通过建模实验研究投入产出分析、基因遗产等应用问题。
>> C=[6/25, 2/5,1/20; 2.25/25,1/5,0.2/20; 3/25,0.2/5,1.8/20];A=(eye(3)-C)
A =

MATLAB矩阵的分析与处理截图版实验报告

MATLAB矩阵的分析与处理截图版实验报告

MATLAB实验报告实验名称:MATLAB矩阵分析与处理班级:轨道交通信号与控制1302班学号 : 201366050203姓名 : 胡平实验日期:2014年3月27日星期四二、实验内容1、 设有分块矩阵33322322ER A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中,,,E R O S 分别为单位矩阵,随机矩阵,零矩阵和对角阵,试通过数值计算验证22E R RS A O S +⎡⎤=⎢⎥⎣⎦。

2、 产生5阶希尔伯特矩阵H 和5阶帕斯卡矩阵P ,且求其行列式的值Hh 和Hp 以及它们的条件数Th 和Tp ,判断哪个矩阵性能更好。

为什么? 答:5阶帕斯卡矩阵P 的矩阵性能更好。

因为矩阵P 的条件数比矩阵H 的条件数更加接近1。

3、建立一个5×5矩阵,求它的行列式值,迹,秩和范数。

4、已知2961820512885A-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦求A的特征值及特征向量,并分析其数学意义。

答:矩阵A的特征值是c矩阵主对角线上的元素,各特征值对应的特征向量为b 的各列构成的向量。

5、 下面是一个线性方程组:1231/21/31/40.951/31/41/50.671/41/51/60.52x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(1) 求方程的解。

(2) 将方程右边向量元素3b 改为0.53,再求解,并比较3b 的变化和解的相对变化。

(3)计算系数矩阵A的条件数并分析结论。

答:系数矩阵A的条件数是1.3533e+003远远大于1、性能比较差。

6,建立A矩阵,是比较sqrtm(A)和sqrt(A),分析他们的区别。

Sqrtm是矩阵开方,sqrt是矩阵内每个元素开方。

《数学软件》实验报告-MATLAB矩阵分析与处理

《数学软件》实验报告-MATLAB矩阵分析与处理

数学软件实验报告(二)系:专业:年级:姓名:学号:实验课程:实验室号:_ 实验设备号:实验时间:指导教师签字:成绩:1. 实验项目名称:MATLAB矩阵分析与处理2. 实验目的和要求1.掌握生成特殊矩阵的方法2.掌握矩阵分析的方法3.用矩阵求逆解线性方程组3. 实验使用的主要仪器设备和软件方正商祺N260微机;MATLAB7. 0或以上版本4. 实验的基本理论和方法实验原理:(1)矩阵的建立(2)建立随机矩阵X=a+(b-a)×rand(n)(注(a,b)为范围,n为阶数)(3)round函数(4)矩阵的乘除(5)矩阵行列式的值det(A)(6)矩阵的迹trace(A)(7)矩阵的秩rank(A)(8)提取矩阵对角线元素diag(A)(9)构造对角阵diag(V)(10)矩阵的特征值与特征向量[V,D]=eig(A)(11)求解线性方程组X=A\B5. 实验内容与步骤(描述实验中应该做什么事情,如何做等,实验过程中记录发生的现象、中间结果、最终得到的结果,并进行分析说明)(包括:题目,写过程、答案)题目:1.设有分块矩阵A=⎥⎦⎤⎢⎣⎡⨯⨯⨯⨯22322333SORE,其中E、R、O、S分别为单位矩阵、随机矩阵、零矩阵和对角矩阵,试通过数值计算验证A2=⎥⎦⎤⎢⎣⎡+2SORSRE。

>> E=[1 0 0;0 1 0;0 0 1]E =1 0 00 1 00 0 1>> R=[1 2;1 3;2 3]R =1 21 32 3>> O=[0 0 0;0 0 0]O =0 0 00 0 0>> S=[1 2;2 1]S =1 22 1>> A=[E R;O S]A =1 0 0 1 20 1 0 1 30 0 1 2 30 0 0 1 20 0 0 2 1>> A^2ans =1 0 0 6 60 1 0 8 80 0 1 10 100 0 0 5 40 0 0 4 5>> [E R+R*S;O S^2]ans =1 0 0 6 60 1 0 8 80 0 1 10 100 0 0 5 40 0 0 4 52.建立一个5 5矩阵,其元素[100,200]范围内的随机整数,求它的行列式值、迹、秩,最后提取A的主对角线元素,并将这些元素构成对角阵B。

matlab矩阵实验报告

matlab矩阵实验报告

matlab矩阵实验报告Matlab矩阵实验报告引言:Matlab是一种强大的数学计算工具,广泛应用于科学研究、工程设计和数据分析等领域。

其中,矩阵操作是Matlab的一项重要功能,它提供了丰富的矩阵运算和处理函数。

本实验将通过几个具体的案例,展示Matlab中矩阵操作的应用和效果。

一、矩阵的创建与赋值在Matlab中,可以通过直接赋值、随机生成或者通过其他矩阵运算得到新的矩阵。

例如,我们可以使用以下代码创建一个3行4列的矩阵A,并为其赋予随机的整数值:A = randi([1, 10], 3, 4);这样,矩阵A中的元素就是1到10之间的随机整数。

二、矩阵运算Matlab提供了丰富的矩阵运算函数,包括加法、减法、乘法、除法、转置等。

我们可以通过以下代码演示这些运算的效果:B = A + 2; % 矩阵加法C = A - 2; % 矩阵减法D = A * 2; % 矩阵乘法E = A / 2; % 矩阵除法F = A.'; % 矩阵转置通过这些运算,我们可以快速对矩阵进行数值的调整和转换。

三、矩阵的索引与切片在Matlab中,我们可以使用索引和切片操作来获取矩阵中特定的元素或子矩阵。

例如,我们可以通过以下代码获取矩阵A中的第二行第三列的元素:x = A(2, 3);同样,我们也可以通过切片操作获取矩阵A中的某一行或某几行,例如:y = A(2, :); % 获取第二行的所有元素通过这样的操作,我们可以方便地提取出矩阵中我们感兴趣的部分。

四、矩阵的运算函数除了基本的矩阵运算外,Matlab还提供了许多常用的矩阵运算函数,如求矩阵的逆、行列式、特征值等。

例如,我们可以使用以下代码计算矩阵A的逆矩阵和行列式:invA = inv(A); % 矩阵的逆detA = det(A); % 矩阵的行列式这些函数可以帮助我们更方便地进行矩阵的运算和分析。

五、矩阵的应用案例矩阵在科学研究和工程设计中有着广泛的应用。

matlab实验报告

matlab实验报告

matlab实验报告引言:Matlab(矩阵实验室)是一款功能强大的数值计算和科学计算软件,广泛应用于工程、科学和经济等领域。

本实验报告将探讨我在使用Matlab进行实验过程中的心得体会和实验结果。

实验一:图像处理在这个实验中,我使用Matlab对一张图像进行了处理,并应用了各种图像处理算法。

这包括图像增强、边缘检测和图像分割等技术。

通过Matlab的图像处理工具箱,我能够轻松调用各种算法函数,并对图像进行快速处理。

实验结果表明,Matlab图像处理工具箱提供了丰富的函数和算法,极大地方便了我们的图像处理工作。

实验二:模拟信号处理模拟信号处理是Matlab中的一个重要应用领域。

在这个实验中,我模拟了一个带噪声的正弦信号,并使用Matlab进行了噪声滤波和频谱分析。

通过使用Matlab的滤波函数,我能够有效地去除信号中的噪声,并还原出原始信号。

同时,Matlab提供了功能强大的频谱分析工具,我可以轻松地对信号的频率特性进行分析和可视化。

实验三:数据分析与统计数据分析与统计是Matlab的另一个重要应用领域。

在这个实验中,我使用Matlab对一组实验数据进行了分析和统计。

通过使用Matlab的统计函数和工具,我能够计算出数据的均值、方差、标准差等统计指标,并绘制出数据的直方图和散点图。

这些统计分析结果对我的实验研究提供了有力的支持,并帮助我更好地理解实验数据。

实验四:数值计算与优化数值计算与优化是Matlab的核心功能之一。

在这个实验中,我使用Matlab进行了一组数值计算和优化实验。

通过使用Matlab的数值计算函数和优化工具箱,我能够快速计算出复杂的数学问题,并找到最优解。

同时,在进行优化实验时,我可以设置各种约束条件和目标函数,从而得到最优解的参数值。

这些数值计算和优化工具极大地提高了我的研究效率和准确度。

结论:通过这些实验,我深刻认识到Matlab的强大功能和广泛应用领域。

无论是图像处理、信号处理、数据分析还是数值计算与优化,Matlab都提供了丰富的函数和工具,让我们能够快速高效地完成实验和研究工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MATLAB程序设计实验
班级:电信1104班姓名:龙刚学号:1404110427
实验内容:了解MA TLAB基本使用方法和矩阵的操作
一.实验目的
1.了解MA TLAB的基本使用方法。

2.掌握MA TLAB数据对象的特点和运算规则。

3.掌握MA TLAB中建立矩阵的方法和矩阵的处理方法。

二.实验内容
1.浏览MATLAB的start菜单,了解所安装的模块和功能。

2.建立自己的工作目录,使用MA TLAB将其设置为当前工作目录。

使用path命令和工作
区浏览两种方法。

3.使用Help帮助功能,查询inv、plot、max、round等函数的用法和功能。

使用help命
令和help菜单。

4.建立一组变量,如x=0:pi/10:2*pi,y=sin(x),在命令窗口显示这些变量;在变量窗口打
开这些变量,观察其值并使用绘图菜单绘制y。

5.分多行输入一个MA TLAB命令。

6.求表达式的值
)6
10.3424510
w-
=+⨯
()
2
2
tan
b c
a e
abc
x
b c a
π
π
+
+-
+
=
++
,a=3.5,b=5,
c=-9.8
(20.5ln t
z e t
=,
213
50.65
i
t
-
⎡⎤
=⎢⎥
-
⎣⎦
7.已知
154
078
3617
A
--
⎡⎤
⎢⎥
=⎢⎥
⎢⎥
⎣⎦

831
253
320
B
-
⎡⎤
⎢⎥
=⎢⎥
⎢⎥
-⎣⎦求
A+6B,A2-B+I
A*B,A.*B,B*A
A/B,B/A
[A,B],[A([1,3], :); B^2]
8.已知
23100.7780414565532503269.54
54 3.14A -⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦ 输出A 在[10,25]范围内的全部元素
取出A 的前三行构成矩阵B ,前两列构成矩阵C ,右下角3x2子矩阵构成矩阵D ,B 与C 的乘积构成矩阵E
分别求表达式E<D ,E&D ,E|D ,(~E) | (~D)
9.已知
2961820512885A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦
求A 的特征值和特征向量,分析其数学意义。

三、代码与实现
6.代码:
disp('1.求表达式的值')
w=sqrt(2)*(1+0.34245*10^(-6))
a=3.5;b=5;c=-9.8;
x=(2*pi*a+(b+c)/(tan(b+c)+a))
t=[2 1-3i;5 -0.65];
z=0.5*exp(2*t)*log(t+sqrt(1+t^2))
运行结果:
7.代码:
disp('2.已知A=[-1 5 -4;0 7 8;3 61 7];B=[8 3 -1;2 5 3;-3 2 0];求下列值')
A=[-1 5 -4;0 7 8;3 61 7];
B=[8 3 -1;2 5 3;-3 2 0];
I=[1 0 0;0 1 0;0 0 1];
disp('A+6*B=')
disp(A+6*B)
disp('A.^2-B+I=')
disp(A.^2-B+I)
disp('A*B=')
disp(A*B)
disp('A.*B=')
disp(A.*B)
disp('B*A=')
disp(B*A)
disp('A/B=')
disp(A/B)
disp('A\B=')
disp(A\B)
disp('[A,B]=')
disp([A,B])
disp('[A([1,3],:);B^2]=')
disp([A([1,3],:);B^2])
运行结果为:
8.代码:
d isp('3.已知A=[23 10 -0.778 0;41 -45 65 5;32 5 0 32;6 -9.54 54 3.14];') disp('(1)输出A在[10,25]范围内的全部元素;')
A=[23 10 -0.778 0;41 -45 65 5;32 5 0 32;6 -9.54 54 3.14];
m=find(A>=10&A<=25);
disp(A(m))
disp('(2)取出A的前3行构成矩阵B,前两列构成矩阵C,右下角3X2子矩阵构成矩阵D,B 与C的乘积构成矩阵E;')
B=A([1:3],:)
C=A(:,[1,2])
D=A([2:4],[3,4])
E=B*C
disp('(3)分别求表达式E<D,E&D,E|D,(~E) | (~D)。

')
disp('E<D=')
disp(E<D)
disp('E&D=')
disp(E&D)
disp('E|D=')
disp(E|D)
disp('~E|~D=')
disp((~E)|(~D))
disp('(4)生成一个Hilbert矩阵和Parscal矩阵,求其行列式的值')
H=hilb(5)
P=pascal(5)
disp('det(H)=')
disp(det(H))
disp('det(P)=')
disp(det(P))
输出结果为:
9.代码为:
disp('4.已知A=[-29 6 18;20 5 12;-8 8 5];求A的特征值和特征向量,并分析其数学意义')
A=[-29 6 18;20 5 12;-8 8 5];
disp('特征值为:')
disp(eig(A))
disp('特征向量为:')
[V,D]=eig(A);
disp('A的特征向量分别为:')
a1=V(:,1)
a2=V(:,2)
a3=V(:,3)
输出结果为:。

相关文档
最新文档