模式识别复习题1

合集下载

模式识别试卷及答案

模式识别试卷及答案

模式识别试卷及答案一、选择题(每题5分,共30分)1. 以下哪一项不是模式识别的主要任务?A. 分类B. 回归C. 聚类D. 预测答案:B2. 以下哪种算法不属于监督学习?A. 支持向量机(SVM)B. 决策树C. K最近邻(K-NN)D. K均值聚类答案:D3. 在模式识别中,以下哪一项是特征选择的目的是?A. 减少特征维度B. 增强模型泛化能力C. 提高模型计算效率D. 所有上述选项答案:D4. 以下哪种模式识别方法适用于非线性问题?A. 线性判别分析(LDA)B. 主成分分析(PCA)C. 支持向量机(SVM)D. 线性回归答案:C5. 在神经网络中,以下哪种激活函数常用于输出层?A. SigmoidB. TanhC. ReLUD. Softmax答案:D6. 以下哪种聚类算法是基于密度的?A. K均值聚类B. 层次聚类C. DBSCAND. 高斯混合模型答案:C二、填空题(每题5分,共30分)1. 模式识别的主要任务包括______、______、______。

答案:分类、回归、聚类2. 在监督学习中,训练集通常分为______和______两部分。

答案:训练集、测试集3. 支持向量机(SVM)的基本思想是找到一个______,使得不同类别的数据点被最大化地______。

答案:最优分割超平面、间隔4. 主成分分析(PCA)是一种______方法,用于降维和特征提取。

答案:线性变换5. 神经网络的反向传播算法用于______。

答案:梯度下降6. 在聚类算法中,DBSCAN算法的核心思想是找到______。

答案:密度相连的点三、简答题(每题10分,共30分)1. 简述模式识别的基本流程。

答案:模式识别的基本流程包括以下几个步骤:(1)数据预处理:对原始数据进行清洗、标准化和特征提取。

(2)模型选择:根据问题类型选择合适的模式识别算法。

(3)模型训练:使用训练集对模型进行训练,学习数据特征和规律。

模式识别总复习题

模式识别总复习题

总复习题1 简答题1、什么是模式与模式识别?2、一个典型的模式识别系统主要由哪几个部分组成?3、什么是后验概率?4、确定线性分类器的主要步骤?5、样本集推断总体概率分布的方法?6、近邻法的基本思想是什么?7、什么是K近邻法?1 简答题8、监督学习与非监督学习的区别?9、什么是误差平方和准则?10、分级聚类算法的2种基本途径是什么?11、特征抽取与特征选择的区别?12、什么是最优搜索算法?13、统计学习理论的核心问题?14、什么是支持向量机?2 问答题1、描述贝叶斯公式及其主要作用。

2、利用最大似然估计方法对单变量正态分布函数来估计其均值μ和方差σ2。

3 、请详细写出感知器训练算法步骤。

4 、请详细写出Fisher 算法实现步骤。

5 、什么是两分剪辑近邻法与压缩近邻法。

2 问答题6、请详细介绍初始聚类中心的选择方法。

7、请描述K均值聚类算法。

8、什么是离散K-L变换以及离散有限K-L展开。

9、必考:针对某个识别对象设计自己的模式识别系统,并叙述各步骤主要工作。

3 计算题1、在图像识别中,假定有灌木和坦克2种类型,它们的先验概率分别是0.7和0.3,损失函数如下表所示。

其中,类型w1和w2分别表示灌木和坦克,判决a1=w1,a2=w2。

现在做了2次实验,获得2个样本的类概率密度如下:3 计算题2、已知两类的训练样本:w1(0,0)T,(0,2)T;w2(2,0)T,(2,2)T,试用H-K 算法进行分类器训练,求解向量w*。

3、已知欧氏二维空间中两类9 个训练样本w1:(-1,0)T,(-2,0)T,(-2,1)T,(-2,-1)Tw2:(1,1)T,(2,0)T,(1,-1)T,(2,1)T,(2,2)T试分别用最近邻法和K 近邻法求测试样本(0,0)T的分类,取K=5,7。

3 计算题4、已知两类的数据:w1:(1,0),(2,0),(1,1)W2:(-1,0),(0,1),(-1,1)试求该组数据的类内与类间散布矩阵。

大学模式识别考试题及答案详解

大学模式识别考试题及答案详解

大学模式识别考试题及答案详解Document number:PBGCG-0857-BTDO-0089-PTT1998一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A?01, A? 0A1 , A? 1A0 , B?BA , B? 0}, A)(2)({A}, {0, 1}, {A?0, A? 0A}, A)(3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S)(4)({A}, {0, 1}, {A?01, A? 0A1, A? 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。

模式识别作业题(1)

模式识别作业题(1)

m 2 mn ] 是奇异的。 mn n 2
1
2、参考参考书 P314“模式识别的概要表示”画出第二章的知识结构图。 答:略。 3、现有两类分类问题。如下图所示, (1,
1 1 3 ) 、 ( , ) 、 (1, 3 ) 、 (1,-tan10°)为 3 2 2 3 3 ,- * tan 10° ) 、 (2,0)为 W2 类。 5 5
W1 类,其中(1,-tan10°)已知为噪声点; (1,0) 、 ( 自选距离度量方法和分类器算法,判别(
6 ,0)属于哪一类? 5
答:度量方法:根据题意假设各模式是以原点为圆心的扇状分布,以两个向量之间夹角(都 是以原点为起点)的余弦作为其相似性测度,P22。 然后使用 K 近邻法,K 取 3,求已知 7 个点与(
2
答: (1)×,不一定,因为仅仅是对于训练样本分得好而已。 (2)×,平均样本法不需要。 (3)√,参考书 P30,将 r 的值代入式(2.26)即得。 (4)√,参考书 P34,三条线线性相关。 ( 5 ) √ ,就是说解区是 “ 凸 ” 的,参考书 P37 ,也可以证明,设 W1T X’=a, W2T X’=b, 则 a≤λW1+(1-λ)W2≤b(设 a≤b) 。 (6)√,参考书 P38。 (7)×,前一句是错的,参考书 P46。 (8)×,是在训练过程中发现的,参考书 P51。 (9)×,最简单的情况,两个点(0,0)∈w1,(2,0)∈w2,用势函数法求出来的判决界面是 x1=1。 (10)√,一个很简单的小证明, 设 X1=a+K1*e,X2= a-K1*e,X3=b+K2*e,X4= b-K2*e, Sw=某系数*e*e’,设 e=[m n],则 e *e’= [
方法三:参照“两维三类问题的线性分类器的第二种情况(有不确定区域) ”的算法,求 G12,G23,G13。 G12*x1>0, G12*x2<0, G12=(-1,-1,-1)’ G23*x2>0, G23*x3<0, G23=(-1,-1,1)’ G13*x1>0, G13*x3<0, G12=(-1,-1,1)’ 有两条线重合了。

模式识别期末试题及答案

模式识别期末试题及答案

模式识别期末试题及答案正文:模式识别期末试题及答案1. 选择题1.1 下列关于机器学习的说法中,正确的是:A. 机器学习是一种人工智能的应用领域B. 机器学习只能应用于结构化数据C. 机器学习不需要预先定义规则D. 机器学习只能处理监督学习问题答案:A1.2 在监督学习中,以下哪个选项描述了正确的训练过程?A. 通过输入特征和预期输出,训练一个模型来进行预测B. 通过输入特征和可能的输出,训练一个模型来进行预测C. 通过输入特征和无标签的数据,训练一个模型来进行预测D. 通过输入特征和已有标签的数据,训练一个模型来进行分类答案:D2. 简答题2.1 请解释什么是模式识别?模式识别是指在给定一组输入数据的情况下,通过学习和建模,识别和分类输入数据中的模式或规律。

通过模式识别算法,我们可以从数据中提取重要的特征,并根据这些特征进行分类、聚类或预测等任务。

2.2 请解释监督学习和无监督学习的区别。

监督学习是一种机器学习方法,其中训练数据包含了输入特征和对应的标签或输出。

通过给算法提供已知输入和输出的训练样本,监督学习的目标是学习一个函数,将新的输入映射到正确的输出。

而无监督学习则没有标签或输出信息。

无监督学习的目标是从未标记的数据中找到模式和结构。

这种学习方法通常用于聚类、降维和异常检测等任务。

3. 计算题3.1 请计算以下数据集的平均值:[2, 4, 6, 8, 10]答案:63.2 请计算以下数据集的标准差:[1, 3, 5, 7, 9]答案:2.834. 综合题4.1 对于一个二分类问题,我们可以使用逻辑回归模型进行预测。

请简要解释逻辑回归模型的原理,并说明它适用的场景。

逻辑回归模型是一种用于解决二分类问题的监督学习算法。

其基本原理是通过将特征的线性组合传递给一个非线性函数(称为sigmoid函数),将实数值映射到[0,1]之间的概率。

这个映射的概率可以被解释为某个样本属于正类的概率。

逻辑回归适用于需要估计二分类问题的概率的场景,例如垃圾邮件分类、欺诈检测等。

《模式识别》试题库

《模式识别》试题库

《模式识别》试题库一、基本概念题1.1 模式识别的三大核心问题是: 、。

1.2、模式分布为团状时,选用 聚类算法较好。

1.3 欧式距离具有 。

马式距离具有 。

(1)平移不变性 (2)旋转不变性 (3)尺度缩放不变性 (4)不受量纲影响的特性 1.4 描述模式相似的测度有: 。

(1)距离测度 (2)模糊测度 (3)相似测度 (4)匹配测度1.5 利用两类方法处理多类问题的技术途径有:(1) ;(2) ;(3) 。

其中最常用的是第 个技术途径。

1.6 判别函数的正负和数值大小在分类中的意义是: , 。

1.7 感知器算法 。

(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。

1.8 积累位势函数法的判别界面一般为 。

(1)线性界面;(2)非线性界面。

1.9 基于距离的类别可分性判据有: 。

(1)1[]wB Tr S S - (2)B W S S (3)BW BS S S + 1.10 作为统计判别问题的模式分类,在( )情况下,可使用聂曼-皮尔逊判决准则。

1.11 确定性模式非线形分类的势函数法中,位势函数K(x,x k )与积累位势函数K(x)的关系为( )。

1.12 用作确定性模式非线形分类的势函数法,通常,两个n 维向量x 和x k 的函数K(x,x k )若同时满足下列三个条件,都可作为势函数。

①( ); ②( ); ③ K(x,x k )是光滑函数,且是x 和x k 之间距离的单调下降函数。

1.13 散度J ij 越大,说明ωi 类模式与ωj 类模式的分布( )。

当ωi 类模式与ωj 类模式的分布相同时,J ij =( )。

1.14 若用Parzen 窗法估计模式的类概率密度函数,窗口尺寸h1过小可能产生的问题是( ),h1过大可能产生的问题是( )。

1.15 信息熵可以作为一种可分性判据的原因是: 。

1.16作为统计判别问题的模式分类,在( )条件下,最小损失判决规则与最小错误判决规则是等价的。

计算机视觉与模式识别考试试题

计算机视觉与模式识别考试试题

计算机视觉与模式识别考试试题一、选择题1.下列哪个是计算机视觉的核心任务?A. 图像去噪B. 物体分类C. 文字识别D. 光流估计2.在计算机视觉中,以下哪种方法可以用于目标检测?A. 模板匹配B. 直方图均衡化C. 边缘检测D. 彩色空间转换3.图像分割是指将图像分割成哪些部分?A. 目标和背景B. 目标和噪声C. 前景和背景D. 前景和噪声4.在模式识别中,以下哪个是特征提取的常用方法?A. 主成分分析B. 图像增强C. 图像去噪D. 图像重建5.以下哪种方法常用于人脸识别?A. 支持向量机B. 卡方检验C. 高斯模型D. 卷积神经网络二、简答题1.请解释图像对比度是什么,并简要说明如何增加图像对比度。

图像对比度指的是图像中灰度级之间的差异程度,即图像中亮度的变化程度。

增加图像对比度可以通过以下方法实现:- 直方图均衡化:通过将图像的灰度级重新分布,使得灰度级更均匀地覆盖整个灰度范围,从而增加图像的对比度。

- 对比度拉伸:通过线性或非线性变换,将图像的灰度级重新映射到一个更大的范围,从而增强图像的对比度。

- 局部对比度增强:根据图像的局部特性,使用不同的增强方法对不同的区域进行处理,以增加图像的局部对比度。

2.请解释模板匹配算法的原理,并简要说明其在计算机视觉中的应用。

模板匹配算法是一种基于相似度的图像匹配方法,其原理是通过计算图像中不同位置与给定模板之间的相似度,找到与模板最相似的位置。

模板匹配算法的步骤如下:- 定义相似度度量标准:通常使用均方差、相关性等指标来度量图像之间的相似度。

- 将模板与图像进行滑动窗口匹配:在图像中使用一个固定大小的窗口滑动,并计算窗口内的图像与模板之间的相似度。

- 找到最相似的位置:记录每个窗口位置的相似度值,找到相似度最高的位置,即为与模板最匹配的位置。

模板匹配算法在计算机视觉中的应用广泛,例如目标检测、人脸识别、手势识别等领域。

通过与已知模板进行匹配,可以实现对图像中目标物体的识别和定位。

大学模式识别考试题及答案详解完整版

大学模式识别考试题及答案详解完整版

大学模式识别考试题及答案详解HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A01, A 0A1 , A 1A0 , B BA , B 0}, A)(2)({A}, {0, 1}, {A0, A 0A}, A)(3)({S}, {a, b}, {S 00S, S 11S, S 00, S 11}, S)(4)({A}, {0, 1}, {A01, A 0A1, A 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。

人工智能模式识别技术练习(习题卷1)

人工智能模式识别技术练习(习题卷1)

人工智能模式识别技术练习(习题卷1)第1部分:单项选择题,共45题,每题只有一个正确答案,多选或少选均不得分。

1.[单选题]可视化技术中的平行坐标又称为( )A)散点图B)脸谱图C)树形图D)轮廓图答案:D解析:2.[单选题]描述事物的基本元素,称为( )A)事元B)物元C)关系元D)信息元答案:B解析:3.[单选题]下面不属于层次聚类法的是( )A)类平均法B)最短距离法C)K均值法D)方差平方和法答案:C解析:4.[单选题]核函数方法是一系列先进( )数据处理技术的总称。

A)离散B)连续C)线性D)非线性答案:D解析:5.[单选题]下面哪个网络模型是最典型的反馈网络模型?( )A)BP神经网络B)RBF神经网络C)CPN网络D)Hopfield网络答案:D解析:6.[单选题]粗糙集所处理的数据必须是( )的。

答案:B解析:7.[单选题]模糊聚类分析是通过( )来实现的。

A)模糊相似关系B)模糊等价关系C)模糊对称关系D)模糊传递关系答案:B解析:8.[单选题]模糊系统是建立在( )基础上的。

A)程序语言B)自然语言C)汇编语言D)机器语言答案:B解析:9.[单选题]在模式识别中,被观察的每个对象称为( )A)特征B)因素C)样本D)元素答案:C解析:10.[单选题]群体智能算法提供了无组织学习、自组织学习等进化学习机制,这种体现了群体智能算法的( )A)通用性B)自调节性C)智能性D)自适应性答案:C解析:11.[单选题]下面不属于遗传算法中算法规则的主要算子的是( )A)选择B)交叉C)适应D)变异答案:C解析:12.[单选题]下面不属于蚁群算法优点的是( )。

A)高并行性B)可扩充性C)不易陷入局部最优13.[单选题]只是知道系统的一些信息,而没有完全了解该系统,这种称为( )A)白箱系统B)灰箱系统C)黑箱系统D)红箱系统答案:B解析:14.[单选题]模式分类是一种______方法,模式聚类是一种_______方法。

(完整word版)模式识别题目及答案(word文档良心出品)

(完整word版)模式识别题目及答案(word文档良心出品)

一、(15分)设有两类正态分布的样本集,第一类均值为T1μ=(2,0),方差11⎡⎤∑=⎢⎥⎣⎦11/21/2,第二类均值为T2μ=(2,2),方差21⎡⎤∑=⎢⎥⎣⎦1-1/2-1/2,先验概率12()()p p ωω=,试求基于最小错误率的贝叶斯决策分界面。

解 根据后验概率公式()()()()i i i p x p p x p x ωωω=, (2’)及正态密度函数11/21()exp[()()/2]2T i i i i nip x x x ωμμπ-=--∑-∑ ,1,2i =。

(2’) 基于最小错误率的分界面为1122()()()()p x p p x p ωωωω=, (2’) 两边去对数,并代入密度函数,得1111112222()()/2ln ()()/2ln T T x x x x μμμμ----∑--∑=--∑--∑ (1) (2’)由已知条件可得12∑=∑,114/3-⎡⎤∑=⎢⎥⎣⎦4/3-2/3-2/3,214/3-⎡⎤∑=⎢⎥⎣⎦4/32/32/3,(2’)设12(,)Tx x x =,把已知条件代入式(1),经整理得1221440x x x x --+=, (5’)二、(15分)设两类样本的类内离散矩阵分别为11S ⎡⎤=⎢⎥⎣⎦11/21/2, 21S ⎡⎤=⎢⎥⎣⎦1-1/2-1/2,各类样本均值分别为T 1μ=(1,0),T2μ=(3,2),试用fisher 准则求其决策面方程,并判断样本Tx =(2,2)的类别。

解:122S S S ⎡⎤=+=⎢⎥⎣⎦200 (2’) 投影方向为*112-2-1()211/2w S μμ-⎡⎤⎡⎤⎡⎤=-==⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦1/200 (6’)阈值为[]*0122()/2-1-131T y w μμ⎡⎤=+==-⎢⎥⎣⎦(4’)给定样本的投影为[]*0-12241T y w x y ⎡⎤===-<⎢⎥-⎣⎦, 属于第二类 (3’)三、 (15分)给定如下的训练样例实例 x0 x1 x2 t(真实输出) 1 1 1 1 1 2 1 2 0 1 3 1 0 1 -1 4 1 1 2 -1用感知器训练法则求感知器的权值,设初始化权值为0120w w w ===;1 第1次迭代(4’)2 第2次迭代(2’)3 第3和4次迭代四、 (15分)i. 推导正态分布下的最大似然估计;ii. 根据上步的结论,假设给出如下正态分布下的样本{}1,1.1,1.01,0.9,0.99,估计该部分的均值和方差两个参数。

模式识别复习题

模式识别复习题

1、模式识别系统的基本构成单元,并对各单元简要解释•数据获取:用计算机可以运算的符号来表示所研究的对象–二维图像:文字、指纹、地图、照片等–一维波形:脑电图、心电图、季节震动波形等–物理参量和逻辑值:体温、化验数据、参量正常与否的描述•预处理单元:去噪声,提取有用信息,并对输入测量仪器或其它因素所造成的退化现象进行复原•特征提取和选择:对原始数据进行变换,得到最能反映分类本质的特征–测量空间:原始数据组成的空间–特征空间:分类识别赖以进行的空间–模式表示:维数较高的测量空间->维数较低的特征空间•分类决策:在特征空间中用模式识别方法把被识别对象归为某一类别–基本做法:在样本训练集基础上确定某个判决规则,使得按这种规则对被识别对象进行分类所造成的错误识别率最小或引起的损失最小2、写出K-均值聚类算法的基本步骤, 例子见布置的作业题.算法:第一步:选K 个初始聚类中心,z 1(1),z 2(1),…,z K (1),其中括号内的序号为寻找聚类中心的迭代运算的次序号。

聚类中心的向量值可任意设定,例如可选开始的K 个模式样本的向量值作为初始聚类中心。

第二步:逐个将需分类的模式样本{x}按最小距离准则分配给K 个聚类中心中的某一个z j (1)。

假设i=j 时,}K ,2,1i ,)k (z x min{)k (D i j =-=,则)k (S x j ∈,其中k 为迭代运算的次序号,第一次迭代k=1,S j 表示第j 个聚类,其聚类中心为z j 。

第三步:计算各个聚类中心的新的向量值,z j (k+1),j=1,2,…,K求各聚类域中所包含样本的均值向量:其中N j 为第j 个聚类域S j 中所包含的样本个数。

以均值向量作为新的聚类中心,可使如下聚类准则函数最小:在这一步中要分别计算K 个聚类中的样本均值向量,所以称之为K-均值算法。

第四步:若)k (z )1k (z j j ≠+,j=1,2,…,K ,则返回第二步,将模式样本逐个重新分类,重复迭代运算; 若)k (z )1k (z j j =+,j=1,2,…,K ,则算法收敛,计算结束。

(完整word版)模式识别试题及总结

(完整word版)模式识别试题及总结

一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1) ;判别域代数界面方程法属于(3) 。

(1)无监督分类(2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2)(3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2) 中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H—K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4) 。

(1)({A, B}, {0,1}, {A®01, A® 0A1 ,A® 1A0 ,B®BA , B® 0}, A)(2)({A}, {0,1},{A®0, A® 0A},A)(3)({S},{a, b},{S ® 00S,S ® 11S, S ® 00,S ® 11},S)(4)({A},{0,1}, {A®01,A® 0A1, A® 1A0},A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。

10、欧式距离具有( 1、2 );马式距离具有( 1、2、3、4 )。

(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。

模式识别期末考试题及答案

模式识别期末考试题及答案

模式识别期末考试题及答案一、填空题1. 模式识别是研究通过_________从观测数据中自动识别和分类模式的一种学科。

答案:计算机算法2. 在模式识别中,特征选择的主要目的是_________。

答案:降低数据的维度3. 支持向量机(SVM)的基本思想是找到一个最优的超平面,使得两类数据的_________最大化。

答案:间隔4. 主成分分析(PCA)是一种_________方法,用于降低数据的维度。

答案:线性降维5. 隐马尔可夫模型(HMM)是一种用于处理_________数据的统计模型。

答案:时序二、选择题6. 以下哪种方法不属于模式识别的监督学习方法?()A. 线性判别分析B. 支持向量机C. 神经网络D. K-means聚类答案:D7. 在以下哪种情况下,可以使用主成分分析(PCA)进行特征降维?()A. 数据维度较高,且特征之间存在线性关系B. 数据维度较高,且特征之间存在非线性关系C. 数据维度较低,且特征之间存在线性关系D. 数据维度较低,且特征之间存在非线性关系答案:A8. 以下哪个算法不属于聚类算法?()A. K-meansB. 层次聚类C. 判别分析D. 密度聚类答案:C三、判断题9. 模式识别的目的是将输入数据映射到事先定义的类别中。

()答案:正确10. 在模式识别中,特征提取和特征选择是两个不同的概念,其中特征提取是将原始特征转换为新的特征,而特征选择是从原始特征中筛选出有用的特征。

()答案:正确四、简答题11. 简述模式识别的主要任务。

答案:模式识别的主要任务包括:分类、回归、聚类、异常检测等。

其中,分类和回归任务属于监督学习,聚类和异常检测任务属于无监督学习。

12. 简述支持向量机(SVM)的基本原理。

答案:支持向量机的基本原理是找到一个最优的超平面,使得两类数据的间隔最大化。

具体来说,SVM通过求解一个凸二次规划问题来确定最优超平面,使得训练数据中的正类和负类数据点尽可能远离这个超平面。

大学模式识别考试题及答案详解

大学模式识别考试题及答案详解

一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A?01, A? 0A1 , A? 1A0 , B?BA , B? 0}, A)(2)({A}, {0, 1}, {A?0, A? 0A}, A)(3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S)(4)({A}, {0, 1}, {A?01, A? 0A1, A? 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。

答:(1)分类准则,模式相似性测度,特征量的选择,量纲。

(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。

答:(1)(4分)的绝对值正比于到超平面的距离平面的方程可以写成式中。

(最新整理)【模式识别】期末考试试卷01

(最新整理)【模式识别】期末考试试卷01

(完整)【模式识别】期末考试试卷01编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)【模式识别】期末考试试卷01)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)【模式识别】期末考试试卷01的全部内容。

《模式识别》期末考试试题(B)一、填空题(15个空,每空2分,共30分)1.基于机器学习的模式识别系统通常由两个过程组成, 即分类器设计和()。

2.统计模式识别把()表达为一个随机向量(即特征向量), 将模式类表达为由有穷或无穷个具有相似数值特性的模式组成的集合。

3.特征一般有两种表达方法:(1)将特征表达为数值;(2)将特征表达为( )。

4.特征提取是指采用()实现由模式测量空间向特征空间的转变.5.同一类模式类样本的分布比较集中,没有或临界样本很少,这样的模式类称为( ). 6.加权空间的所有分界面都通过( )。

7.线性多类判别:若每两个模式类间可用判别平面分开, 在这种情况下,M类有( )个判别函数,存在有不确定区域。

8.当取0-1损失函数时,最小风险贝叶斯判决准则等价于( )判决准则。

9.Neyman-Pearson决策的基本思想是( )某一错误率,同时追求另一错误率最小。

10.聚类/集群:用事先不知样本的类别,而利用样本的先验知识来构造分类器属于( )学习。

11.相似性测度、聚类准则和()称为聚类分析的三要素。

12.K/C均值算法使用的聚类准则函数是误差平方和准则,通过反复迭代优化聚类结果,使所有样本到各自所属类别的中心的()达到最小.13.根据神经元的不同连接方式,可将神经网络分为分层网络和相互连接型网络两大类。

模式识别复习题

模式识别复习题

1、模式识别系统的基本构成单元,并对各单元简要解释• 数据获取:用计算机可以运算的符号来表示所研究的对象– 二维图像:文字、指纹、地图、照片等– 一维波形:脑电图、心电图、季节震动波形等– 物理参量和逻辑值:体温、化验数据、参量正常与否的描述• 预处理单元:去噪声,提取有用信息,并对输入测量仪器或其它因素所造成的退化现象进行复原• 特征提取和选择:对原始数据进行变换,得到最能反映分类本质的特征– 测量空间:原始数据组成的空间 – 特征空间:分类识别赖以进行的空间– 模式表示:维数较高的测量空间->维数较低的特征空间• 分类决策:在特征空间中用模式识别方法把被识别对象归为某一类别– 基本做法:在样本训练集基础上确定某个判决规则,使得按这种规则对被识别对象进行分类所造成的错误识别率最小或引起的损失最小2、写出K-均值聚类算法的基本步骤, 例子见布置的作业题.算法:第一步:选K 个初始聚类中心,z 1(1),z 2(1),…,z K (1),其中括号内的序号为寻找聚类中心的迭代运算的次序号。

聚类中心的向量值可任意设定,例如可选开始的K 个模式样本的向量值作为初始聚类中心。

第二步:逐个将需分类的模式样本{x}按最小距离准则分配给K 个聚类中心中的某一个z j (1)。

假设i=j 时,}K ,2,1i ,)k (z x min{)k (D i j =-=,则)k (S x j ∈,其中k 为迭代运算的次序号,第一次迭代k=1,S j 表示第j 个聚类,其聚类中心为z j 。

第三步:计算各个聚类中心的新的向量值,z j (k+1),j=1,2,…,K求各聚类域中所包含样本的均值向量:()1(1),1,2,,j j x S k jz k x j KN ∈+==∑其中N j 为第j 个聚类域S j 中所包含的样本个数。

以均值向量作为新的聚类中心,可使如下聚类准则函数最小:在这一步中要分别计算K 个聚类中的样本均值向量,所以称之为K-均值算法。

模式识别复习题

模式识别复习题

《模式识别》试题库一、基本概念题1.1 模式识别的三大核心问题是:、、 .1。

2、模式分布为团状时,选用聚类算法较好.1。

3 欧式距离具有 . 马式距离具有。

(1)平移不变性 (2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性1。

4 描述模式相似的测度有:。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度1。

5 利用两类方法处理多类问题的技术途径有:(1);(2) ;(3) .其中最常用的是第个技术途径。

1。

6 判别函数的正负和数值大小在分类中的意义是: ,。

1.7 感知器算法。

(1)只适用于线性可分的情况;(2)线性可分、不可分都适用. 1。

8 积累位势函数法的判别界面一般为。

(1)线性界面;(2)非线性界面.1。

9 基于距离的类别可分性判据有: 。

(1)1[]w BTr S S-(2)BWSS(3)BW BSS S+1.10 作为统计判别问题的模式分类,在( )情况下,可使用聂曼-皮尔逊判决准则。

1.11 确定性模式非线形分类的势函数法中,位势函数K(x,x k)与积累位势函数K(x)的关系为()。

1。

12 用作确定性模式非线形分类的势函数法,通常,两个n维向量x和x k的函数K(x,x k)若同时满足下列三个条件,都可作为势函数。

①( );②( );③ K(x,x k)是光滑函数,且是x和x k之间距离的单调下降函数。

1。

13 散度J ij 越大,说明w i 类模式与w j 类模式的分布( )。

当w i 类模式与w j 类模式的分布相同时,J ij =( )。

1.14 若用Parzen 窗法估计模式的类概率密度函数,窗口尺寸h1过小可能产生的问题是( ),h1过大可能产生的问题是( )。

1。

15 信息熵可以作为一种可分性判据的原因是: .1.16作为统计判别问题的模式分类,在( )条件下,最小损失判决规则与最小错误判决规则是等价的。

1.17 随机变量l(x )=p ( x |w1)/p( x |w2),l( x )又称似然比,则E {l( x)|w2}=( )。

模式识别练习题(简答和计算)

模式识别练习题(简答和计算)

1、试说明Mahalanobis 距离平方的定义,到某点的Mahalanobis 距离平方为常数的轨迹的几何意义,它与欧氏距离的区别与联系。

答:M ahalanobis距离的平方定义为:其中x,u 为两个数据,Z- ¹是一个正定对称矩阵(一般为协方差矩阵)。

根据定义,距某一点的Mahalanobis 距离相等点的轨迹是超椭球,如果是单位矩阵Z, 则M ahalanobis距离就是通常的欧氏距离。

2、试说明用监督学习与非监督学习两种方法对道路图像中道路区域的划分的基本做法,以说明这两种学习方法的定义与它们间的区别。

答:监督学习方法用来对数据实现分类,分类规则通过训练获得。

该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。

非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。

就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。

使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。

3、已知一组数据的协方差矩阵为, 试问(1)协方差矩阵中各元素的含义。

(2)求该数组的两个主分量。

(3)主分量分析或称K-L 变换,它的最佳准则是什么?(4)为什么说经主分量分析后,消除了各分量之间的相关性。

答:协方差矩阵为, 则(1)对角元素是各分量的方差,非对角元素是各分量之间的协方差。

(2)主分量,通过求协方差矩阵的特征值,用得(A- 1)²=1/4,则,相应地:A=3/2, 对应特征向量为,,对应0 这两个特征向量,即为主分量。

K-L 变换的最佳准则为:(3)对一组数据进行按一组正交基分解,在只取相同数量分量的条件下,以均方误差计算截尾误差最小。

(4)在经主分量分解后,协方差矩阵成为对角矩阵,因而各主分量间相关性消除。

(完整word版)模式识别试题答案

(完整word版)模式识别试题答案

(完整word版)模式识别试题答案模式识别非学位课考试试题考试科目:模式识别考试时间考生姓名:考生学号任课教师考试成绩一、简答题(每题6分,12题共72分):1、监督学习和非监督学习有什么区别?参考答案:当训练样本的类别信息已知时进行的分类器训练称为监督学习,或者由教师示范的学习;否则称为非监督学习或者无教师监督的学习。

2、你如何理解特征空间?表示样本有哪些常见方法?参考答案:由利用某些特征描述的所有样本组成的集合称为特征空间或者样本空间,特征空间的维数是描述样本的特征数量。

描述样本的常见方法:矢量、矩阵、列表等。

3、什么是分类器?有哪些常见的分类器?参考答案:将特征空中的样本以某种方式区分开来的算法、结构等。

例如:贝叶斯分类器、神经网络等。

4、进行模式识别在选择特征时应该注意哪些问题?参考答案:特征要能反映样本的本质;特征不能太少,也不能太多;要注意量纲。

5、聚类分析中,有哪些常见的表示样本相似性的方法?参考答案:距离测度、相似测度和匹配测度。

距离测度例如欧氏距离、绝对值距离、明氏距离、马氏距离等。

相似测度有角度相似系数、相关系数、指数相似系数等。

6、你怎么理解聚类准则?参考答案:包括类内聚类准则、类间距离准则、类内类间距离准则、模式与类核的距离的准则函数等。

准则函数就是衡量聚类效果的一种准则,当这种准则满足一定要求时,就可以说聚类达到了预期目的。

不同的准则函数会有不同的聚类结果。

7、一种类的定义是:集合S 中的元素x i 和x j 间的距离d ij 满足下面公式:∑∑∈∈≤-S x S x ij i jh d k k )1(1,d ij ≤ r ,其中k 是S 中元素的个数,称S 对于阈值h ,r 组成一类。

请说明,该定义适合于解决哪一种样本分布的聚类?参考答案:即类内所有个体之间的平均距离小于h ,单个距离最大不超过r ,显然该定义适合团簇集中分布的样本类别。

8、贝叶斯决策理论中,参数估计和非参数估计有什么区别?参考答案:参数估计就是已知样本分布的概型,通过训练样本确定概型中的一些参数;非参数估计就是未知样本分布概型,利用Parzen 窗等方法确定样本的概率密度分布规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模式识别 复习题
1. 简单描述模式识别系统的基本构成(典型过程)?
2. 什么是监督模式识别(学习)?什么是非监督模式识别(学习)? 对一副道路图像,希望把道路部分划分出来,可以采用以下两种方法:
(1). 在该图像中分别在道路部分与非道路部分画出一个窗口,把在这两个窗口中的象素数据作为训练集,用某种判别准则求得分类器参数,再用该分类器对整幅图进行分类。

(2).将整幅图的每个象素的属性记录在一张数据表中,然后用某种方法将这些数据按它们的自然分布状况划分成两类。

因此每个象素就分别得到相应的类别号,从而实现了道路图像的分割。

试问以上两种方法哪一种是监督学习,哪个是非监督学习?
3. 给出一个模式识别的例子。

4. 应用贝叶斯决策的条件是什么?列出几种常用的贝叶斯决策规
则,并简单说明其规则.
5. 分别写出在以下两种情况:(1)12(|)(|)P x P x ωω=;(2)12()()
P P ωω=下的最小错误率贝叶斯决策规则。

6. (教材P17 例2.1)
7. (教材P20 例2.2),并说明一下最小风险贝叶斯决策和最小错误
率贝叶斯决策的关系。

8. 设在一维特征空间中有两类服从正态分布的样本,
12122,1,3,σσμμ====两类先验概率之比12(),()
P e P ωω= 试确定按照最小错误率贝叶斯决策规则的决策分界面的x 值。

9. 设12{,,...,}N x x x =X 为来自点二项分布的样本集,即
1(,),0,1,01,1x x f x P P Q x P Q P -==≤≤=-,试求参数P 的最大似然估
计量ˆP。

10. 假设损失函数为二次函数2ˆˆ(,)()P
P P P λ=-,P 的先验密度为均匀分布,即()1,01f P P =≤≤。

在这样的假设条件下,求上题中的贝叶
斯估计量ˆP。

11. 设12{,,...,}N x x x =X 为来自(|)p x θ的随机样本,其中0x θ≤≤时,
1
(|)p x θθ=,否则为0。

证明θ的最大似然估计是max k k
x 。

12. 考虑一维正态分布的参数估计。

设样本(一维)12,,...,N x x x 都是由
独立的抽样试验采集的,且概率密度函数服从正态分布,其均值μ和方差2σ未知。

求均值和方差的最大似然估计。

13. 设一维样本12{,,...,}N x x x =X 是取自正态分布2(,)N μσ的样本集,其中
均值μ为未知的参数,方差2σ已知。

未知参数μ是随机变量,它的先验分布也是正态分布200(,)N μσ,200,μσ为已知。

求μ的贝叶斯估计
ˆμ。

14. 什么是概率密度函数的参数估计和非参数估计?分别列去两种
参数估计方法和非参数估计方法。

15. 最大似然估计和Parzen 窗法的基本原理?。

相关文档
最新文档