第 1讲 PROE运动仿真基础-四连杆机构
基于ProE的连杆机及运动仿真分析
基于PRO/E的连杆机构设计及远动仿真分析摘要连杆机构是机械中常见的一种机构,是往复式内燃机的主要工作机构。
曲柄连杆机构是发动机实现工作循环,完成能量转换的主要远动零件。
虚拟装配与远动仿真是根据产品的形状特征.精度特性,利用计算计图形学和仿真技术,在计算机上模仿产品的实际装配过程.仿真模拟机器的远动过程。
通过对曲柄连杆机构进行有关运动学和理论分析与计算机仿真分析,利用PRO/E软件的装配功能,将曲柄连杆机构的各组成零件装配成活塞组件.连杆组件和曲柄组件,从而完成内燃机曲柄连杆机构的虚拟装配与运动仿真。
在内燃机的开发设计阶段应用这种方法可以大大缩短产品的开发周期,减少样机实验次数,快速的对市场做出反应,降低产品的成本,提高企业的竞争力。
关键词:曲柄连杆机构:虚拟装配:运动仿真;装配功能Based on Pro/E internal combustion engine connecting rod assembly and motion simulation of the virtualAbstractThe crank is a common machinery, reciprocating internal engine is the main working body. Crank the engine duty to achieve of the main moving parts of energy. Virtual and motion simulation based on tee shape of product precision features the use of computer graphics and simulation technology, the product on the computer to imitate the actual assembly process the movement of the machine Crank through the relevant kinematics and dynamics of the theoretical analysis and computer simulation analysis, the use of Pro/E, assembly features, the crank assembly of the constituent parts into a piston, connecting rod assemblies and crankshaft components, to complete the internet combustion engine connecting rod assembly and motion simulation of the virtual. The development of internal combustion engine design using this method can greatly shorten the product development cycle and reduce prototype test times, respond quickly to market, lower product costs and improve the competitiveness of enterprises.Keywords: crank Vrtual assembly; Motion simulation;assembly features目录1绪论 (5)1.1本课题研究的目的和意义 (6)1.2国内外的研究现状及发展趋势 (7)2设计的方案 (9)2.1研究的基本内容 (9)2.1.1连杆机构的结构设计 (9)1手压抽水机的结构特点 (9)2手压抽水机的设计 (9)3连杆机构的装配 (13)3.1手压抽水机的装配 (13)3.2伺服电动机定义 (22)3.3运动分析定义 (23)4本文总结 (24)5参考文献 (25)6致谢 (26)1绪论1.1本课题研究的目的和意义基于虚拟现实的产品虚拟拆装技术在新产品开发、产品的维护以及操作培训方面具有独特的作用。
ProE的运动仿真在平面四杆机构教学中的应用
■■■■雕燃燃翁熏㈣曩凰阙Pro/E的运动仿真在平面四杆机构教学中的应用谢朝晖益阳电子工业学校41 5000簿罄一j i¨:¨|¨i};ii i i i启动P r o/E,新建文件:选“零入实体装配环境。
运动仿真可将静止抽象的机构动态化和具体件”/“实体”,文件名默认。
2.2装配机架化,平面四杆机构的教学效果在Pr o/E环境中我们可以使用两次拉伸的方法建立四Pro/E中的装配类型分为约束和连得以淋漓尽致发挥,不仅可以观察到各构件杆机构的第一个构件——机架。
见草绘图接,约束类型相对两零件只能为固定状的组装情况,还可以进行运动仿真和运动分态,而连接可以是活动状态,且组装完成析,是中职《机械基础》课程教学与Pr o/E软(图一)。
件C A E功能应用的完美结合。
1.2生成机架实体后要为完全约束或完全连接定义状态。
蘩键溺i j j矗量二iij搿i?ii蔓f:底板拉伸深度10,圆柱销拉伸深度执行“插入”/“元件”/“装配”,打平面四杆机构:Pro/E;CAE;运动仿真;运动l 2。
如(图二)。
选择“文件”/“保开机架文件s901.prt,约束类型为“缺省”。
分精存副本”,输入新文件名“s901.Prt”。
2.3装配曲柄执行“插入”/“元件”/“装配”,打开曲柄文件s902.pr t,连接类型为“销钉”(图三),即((机械基础》教材所指的铰链连接,运动副为低副中的转动副。
放图二置方式为轴与轴对齐,面与面对齐,并分别1.3生成其余构件实体选择两构件几何特征,操控板显示“完全连为提高效率,可在上述实体的基础接定义”状态。
图四为完成曲柄装配后的效上,再次进行编辑修改,完成后选择“文果图。
Ctrl+Alt+鼠标拖动曲柄,可以动态件”/“保存副本”,输入新文件名观察曲柄绕机架圆柱销转动情况。
“s902.prt”,继续进行编辑修改,完成后“保存副本”,表1为各文件名。
引言机构类型判定:最长+最短(180+70在职业中专学校任教机电专业课程多=250)≤其余两杆长度之和(150+130年,后接触Pro/E软件,通过几年的学习,=280),且最短杆为连架杆。
ProE机构运动仿真初步
Pro/Mechanism机构运动仿真初步Mechanism的操作流程如下:1.以connections方式建立欲分析之机构组装2.补足相关的运动配合条件3.设定初始位置4.加入驱动条件5.设定分析条件并仿真6.播放分析结果以下我们将以此流程,一步步完成一简单的Pro/Mechanism练习∙建立一新的组装档∙将platform.prt以内定的位置组进组装文件∙组装arm1,组装方式藉由点选Connections改成以connection方式组装(Axis alignment部分以arm1之A_1轴对应platform之A_1轴,Translation部分参考下图对应),组装过程中可使用Ctrl+Alt+鼠标右键动态拖曳调整∙组装arm2,组装方式与arm1相同(Axis alignment部分以arm2之A_2轴对应arm1之A_2轴,Translation部分参考下图对应)∙组装完成后点选Mechanism进入Mechanism环境∙点选Drag,以鼠标左键点取arm1或arm2上任意位置,保持按住并拖曳调整成如下图的位置由于我们尚未告诉系统arm2与platform之间的connection配合关系此时我们必须将此条件加入∙选取Model选项中的Cams设定arm2与platform之间的connection为Cams配合,对应参考如下图,至于Front Reference选PNT0,Back Reference则选PNT1,此时我们已完成本机构所需的connection设定∙使用Drag的功能再次拖曳,注意现在机构的运动方式与未加入Cams设定前有何不同接下来开始设定此机构的初始位置一般而言,若我们不设定机构的初始位置,Mechanism会以屏幕上目前的位置作为初始位置通常那只是我们在组装时的大略位置,因此建议还是加以设定∙选取Model Jt Axis Settings,选取arm1与platform之间的Pin connection,勾选Specify Reference并选取如下右图中的橘色面作为参考∙切换至Regen Value画面,勾选Specify Regeneration Value,输入45,作为将来regenerate之角度此时可试着设定不同的角度值并使用下方的Preview键,观察不同角度的变化要让机构产生动作我们必须加入动力条件,此时选择加上伺服马达动力条件∙选取Servo Motors,选取arm1与platform之间的Pin connection,切换到Profile画面将Specification改成Velocity,设定A值为10,如下图.此时可更改A为任意值,并点选下方的键,观察速度随着时间的数值变化当本练习所需要的条件设定完后,屏幕上看到的画面应如下图所示若没有问题,开始设定分析的条件选取Analyses,使用系统的默认值,点选Run键此时在屏幕上看到机构正以所加入的伺服马达动力开始运动仿真当运动到接近底部时,机构会停住并弹出一警告窗口,告诉我们系统无法继续运算,此为正常情形,因为我们输入的角度过大,当摇臂转到底部时会被底座卡住,而我们正是故意如此设定,因为我们想让系统为我们检查出机构在运动过程中产生的干涉∙选择abort离开并关闭窗口∙选取Results/Playback,勾选Global Interference作总体干涉检查,点选键系统将开始计算,当播放器出现并加以播放后,干涉的部分会以红色显示,如下图。
四连杆仿真-2013-06
B.
C. D.
运动初始化设置:使用”快照”功能 ,抓拍初始位置-5度,以便每次运动完可以恢复初 始状态. 运动时间设置:假设速度为Motor 1和Motor 2为 5 deg/sec, 1. 前倾5度与后仰60度所需时间为13 sec; 2. 四连杆时间底部转60度所需时间Motor 2时间为12 sec==3.从 而推出Motor 3的时间为7.5 deg/sec【90deg÷12sec得出速度7.5deg/sec】.
四连杆---简易仿真
陈波 2013 06
創 造 新 生 活 Create New Life
整体分析
A. 首先分析整体,需要转动的环节有两处(设置此处”销”连接,以便设定伺服电机),因而 把整体分割为三个模块(头部组件,中间组件,底部组件)----方法可以是组件法也可是 零件法. 组装OK后,进入机构模块,分析所需要的伺服电机(头部与中间部分连接处因设有两 个伺服电机,底部和中间部分连接处因设有一个伺服电机)---1. 头部Motor 1作用:实现-5~60度的旋转; 2. 头部电机Motor 3与底部Motor 2作用:实现四连杆运动仿真.
Motor 1时间
《《《设置“规范”为 速度,时间按计算填入。
BACK
創 造 新 生 活 Create New Life
Motor2、3 时间
设置“规范”为速度, 时间按计算填入。
BACK
創 造 新 生 活 Create New Life
分析定义
創 造 新 生 活 Create New Life
創 造 新 生 活 Create New Life
三个模块
组件法
創 造 新 生 活 Create New Life
两处销连接
PROE运动仿真教程
PROE机构仿真之运动分析之迟辟智美创作关键词:PROE 仿真运动分析重复组件分析连接回放运动包络轨迹曲线术语创立机构前,应熟悉下列术语在PROE中的界说:主体 (Body) 一个元件或彼此无相对运动的一组元件,主体内DOF=0.连接 (Connections) 界说并约束相对运动的主体之间的关系.自由度(Degrees of Freedom) 允许的机械系统运动.连接的作用是约束主体之间的相对运动,减少系统可能的总自由度.拖动 (Dragging) 在屏幕上用鼠标拾取并移念头构.静态 (Dynamics) 研究机构在受力后的运动.执行电念头 (Force Motor) 作用于旋转轴或平移轴上(引起运动)的力.齿轮副连接 (Gear Pair Connection) 应用到两连接轴的速度约束.基础 (Ground) 不移动的主体.其它主体相对基础运动.接头 (Joints) 特定的连接类型(例如销钉接头、滑块接头和球接头).运动 (Kinematics) 研究机构的运动,而不考虑移念头构所需的力.环连接 (Loop Connection) 添加到运动环中的最后一个连接.运动 (Motion) 主体受电念头或负荷作用时的移动方式.放置约束(Placement Constraint) 组件中放置元件并限制该元件在组件中运动的图元.回放 (Playback) 记录偏重放分析运行的结果.伺服电念头(Servo Motor) 界说一个主体相对另一个主体运动的方式.可在接头或几何图元上放置电念头,并可指定主体间的位置、速度或加速度运动.LCS 与主体相关的局部坐标系.LCS 是与主体中界说的第一个零件相关的缺省坐标系.UCS 用户坐标系.WCS 全局坐标系.组件的全局坐标系,它包括用于组件及该组件内所有主体的全局坐标系.运动分析的界说在满足伺服电念头轮廓和接头连接、凸轮从念头构、槽从念头构或齿轮副连接的要求的情况下,模拟机构的运动.运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面.因此,运动分析不能使用执行电念头,也不用为机构指定质量属性.运动分析忽略模型中的所有静态图元,如弹簧、阻尼器、重力、力/力矩以及执行电念头等,所有静态图元都不影响运动分析结果.如果伺服电念头具有不连续轮廓,在运行运动分析前软件会检验考试使其轮廓连续,如果不能使其轮廓连续,则此伺服机电将不能用于分析.使用运动分析可获得以下信息:几何图元和连接的位置、速度以及加速度元件间的干涉机构运动的轨迹曲线作为 Pro/ENGINEER 零件捕捉机构运动的运动包络重复组件分析WF2.0以前版本里的“运动分析”,在WF2.0里被称为“重复组件分析”.它与运动分析类似,所有适用于运动分析的要求及设定,都可用于重复组件分析,所有不适于运动分析的因素,也都不适用于重复组件分析.重复组件分析的输出结果比运动分析少,不能分析速度、加速度,不能做机构的运动包络.使用重复组件分析可获得以下信息:几何图元和连接的位置元件间的干涉机构运动的轨迹曲线运动分析工作流程创立模型:界说主体,生成连接,界说连接轴设置,生成特殊连接检查模型:拖动组件,检验所界说的连接是否能发生预期的运动加入运动分析图元:设定伺服机电准备分析:界说初始位置及其快照,创立丈量分析模型:界说运动分析,运行结果获得:结果回放,干涉检查,检查丈量结果,创立轨迹曲线,创立运动包络装入元件时的两种方式:接头连接与约束连接向组件中增加元件时,会弹出“元件放置”窗口,此窗口有三个页面:“放置”、“移动”、“连接”.传统的装配元件方法是在“放置”页面给元件加入各种固定约束,将元件的自由度减少到0,因元件的位置被完全固定,这样装配的元件不能用于运动分析(基体除外).另一种装配元件的方法是在“连接”页面给元件加入各种组合约束,如“销钉”、“圆柱”、“刚体”、“球”、“6DOF”等等,使用这些组合约束装配的元件,因自由度没有完全消除(刚体、焊接、惯例除外),元件可以自由移动或旋转,这样装配的元件可用于运动分析.传统装配法可称为“约束连接”,后一种装配法可称为“接头连接”.约束连接与接头连接的相同点:都使用PROE的约束来放置元件,组件与子组件的关系相同.约束连接与接头连接的分歧点:约束连接使用一个或多个单约束来完全消除元件的自由度,接头连接使用一个或多个组合约束来约束元件的位置.约束连接装配的目的是消除所有自由度,元件被完整定位,接头连接装配的目的是获得特定的运动,元件通常还具有一个或多个自由度.“元件放置”窗口:(yd1)接头连接的类型接头连接所用的约束都是能实现特定运动(含固定)的组合约束,包括:销钉、圆柱、滑动杆、轴承、平面、球、6DOF、惯例、刚性、焊接,共10种.销钉:由一个轴对齐约束和一个与轴垂直的平移约束组成.元件可以绕轴旋转,具有1个旋转自由度,总自由度为1.轴对齐约束可选择直边或轴线或圆柱面,可反向;平移约束可以是两个点对齐,也可以是两个平面的对齐/配对,平面对齐/配对时,可以设置偏移量.圆柱:由一个轴对齐约束组成.比销钉约束少了一个平移约束,因此元件可绕轴旋转同时可沿轴向平移,具有1个旋转自由度和1个平移自由度,总自由度为2.轴对齐约束可选择直边或轴线或圆柱面,可反向.滑动杆:即滑块,由一个轴对齐约束和一个旋转约束(实际上就是一个与轴平行的平移约束)组成.元件可滑轴平移,具有1个平移自由度,总自由度为 1.轴对齐约束可选择直边或轴线或圆柱面,可反向.旋转约束选择两个平面,偏移量根据元件所处位置自动计算,可反向.轴承:由一个点对齐约束组成.它与机械上的“轴承”分歧,它是元件(或组件)上的一个点对齐到组件(或元件)上的一条直边或轴线上,因此元件可沿轴线平移并任意方向旋转,具有1个平移自由度和3个旋转自由度,总自由度为4.平面:由一个平面约束组成,也就是确定了元件上某平面与组件上某平面之间的距离(或重合).元件可绕垂直于平面的轴旋转并在平行于平面的两个方向上平移,具有1个旋转自由度和2个平移自由度,总自由度为3.可指定偏移量,可反向.球:由一个点对齐约束组成.元件上的一个点对齐到组件上的一个点,比轴承连接小了一个平移自由度,可以绕着对齐点任意旋转,具有3个入旋转自由度,总自由度为3.6DOF:即6自由度,也就是对元件不作任何约束,仅用一个元件坐标系和一个组件坐标系重合来使元件与组件发生关联.元件可任意旋转和平移,具有3个旋转自由度和3个平移自由度,总自由度为6.刚性:使用一个或多个基本约束,将元件与组件连接到一起.连接后,元件与组件成为一个主体,相互之间不再有自由度,如果刚性连接没有将自由度完全消除,则元件将在以后位置被“粘”在组件上.如果将一个子组件与组件用刚性连接,子组件内各零件也将一起被“粘”住,其原有自由度不起作用.总自由度为0.焊接:两个坐标系对齐,元件自由度被完全消除.连接后,元件与组件成为一个主体,相互之间不再有自由度.如果将一个子组件与组件用焊接连接,子组件内各零件将参照组件坐标系发按其原有自由度的作用.总自由度为0.接头连接类型:(yd2)接头连接约束:惯例惯例:也就是自界说组合约束,可根据需要指定一个或多个基本约束来形成一个新的组合约束,其自由度的几多因所用的基本约束种类及数量分歧而分歧.可用的基本约束有:匹配、对齐、拔出、坐标系、线上点、曲面上的点、曲面上的边,共7种.在界说的时候,可根据需要选择一种,也可先不选取类型,直接选取要使用的对象,此时在类型那里开始显示为“自动”,然后根据所选择的对象系统自动确定一个合适的基本约束类型.惯例—匹配/对齐:对齐).单一的“匹配/对齐”构成的自界说组合约束转换为约束连接后,酿成只有一个“匹配/对齐”约束的不完整约束,再转换为接头约束后酿成“平面”连接.这两个约束用来确定两个平面的相对位置,可设定偏距值,也可反向.界说完后,在不修改对象的情况下可更改类型(匹配惯例—拔出:选取对象为两个柱面.单一的“拔出”构成的自界说组合约束转换为约束连接后,酿成只有一个“拔出”约束的不完整约束,再转换为接头约束后酿成“圆柱”连接.惯例—坐标系:选取对象为两个坐标系,与6DOF的坐标系约束分歧,此坐标系将元件完全定位,消除所有自由度.单一的“坐标系”构成的自界说组合约束转换为约束连接后,酿成只有一个“坐标系”约束的完整约束,再转换为接头约束后酿成“焊接”连接.惯例—线上点:选取对象为一个点和一条直线或轴线.与“轴承”等效.单一的“线上点”构成的自界说组合约束转换为约束连接后,酿成只有一个“线上点”约束的不完整约束,再转换为接头约束后酿成“轴承”连接.惯例—曲面上的点:选取对象为一个平面和一个点.单一的“曲面上的点”构成的自界说组合约束转换为约束连接后,酿成只有一个“曲面上的点”约束的不完整约束,再转换为接头约束后仍为单一的“曲面上的点”构成的自界说组合约束.惯例—曲面上的边:选取对象为一个平面/柱面和一条直边.单一的“曲面上的点”构成的自界说组合约束不能转换为约束连接.自由度与冗余约束自由度(DOF)是描述或确定一个系统(主体)的运动或状态(如位置)所必需的自力参变量(或坐标数).一个不受任何约束的自由主体,在空间运动时,具有6个自力运动参数(自由度),即沿XYZ三个轴的自力移动和绕XYZ三个轴的自力转动,在平面运动时,则只具有3个自力运动参数(自由度),即沿XYZ三个轴的自力移动.主体受到约束后,某些自力运动参数不再存在,相对应的,这些自由度也就被消除.当6个自由度都被消除后,主体就被完全定位而且不成能再发生任何运动.如使用销钉连接后,主体沿XYZ三个轴的平移运动被限制,这三个平移自由度被消除,主体只能绕指定轴(如X轴)旋转,不能绕另两个轴(YZ轴)旋转,绕这两个轴旋转的自由度被消除,结果只留下一个旋转自由度.冗余约束指过多的约束.在空间里,要完全约束住一个主体,需要将三个自力移动和三个自力转动分别约束住,如果把一个主体的这六个自由度都约束住了,再另加一个约束去限制它沿X轴的平移,这个约束就是冗余约束.合理的冗余约束可用来分摊主体各部份受到的力,使主体受力均匀或减少磨擦、赔偿误差,延长设备使用寿命.冗余约束对主体的力状态发生影响,对主体的对运动没有影响.因运动分析只分析主体的运动状况,不分析主体的力状态,在运动分析时,可不考虑冗余约束的作用,而在涉及力状态的分析里,必需要适当的处置好冗余约束,以获得正确的分析结果.系统在每次运行分析时,城市对自由度进行计算.并可创立一个丈量来计算机构有几多自由度、几多冗余.PROE的帮手里有一个门铰链的例子来讲冗余与自由度的计算,但其分析实丰有欠妥当,各位想准确计算模型的自由度的话,请找机构设计方面的书来仔细研究一番.这也不是几句话能说明白的,我这里只提一下就是了,不再详.约束转换接头连接与约束连接可相互转换.在“元件放置”窗口的“放置”页面和“连接”页面里,在约束列表下方,都有一个“约束转换”按钮.使用此按钮可在任何时候根据需要将接头连接转换为约束连接,或将约束连接转换为接头连接.在转换时,系统根据现有约束及其对象的性质自动选取最相配的新类型.如对系统自动选取的结果不满意,可再进行编纂.转换的规则,可参考PROE的自带帮手.不外,没有很好的空间想像力和耐性的兄弟就不用看了.需要记住的一个:曲线上的点、曲面上的点、相切约束,在转换时是不会转换成惯例连接的.下图显示“约束转换”和“反向”按钮:(yd3)基础与重界说主体基础是在运动分析中被设定为不介入运动的主体.创立新组件时,装配(或创立)的第一个元件自动成为基础.元件使用约束连接(“元件放置”窗口中“放置”页面)与基础发生关系,则此元件也成为基础的一部份.如果机构不能以预期的方式移动,或者因两个零件在同一主体中而不能创立连接,就可以使用“重界说主体”来确认主体之间的约束关系及删除某些约束.进入“机构”模块后,“编纂”—>“重界说主体”进入主体重界说窗口,选定一个主体,将在窗口里显示这个主体所受到的约束(仅约束连接及“刚体”接头所用的约束).可以选定一个约束,将其删除.如果删除所有约束,元件将被封装.“重界说主体”窗口:(yd4)特殊连接:凸轮连接凸轮连接,就是用凸轮的轮廓去控制从动件的运动规律.PROE里的凸轮连接,使用的是平面凸轮.但为了形象,创立凸轮后,城市让凸轮显示出一定的厚度(深度).凸轮连接只需要指定两个主体上的各一个(或一组)曲面或曲线就可以了.界说窗口里的“凸轮1”“凸轮2”分别是两个主体中任何一个,其实不是从动件就是“凸轮2”.如果选择曲面,可将“自动选取”复选框勾上,这样,系统将自动把与所选曲面的邻接曲面选中,如果不用“自动选取”,需要选多个相邻面时要按住Ctrl.如果选择曲线/边,“自动选取”是无效的.如果所选边是直边或基准曲线,则还要指定工作平面(即所界说的二维平面凸轮在哪一个平面上).凸轮一般是从动件沿凸轮件的概况运动,在PROE里界说凸轮时,还要确定运动的实际接触面.选取了曲面或曲线后,将会出线一个箭头,这个箭头指示出所选曲面或曲线的法向,箭头指向哪侧,也就是运动时接触点将在哪侧.如果系统指示出的方向与想界说的方向分歧,可反向.关于“启用升离”,翻开这个选项,凸轮运转时,从动件可离开主动件,不使用此选项时,从动件始终与主动件接触.启用升离后才华界说“恢复系数”,即“启用升离”复选框下方的那个“e”.因为是二维凸轮,只要确定了凸轮轮廓和工作平面,这个凸轮的形状与位置也就算界说完整了.为了形象,系统会给这个二维凸轮显示出一个厚度(即深度).通常我们可不用去修改它,使用“自动”就可以了.也可自已界说这个显示深度,但对分析结果没有影响.需要注意:A.所选曲面只能是单向弯曲曲面(如拉伸曲面),不能是多向弯曲曲面(如旋转出来的鼓形曲面).B.所选曲面或曲线中,可以有平面和直边,但应防止在两个主体上同时呈现.C.系统不会自动处置曲面(曲线)中的尖角/拐点/不连续,如果存在这样的问题,应在界说凸轮前适当处置.凸轮可界说“升离”、“恢复系数”与“磨擦”.凸轮界说窗口:(yd5)特殊连接:齿轮连接齿轮连接用来控制两个旋转轴之间的速度关系.在PROE中齿轮连接分为标准齿轮和齿轮齿条两种类型.标准齿轮需界说两个齿轮,齿轮齿条需界说一个小齿轮和一个齿条.一个齿轮(或齿条)由两个主体和这两个主体之间的一个旋转轴构成.因此,在界说齿轮前,需先界说含有旋转轴的接头连接(如销钉).界说齿轮时,只需选定由接头连接界说出来的与齿轮本体相关的那个旋转轴即可,系统自动将发生这根轴的两个主体设定为“齿轮”(或“小齿轮”、“齿条”)和“托架”,“托架”一般就是用来装置齿轮的主体,它一般是静止的,如果系统选反了,可用“反向”按钮将齿轮与托架主体交换.“齿轮2”或“齿条”所用轴的旋转方向是可以变动的,点界说窗口里“齿轮2”轴右侧的反向按钮就可以,点中后画面会呈现一个很粗的箭头指示此轴旋转的正向.速比界说:在“齿轮副界说”窗口的“齿轮1”、“齿轮2”、“小齿轮”页面里,都有一个输入节圆直径的处所,可以在界说齿轮时将齿轮的实际节圆直径输入到这里.在“属性”页面里,“齿轮比”(“齿条比”)有两种选择,一是“节圆直径”,一是“用户界说的”.选择“节圆直径”时,D1、D2由系统自动根据前两个页面里的数值计算出来,不成改动.选择“用户界说的”时,D1、D2需要输入,此情况下,齿轮速度比由此处输入的D1、D2确定,前两个页面里输入的节圆直径不起作用.速度比为节圆直径比的倒数,即:齿轮1速度/齿轮2速度=齿轮2节圆直径/齿轮1节圆直径=D2/D1.齿条比为齿轮转一周时齿条平移的距离,齿条比选择“节圆直径”时,其数值由系统根据小齿轮的节圆数值计算出来,不成改动,选择“用户界说的”时,其数值需要输入,此情况下,小齿轮界说页面里输入的节圆直径不起作用.图标位置:界说齿轮后,每一个齿轮都有一个图标,以显示这里界说了一个齿轮,一条虚线把两个图标的中心连起来.默认情况下,齿轮图标在所选连接轴的零点,图标位置也可自界说,点选一个点,图标将平移到那个点所在平面上.图标的位置只是一视觉效果,不会对分析发生影响.要注意的事项:A.PROE里的齿轮连接,只需要指定一个旋转轴和节圆参数就可以了.因此,齿轮的具体形状可以不用做出来,即使是两个圆柱,也可以在它们之间界说一个齿轮连接.B.两个齿轮应使用公共的托架主体,如果没有公共的托架主体,分析时系统将创立一个不偏见的内部主体作为公共托架主体,此主体的质量即是最小主体质量的千分之一.而且在运行与力相关的分析(静态、力平衡、静态)时,会提示指出没有公共托架主体.齿轮界说窗口:(yd6)特殊连接:槽连接槽连接是两个主体之间的一个点曲线连接.从动件上的一个点,始终在主动件上的一根曲线(3D)上运动.槽连接只使两个主体按所指定的要求运动,不检查两个主体之间是否干涉,点和曲线甚至可以是零件实体以外的基准点和基准曲线,固然也可以在实体内部.曲线可以是任何一组相邻曲线(即要求相连,不用相切),可以是基准曲线,也可以是实体/曲面的边,可以是开放的,也可以是封闭的.点可以是任何一个基准点或极点,但只能是零件中的,组件中的点不能用于槽连接.运动时,从动件上的点始终在主动件上的指定曲线上,如果曲线是一条(组)开放曲线,则此曲线(曲线组)的首末两个端点为槽的默认端点,如果是一条(组)封闭曲线,则默认无端点.如果希望运动区间不是在整条曲线(曲线组)上,而只是在其中的一段上,则需要自界说槽的端点.对开放曲线(曲线组),只要指定新的端点就可以了,对封闭曲线,指定两个新端点后,系统自动选取被两端点分割出的两段曲线中的一段为运行区间,如果不是所需要的,点“反向”选取另一段.界说槽端点可选取基准点、极点、曲线/边/曲面,如果选的是曲线/边/曲面,则槽端点为槽曲线与所选曲线/边/曲面的交点.槽连接可界说“恢复系数”与“磨擦”.槽连接界说窗口:(yd7)拖动与快照拖动,是在允许的范围内移念头械.快照,对机械的某一特殊状态的记录.可以使用拖动调整机构中各零件的具体位置,初步检查机构的装配与运动情况,并可将其保管为快照,快照可用于后续的分析界说中,也可用于绘制工程图.“机构”“拖动”,进入“拖动”窗口,此窗口具有一个工具栏,工具栏左第一个按钮为“保管快照”,即将以后屏幕上的状态保管为一个快照,左第二个按钮为“点拖动”,即点取机构上的一个点,移动鼠标以改变元件的位置,左第三个按钮为“主体拖动”,选取一个主体,移动鼠标以改变元件的位置.右侧两个按钮为“裁撤”和“恢复”,每一次拖动,系统城市记录入内存,使用此两按钮,可检查已做的各次拖动的结果.“快照”页和“约束”页,分别有一个列表,显示以后已经界说的快照和为以后拖动界说的临时约束.快照列表左侧有一列工具按钮,第一个为显示以后快照,即将屏幕显示刷新为选定快照的内容;第二个为从其它快照中把某些元件的位置提取入选定快照;第三个为刷新选定快照,即将选定快照的内容更新为屏幕上的状态;第四个为绘图可用,使选定快照可被当作分解状态使用,从而在绘图中使用,这是一个开关型按钮,当快照可用于绘图时,列表中的快照名前会有一个图标;第五个是删除选定快照.约束列表显示已为以后拖动所界说的临时约束,这些临时约束只用于以后拖动把持,以进一步限制拖动时各主体之间的相对运动.“高级拖动选项”提供了一组工具,用于精确限定拖动时被拖动点或主体的运动.拖动窗口:(yd8)恢复系数与磨擦即碰撞系数,其物理界说为两物体碰撞后的相对速度(V2V1)与碰撞前的相对速度(V10V20)的比值,即e=(V2V1)/(V10V20),它的值介于0到1之间.典范的恢复系数可从工程书籍或实际经验中获得.恢复系数取决于资料属性、主体几何以及碰撞速度等因素.在机构中应用恢复系数,是在刚体计算中模拟非刚性属性的一种方法.完全弹性碰撞的恢复系数为1.完全非弹性碰撞的恢复系数为0.橡皮球的恢复系数相对较高.而湿泥土块的恢复系数值非常接近0.摩擦阻碍凸轮或槽的运动.摩擦系数取决于接触资料的类型以及实验条件.可在物理或工程书籍中查找各种典范的摩擦系数表.需要分别指定静磨擦系数和动磨擦系数,且静磨擦系数应年夜于动磨擦系数.要在力平衡分析中计算凸轮滑动丈量,必需指定凸轮连接的磨擦系数.恢复系数与磨擦可用于凸轮连接和槽连接,也可用于连接轴设置.连接轴设置“机构”—“连接轴设置”,可为由接头连接(如销钉)发生的连接轴界说一些具体的属性,包括:连接轴的位置,连接轴的零参照,连接轴的再生位置(用于重复组件分析),连接轴的运动限制、恢复系数及磨擦.进入此窗口后,需先选取一连接轴,然后再对此轴进行各种设置.“连接轴位置”,这里显示的是连接轴的两个零参照间的位置或距离,未改变时,显示的是以后屏幕上这个位置时的值.如果自己输入一个数值并回车(对旋转轴,此数值为180到180,如超越此范围或超越“属性”里设置的限制范围,系统将自动转换成可接受的范围内的值),屏幕上的组件也将临时改变位置以反映以后修改,如果按了“生成零点”,则将以后位置设定为连接轴零点,其它丈量都从此零点位置开始.点了“生成零点”后,“指定参照”将无效.如果选了“指定参照”,则“生成零点”无效.“指定参照”可为连接轴的两个主体分别选定零位置的几何参照.选取“再生值”,可让组件在非连接轴零点位置再生,这个用于重复组件分析中.。
第 1讲 PROE运动仿真基础-四连杆机构.
五、分析 1、类型:运动学; 2、终止时间:1--3 sec; 3、桢频:100-200; 4、若有“快照” ,点“快照”,“运行”。 六、回放 1、播放; 2、生成视频:在“播放”的“动画”窗口内,点“捕获”,输入“路 径”、文件名。 七、分析结果(测量):分析测量 1、新建“测量点”:测量点1(摇杆的位置)、测量点2(摇杆的速度)、 测量点3(摇杆的加速度); 2、按ctrl选多个测量点、复选“分别绘制”、选“结果集”中仿真分析名 称; 3、点左上角 “绘制”图标,再点“文件”——“输出EXCEL文件”。 八、绘制曲线 轨迹曲线——纸零件(选装配图或机架)——选取点——选“结果集”— —确定
(采用普通装配的方式进行约束)
1、刚性:采用普 通装配的方式进行 约束;(自动) 2、焊接:采用坐 标系进行约束; (缺省)
(垫片)
SVA
四连杆机构
一、装配 1、机架(左):缺省方式; 2、机架(右):前面、底面对齐,右面相距120; 3、曲柄、连杆:销钉; 4、摇杆:两个销钉(在“放置”页左下点“新设置”, 添加第2销钉); “应用”——“机构”,进入仿真界面 二、设置运动副(凸轮副、齿轮副) 三、设置电机 1、电机位置(类型):拾取“销钉运动副”; 2、电机大小(轮廓):速度、A为360 deg/sec。 四、调整:手形“拖动”图标,进行调整,“快照”确定当 前位置。
参照下图,设计一万向连接传动机构,结构、尺寸 均自己设计确定,并装配、运动仿真、分析。
缺省专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料专业资料sva专业资料专业资料专业资料四连杆机构一装配1机架左
ProE机构运动仿真设计及分析
活塞速度的测量结果,也可导出为EXCEL和文本格式
测量特征也可加入到运动分析中,进行结果查看,图形输出,如测量连杆大头最外边 与缸体裙部的距离。
应将测量保存为一个特征,然后才能进行测量分析
回放:轨迹曲线
轨迹曲线用来表示机构中某一元素相对于另一零件的运动。分为“轨迹曲线”与“凸轮 合成曲线”两种: “轨迹曲线”表示机构中某一点或顶点相对于另一零件的运动。 “凸轮合成曲线”表示机构中某曲线或边相对于另一零件的运动。 菜单:插入--->轨迹曲线
序号
1 2 3 4 5 6 7
8 9 10 11
名称
自由度 旋转 平移
0
0
1
0
0
1
1
1
1
2
说明
使用一个或多个基本约束,交元件与组件连接在一起,连接后,元件与组件成为一个 主体,相互间没有自由度。 由一个轴对齐约束加一个与轴垂直的平移约束组成。元件可以绕轴旋转,不能平移。 例如,活塞销,齿轮、曲轴等。 由一个轴对齐约束与一个旋转约束组成,元件可沿轴平移,但不能旋转。如活塞。 由一个轴对齐约束组成,元件可绕轴旋转同时可沿轴向平移。如挺柱、气门等。
定义并约束相对运动的主体之间的关系。
自由度(Degrees 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的
of Freedom)
总自由度。
执行电动机( Force Motor)
作用于旋转轴或平移轴上(引起运动)的力。
机构(Joints)
特定的连接类型(例如销钉机构、滑块机构和球机构)
选取运动轴,曲柄连杆机构选 择曲轴的销钉连接图标 反向按钮改变旋向
定义轮廓,“规范”为位置时模选 项定义为斜坡曲轴旋转一圈360度, 图形中可以查看定义的轮廓,横坐 标为时间
机械原理四连杆机构
双曲柄机构
双摇杆机构
一、 曲柄摇杆机构
在铰链四杆机构中,若两个连架杆, 一个为曲柄,另一个为摇杆,则此铰链 四杆机构称为曲柄摇杆机构。
图4-2所示为调整雷达天线俯仰角的 曲柄摇杆机构。曲柄1缓慢地匀速转动, 通过连杆2使摇杆3在一定的角度范围内 摇动,从而调整天线俯仰角的大小。
图4-2 雷达天线俯仰角调整机构
由上述分析可知:
最短杆和最长杆长度之和小于或等于其 余两杆长度之和是铰链四杆机构存在曲 柄的必要条件。
满足这个条件的机构究竟有一个曲柄、 两个曲柄或没有曲柄,还需根据取何杆 为机架来判断。
二、铰链四杆机构的演化
1.曲柄滑块机构
如图4-15a所示 的曲柄摇杆机构中, 摇杆3上C点的轨迹是以D为圆心,杆3的 长度L3为半径的圆弧mm。如将转动副D 扩大,使其半径等于L3,并在机架上按C 点的近似轨迹mm作成一弧形槽,摇杆3 作成与弧形槽相配的弧形块,如图4-14b 所示。
图4-6 利用死点夹紧工件的夹具
二、双曲柄机构 两连架杆均为曲柄的铰链四杆机构称
为双曲柄机构。
图4-7 插床双曲柄机构
双曲柄机构中,用得最多的是平行 双曲柄机构,或称平行四边形机构,它 的连杆与机架的长度相等,且两曲柄的 转向相同、长度也相等。由于这种机构 两曲柄的角速度始终保持相等。且连杆 始终作平动,故应用较广。
急回特性可用行程速比系数K表示,即
K
v2 v1
C1C2 / t2 C1C2 / t1
t1 t2
1 2
180 180
整理后,可得极位夹角的计算公式:
180 K 1
K 1
2.压力角和传动角
在生产实际中往往要求连杆机构不仅 能实现预期的运动规律,而且希望运转轻 便、效率高。图4-5所示的曲柄摇杆机构, 如不计各杆质量和运动副中的摩擦,则连 杆BC为二力杆,它作用于从动摇杆3上的 力P是沿BC方向的。作用在从动件上的驱 动力P 与该力作用点绝对速度vc之间所夹
四连杆机构运动分析
四连杆机构运动分析第一篇:四连杆机构运动分析游梁式抽油机是以游梁支点和曲柄轴中心的连线做固定杆,以曲柄,连杆和游梁后臂为三个活动杆所构成的四连结构。
1.1四连杆机构运动分析:图1复数矢量法:为了对机构进行运动分析,先建立坐标系,并将各构件表示为杆矢量。
结构封闭矢量方程式的复数矢量形式:l1eiϕ1+l2eiϕ2=l3eiϕ3+l(1)应用欧拉公式eiθ=cosθ+isinθ将(1)的实部、虚部分离,得 l1cosϕ1+l2cosϕ2=l4+l3cosϕ3⎫⎬(2)l1sinϕ1+l2sinϕ2=l3sinϕ3⎭由此方程组可求得两个未知方位角ϕ2,ϕ3。
解得tan(ϕ3/2)=(B±A2+B2-C2)/(A-C)(4)当要求解ϕ3时,应将ϕ2消去可得222l2=l3+l4+l12-2l3l4cosϕ3-2l1l3cos(ϕ3-ϕ1)-2l1l4cosϕ1(3)ϕ2=arctanB+l3sinϕ3(5)A+l3cosϕ3A=l4-l1cosϕ1其中:B=-l1sinϕ12A2+B2+l32-l2C=2l3(4)式中负号对应的四连杆机构的图形如图2所示,在求得ϕ3之后,可利用(5)求得ϕ2。
图2 由于初始状态ϕ1有个初始角度,定义为ϕ10,因此,我们可以得到关于ϕ1=ϕ10+ωt,ω是曲柄的角速度。
而通过图形3分析,我们得到OA的角度θ=ϕ3-因此悬点E的位移公式为s=|OA|⨯θ,速度v=dvd2sd2θa==2=|OA|2。
dtdtdtπ2-ϕ10。
dsdθ=|OA|,加速度dtdt图3 已知附录4给出四连杆各段尺寸,前臂AO=4315mm,后臂BO=2495mm,连杆BD=3675mm,曲柄半径O’D=R=950mm,根据已知条件我们推出|OO'|+|O'D|>|OB|+|BD|违背了抽油系统的四连结构基本原则。
为了合理解释光杆悬点的运动规律,我们对四连结构进行简化,可采用简谐运动、曲柄滑块结构进行研究。
常用机构(四连杆机构)ppt课件
d min 或 d max 可能最小
曲柄摇杆机构,当曲柄主动时,在曲柄与机架共线的两个位置 之一,传动角最小.
23
死点
• 死点:
• 传动角为零=0(连杆与从动件共线),机构顶死
C
C
C2
2
1
3
B
B
vF
B1 =00
1
A
B2
4
=00
A
B2
D
=00
B
=00
C1
C
C
1
F
2
v
24
克服死点的措施
B2
22
2 22
C 3
C 3
C
3
3
C
43 C44 4
4C4 4 44C
4 14 4
A
16
(3)扩大回转副 ——偏心轮机构
曲柄摇杆机构中,将曲柄上的转 动副B的半径扩大至超过曲柄的 长度,曲柄变成一个几何中心 与回转中心不重合的圆盘,称 为偏心轮。
提高偏心轴的强度和刚 度、简化结构
• 曲柄滑块机构 (扩大回转副)
28
二. 平面四杆机构的设计
设计类型 1.实现连杆给定位置 2.实现预定运动规律
例如:从动件的急回运动特性 3.实现预定运动轨迹
方法:解析法、作图法、实验法
29
1. 实现连杆给定位置机构
如实现预定的连杆位置要求 机构能引导刚体(一般为连杆)通过一系列给定位置
例:飞机起落架机构: • 要求实现机轮放下和收
180 K 1
K 1
• K=1, 无急回特性
• ↑K↑急回特征越显著
B
1
1
A
1
四连杆机运动学分析
栏杆机四杆机构运动学分析1 四杆机构运动学分析机构运动分析的任务、目的和方法曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。
对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。
还可以根据机构闭环矢量方程计算从动件的位移偏差。
上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。
机构运动分析的方法很多,主要有图解法和解析法。
当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。
而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。
机构的工作原理在平面四杆机构中,其具有曲柄的条件为:a.各杆的长度应满足杆长条件,即:最短杆长度+最长杆长度≤其余两杆长度之和。
b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。
三台设备测绘数据分别如下:第一组(2代一套)四杆机构L1=,L2=, L3=,L4=最短杆长度+最长杆长度+ <其余两杆长度之和+最短杆为连架杆,四杆机构为曲柄摇杆机构图1-1 II-1型栏杆机机构测绘及其运动位置图第二组(2代二套)四杆机构L1=,L2=,L3=,L4=最短杆长度+最长杆长度+ <其余两杆长度之和+最短杆为连架杆,四杆机构为曲柄摇杆机构图1-2 II-2型栏杆机机构测绘及其运动位置图第三组(3代)四杆机构L1=,L2=,L3=150mm,L4=最短杆长度+最长杆长度+ <其余两杆长度之和(150+最短杆为连架杆,四杆机构为曲柄摇杆机构图1-3 III型栏杆机机构测绘及其运动位置图在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。
四杆机构公开课图文
应用领域
01
02
03
04
自动化生产线
四杆机构广泛应用于自动化生 产线中,如输送带、机械手等 ,实现物料的输送、搬运和加 工。
农业机械
在农业机械中,四杆机构常用 于拖拉机、收割机等设备的传 动系统中,实现动力传递和运 动控制。
医疗器械
在医疗器械中,四杆机构可用 于手术器械、康复设备等,实 现精确的定位和操作。
效率
优化四杆机构的设计,提高其工作效率和性能。
稳定性
保证四杆机构在使用过程中稳定可靠,不易发生 故障。
成本
在满足功能和性能要求的前提下,降低四杆机构 的设计成本。
优化设计
结构优化
运动学优化
动力学优化
对四杆机构的结构进行 优化,使其更加紧凑、
轻便。
根据实际需求,对四杆 机构的运动学特性进行 优化,提高其运动性能。
材料与热处理
根据工作负载和运动特性,选 择合适的材料和热处理方式, 以提高四杆机构的承载能力和
使用寿命。
04
四杆机构实例分析
实例一:缝纫机
总结词
缝纫机中的四杆机构主要用于实现往复直线运动,确保针头上下摆动。
详细描述
缝纫机中的四杆机构由机架、摆杆、曲柄和导杆组成。通过曲柄的旋转运动,带 动摆杆做往复摆动,再通过导杆使针头进行上下往复直线运动,完成缝纫操作。
在装配过程中,需要使用适当的装配工具和技术,如螺丝、螺母、垫圈 等,确保各部件之间的连接牢固可靠。同时,还需要注意调整各部件之 间的相对位置和运动关系,确保机构的运动精度和稳定性。
四杆机构制作与调试 材料选择与加工
测试是验证四杆机构性能的关键环节,需要对其运动学和动力学 性能进行全面检测。
四连杆
2.2.5 平面四杆机构的设计连杆机构的设计方法有作图法、解析法及实验法三种;其中作图法是重点。
用作图法设计四杆机构是根据设计要求及各铰链之间相对运动的几何关系,通过作图来确定四个铰链的位置。
根据不同的设计要求,作图法设计四杆机构可分为三种类型:1)按预定的连杆位置设计四杆机构。
①已知连杆 BC 的三个预定位置B 1 C 1、B 2 C 2、B 3 C 3,设计此四杆机构的实质是求固定铰链中心的位置。
此类问题可用求圆心法来解决,即作铰链 B 的各位置点连线B 1B 2、B 2B 3的中垂线,两中垂线的交点即固定铰链A 的中心。
同样,作铰链C 的各位置点连线C 1C 2、C 2 C 3的中垂线,两中垂线的交点即固定铰链 D 的中心。
若仅给定连杆 BC 的两个预定位置则设计的四杆机构有无穷多解。
②若给定固定铰链中心A 、D 的位置及连杆上标线EF 的三个预定位置,设计此四杆机构的实质是求活动铰链中心B 、C 的位置。
此类问题要用反转法求解,即把机构转化为以原连杆第一位置 E 1 F 1为机架,原机架 AD 为相对连杆,再仿上求得活动铰链 A 的三个相应位置A 、A 2’、A 3’,它们所在圆的圆心就是其相对固定铰链(实际活动铰链)B 的位置B 1,可用前述求圆心法求得。
2)按预定的两连架杆对应位置设计四杆机构。
如已知两连架杆的三组对应位置及机架长度l AD 、原动件长度l AB ,设计此四杆机构的实质是求活动铰链C 的位置。
此问题可用反转法求解,即把从动杆CD 的第一位置C 1D 看做机架,原动件AB 看做连干,求得活动铰链B 的三个相应位置B 、B 2´、B 3´,他们所在圆的圆心就是其相对固定铰链C 的位置C 1,若仅给定两连架杆的两组对应为止,则设计的四杆机构有无穷多解。
3)按给定的行程速比系数K 设计四杆机构已知行程速比系数K 及某些其他条件(如曲柄摇杆机构CD 的长度l CD 、摇杆摆角φ),设计此四杆机构的实质问题是确定曲柄的固定铰链中心A 的位置,进而定出其余三杆长度。
PROE运动仿真基础-四连杆机构
将各个杆件组装在一起,形成 一个完整的四连杆机构模型。
添加运动副和运动驱动
在装配模式下,将四连杆机构添加到 装配文件中。
添加运动驱动,指定运动副的运动方 式和运动参数,如速度和加速度。
选择合适的运动副类型,如旋转副或 移动副,将运动副添加到相应的杆件 上。
设置初始条件和运动参数
01
根据需要设置初始条件,如初始角度或初始位置。
ProE运动仿真基础-四 连杆机构
目 录
• 四连杆机构简介 • Pro/E运动仿真基础 • 四连杆机构在Pro/E中的建模 • 四连杆机构运动仿真分析 • 四连杆机构优化设计 • 案例分析与实践
01
四连杆机构简介
定义与特点
定义
四连杆机构是一种由四个杆件相互连 接而成的机械结构,通过改变杆件的 长度或相对位置,可以实现复杂的运 动轨迹和运动形式。
02
根据实际需求,设置运动参数,如运动时间、运动 轨迹等。
03
运行仿真,观察四连杆机构的运动情况,并调整参 数以优化机构性能。
04
四连杆机构运动仿真分 析
仿真运行与结果查看
01
启动Pro/E软件,打开四连杆机构 模型。
02
在菜单栏中选择“工具”-“机 构”-“仿真”,进入仿真界面。
在仿真界面中设置仿真参数,如 时间、步数等,然后点击“运行 ”按钮开始仿真。
机构的运动特性,如周期性、
死点等。
06
案例二:平面四杆机构的优化设计
总结词:通过Pro/E软件对 平面四杆机构进行优化设计
,提高其运动性能。
建立平面四杆机构的几何模 型。
定义设计变量、约束条件和 目标函数。
详细描述
使用Pro/E的优化工具进行 优化设计。
项目1平面四连杆的运动仿真
项目1 平面四连杆的运动仿真学习目标了解NX 运动仿真的特点与应用进入运动仿真模块了解运动仿真模块的常用工具条的应用了解运动仿真的一般步骤能够创建连杆并指定固定连杆能够创建运动副能够为运动副指定驱动能为运动仿真设置解算器能运用动画工具查看仿真结果UG NX机械结构设计仿真与优化·2·项目1 平面四连杆的运动仿真·3·1.1 平面四连杆的机构原理与运动要求平面四连杆机构是一种常用的结构,而所有运动副均为转动副的四杆机构称为铰链四杆机构,它是平面四杆机构的基本形式,其他四杆机构都可以看成是在它的基础上演化而来的。
在平面四连杆中,选定其中一个构件作为机架之后,直接与机架连接的构件称为连架杆,不直接与机架连接的构件称为连杆,能够做整周回转的构件被称作曲柄,只能在某一角度范围内往复摆动的构件称为摇杆。
在铰链四杆机构中,有的连架杆能做整周转动,有的则不能,两构件的相对回转角为360°的转动副称为整转副。
整转副的存在是曲柄存在的必要条件,按照连架杆是否可以做整周转动,可以将其分为3种基本形式,即曲柄摇杆机构、双曲柄机构和双摇杆机构。
铰链四杆机构的两个连架杆中若一个为曲柄,另一杆为摇杆,则此机构称为曲柄摇杆机构。
曲柄摇杆机构的功能是:将转动转换为摆动,或将摆动转换为转动。
如图1-1所示,图中由4个杆件组成了一个曲柄摇杆机构。
杆件L1、L2、L3、L4在端点位置A 、B 、C 、D 处分别铰接,形成铰链四杆机构,其中L4为固定的机架,L1为连杆,L2为曲柄,L3为摇杆。
L2可以做整周的转动,而L3只能做摆动。
图1-1 曲柄摇杆机构平面四连杆的机构进行运动仿真时,需要进行以下操作。
(1)创建4个杆件的零件模型。
(2)创建装配文件,将各个杆件装配到一个装配文件中。
(3)进入运动仿真模块,并创建运动仿真。
(4)将4个杆件定义为连杆。
(5)将机架零件的连杆指定为固定连杆,不允许移动或旋转。
机械原理四连杆机构
图4-6 利用死点夹紧工件的夹具
二、双曲柄机构
两连架杆均为曲柄的铰链四杆机构称 为双曲柄机构。行 双曲柄机构,或称平行四边形机构,它 的连杆与机架的长度相等,且两曲柄的 转向相同、长度也相等。由于这种机构 两曲柄的角速度始终保持相等。且连杆 始终作平动,故应用较广。 当四个铰链中心处于同一直线如图 4-9a)所示时,将出现运动不确定状态, 例如在图4-9b)中,当曲柄1由AB2转到 AB3时,从动曲柄3可能转到DC3’,也可 能转到DC3’’。
第四章 连杆机构
平面连杆机构是将各构件用转动 副或移动副联接而成的平面机构。
最简单的平面连杆机构是由四个 构件组成的,简称平面四杆机构。它 的应用非常广泛,而且是组成多杆机 构的基础。
§4-1 铰链四杆机构的基本形式 和特性
全部用回转副组成的平面四杆机构 称为铰链四杆机构,如图4-1所示。
连杆
机架
连 架 杆
图4-1 铰链四杆机构
图中,机构的固定件4称为机架;与 机架用回转副相联接的杆1和杆3称为连 架杆;不与机架直接联接的杆2称为连杆。 另外,能做整周转动的连架杆,称为曲 柄。仅能在某一角度摆动的连架杆,称 为摇杆。
对于铰链四杆机构来说,机架和连杆 总是存在的,因此可按照连架杆是曲柄还 是摇杆,将铰链四杆机构分为三种基本型 式:
图4-11 起重机起重机构
两摇杆长度相等的双摇杆机构,称 为等腰梯形机构。 图4-12所示,轮式车辆的前轮转向 机构就是等腰梯形机构的应用实例。
图4-12 汽车前轮转向机构
当车转弯时,与前轮轴固联的两个 摇杆的摆角和不等。如果在任意位置 都能使两前轮轴线的交点P落在后轮轴 线的延长线上,则当整个车身绕P点转 动时,四个车轮都能在地面上纯滚动, 避免轮胎因滑动而损伤。等腰梯形机构 就能近似地满足这一要求。
四连杆机运动学分析
栏杆机四杆机构运动学分析1 四杆机构运动学分析1.1 机构运动分析的任务、目的和方法曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。
对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。
还可以根据机构闭环矢量方程计算从动件的位移偏差。
上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。
机构运动分析的方法很多,主要有图解法和解析法。
当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。
而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。
1.2 机构的工作原理在平面四杆机构中,其具有曲柄的条件为:a.各杆的长度应满足杆长条件,即:最短杆长度+最长杆长度≤其余两杆长度之和。
b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。
三台设备测绘数据分别如下:第一组(2代一套)四杆机构L1=125.36mm,L2=73.4mm,L3=103.4mm,L4=103.52mm最短杆长度+最长杆长度(125.36+73.4) <其余两杆长度之和(103.4+103.52)最短杆为连架杆,四杆机构为曲柄摇杆机构图1-1 II-1型栏杆机机构测绘及其运动位置图第二组(2代二套)四杆机构L1=125.36mm,L2=50.1mm,L3=109.8mm,L4=72.85mm最短杆长度+最长杆长度(125.36+50.1) <其余两杆长度之和(109.8+72.85)最短杆为连架杆,四杆机构为曲柄摇杆机构图1-2 II-2型栏杆机机构测绘及其运动位置图第三组(3代)四杆机构L1=163.2mm,L2=64.25mm,L3=150mm,L4=90.1mm最短杆长度+最长杆长度(163.2+64.25) <其余两杆长度之和(150+90.1)最短杆为连架杆,四杆机构为曲柄摇杆机构图1-3 III型栏杆机机构测绘及其运动位置图在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参照下图,设计一万向连接传动机构,结构、尺寸 均自己设计确定,并装配、运动仿真、分析。
添加第2销钉); “应用”——“机构”,进入仿真界面 二、设置运动副(凸轮副、齿轮副) 三、设置电机
1、电机位置(类型):拾取“销钉运动副”; 2、电机大小(轮廓):速度、A为360 deg/sec。 四、调整:手形“拖动”图标,进行调整,“快照”确定当 前位置。
五、分析
1、类型:运动学; 2、终止时间:1--3 sec; 3、桢频:100-200; 4、若有“快照” ,点“快照”,“运行”。 六、回放
(装配模块)
(机构运动 仿真模块)
(铰链)
(移动副) (垫片)
1、刚性:采用普 通装配的方式进行 约束;(自动)
2、焊接:采用坐 标系进行约束; (缺省)
SVA
四连杆机构
一、装配 1、机架(左):缺省方式; 2、机架(右):前面、底面对齐,右面相距120; 3、曲柄、连杆:销钉; 4、摇杆:两个销钉(在“放置”页左下点“新设置”,
1、播放; 2、生成视频:在“播放”的“动画”窗口内,点“捕获”,输入“路 径”、文件名。
七、分析结果(测量):分析测量 1、新建“测量点”:测量点1(摇杆的位置)、测量点2(摇杆的速度)、 测量点3(摇杆的加速度); 2、按ctrl选多个测量点、复选“分别绘制”、选“结果集”中仿真分析名 称;
3、点左上角 “绘制”图标,再点“文件”——“输出EXCEL文件”。 八、绘制曲线