相似三角形-中考数学一轮复习导学案
人教版数学九年级中考复习课《相似三角形》教学设计
5.写作任务:结合本节课所学内容,撰写一篇关于相似三角形在实际生活中的应用的小论文,要求不少于500字,以提高学生的写作能力和几何应用意识。
注意事项:
1.作业布置要注意分层设计,使不同层次的学生都能得到适当的锻炼和提高;
2.鼓励学生独立思考,遇到问题时积极寻求解决方法,培养自主学习能力;
2.逻辑思维能力:运用相似三角形的性质和判定方法解决具体问题,培养学生的逻辑思维;
3.团队合作能力:分组讨论,共同探究相似三角形的性质和应用,培养学生的团队协作精神;
4.解决问题能力:将相似三角形的知识应用于解决实际生活中的问题,提高学生解决问题的能力。
(三)情感态度与价值观
1.积极主动:鼓励学生积极参与课堂讨论,主动探究相似三角形的性质和应用;
c.相似三角形在实际问题中如何应用?
2.汇报交流:各小组汇报讨论成果,分享解题思路和方法,教师进行点评和指导。
(四)课堂练习
1.设计具有代表性的习题,让学生当堂完成,巩固所学知识。
2.练习题包括:
a.判断两个三角形是否相似,并说明理由;
b.利用相似三角形的知识解决实际问题;
c.证明相似三角形的性质。
3.相似三角形的判定方法:讲解AA、SAS、SSS等判定方法,结合实例进行解释,使学生理解并掌握。
4.相似三角形的应用:介绍相似三角形在实际问题中的应用,如测量物体的高度、计算图形的面积等。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对以下问题进行讨论:
a.相似三角形的性质有哪些?
b.如何判断两个三角形是否相似?
(2)终结性评价:通过课后作业、测试等形式,评价学生对相似三角形知识的掌握程度;
相似三角形-备战2022年中考数学一轮复习考点(浙江专用)(解析版)
考点14 相似三角形【命题趋势】相似三角形是中考数学中非常重要的一个考点,它不仅可以作为简单考点单独考察,还经常作为压轴题的重要解题方法,和其他如函数、特殊四边形、圆等问题一起考察。
而且,在很多压轴题中,虽然题面上没有明确考察相似三角形的判定或性质,但是经常通过相似三角形的判定以及性质来得到角相等或者边长间的关系,也是动点问题中得到函数关系式的重要手段。
需要考生在复习的时候给予加倍的重视! 【中考考查重点】 一、比例线段 二、相似三角形的性质 三、相似三角形的判定 四、相似三角形的基本图形考向一:比例线段一.比例的性质1.基本性质:bc ad d c b a =⇔=::;2.比例中项:b a c b c c a ⋅=⇔=2::,此时,c 为a 、b 的比例中项; 二.比例线段1.比例线段:在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段简称比例线段;2.黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB . 3.平行线分线段成比例的基本性质: 如图:AB ∥CD ∥EF ⇔DE BD CF AC =【同步练习】 1.已知=,则的值为( ) A .B .C .D .【分析】直接利用同一未知数表示出a,b的值,进而代入化简即可.【解答】解:∵=,∴设a=2x,b=5x,∴==.故选:C.2.线段AB的长为2,点C是线段AB的黄金分割点,则线段AC的长可能是()A.+1B.2﹣C.3﹣D.﹣2【分析】根据黄金分割点的定义,知AC可能是较长线段,也可能是较短线段,分别求出即可.【解答】解:∵点C是线段AB的黄金分割点,AB=2,∴AC=AB=×2=﹣1,或AC=2﹣(﹣1)=3﹣,故选:C.3.如图,直线a,b,c截直线e和f,a∥b∥c,,则下列结论中,正确的是()A.B.C.D.【分析】根据平行线分线段成比例定理即可解答本题.【解答】解:∵a∥b∥c,,∴=,∴,,,故选项A正确,符合题意,选项B、D不正确,不符合题意;连接AF,交BE于H,∵BE∥CF,∴△ABH∽△ACF,∴,,∴选项C不正确,不符合题意;故选:A.4.若==(a≠c),则=.【分析】根据等比的性质即可求解.【解答】解:∵==(a≠c),∴=.故答案为:.5.若(x、y、z均不为0),则=.【分析】设比值为k,然后用k表示出x、y、z,再代入比例式进行计算即可得解.【解答】解:设===k(k≠0),则x=6k,y=4k,z=3k,所以,==3.故答案为:3.6.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是.【分析】根据平行线分线段成比例定理的推论得出=,将AE=6代入,求出AC=14,那么EC=AC﹣AE=8.【解答】解:∵DE∥BC,∴=,∵AE=6,∴=,解得:AC =14,∴EC =AC ﹣AE =14﹣6=8. 故答案是:8.考向二:相似三角形的性质相似三角形的性质相似 三角 形的 性质相似三角形的对应角相等,对应边成比例 相似三角形的周长之比等于相似比 相似三角形的面积之比等于相似比的平方相似三角形的对应“三线”(高线、中线、角平分线)之比等于相似比【方法提炼】【同步练习】1.如图,已知△ABE ∽△CDE ,AD 、BC 相交于点E ,△ABE 与△CDE 的周长之比是,若AE =2、BE =1,则BC 的长为( )A .3B .4C .5D .6【分析】首先利用周长之比求得相似比,然后根据AE 的长求得CE 的长,从而求得BC 的长. 【解答】解:∵△ABE ∽△CDE ,△ABE 与△CDE 的周长之比是, ∴AE :CE =2:5, ∵AE =2, ∴CE =5,相似三角形性质的主要应用方向: ➢ 求角的度数 ➢ 求或证明比值关系 ➢ 证线段等积式 ➢ 求面积或面积比相似三角形的对应边成比例是求线段长度的重要方法,也是动点问题中得到函数关系式的重要手段∵BE=1,∴BC=BE+EC=1+5=6,故选:D.2.如图,已知△ABC∽△DEF,若∠A=35°,∠B=65°,则∠F的度数是()A.30°B.35°C.80°D.100°【分析】先根据三角形内角和定理求出∠C的度数,再根据相似三角形对应角相等即可解决问题.【解答】解:∵△ABC中,∠A=35°,∠B=65°,∴∠C=180°﹣∠A﹣∠B=180°﹣35°﹣65°=80°,又∵△ABC∽△DEF,∴∠F=∠C=80°,故选:C.3.如图,在正方形网格中:△ABC、△EDF的顶点都在正方形网格的格点上,△ABC∽△EDF,则∠ABC+∠ACB的度数为()A.30°B.45°C.60°D.75°【分析】利用相似三角形的性质,证明∠BAC=135°,可得结论.【解答】解:∵△ABC∽△EDF,∴∠BAC=∠DEF=135°,∴∠ABC+∠ACB=180°﹣135°=45°,故选:B.4.如图,△ABC∽△A'B′C′,下列说法正确的是()A.∠B=∠C′B.S△ABC=2S△A′B'C'C.AC=4A'C'D.A'B′=6【分析】根据相似三角形的性质解答即可.【解答】解:∵△ABC∽△A'B′C′,AB=12,BC=2a,B'C'=a,∴∠B=∠B',S△ABC:S△ABC==4,AC=2A'C',A'B'=AB==6.故A、B、C错误,D正确;故选:D.5.若D为△ABC中AB边上一点,且DE∥BC交AC于E,AB=6,BC=8,AC=10,若△ADE与△ABC 的相似比为,则AE =.【分析】先根据DE∥BC得出△ADE∽△ABC,再根据AC=10以及△ADE与△ABC的相似比为,即可求出AE.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵△ADE与△ABC的相似比为,∴=,∵AC=10,∴AE=5.故答案为:5.考向三:相似三角形的判定一.相似三角形的判定方法:判定方法1·平行∵DE∥BC∴△ABC∽△ADE判定方法2·“AA”∵∠A=∠A`,∠C=∠C` ∴△ABC∽△A,B,C,二.判定三角形相似的思路:(1)有平行截线——用平行线的性质,找等角 (2)有一对等角,找⎩⎨⎧该角的两边对应成比例另一对等角 (3)有两边对应成比例,找夹角相等(4)直角三角形,找⎩⎨⎧例直角边、斜边对应成比一对锐角相等 (5)等腰三角形,找⎩⎨⎧底边和腰长对应成比例一对底角相等 【同步练习】1.如图,在△ABC 纸片中,∠A =76°,∠B =34°.将△ABC 纸片沿某处剪开,下列四种方式中剪下的阴影三角形与原三角形相似的是( ) A .①②B .②④C .①③D .③④【分析】根据相似三角形的判定定理逐个判断即可.【解答】解:图①中,∠B =∠B ,∠A =∠BDE =76°,所以△BDE 和△ABC 相似;图②中,∠B =∠B ,不符合相似三角形的判定,不能推出△BCD 和△ABC 相似;判定方法3·“SAS ”∵````C B BCB A AB =,∠B=∠B ∴△ABC ∽△A ,B ,C , 判定方法4·“SSS ”∵``````C A ACC B BC B A AB == ∴△ABC ∽△A ,B ,C ,图③中,∠C=∠C,∠CED=∠B,所以△CDE和△CAB相似;图④中,∠C=∠C,不符合相似三角形的判定,不能推出△CDE和△ABC相似;所以阴影三角形与原三角形相似的有①③,故选:C.2.下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.=D.AB2=AD•AC【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、不能判定△ADB∽△ABC,故此选项符合题意;D、∵AB2=AD•AC,∴,∠A=∠A,△ABC∽△ADB,故此选项不合题意.故选:C.3.如图,在下列四个条件:①∠B=∠C,②∠ADB=∠AEC,③AD:AC=AE:AB,④PE:PD=PB:PC 中,随机抽取一个能使△BPE∽△CPD的概率是()A.0.25B.0.5C.0.75D.1【分析】根据相似三角形的判定方法判断即可.【解答】解:由题意得:∠DPC=∠EPB,①∠B=∠C,根据两角相等的两个三角形相似可得:△BPE∽△CPD,②∵∠ADB=∠AEC,∴∠PDC =∠PEB ,所以,根据两角相等的两个三角形相似可得:△BPE ∽△CPD , ③∵AD :AC =AE :AB ,∠A =∠A , ∴△ADB ∽△AEC , ∴∠B =∠C ,所以,根据两角相等的两个三角形相似可得:△BPE ∽△CPD ,④PE :PD =PB :PC ,根据两边成比例且夹角相等的两个三角形相似可得:△BPE ∽△CPD , ∴在上列四个条件中,随机抽取一个能使△BPE ∽△CPD 的概率是:1, 故选:D .4.如图,在△ABC 中,AB =12,BC =15,D 为BC 上一点,且BD =BC ,在AB 边上取一点E ,使以B ,D ,E 为顶点的三角形与△ABC 相似,则BE= .【分析】根据相似三角形对应边成比例得出或,再代值计算即可.【解答】解:∵△BDE ∽△BCA 或△BDE ∽△BAC , ∴或,∵BD =BC ,BC =15, ∴BD =5, ∵AB =12, ∴或, 解得:BE =4或. 故答案为:4或.考向四:相似三角形的基本图形 一、A 字图及其变型“斜A 型”当∠ADE=∠ACB 时 △ADE ∽△ACB 性质:BCDEAB AE AC AD ==当DE ∥BC 时 △ADE ∽△ABC 性质:BCDEACAE ABAD ==①当∠A=∠C 时 △AJB ∽△CJD 性质:JDJBJC JA CDAB ==变型☆:斜A 型在圆中的应用: 如图可得:△PAB ∽△PCD二、8字图及其变型“蝴蝶型”变型三、一般母子型:联系应用:切割线定理:如图,PB 为圆O 切线,B 为切点,则:△PAB ∽△PBC得:四、一线三等角:同侧型(通常以等腰三角形或者等边三角形为背景)当AB ∥CD 时 △AOB ∽△DOC性质:OCOBOD OA CD AB ==当∠ABD=∠ACB 时 △ABD ∽△ACB 性质:ACAD AB •=2 PC PA PB •=2其中: ∠A 是公共角 AB 是公共边 BD 与BC 是对应边异侧型五、手拉手相似模型:模型名称几何模型图形特点具有性质相似型手拉手△ABC∽△ADEA、D、E逆时针A、B、C逆时针连结BD、CE①△ABD∽△ACE②△AOB∽△HOC③旋转角相等④A、B、C、H四点共圆“反向”相似型手拉手△ABC∽△ADEA、D、E顺时针A、B、C逆时针A、D、E`逆时针作△ADE关于AD对称的△ADE`性质同上①②③【同步练习】1.如图,已知,DE∥BC,AD:DB=1:2,那么下列结论中,正确的是()A.DE:BC=1:2B.AE:AC=1:3C.AD:AE=1:2D.S△ADE:S四边形BDEC=1:4【分析】利用平行线分线段成比例定理,比例的性质和相似三角形的性质对每个选项进行逐一判断即可得出结论.【解答】解:∵AD:DB=1:2,∴.∵DE∥BC,∴△ADE∽△ABC.∴.∴A选项的结论错误;∵DE∥BC,∴△ADE∽△ABC.∴.∴B选项的结论正确;∵DE∥BC,∴△ADE∽△ABC.∴.∴C选项的结论错误;∵DE∥BC,∴△ADE∽△ABC.∴.设S△ADE=k,则S△ABC=9k,∴S四边形BDEC=S△ABC﹣S△ADE=8k,∴.∴D选项的结论错误.综上所述,正确的结论是B,故选:B.2.如图,在矩形ABCD中,E,F,G分别在AB,BC,CD上,DE⊥EF,EF⊥FG,BE=3,BF=2,FC=6,则DG的长是()A.4B.C.D.5【分析】由矩形的性质可求出∠A=∠B=∠C=90°,AB=CD,证明△EFB∽△FGC,由相似三角形的性质得出,求出CG=4,同理可得出△DAE∽△EBF,由相似三角形的性质求出AE的长,则可求出答案.【解答】解:∵EF⊥FG,∴∠EFB+∠GFC=90°,∵四边形ABCD为矩形,∴∠A=∠B=∠C=90°,AB=CD,∴∠GFC+∠FGC=90°,∴∠EFB=∠FGC,∴△EFB∽△FGC,∴,∵BE=3,BF=2,FC=6,∴,∴CG=4,同理可得△DAE∽△EBF,∴,∴,∴AE=,∴BA=AE+BE=+3=,∴DG=CD﹣CG=﹣4=.故选:B.3.如图,将△ABC绕点C顺时针旋转α得到△DEC,此时点D落在边AB上,且DE垂直平分BC,则的值是()A.B.C.D.【分析】根据旋转的性质和线段垂直平分线的性质证明△DCF∽△DEC,对应边成比例即可解决问题.【解答】解:如图,设DE与BC交于点F,由旋转可知:CA=CD,AB=DE,BC=EC,∠B=∠E,∵DE垂直平分BC,∴DF⊥BC,DC=DB,CF=BF=BC=EC,∴∠DCB=∠B=∠E,∵∠DCB+∠FDC=90°,∴∠E+∠FDC=90°,∴∠DCE=90°,∴△DCF∽△DEC,∴==,∴=.故选:B.4.如图,已知在△ABC中,点D在边AB上,那么下列条件中不能判定△ABC∼△ACD的是()A.B.AC2=AD•AB C.∠B=∠ACD D.∠ADC=∠ACB【分析】△ABC和△ACD有公共角,然后根据相似三角形的判定方法对各选项进行判断.【解答】解:∵∠DAC=∠CAB,∴当∠ACD=∠B或∠ADC=∠ACB,可根据有两组角对应相等的两个三角形相似可判断△ACD∽△ABC;当,即AC2=AD•AB时,可根据两组对应边的比相等且夹角对应相等的两个三角形相似可判断△ACD∽△ABC.故选:A.5.如图,AB∥CD,AD与BC相交于点E,若AE=3,ED=5,则的值为.【分析】利用平行线的性质判定△ABE∽△DCE,利用相似三角形的性质可得结论.【解答】解:∵AB∥CD,∴△ABE∽△DCE.∴.∵AE=3,ED=5,∴=.故答案为:.1.已知,则的值是()A.B.C.D.【分析】设=k(k≠0),得出a=13k,b=5k,再代入要求的式子进行计算即可求出答案.【解答】解:设=k(k≠0),则a=13k,b=5k,∴==;故选:D.2.如图,在△ABC中,∠ABC=3∠A,AC=6,BC=4,所以AB长为()A.2B.C.D.4【分析】将∠ABC三等分,与△ABC外接圆相交,交点分别为:E与F,利用托勒密定理列出方程组,求解即可解决问题.【解答】解:将∠ABC三等分,与△ABC外接圆相交,交点分别为:E与F,如图所示:圆上依次为ABCEF,记BE=m,AB=b,则利用托勒密定理有:,可得:,即,∴b=,故选:B.3.如图,在平行四边形ABCD中,E是AB的中点,F是AD的中点,FE交AC于O点,交CB的延长线于G点,那么S△AOF:S△COG=()A.1:4B.1:9C.1:16D.1:25【分析】根据平行四边形的性质求出AD=BC,AD∥BC,推出△AFE∽△BGE,△AFO∽△CGO,再根据相似三角形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵E为AB的中点,F为AD的中点,∴AE=BE,AF=AD=BC,∵AD∥BC,∴△AFE∽△BGE,∴,∵AE=BE,∴AF=BG=BC,∴=∵AD∥BC,∴△AFO∽△CGO,∴=()2=,即S△AOF:S△COG=1:9,故选:B.4.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.B.C.D.【分析】根据平行线分线段成比例性质进行解答便可.【解答】解:∵EF∥BC,∴,∵EG∥AB,∴,∴,故选:A.5.如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△P AB 的面积分别为S,S1,S2.若S=3,则S1+S2的值为()A.24B.12C.6D.3【分析】过P作PQ平行于DC,由DC与AB平行,得到PQ平行于AB,可得出四边形PQCD与ABQP 都为平行四边形,进而确定出△PDC与△PCQ面积相等,△PQB与△ABP面积相等,再由EF为△BPC 的中位线,利用中位线定理得到EF为BC的一半,且EF平行于BC,得出△PEF与△PBC相似,相似比为1:2,面积之比为1:4,求出△PBC的面积,而△PBC面积=△CPQ面积+△PBQ面积,即为△PDC面积+△P AB面积,即为平行四边形面积的一半,即可求出所求的面积.【解答】解:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=12.故选:B.6.如图,在平行四边形ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=4,则S△ADF的值为()A.6B.10C.15D.【分析】因为四边形ABCD是平行边形,所以AD∥BC,则△AEF∽△ABC,得==,根据相似三角形面积的比等于相似比的平方求出△ABC的面积为25,而△CDA≌△ABC,则△CDA的面积为25,根据等高三角形面积的比等于底的比即可求出△ADF的面积.【解答】解:如图,∵四边形ABCD是平行边形,∴AD∥BC,∴△AEF∽△ABC,∵3AE=2EB,∴=,∴==,∴===,∵S△AEF=4,∴S△ABC===25,∴CD=AB,AD=BC,AC=CA,∴△CDA≌△ABC(SSS),∴S△CDA=S△ABC=25,∴S△ADF=S△CDA=×25=10,∴S△ADF的值为10,故选:B.7.如图,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,那么=.【分析】由平行四边形的对边相等可求得BC=AD,BC∥AD,易证得△BEF∽△DAF,则,根据比例的性质即可得解.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;∵=,∵AD∥BC,∴△BEF∽△DAF,∴,∴,∴==.故答案为:.8.在矩形ABCD中,AB=6,AD=8,E是BC的中点,连接AE,过点D作DF⊥AE于点F,连接CF、AC.(1)线段DF的长为;(2)若AC交DF于点M,则=.【分析】(1)利用三角形面积相等,列出等式,求解即可;(2)延长DF交CB的延长线于K,利用相似三角形的性质求出KE,再利用平行线分线段成比例定理求解即可.【解答】解:(1)根据题意,画出下图:∵AB=6,AD=8,BE==4,∴AE=,∴S△ADE==,S△ADE==24,∴DF==.(2)若AC交DF于点M,延长DF交BC延长线于点K,如图所示:∵∠KEF=∠AEB,∠EFK=∠ABE=90°,∴△KEF∽△AEB,∴,∴,∴KE=5,∴CK=KE+EC=9,∵AD∥CK,∴=.9.如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:BD•AD=DE•AC.(2)若AB=13,BC=10,求线段DE的长.(3)在(2)的条件下,求cos∠BDE的值.【分析】(1)证明∠B=∠C,∠DEB=∠ADC=90°,可证明△BDE∽△CAD即可解决问题;(2)利用面积法:•AD•BD=•AB•DE求解即可;(3)可得出∠BDE=∠BAD,则cos∠BDE=cos∠BAD=.【解答】证明:(1)∵AB=AC,BD=CD,∴AD⊥BC,∠B=∠C,∵DE⊥AB,∴∠DEB=∠ADC,∴△BDE∽△CAD.∴,∴BA•AD=DE•CA;(2)∵AB=AC,BD=CD,∴AD⊥BC,在Rt△ADB中,AD===12,∵•AD•BD=•AB•DE,∴DE=.(3)∵∠ADB=∠AED=90°,∴∠BDE=∠BAD,∴cos∠BDE=cos∠BAD=.10.已知:四边形ABCD中,AC=AB=20,点E为BC边上一点,BE≥CE,且DE=DC,∠AED=∠B,AC、DE相交于点F,cos∠B=.(1)求证:△ABE∽△ECF;(2)若BE=18,求EF的长;(3)若∠DAE=90°,求CE的长.【分析】(1)正确作出辅助线,找到对等关系,即可证明△ABE∽△ECF;(2)找到包含有要求解的边长有关系的三角形,利用勾股定理,求出AE的边长,再利用相似三角形,找到对应关系,即可求出EF的长;(3)在直角三角形内,根据给定的余弦值,找到对应边长,即可求出CE的长.【解答】(1)证明:如图所示:过点A作AH⊥BC于H,∵AB=AC=20,∴∠AED=∠B,∴∠1+∠2=180°﹣∠AED,∵∠3+∠2=180°﹣∠B,∴∠1=∠3,∴△ABE∽△ECF;(2)解:由(1)知,过点A作AH⊥BC于H,∵AB=20,cos∠B=,∴BH=16,∵AB=AC,∴BH=CH=16,∴BC=32,∵BE=18,∴EC=14,在△ABH中,AH=,HE=BE﹣BH=18﹣16=2,∴AE=,∵△ABE∽△ECF,∴,即,∴EF=.(3)解:若∠DAE=90°,则∠BAE=90°,∵AB=20,cos∠B=,∴BE=25,∴CE=BC﹣BE=32﹣25=7.1.(2021·浙江衢州)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE与地面平行,支撑杆AD,BC可绕连接点O转动,且OA=OB,椅面底部有一根可以绕点H转动的连杆HD,点H是CD的中点,F A,EB均与地面垂直,测得F A=54cm,EB=45cm,AB=48cm.(1)椅面CE的长度为cm.(2)如图3,椅子折叠时,连杆HD绕着支点H带动支撑杆AD,BC转动合拢,椅面和连杆夹角∠CHD 的度数达到最小值30°时,A,B两点间的距离为cm(结果精确到0.1cm).(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)【分析】(1)由平行线的性质可得∠ECB=∠ABF,由锐角三角函数可得,即可求解;(2)如图2,延长AD,BE交于点N,由“ASA”可证△ABF≌△BAN,可得BN=AF,可求NE的长,由锐角三角函数可求DE的长,即可求DH的长,如图3,连接CD,过点H作HP⊥CD于P,由锐角三角函数和等腰三角形的性质,可求DC的长,通过相似三角形的性质可求解.【解答】解:(1)∵CE∥AB,∴∠ECB=∠ABF,∴tan∠ECB=tan∠ABF,∴,∴,∴CE=40(cm),故答案为:40;(2)如图2,延长AD,BE交于点N,∵OA=OB,∴∠OAB=∠OBA,在△ABF和△BAN中,,∴△ABF≌△BAN(ASA),∴BN=AF=54(cm),∴EN=9(cm),∵tan N=,∴=,∴DE=8(cm),∴CD=32(cm),∵点H是CD的中点,∴CH=DH=16(cm),∵CD∥AB,∴△AOB∽△DOC,∴===,如图3,连接CD,过点H作HP⊥CD于P,∵HC=HD,HP⊥CD,∴∠PHD=∠CHD=15°,CP=DP,∵sin∠DHP==sin15°≈0.26,∴PD≈16×0.26=4.16(cm),∴CD=2PD=8.32(cm),∵CD∥AB,∴△AOB∽△DOC,∴,∴,∴AB=12.48≈12.5(cm),故答案为:12.5.2.(2021·浙江宁波)【证明体验】(1)如图1,AD为△ABC的角平分线,∠ADC=60°,点E在AB上,AE=AC.求证:DE平分∠ADB.【思考探究】(2)如图2,在(1)的条件下,F为AB上一点,连结FC交AD于点G.若FB=FC,DG=2,CD=3,求BD的长.【拓展延伸】(3)如图3,在四边形ABCD中,对角线AC平分∠BAD,∠BCA=2∠DCA,点E在AC上,∠EDC=∠ABC.若BC=5,CD=2,AD=2AE,求AC的长.【分析】(1)由△EAD≌△CAD得∠ADE=∠ADC=60°,因而∠BDE=60°,所以DE平分∠ADB;(2)先证明△BDE∽△CDG,其中CD=ED,再由相似三角形的对应边成比例求出BD的长;(3)根据角平分线的特点,在AB上截取AF=AD,连结CF,构造全等三角形和相似三角形,由相似三角形的性质求出AC的长.【解答】(1)证明:如图1,∵AD平分∠BAC,∴∠EAD=∠CAD,∵AE=AC,AD=AD,∴△EAD≌△CAD(SAS),∴∠ADE=∠ADC=60°,∵∠BDE=180°﹣∠ADE﹣∠ADC=180°﹣60°﹣60°=60°,∴∠BDE=∠ADE,∴DE平分∠ADB.(2)如图2,∵FB=FC,∴∠EBD=∠GCD;∵∠BDE=∠CDG=60°,∴△BDE∽△CDG,∴;∵△EAD≌△CAD,∴DE=CD=3,∵DG=2,∴BD===.(3)如图3,在AB上取一点F,使AF=AD,连结CF.∵AC平分∠BAD,∴∠F AC=∠DAC,∵AC=AC,∴△AFC≌△ADC(SAS),∴CF=CD,∠FCA=∠DCA,∠AFC=∠ADC,∵∠FCA+∠BCF=∠BCA=2∠DCA,∴∠DCA=∠BCF,即∠DCE=∠BCF,∵∠EDC=∠ABC,即∠EDC=∠FBC,∴△DCE∽△BCF,∴,∠DEC=∠BFC,∵BC=5,CF=CD=2,∴CE===4;∵∠AED+∠DEC=180°,∠AFC+∠BFC=180°,∴∠AED=∠AFC=∠ADC,∵∠EAD=∠DAC(公共角),∴△EAD∽△DAC,∴=,∴AC=2AD,AD=2AE,∴AC=4AE=CE=×4=.3.(2021·浙江杭州)如图,锐角三角形ABC内接于⊙O,∠BAC的平分线AG交⊙O于点G,交BC边于点F,连接BG.(1)求证:△ABG∽△AFC.(2)已知AB=a,AC=AF=b,求线段FG的长(用含a,b的代数式表示).(3)已知点E在线段AF上(不与点A,点F重合),点D在线段AE上(不与点A,点E重合),∠ABD =∠CBE,求证:BG2=GE•GD.【分析】(1)根据∠BAC的平分线AG交⊙O于点G,知∠BAC=∠F AC,由圆周角定理知∠G=∠C,即可证△ABG∽△AFC;(2)由(1)知=,由AC=AF得AG=AB,即可计算FG的长度;(3)先证△DGB∽△BGE,得出线段比例关系,即可得证BG2=GE•GD.【解答】(1)证明:∵AG平分∠BAC,∴∠BAG=∠F AC,又∵∠G=∠C,∴△ABG∽△AFC;(2)解:由(1)知,△ABG∽△AFC,∴=,∵AC=AF=b,∴AB=AG=a,∴FG=AG﹣AF=a﹣b;(3)证明:∵∠CAG=∠CBG,∠BAG=∠CAG,∴∠BAG=∠CBG,∵∠ABD=∠CBE,∴∠BDG=∠BAG+∠ABD=∠CBG+∠CBE=∠EBG,又∵∠DGB=∠BGE,∴△DGB∽△BGE,∴=,∴BG2=GE•GD.4.(2021·浙江金华)在平面直角坐标系中,点A的坐标为(﹣,0),点B在直线l:y=x上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.①若BA=BO,求证:CD=CO.②若∠CBO=45°,求四边形ABOC的面积.(2)是否存在点B,使得以A,B,C为顶点的三角形与△BCO相似?若存在,求OB的长;若不存在,请说明理由.【分析】(1)①由BC⊥AB,CO⊥BO,可得∠BAD+∠ADB=∠COD+∠DOB=90°,而根据已知有∠BAD=∠DOB,故∠ADB=∠COD,从而可得∠COD=∠CDO,CD=CO;②过A作AM⊥OB于M,过M作MN⊥y轴于N,设M(m,m),可得tan∠OMN=tan∠AOM=,即=,设AM=3n,则OM=8n,Rt△AOM中,AM2+OM2=OA2,可求出AM=3,OM=8,由∠CBO=45°可知△BOC是等腰直角三角形,△ABM是等腰直角三角形,从而有AM=BM=3,BO=CO =OM﹣BM=5,AB=AM=3,BC=BO=5,即可求出S四边形ABOC=S△ABC+S△BOC=;(2)(一)过A作AM⊥OB于M,当B在线段OM或OM延长线上时,设OB=x,则BM=|8﹣x|,AB =,由△AMB∽△BOC,=,即=,得OC=,BC==,以A,B,C为顶点的三角形与△BCO相似,分两种情况:①若=,OB=4;②若=,OB =4+或OB=4﹣或OB=9;(二)当B在线段MO延长线上时,设OB=x,则BM=8+x,AB=,由△AMB∽△BOC,=,即=,得OC=•(8+x),以A,B,C为顶点的三角形与△BCO相似,需满足=,即=,可得OB=1.【解答】(1)①证明:∵BC⊥AB,CO⊥BO,∴∠ABC=∠BOC=90°,∴∠BAD+∠ADB=∠COD+∠DOB=90°,∵BA=BO,∴∠BAD=∠DOB,∴∠ADB=∠COD,∵∠ADB=∠CDO,∴∠COD=∠CDO,∴CD=CO;②解:过A作AM⊥OB于M,过M作MN⊥y轴于N,如图:∵M在直线l:y=x上,设M(m,m),∴MN=|m|=﹣m,ON=|m|=﹣m,Rt△MON中,tan∠OMN==,而OA∥MN,∴∠AOM=∠OMN,∴tan∠AOM=,即=,设AM=3n,则OM=8n,Rt△AOM中,AM2+OM2=OA2,又A的坐标为(﹣,0),∴OA=,∴(3n)2+(8n)2=()2,解得n=1(n=﹣1舍去),∴AM=3,OM=8,∵∠CBO=45°,CO⊥BO,∴△BOC是等腰直角三角形,∵BC⊥AB,∠CBO=45°,∴∠ABM=45°,∵AM⊥OB,∴△ABM是等腰直角三角形,∴AM=BM=3,BO=CO=OM﹣BM=5,∴等腰直角三角形△ABM中,AB=AM=3,等腰直角三角形△BOC中,BC=BO=5,∴S△ABC=AB•BC=15,S△BOC=BO•CO=,∴S四边形ABOC=S△ABC+S△BOC=;(2)解:存在点B,使得以A,B,C为顶点的三角形与△BCO相似,理由如下:(一)过A作AM⊥OB于M,当B在线段OM或OM延长线上时,如图:由(1)②可知:AM=3,OM=8,设OB=x,则BM=|8﹣x|,AB=,∵CO⊥BO,AM⊥BO,AB⊥BC,∴∠AMB=∠BOC=90°,∠ABM=90°﹣∠OBC=∠BCO,∴△AMB∽△BOC,∴=,即=,∴OC=,Rt△BOC中,BC==,∵∠ABC=∠BOC=90°,∴以A,B,C为顶点的三角形与△BCO相似,分两种情况:①若=,则=,解得x=4,∴此时OB=4;②若=,则=,解得x1=4+,x2=4﹣,x3=9,x4=﹣1(舍去),∴OB=4+或OB=4﹣或OB=9;(二)当B在线段MO延长线上时,如图:由(1)②可知:AM=3,OM=8,设OB=x,则BM=8+x,AB=,∵CO⊥BO,AM⊥BO,AB⊥BC,∴∠AMB=∠BOC=90°,∠ABM=90°﹣∠OBC=∠BCO,∴△AMB∽△BOC,∴=,即=,∴OC=•(8+x),Rt△BOC中,BC==•,∵∠ABC=∠BOC=90°,∴以A,B,C为顶点的三角形与△BCO相似,需满足=,即=,解得x1=﹣9(舍去),x2=1,∴OB=1,综上所述,以A,B,C为顶点的三角形与△BCO相似,则OB的长度为:4或4+或4﹣或9或1;1.(2021•瓯海区模拟)若=,则的值是()A.3B.C.D.2【分析】根据比例的性质求出b=2a,再代入求出答案即可.【解答】解:∵=,∴b=2a,∴===,故选:C.2.(2021•下城区校级四模)在比例尺为1:10000的地图上,相距4cm的A、B两地的实际距离是()A.400m B.400dm C.400cm D.400km【分析】设AB的实际距离为xcm,根据比例尺的定义得到4:x=1:10000,利用比例的性质求得x的值,注意单位统一.【解答】解:设AB的实际距离为xcm,∵比例尺为1:10000,∴4:x=1:10000,∴x=40000cm=400m.故选:A.3.(2021•温岭市一模)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,则BC:CE=()A.3:5B.1:3C.5:3D.2:3【分析】直接根据平行线分线段成比例定理求解.【解答】解:∵AB∥CD∥EF,∴===.故选:A.4.(2021•拱墅区二模)如图,在正方形ABCD中,E,F分别是BC、AB上一点,且AF=BE,AE与DF 交于点G,连接CG.若CG=BC,则AF:FB的比为()A.1:1B.1:2C.1:3D.1:4【分析】作CH⊥DF于点H,证明△AGD≌△DHC,可得AG=DH=GH,tan∠ADG==.由此可解决此问题.【解答】解:作CH⊥DF于点H,如图所示.在△ADF和△BAE中,,∴△ADF≌△BAE(SAS).∴∠ADF=∠BAE,又∠BAE+∠GAD=90°,∴∠ADF+∠GAD=90°,即∠AGD=90°.由题意可得∠ADG+∠CDG=90°,∠HDC+∠CDG=90°,.∴∠ADG=∠HDC.在△AGD和△DHC中,,∴△AGD≌△DHC(AAS).∴DH=AG.又CG=BC,BC=DC,∴CG=DC.由等腰三角形三线合一的性质可得GH=DH,∴AG=DH=GH.∴tan∠ADG=.又tan∠ADF==,∴AF=AB.即F为AB中点,∴AF:FB=1:1.故选:A.5.(2021•宁波模拟)如图,在△ABC中,DE∥AB,且=2,则的值为()A.B.C.2D.3【分析】根据平行线分线段成比例定理定理列出比例式,计算即可.【解答】解:∵=2,∴=,∵DE∥AB,∴==,故选:B.6.(2021•丽水模拟)如图,已知△ABC∽△BDC,其中AC=4,CD=2,则BC=()A.2B.C.D.4【分析】直接利用相似三角形的性质得出BC2=AC•CD,进而得出答案.【解答】解:∵△ABC∽△BDC,∴=,∵AC=4,CD=2,∴BC2=AC•CD=4×2=8,∴BC=2.故选:B.7.(2021•宁波模拟)如图,△ABC的两条中线BE,CD交于点O,则下列结论不正确的是()A.=B.=C.△ADE∽△ABC D.S△DOE:S△BOC=1:2【分析】根据三角形中位线定理得到DE=BC,DE∥BC,根据相似三角形的性质进行计算,判断即可.【解答】解:∵AD=DB,AE=EC,∴DE=BC,DE∥BC,∴=,A选项结论正确,不符合题意;∵DE∥BC,∴=,B选项结论正确,不符合题意;∵DE∥BC,∴△ADE∽△ABC,C选项结论正确,不符合题意;∵DE∥BC,∴△DOE∽△COB,∴S△DOE:S△COB=1:4,D选项结论错误,符合题意;故选:D.8.(2021•西湖区校级二模)如图,正六边形ABCDEF外作正方形DEGH,连接AH交DE于点O,则等于()A.3B.C.2D.【分析】连接BD,如图所示:由正六边形和正方形的性质得:B、D、H三点共线,设正六边形的边长为a,则AB=BC=CD=DE=a,解直角三角形求出BD,再利用平行线分线段成比例定理解决问题即可.【解答】解:连接BD,如图所示:由正六边形和正方形的性质得:B、D、H三点共线,设正六边形的边长为a,则AB=BC=CD=DE=a,∵在△BCD中,BC=CD=a,∠BCD=120°,∴BD=a.∵OD∥AB,∴===,故选:B.9.(2021•拱墅区二模)黄金分割比符合人的视觉习惯,在人体躯干和身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618越给人以美感.张女士身高165cm,若她下半身的长度(脚底到肚脐的高度)与身高的比值是0.60,为尽可能达到匀称的效果,她应该选择约厘米的高跟鞋看起来更美.(结果保留整数)【分析】根据黄金分割定义:下半身长与全身的比等于0.618即可求解.【解答】解:根据已知条件可知:下半身长是165×0.6=99(cm),设需要穿的高跟鞋为ycm,则根据黄金分割定义,得=0.618,解得:y≈8,经检验y≈8是原方程的根,答:她应该选择大约8cm的高跟鞋.故答案为8.10.(2021•金东区校级模拟)如图,已知直角坐标系中四点A(﹣2,4)、C(2,﹣3),分别过A、C作AB、CD垂直于x轴于B、D.设P是x轴上的点,且P A、PB、AB所围成的三角形与PC、PD、CD所围成的三角形相似,请写出所有符合上述条件的点P的坐标是.【分析】需要分情况分析,当点P在AB左边,在AB与CD之间,在CD的右边,通过相似三角形的性质:相似三角形的对应边成比例即可求得.【解答】解:设OP=x(x>0),分三种情况:一、若点P在AB的左边,有两种可能:①此时△ABP∽△PDC,则PB:CD=AB:PD,则(x﹣2):3=4:(x+2),解得x=4,∴点P的坐标为(﹣4,0);②若△ABP∽△CDP,则AB:CD=PB:PD,则(﹣x﹣2):(2﹣x)=4:3,解得:x=14,与假设在B点左边矛盾,舍去.二、若点P在AB与CD之间,有两种可能:①若△ABP∽△CDP,则AB:CD=BP:PD,∴4:3=(x+2):(2﹣x),解得:x=,∴点P的坐标为(,0);②若△ABP∽△PDC,则AB:PD=BP:CD,∴4:(2﹣x)=(x+2):3,方程无解;三、若点P在CD的右边,有两种可能:①若△ABP∽△CDP,则AB:CD=BP:PD,∴4:3=(2+x):(x﹣2),∴x=14,∴点P的坐标为(14,0),②若△ABP∽△PDC,则AB:PD=BP:CD,∴4:(x﹣2)=(x+2):3,∴x=4,∴点P的坐标为(4,0);∴点P的坐标为(,0)、(14,0)、(4,0)、(﹣4,0).故答案为:(,0)、(14,0)、(4,0)、(﹣4,0).11.(2021•宁波模拟)如图,▱ABCD中,对角线AC与BD相交于点O,∠ABD=∠ACB,G是线段OD上一点,∠DGC﹣∠DCG=90°,tan∠DCG=,则的值为.【分析】由锐角三角函数可设GF=a,CF=2a,由“AAS”可证△GCE≌△GCF,可得CE=CF=2a,GF=EG=a,通过证明△GFD∽△CED,可求DC=a,DE=a,通过证明△DCO∽△ACD,可得,由勾股定理可求OE,即可求解.【解答】解:如图,过点C作CE⊥BD于E,过G作GF⊥CD于F,∵∠DGC=∠CEG+∠GCE=90°+∠GCE,∴∠DGC﹣∠GCE=90°,又∵∠DGC﹣∠DCG=90°,∴∠GCD=∠ECG,∵tan∠DCG==,∴设GF=a,CF=2a,在△GCE和GCF中,,∴△GCE≌△GCF(AAS),∴CE=CF=2a,GF=EG=a,∵∠GDF=∠EDC,∠GFD=∠CED=90°,∴△GFD∽△CED,∴,∴==,∴DF=a,DG=a,∴DC=a,DE=a,∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AO=CO,BO=DO,∴∠ABD=∠BDC,∠DAC=∠ACB,∵∠ABD=∠ACB,∴∠BDC=∠DAC,又∵∠ACD=∠DCO,∴△DCO∽△ACD,∴,∴DC2=2OC2,∴OC2=a2=a2,∴OE==a,∴OD=DE+OE=a=OB,∴=,故答案为:.12.(2021•西湖区二模)如图,在矩形ABCD中,E是CD上一点,AE=AB,作BF⊥AE.(1)求证:△ADE≌△BF A;(2)连接BE,若△BCE与△ADE相似,求.【分析】(1)根据矩形的性质得出∠D=∠DAB=90°,求出∠DAE+∠F AB=90°,∠FBA+∠F AB=90°,求出∠D=∠AFB,∠DAE=∠FBA,再根据全等三角形的判定推出即可;(2)根据矩形的性质得出∠C=∠D=90°,DC∥AB,根据平行线的性质得出∠CEB=∠ABE,设∠CEB=∠ABE=x°,根据等腰三角形的性质求出∠AEB=∠EBA=x°,根据相似三角形的性质得出两种情况:①∠DEA=∠CEB=x°,根据∠DEA+∠AEB+∠CEB=180°得出x+x+x=180,求出x,再解直角三角形求出AE和AD,再求出答案即可;②∠DEA=∠EBC,设∠DEA=∠EBC=y°,求出∠DEA+∠AEB+∠CEB=(y+2x)°=180°,∠EBC+∠CEB=(y+x)°=90°,求出x,再得出答案即可.【解答】(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAB=90°,∴∠DAE+∠F AB=90°,∵BF⊥AE,∴∠AFB=90°,∴∠D=∠AFB,∠FBA+∠F AB=90°,∴∠DAE=∠FBA,在△ADE和△BF A中,∴△ADE≌△BF A(AAS);(2)解:∵四边形ABCD是矩形,∴∠C=∠D=90°,DC∥AB,∴∠CEB=∠ABE,设∠CEB=∠ABE=x°,∵AE=AB,∴∠AEB=∠EBA=x°,当△BCE与△ADE相似时,有两种情况:①∠DEA=∠CEB=x°,∵∠DEA+∠AEB+∠CEB=180°,∴x+x+x=180,解得:x=60,即∠DEA=60°,∴∠DAE=90°﹣60°=30°,∴AE=2DE,由勾股定理得:AD===DE,∵AE=AB,∴===;②∠DEA=∠EBC,设∠DEA=∠EBC=y°,∵∠CEB=∠EBA=∠AEB=x°,则∠DEA+∠AEB+∠CEB=y°+x°+x°=(y+2x)°=180°,在Rt△BCE中,∠EBC+∠CEB=y°+x°=(y+x)°=90°,即,解得:x=90°,即∠CEB=90°,此时点E和点C重合,△BEC不存在,舍去;所以=.13.(2021•拱墅区二模)如图,在△ABC中,D、E分别是边AC、BC的中点,F是BC延长线上一点,∠F=∠B.(1)若AB=10,求FD的长;(2)若AC=BC,求证:△CDE∽△DFE.【分析】(1)首先利用中位线定理得到DE∥AB以及DE的长,再证明∠DEC=∠F即可;(2)根据等腰三角形的性质得到∠A=∠B,进而求出∠CDE=∠F并结合∠CED=∠DEF即可证明△CDE∽△DFE.【解答】解:(1)∵D、E分别是AC、BC的中点,∴DE∥AB,DE=AB=5,∵DE∥AB,∴∠DEC=∠B,而∠F=∠B,∴∠DEC=∠F,∴DF=DE=5;(2)∵AC=BC,∴∠A=∠B,∵∠CDE=∠A,∠CED=∠B,∴∠CDE=∠B,∵∠B=∠F,∴∠CDE=∠F,∵∠CED=∠DEF,∴△CDE∽△DFE.14.(2021•宁波模拟)如图,矩形ABCD中,E是边AD的中点,CE与BD交于点P,将△ABE沿BE翻折,点A的对应点F刚好落在线段CP上.(1)求证:△EBC是等边三角形.(2)求的值.【分析】(1)根据矩形的性质证明△ABE≌△DCE(SAS),可得EB=EC,∠AEB=∠CED,由翻折可知:∠AEB=∠FEB,进而可以解决问题;(2)证明△PDE∽△PBC,可得==,所以=,进而可以解决问题.【解答】(1)证明:∵E是边AD的中点,∴AE=DE,∵四边形ABCD是矩形,∴∠A=∠CDA=90°,AB=CD,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴EB=EC,∠AEB=∠CED,由翻折可知:∠AEB=∠FEB,∴∠AEB=∠FEB=∠CED=60°,∴△EBC是等边三角形;(2)解:∵四边形ABCD是矩形,∴AD∥BC,。
相似三角形-中考数学第一轮总复习课件(全国通用)
中考数学第一轮总复习典例精讲考点聚集查漏补缺拓展提升第四单元 三角形专题4.4 相似三角形知识点比例线段01相似三角形的性质与判定02相似三角形的应用03拓展训练04【例1】已知2x=3y(y≠0),则下面结论成立的是( ) A.x:y=3:2 B.x:3=2:y C.x:y=2:3 D.x:2=y:3A1.线段的比:在同一单位长度下,两条线段长度的比叫做两条线段的比;2.比例线段:对于四条线段a,b,c,d,若其中两条线段的比与另两条线段的比相等(a:b=c:d).我们就说这四条线段成比例,简称比例线段.3.比例的基本性质:4.更比定理:考点聚集ad=bc知识点一典例精讲比例线段1.已知 ,则 的值是____.2.人们认为最美人体的头顶至肚脐的长度与肚脐至足底之比是 .某人测得头顶至肚脐长约65cm,肚脐至足底长约102cm,为尽可能达到黄金比的美感效果,作为形象设计师的你,对于她的着装建议为穿一双( )cm的高跟鞋(精确到1cm) A.2 B.3 C.4 D.5B 知识点一强化训练比例线段知识点比例线段01相似三角形的性质与判定02相似三角形的应用03拓展训练04【例2】如图,已知△ABC中,∠BAC=90º,延长BA到点D,使AD=0.5AB,点E,F分别是边BC,AC的中点.求证:DF=BE 方法一:证△ADF≌△FEC(SAS)AFDBCE方法二:证△ADF∽△BCA方法三:连接AE,利用平行四边形证明知识点二典例精讲相似三角形的性质与判定1.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是( ) A.∠C=∠AED B.AB:AD=AC:AE C.∠B=∠D D.AB:AD=BC:DE2.如图,△ABC 中,∠A =78º,AB =4,AC =6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )DA 1CEBD2知识点二强化训练三角形相似的性质与判定CAC B78ºAC B78ºAAC B14DAC B 23CAC B 78ºB3.如图,在□ABCD中,连接AC,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S △AEF =4,则S △ADF 的值为_____.4.如图,一束光线从点A(4,4)射出,经y轴上的点C的反射后,经过点B(1,0),则点C的坐标是( ) A.(0,0.5) B.(0,0.8) C.(0,1) D.(0,2)5.在□ABCD中,E是AD上的一点,且点E将AD分为2:3的两部分,连接BE,AC相交于F,则S △AEF :S △CBF =_______.AFE DCB10知识点二强化训练三角形相似的性质与判定B AyxC OB(1,0)知识点比例线段01相似三角形的性质与判定02相似三角形的应用03拓展训练04【例3】如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB=_____m.5.5 DAE BFC 知识点三典例精讲相似三角形的应用3.如图,△ABC是一张锐角三角形硬纸片,AD是边BC上的高BC=40cm,AD=30cm,从这张硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,顶点G,H分别在AC,AB上,AD与HG的交点为M.(1)求证:AM:AD=HG:BC;(2)求矩形EFGH的周长。
相似三角形的应用-2022年中考数学一轮复习考点(浙江专用)(解析版)
考点15 相似三角形的应用【命题趋势】相似三角形的应用在中考中主要考察热点有:8字图、A字图等简单相似模型。
出题类型可以是选择填空这类小题,也可以是18~19这类解答题,难度通常不大,问题背景多以现实中的实物如树高、楼高、物体尺寸等为背景,提炼出数学模型,进而利用(或构造)简单相似模型求解长度等问题。
【中考考查重点】一、相似三角形在实际生活中的应用二、位似图形三、相似三角形与函数综合考向一:相似三角形在实际生活中的应用相似三角形在实际生活中的应用:(一)建模思想:建立相似三角形的模型(二)常见题目类型:1.利用投影、平行线、标杆等构造相似三角形求解2.测量底部可以到达的物体的高度3.测量底部不可以到达的物体的高度4.测量河的宽度【同步练习】1.如图,小明周末晚上陪父母在马路上散步,他由灯下A处前进4米到达B处时,测得影子BC长为1米,已知小明身高1.6米,他若继续往前走4米到达D处,此时影子DE长为()A.1米B.2米C.3米D.4米【分析】依据△CBF∽△CAP,即可得到AP=8,再依据△EDG∽△EAP,即可得到DE 长.【解答】解:由FB∥AP可得,△CBF∽△CAP,∴=,即=,解得AP=8,由GD∥AP可得,△EDG∽△EAP,∴=,即=,解得ED=2,故选:B.2.《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为()A.2米B.3米C.米D.米【分析】由题意知:△ABE∽△CDE,得出对应边成比例即可得出CD.【解答】解:由题意知:AB∥CD,则∠BAE=∠C,∠B=∠CDE,∴△ABE∽△CDE,∴=,∴=,∴CD=3米,故选:B.3.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.5m,木竿PQ的影子有一部分落在了墙上,它的影子QN=1.8m,MN=0.8m,木竿PQ的长度为.【分析】根据同一时刻物高与影长成正比列式求解即可.【解答】解:设木竿PQ长为xm,依题意得=,解得x=1.6,答:木竿PQ长度为1.6m,故答案为:1.6m.4.如图,有一块三角形余料,它的边BC=100m,高线AH=80m,要把它加工成矩形零件,使矩形的一边EF在BC上,其余两个顶点D、G分别在边AB、AC上,设矩形DEFG的一边长DE=xm,矩形DEFG的面积为S.(1)矩形DEFG的另一边长DG是多少?(用关于x的代数式表示)(2)求S关于x的函数表达式和自变量x的取值范围.(3)当x为多少时,矩形DEFG的面积S有最大值?最大值是多少?【分析】(1)利用矩形的性质,DG∥EF,利用同位角相等,证△ADG∽△ABC,利用相似三角形的性质求解即可;(2)由(1)可知,DG=(80﹣x),然后即可求出用x表示的矩形面积的关系式.(3)利用配方法求出最大值即可.【解答】解:(1)∵四边形DEFG是矩形,∴DG∥EF,∴∠ADG=∠ABC,∠AGD=∠ACB,∴△ADG∽△ABC,∴=,∴=,∴DG=(80﹣x)(m);(2)矩形面积S=x•(80﹣x)=﹣x2+100x(0<x<80);(3)∵S=﹣(x2﹣80x)=﹣(x﹣40)2+2000,∵﹣<0,∴x=40时,S的值最大,最大值为2000.答:当x=40时,S的值最大,最大值为2000m2.考向二:位似图形位似图形满足的条件:①所有经过对应点的直线都相交于同一点(该点叫做位似中心);②这个交点到两个对应点的距离之比都相等(这个比值叫做位似比)【同步练习】1.如图,BC∥ED,下列说法不正确的是()A.AE:AD是相似比B.点A是两个三角形的位似中心C.B与D、C与E是对应位似点D.两个三角形是位似图形【分析】根据位似变换的概念和性质判断即可.【解答】解:A、当BC∥ED时,△AED∽△ACB,AE:AC是相似比,本选项说法不正确,符合题意;B、点A是两个三角形的位似中心,本选项说法正确,不符合题意;C、B与D、C与E是对应位似点,本选项说法正确,不符合题意;D、两个三角形是位似图形,本选项说法正确,不符合题意;故选:A.2.如图,已知△ABC和△ADE是以点A为位似中心的位似图形,且△ABC和△ADE的周长比为2:1,则△ABC和△ADE的位似比是()A.1:4B.4:1C.1:2D.2:1【分析】利用位似的性质求解.【解答】解:∵△ABC和△ADE是以点A为位似中心的位似图形,∴△ABC∽△ADE,位似比等于相似比,∵△ABC和△ADE的周长比为2:1,∴△ABC和△ADE的相似比为2:1,∴△ABC和△ADE的位似比是2:1.故选:D.3.如图,在网格图中,以O为位似中心,把△ABC缩小到原来的,则点A的对应点为()A.D点B.E点C.D点或G点D.D点或F点【分析】作射线AO,根据位似变换的概念判断即可.【解答】解:作射线AO,由图可知,点D和点G都在射线AO上,且=,=,则点A的对应点为D点或G点,故选:C.4.如图,在7×4方格纸中,点A,B,C都在格点上,用无刻度直尺作图.(1)在图1中的线段AC上找一个点E,使AE=AC;(2)在图2中作一个格点△CDE,使△CDE与△ABC相似.【分析】(1)构造相似比为的相似三角形即可解决问题;(2)利用勾股定理的逆定理判断出∠ACB=90°,从而解决问题.【解答】解:(1)如图,构造相似比为的相似三角形,则点E即为所求;(2)如图,∵BC2=5,AC2=20,AB2=25,∴BC2+AC2=AB2,∴∠ACB=90°,AC=2BC,∴△CDE即为所求.5.如图,在平面直角坐标系中,△ABC的顶点为A(2,1),B (1,3),C(4,1),若△A1B1C1与△ABC是以坐标原点O为位似中心的位似图形,点A、B、C的对应点分别为A1、B1、C1,且A1的坐标为(4,2).(1)请在所给平面直角坐标系第一象限内画出△A1B1C1;(2)分别写出点B1、C1的坐标.【分析】(1)(2)利用点A和点A1的坐标特征确定位似比为2,然后把点B、C的横纵坐标都乘以2得到点B1、C1的坐标,然后描点即可.【解答】解:(1)如图,△A1B1C1;(2)点B1的坐标为(2,6),点C1的坐标为(8,2).考向三:相似三角形与函数综合【方法提炼】【同步练习】1.(2021•无棣县二模)如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③C.①③④D.②④【分析】据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E 时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED 的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.【解答】解:根据图(2)可得,当点P到达点E时,点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,相似三角形与函数的综合重点是利用相似三角形的性质,设置参数,构建对应函数模型,再利用函数的性质求解后续问题在Rt△ABE中,AB===4,∴cos∠ABE==,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB==,∴PF=PB sin∠PBF=t,∴当0<t≤5时,y=BQ•PF=t•t=t2,故③小题正确;当t=秒时,点P在CD上,此时,PD=﹣BE﹣ED=﹣5﹣2=,PQ=CD﹣PD=4﹣=,∵=,==,∴=,又∵∠A=∠Q=90°,∴△ABE∽△QBP,故④小题正确.综上所述,正确的有①③④.故选:C.2.(2020•达州)如图,在梯形ABCD中,AB∥CD,∠B=90°,AB=6cm,CD=2cm.P 为线段BC上的一动点,且和B、C不重合,连接P A,过点P作PE⊥P A交射线CD于点E.聪聪根据学习函数的经验,对这个问题进行了研究:(1)通过推理,他发现△ABP∽△PCE,请你帮他完成证明.(2)利用几何画板,他改变BC的长度,运动点P,得到不同位置时,CE、BP的长度的对应值:当BC=6cm时,得表1:BP/cm…12345…CE/cm…0.83 1.33 1.50 1.330.83…当BC=8cm时,得表2:BP/cm…1234567…CE/cm… 1.17 2.00 2.50 2.67 2.50 2.00 1.17…这说明,点P在线段BC上运动时,要保证点E总在线段CD上,BC的长度应有一定的限制.①填空:根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中,的长度为自变量,的长度为因变量;②设BC=mcm,当点P在线段BC上运动时,点E总在线段CD上,求m的取值范围.【分析】(1)根据两角对应相等两三角形相似证明即可.(2)①根据函数的定义判断即可.②设BP=xcm,CE=ycm.利用相似三角形的性质构建二次函数,利用二次函数的性质求出y的最大值即可解决问题.【解答】(1)证明:∵AB∥CD,∴∠B+∠C=180°,∵∠B=90°,∴∠B=∠C=90°,∵AP⊥PE,∴∠APE=90°,∴∠APB+∠EPC=90°,∵∠EPC+∠PEC=90°,∴∠APB=∠PEC,∴△ABP∽△PCE.(2)解:①根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中,BP的长度为自变量,EC的长度为因变量,故答案为:BP,EC.②设BP=xcm,CE=ycm.∵△ABP∽△PCE,∴=,∴=,∴y=﹣x2+mx=﹣(x﹣m)2+,∵﹣<0,∴x=m时,y有最大值,∵点E在线段CD上,CD=2cm,∴≤2,∴m≤4,∴0<m≤4.1.如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5m时,标准视力表中最大的“”字高度为72.7mm,当测试距离为3m时,最大的“”字高度为()A.121.17mm B.43.62mm C.29.08mm D.4.36mm【分析】直接利用平行线分线段成比例定理列比例式,代入可得结论.【解答】解:由题意得:CB∥DF,,∵AD=3m,AB=5m,BC=72.7mm,,∴DF=43.62(mm),故选:B.2.如图,点A,B都在格点上,若BC=,则AC的长为()A.B.C.2D.3【分析】根据相似三角形的判定和性质可以得到AB的长,然后由图可知AC=AB﹣BC,然后代入数据计算即可.【解答】解:作CD⊥BD于点D,作AE⊥BD于点E,如右图所示,则CD∥AE,∴△BDC∽△BEA,∴,∴=,解得BA=2,∴AC=BA﹣BC=2﹣=,故选:B.3.国旗法规定:所有国旗均为相似矩形,在下列四面国旗中,其中只有一面不符合标准,这面国旗是()A.B.C.D.【分析】根据已知条件分别求出矩形的长与宽的比,即可得到结论.【解答】解:A、=,B、=,C、=,D、=,∵==≠,∴B选项不符合标准,故选:B.4.如图,△ABC与△A′B′C′位似,位似中心为点O,,△ABC的面积为9,则△A′B′C′面积为()A.B.6C.4D.【分析】根据位似图形的概念得到△ABC∽△A′B′C′,根据相似三角形的面积之比等于相似比的平方解答.【解答】解:根据题意知,△ABC∽△A′B′C′,∵,∴△ABC的面积:△A′B′C′面积=9:4.又∵△ABC的面积为9,∴△A′B′C′面积为4.故选:C.5.如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,若OA:AA′=2:5,则△ABC与△A′B′C′的周长比为()A.2:3B.4:3C.2:9D.4:9【分析】根据题意求出OA:OA′=2:3,根据相似三角形的性质求出AC:A′C′,根据相似三角形的性质计算即可.【解答】解:∵OA:AA′=2:5,∴OA:OA′=2:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,△ABC∽△A′B′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=2:3,∴△ABC与△A′B′C′的周长比为2:3,故选:A.6.小明的身高为1.6m,某一时刻他在阳光下的影子长为2m,与他邻近的一棵树的影长为10m,则这棵树的高为m.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:设这棵树的高度为xm,根据相同时刻的物高与影长成比例,则可列比例为:,解得:x=8.故答案为:8.7.据《墨经》记载,在两千多年前,我国学者墨子和他的学生做了“小孔成像”实验,阐释了光的直线传播原理.小孔成像的示意图如图所示,光线经过小孔O,物体AB在幕布上形成倒立的实像CD(点A、B的对应点分别是C、D).若物体AB的高为6cm,小孔O到物体和实像的水平距离BE、CE分别为8cm、6cm,则实像CD的高度为cm.【分析】根据相似三角形的判定和性质定理即可得到答案.【解答】解:∵AB∥CD,∴△OAB∽△OCD,∴,∴,∴CD=4.5,答:实像CD的高度为4.5cm,故答案为:4.5.8.小丽想利用所学知识测量旗杆AB的高度,如图,小丽在自家窗边看见旗杆和住宅楼之间有一棵大树DE,小丽通过调整自己的位置,发现半蹲于窗边,眼睛位于C处时,恰好看到旗杆顶端A、大树顶端D在一条直线上,小丽用测距仪测得眼睛到大树和旗杆的水平距离CH、CG分别为7米、28米,眼睛到地面的距离CF为3.5米,已知大树DE的高度为7米,CG∥BF交AB于点G,AB⊥BF于点B,DE⊥BF于点E,交CG于点H,CF⊥BF于点F.求旗杆AB的高度.【分析】根据相似三角形的判定与性质得出比例式求解即可.【解答】解:由题意知BG=HE=CF=3.5米,∴DH=DE﹣CF=7﹣3.5=3.5(米),∵AB⊥BF,DE⊥BF,∴AG∥DH,∴△CDH∽△CAG,∴=,即,∴AG=14米,∴AB=AG+GB=14+3.5=17.5(米),∴旗杆AB的高度为17.5米.9.如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件PQMN,使一边在BC上,其余两个顶点分别在边AB、AC上.(1)求证:△APQ∽△ABC;(2)若这个矩形的边PN:PQ=1:2,则这个矩形的长、宽各是多少?【分析】(1)根据矩形的对边平行得到BC∥PQ,利用“平行于三角形的一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似”判定即可.(2)设宽为xmm,则长为2xmm,同(1)列出比例关系求解即可.【解答】解:(1)∵四边形PNQM为矩形,∴MN∥PQ,即PQ∥BC,∴△APQ∽△ABC;(2)设边宽为xmm,则长为2xmm,∵四边形PNMQ为矩形,∴PQ∥BC,∵AD⊥BC,∴PQ⊥AD,∵PN:PQ=1:2,∴PQ为长,PN为宽,∵PQ∥BC,∴△APQ∽△ABC,∴=,由题意知PQ=2xmm,AD=80mm,BC=120mm,PN=xmm,∴=,解得x=,2x=.即长为mm,宽为mm.答:矩形的长mm,宽为mm.10.(2022•禅城区校级模拟)如图①,四边形ABCD是矩形,AB=1,BC=2,点E是线段BC上一动点(不与B、C两点重合),点F是线段BA延长线的一动点,连接DE,EF,DF,EF交AD于点G,设BE,AF=y,已知y与x之间的函数关系式如图②所示,(1)图②中y与x的函数关系式为;(2)求证:△CDE∽△ADF;(3)当△DEG是等腰三角形时,求x的值.【分析】(1)利用待定系数法可得y与x的函数表达式.(2)利用两边成比例夹角相等证明△CDE∽△ADF即可.(3)分三种情况:①若DE=DG,则∠DGE=∠DEG,②若DE=EG,如图①,作EH ∥CD,交AD于H,③若DG=EG,则∠GDE=∠GED,分别列方程计算可得结论.【解答】(1)解:设y=kx+b,由图象得:当x=1时,y=2,当x=0时,y=4,代入得:,,∴y=﹣2x+4(0<x<2).故答案为:y=﹣2x+4(0<x<2).(2)证明:∵BE=x,BC=2∴CE=2﹣x,∴==,=,∴=,∵四边形ABCD是矩形,∴∠C=∠DAF=90°,∴△CDE∽△ADF,∴∠ADF=∠CDE.(3)解:假设存在x的值,使得△DEG是等腰三角形,①若DE=DG,则∠DGE=∠DEG,∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠DGE=∠GEB,∴∠DEG=∠BEG,在△DEF和△BEF中,,∴△DEF≌△BEF(AAS),∴DE=BE=x,CE=2﹣x,在Rt△CDE中,由勾股定理得:1+(2﹣x)2=x2,x=.②若DE=EG,如图①,作EH∥CD,交AD于H,∵AD∥BC,EH∥CD,∴四边形CDHE是平行四边形,∴∠C=90°,∴四边形CDHE是矩形,∴EH=CD=1,DH=CE=2﹣x,EH⊥DG,∴HG=DH=2﹣x,∴AG=2x﹣2,∵EH∥CD,DC∥AB,∴EH∥AF,∴△EHG∽△F AG,∴=,∴=,∴x1=,x2=(舍),经检验x=是分式方程的解,∴x=.③若DG=EG,则∠GDE=∠GED,∵AD∥BC,∴∠GDE=∠DEC,∴∠GED=∠DEC,∵∠C=∠EDF=90°,∴△CDE∽△DFE,∴=,∵△CDE∽△ADF,∴==,∴=,∴2﹣x=,∴x=.综上,x=或或.1.(2021·浙江绍兴)如图,树AB在路灯O的照射下形成投影AC,已知路灯高PO=5m,树影AC=3m,树AB与路灯O的水平距离AP=4.5m,则树的高度AB长是()A.2m B.3m C.m D.m【分析】利用相似三角形的性质求解即可.【解答】解:∵AB∥OP,∴△CAB∽△CPO,∴,∴,∴AB=2(m),故选:A.2.(2021·浙江嘉兴)如图,在直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是.【分析】根据图示,对应点所在的直线都经过同一点,该点就是位似中心.【解答】解:如图,点G(4,2)即为所求的位似中心.故答案是:(4,2).3.(2021·浙江温州)如图,图形甲与图形乙是位似图形,O是位似中心,位似比为2:3,点A,B的对应点分别为点A′,B′.若AB=6,则A′B′的长为()A.8B.9C.10D.15【分析】根据位似图形的概念列出比例式,代入计算即可.【解答】解:∵图形甲与图形乙是位似图形,位似比为2:3,AB=6,∴=,即=,解得,A′B′=9,故选:B.4.(2021·浙江金华)如图1是一种利用镜面反射,放大微小变化的装置.木条BC上的点P处安装一平面镜,BC与刻度尺边MN的交点为D,从A点发出的光束经平面镜P反射后,在MN上形成一个光点E.已知AB⊥BC,MN⊥BC,AB=6.5,BP=4,PD=8.(1)ED的长为.(2)将木条BC绕点B按顺时针方向旋转一定角度得到BC′(如图2),点P的对应点为P′,BC′与MN的交点为D′,从A点发出的光束经平面镜P′反射后,在MN上的光点为E′.若DD′=5,则EE′的长为.【分析】(1)由题意可得,△ABP∽△EDP,则=,进而可得出DE的长;(2)过点E′作∠E′FG=∠E′D′F,过点E′作E′G⊥BC′于点G,易得△ABP′∽△E′FP′,由此可得=,在Rt△BDD′中,由勾股定理可求出BD′的长,可求出∠BD′D的正切值,设P′F的长,分别表示E′F和E′D′及FG和GD′的长,再根据BD′=13,可建立等式,可得结论.【解答】解:(1)如图,由题意可得,∠APB=∠EPD,∠B=∠EDP=90°,∴△ABP∽△EDP,∴=,∵AB=6.5,BP=4,PD=8,∴=,∴DE=13;故答案为:13.(2)如图2,过点E′作∠E′FD′=∠E′D′F,过点E′作E′G⊥BC′于点G,∴E′F=E′D′,FG=GD′,∵AB∥MN,∴∠ABD′+∠E′D′B=180°,∴∠ABD′+∠E′FG=180°,∵∠E′FB+∠E′FG=180°,∴∠ABP′=∠E′FP′,又∠AP′B=∠E′P′F,∴△ABP′∽△E′FP′,∴=即,=,设P′F=4m,则E′F=6.5m,∴E′D′=6.5m,在Rt△BDD′中,∠BDD′=90°,DD′=5,BD=BP+PD=12,由勾股定理可得,BD′=13,∴cos∠BD′D=,在Rt△E′GD′中,cos∠BD′D==,∴GD′=2.5m,∴FG=GD′=2.5m,∵BP′+P′F+FG+GD′=13,∴4+4m+2.5m+2.5m=13,解得m=1,∴E′D′=6.5,∴EE′=DE+DD′﹣D′E′=13+5﹣6.5=11.5.故答案为:11.5.5.(2021·浙江湖州)已知在平面直角坐标系xOy中,点A是反比例函数y=(x>0)图象上的一个动点,连结AO,AO的延长线交反比例函数y=(k>0,x<0)的图象于点B,过点A作AE⊥y轴于点E.(1)如图1,过点B作BF⊥x轴,于点F,连接EF.①若k=1,求证:四边形AEFO是平行四边形;②连结BE,若k=4,求△BOE的面积.(2)如图2,过点E作EP∥AB,交反比例函数y=(k>0,x<0)的图象于点P,连结OP.试探究:对于确定的实数k,动点A在运动过程中,△POE的面积是否会发生变化?请说明理由.【分析】(1)①设点A的坐标为(a,),则当点k=1时,点B的坐标为(﹣a,﹣),得出AE=OF,AE∥OF,由平行四边形的判定可得出结论;②过点B作BD⊥y轴于点D,如图1,证明△AEO∽△BDO,由相似三角形的性质得出,则可得出答案;(2)过点P作PH⊥x轴于点H,PE与x轴交于点G,设点A的坐标为(a,),点P 的坐标为(b,),则AE=a,OE=,PH=﹣,证明△AEO∽△GHP,由相似三角形的性质得出,解方程得出,由三角形面积公式可得出答案.【解答】(1)①证明:设点A的坐标为(a,),则当点k=1时,点B的坐标为(﹣a,﹣),∴AE=OF=a,∵AE⊥y轴,∴AE∥OF,∴四边形AEFO是平行四边形;②解:过点B作BD⊥y轴于点D,如图1,∵AE⊥y轴,∴AE∥BD,∴△AEO∽△BDO,∴,∴当k=4时,,即,∴S△BOE=2S△AOE=1;(2)不改变.理由如下:过点P作PH⊥x轴于点H,PE与x轴交于点G,设点A的坐标为(a,),点P的坐标为(b,),则AE=a,OE=,PH=﹣,∵四边形AEGO是平行四边形,∴∠EAO=∠EGO,AE=OG,∵∠EGO=∠PGH,∴∠EAO=∠PGH,又∵∠PHG=∠AEO,∴△AEO∽△GHP,∴,∵GH=OH﹣OG=﹣b﹣a,∴,∴﹣k=0,解得,∵a,b异号,k>0,∴,∴S△POE=×OE×(﹣b)=×(﹣b)=﹣,∴对于确定的实数k,动点A在运动过程中,△POE的面积不会发生变化.1.(2021•温州模拟)如图,在正六边形桌面中心正上方有一盏吊灯,在灯光下,桌面在水平地面的投影是一个面积为m2的正六边形,已知桌子的高度为0.75m,桌面边长为1m,则吊灯距地面的高度为()A.2.25m B.2.3m C.2.35m D.2.4m【分析】首先根据正六边形的面积可得正六边形的边长,进而可通过构造相似三角形,由相似三角形性质求出.【解答】解:设正六边形的边长是xm,则x•x••6=,解得x=1.5,如图,依题意知DF=FE=0.5米,FG=0.75米,CG=0.75米,∵DE∥BC,∴△F AE∽△GAC,∴,即=,解得:AF=1.5,∴AG=1.5+0.75=2.25(m),答:吊灯距地面的高度为2.25m.故选:A.2.(2021•临海市一模)如图,为测量楼高AB,在适当位置竖立一根高2m的标杆MN,并在同一时刻分别测得其落在地面上的影长AC=20m,MP=2.5m,则楼高AB为()A.15m B.16m C.18m D.20m【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.【解答】解:∵,即,∴楼高=16米.故选:B.3.(2022•温州模拟)如图,在4×7的方格中,点A,B,C,D在格点上,线段CD是由线段AB位似放大得到,则它们的位似中心是()A.点P1B.点P2C.点P3D.点P4【分析】延长CA、DB交于点P 1,根据位似中心的概念得到答案.【解答】解:延长CA、DB交于点P1,则点P1为位似中心,故选:A.4.(2021•嘉兴二模)如图,在直角坐标系中,△ABC的顶点B的坐标为(﹣1,1),现以坐标原点O为位似中心,作与△ABC的位似比为的位似图形△A'B'C',则B'的坐标为()A.B.C.或D.或【分析】根据以原点为位似中心的对应点的坐标关系,把B点的横纵坐标都乘以或﹣得到B'的坐标.【解答】解:∵位似中心为坐标原点,作与△ABC的位似比为的位似图形△A'B'C',而B的坐标为(﹣1,1),∴B'的坐标为(﹣,)或(,﹣).故选:C.5.(2021•嘉善县一模)如图,在平面直角坐标系中,点A的坐标为(1,0),点D的坐标为(3,0),若△ABC与△DEF是位似图形,则的值是()A.B.C.D.【分析】根据位似图形的概念得到AC∥DF,【解答】解:∵点A的坐标为(1,0),点D的坐标为(3,0),∴OA=1,OD=3,即=,∵△ABC与△DEF是位似图形,∴AC∥DF,∴△OAC∽△ODF,∴==,故选:B.6.(2021•瑞安市一模)数学兴趣小组计划测量公路上路灯的高度AB,准备了标杆CD,EF及皮尺,按如图竖直放置标杆CD与EF.已知CD=EF=2米,DF=2米,在路灯的照射下,标杆CD的顶端C在EF上留下的影子为G,标杆EF在地面上的影子是FH,测得FG=0.5米,FH=4米,则路灯的高度AB=米.【分析】延长CG交FH于M,根据相似三角形的判定和性质解答即可.【解答】解:如图,延长CG交FH于M,∵∠GMF=∠CMD,∠GFM=∠CDM=90°,∴△GFM∽△CDM,∴,设FM为a米,则a=(a+2)×,解得:a=,设BD=x米,AB=y米,同理可得,△CMD∽△AMB,∴,,可得,,整理得:,解得:,经检验是分式方程组的解,∴AB=5米.故答案为:5.7.(2022•鹿城区校级一模)如图,在8×8的网格中,△ABC是格点三角形,请分别在图1和图2中按要求作图.(1)在图1中以O为位似中心,作格点三角形△A1B1C1,使其与△ABC位似比为1:2.(2)在图2中作格点线段BM⊥AC.【分析】(1)连接OA,OB,OC,取OA,OB,OC的中点A1,B1,C1,连接A1B1,B1C1,C1A1即可;(2)利用数形结合的思想作出线段BM即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,线段BM即为所求.8.(2021•永嘉县校级模拟)已知一块等腰三角铁板废料如图所示,其中AB=AC=50cm,BC=60cm,现要用这块废料裁一块正方形DEFG铁板,使它的一边DE落在△ABC的一腰上,顶点F、G分别落在另一腰AB和BC上,求;(1)等腰三角形ABC的面积S△ABC;(2)正方形DEFG的边长.【分析】(1)过A作AH⊥BC于H,根据等腰三角形的性质得到BH=BC=30(cm),根据勾股定理得到AH===40(cm),由三角形的面积公式即可得到结论;(2)过B作BM⊥AC交FG于N,根据三角形的面积公式得到BM=48(cm),根据正方形的性质得到FG∥DE,根据相似三角形的性质即可得到结论.【解答】解:(1)过A作AH⊥BC于H,∵AB=AC=50cm,BC=60cm,∴BH=BC=30(cm),∴AH===40(cm),∴S△ABC=BC•AH=60×40=1200(cm2);(2)过B作BM⊥AC交FG于N,则S△ABC=AC•BM=1200,∵AC=50cm,∴BM=48(cm),∵四边形DEFG是正方形,∴FG∥DE,∴BN⊥FG,△BFG∽△BAC,∴=,∴,∴FG=,∴正方形DEFG的边长为.9.(2021•海曙区模拟)如图是某公园的一台滑梯,滑梯着地点B与梯架之间的距离BC=4m.(1)现在某一时刻测得身高1.8m的小明爸爸在阳光下的影长为0.9m,滑梯最高处A在阳光下的影长为1m,求滑梯的高AC;(2)若规定滑梯的倾斜角(∠ABC)不超过30°属于安全范围,请通过计算说明这架滑梯的倾斜角是否符合安全要求?【分析】(1)直接利用同一时刻太阳光下影长与物体高度成比例进而得出答案;(2)直接利用锐角三角函数关系得出∠ABC的取值范围.【解答】解:(1)由题意可得:=,解得:AC=2(m),答:滑梯的高AC为2m;(2)∵tan∠ABC===<tan30°=,∴∠ABC<30°,∴这架滑梯的倾斜角符合安全要求.10.(2021•婺城区校级模拟)已知在菱形ABCD中,AB=4,∠BAD=120°,点P是直线AB上任意一点,联结PC.在∠PCD内部作射线CQ与对角线BD交于点Q(与B、D 不重合),且∠PCQ=30°.(1)如图,当点P在边AB上时,如果BP=3,求线段PC的长;(2)当点P在射线BA上时,设BP=x,CQ=y,求y关于x的函数解析式及定义域;(3)联结PQ,直线PQ与直线BC交于点E,如果△QCE与△BCP相似,求线段BP的长.【分析】(1)如图1中,作PH⊥BC于H.解直角三角形求出BH,PH,在Rt△PCH中,理由勾股定理即可解决问题.(2)如图1中,作PH⊥BC于H,连接PQ,设PC交BD于O.证明△POQ∽△BOC,推出∠OPQ=∠OBC=30°=∠PCQ,推出PQ=CQ=y,推出PC=y,在Rt△PHB 中,BH=x,PH=x,根据PC2=PH2+CH2,可得结论.(3)分两种情形:①如图2中,若直线QP交直线BC于B点左侧于E.②如图3中,若直线QP交直线BC于C点右侧于E.分别求解即可.【解答】解:(1)如图1中,作PH⊥BC于H.∵四边形ABCD是菱形,∴AB=BC=4,AD∥BC,∴∠A+∠ABC=180°,∵∠A=120°,∴∠PBH=60°,∵PB=3,∠PHB=90°,∴BH=PB•cos60°=,PH=PB•sin60°=,∴CH=BC﹣BH=4﹣=,∴PC===.(2)如图1中,作PH⊥BC于H,连接PQ,设PC交BD于O.∵四边形ABCD是菱形,∴∠ABD=∠CBD=30°,∵∠PCQ=30°,∴∠PBO=∠QCO,∵∠POB=∠QOC,∴△POB∽△QOC,∴=,∴=,∵∠POQ=∠BOC,∴△POQ∽△BOC,∴∠OPQ=∠OBC=30°=∠PCQ,∴PQ=CQ=y,∴PC=y,在Rt△PHB中,BH=x,PH=x,∵PC2=PH2+CH2,∴3y2=(x)2+(4﹣x)2,∴y=(0≤x<8).(3)①如图2中,若直线QP交直线BC于B点左侧于E.此时∠CQE=120°,∵∠PBC=60°,∴△PBC中,不存在角与∠CQE相等,此时△QCE与△BCP不可能相似.②如图3中,若直线QP交直线BC于C点右侧于E.则∠CQE=∠B=QBC+∠QCP=60°=∠CBP,∵∠PCB>∠E,∴只可能∠BCP=∠QCE=75°,作CF⊥AB于F,则BF=2,CF=2,∠PCF=45°,∴PF=CF=2,此时PB=2+2,③如图4中,当点P在AB的延长线上时,∵△QCE与△BCP相似,∴∠CQE=∠CBP=120°,∴∠QCE=∠PCB=15°,作CF⊥AB于F.∵∠FCB=30°,∴∠FCP=45°,∴BF=BC=2,CF=PF=2,∴PB=2﹣2.综上所述,满足条件的PB的值为2+2或2﹣2.。
中考一轮复习 数学专题16 相似三角形(学生版)
专题16 相似三角形一、单选题1.(2022·甘肃兰州)已知ABC DEF∽△△,12ABDE=,若2BC=,则EF=()A.4B.6C.8D.162.(2022·广西梧州)如图,以点O为位似中心,作四边形ABCD的位似图形''''A B C D﹐已知'1 3OAOA,若四边形ABCD的面积是2,则四边形''''A B C D的面积是()A.4B.6C.16D.183.(2022·浙江丽水)如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A,B,C都在横线上.若线段3AB=,则线段BC的长是()A.23B.1C.32D.24.(2021·浙江温州)如图,图形甲与图形乙是位似图形,O是位似中心,位似比为2:3,点A,B的对应点分别为点A',B'.若6AB=,则A B''的长为()A.8B.9C.10D.155.(2020·河北)在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR6.(2020·甘肃金昌)生活中到处可见黄金分割的美,如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感,若图中b 为2米,则a 约为( )A .1.24米B .1.38米C .1.42米D .1.62米7.(2020·广西贵港)如图,在ABC 中,点D 在AB 边上,若3BC =,2BD =,且BCD A ∠=∠,则线段AD 的长为( )A .2B .52C .3D .928.(2020·湖南永州)如图,在ABC 中,2//,3AE EF BC EB =,四边形BCFE 的面积为21,则ABC 的面积是( )A .913B .25C .35D .639.(2020·四川成都)如图,直线123////l l l ,直线AC 和DF 被1l ,2l ,3l 所截,5AB =,6BC =,4EF =,则DE 的长为( )A .2B .3C .4D .10310.(2020·重庆)如图,在平面直角坐标系中,ABC 的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A B .2 C .4 D .11.(2020·重庆)如图,△ABC 与△DEF 位似,点O 为位似中心.已知OA △OD =1△2,则△ABC 与△DEF 的面积比为( )A .1△2B .1△3C .1△4D .1△512.(2020·浙江嘉兴)如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比为13的位似图形△OCD ,则点C 坐标( )A .(﹣1,﹣1)B .(﹣43,﹣1)C .(﹣1,﹣43)D .(﹣2,﹣1)13.(2020·贵州遵义)如图,△ABO 的顶点A 在函数y =kx(x >0)的图象上,△ABO =90°,过AO 边的三等分点M 、N 分别作x 轴的平行线交AB 于点P 、Q .若四边形MNQP 的面积为3,则k 的值为( )A .9B .12C .15D .1814.(2021·辽宁沈阳)如图,ABC 与111A B C △位似,位似中心是点O ,若1:1:2OA OA ,则ABC 与111A B C △的周长比是( )A .1:2B .1:3C .1:4D .15.(2021·四川巴中)如图,AB C 中,点D 、E 分别在AB 、AC 上,且12AD AE DBEC,下列结论正确的是( )A .DE :BC =1:2B .ADE 与ABC 的面积比为1:3 C .ADE 与ABC 的周长比为1:2D .DE //BC16.(2021·湖南湘西)如图,在ECD ∆中,90C ∠=︒,AB EC ⊥于点B , 1.2AB =, 1.6EB =,12.4BC =,则CD 的长是( )A .14B .12.4C .10.5D .9.317.(2021·山东济宁)如图,已知ABC .(1)以点A 为圆心,以适当长为半径画弧,交AC 于点M ,交AB 于点N .(2)分别以M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在BAC ∠的内部相交于点P .(3)作射线AP 交BC 于点D . (4)分别以A ,D 为圆心,以大于12AD 的长为半径画弧,两弧相交于G ,H 两点. (5)作直线GH ,交AC ,AB 分别于点E ,F . 依据以上作图,若2AF =,3CE =,32BD =,则CD 的长是( )A .510B .1C .94D .418.(2022·广西)已知△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,则△ABC 与△A 1B 1C 1的面积比( ) A .1 :3B .1:6C .1:9D .3:119.(2022·黑龙江哈尔滨)如图,,,AB CD AC BD ∥相交于点E ,1,2,3AE EC DE ===,则BD 的长为( )A .32B .4C .92D .620.(2022·山东临沂)如图,在ABC 中,∥DE BC ,23AD DB =,若6AC =,则EC =( )A .65B .125C .185D .24521.(2022·四川雅安)如图,在△AB C 中,D ,E 分别是AB 和AC 上的点,DE △BC ,若AD BD=21,那么DEBC =( )A .49B .12C .13D .2322.(2022·江苏盐城)“跳眼法”是指用手指和眼睛估测距离的方法 步骤:第一步:水平举起右臂,大拇指紧直向上,大臂与身体垂直;第二步:闭上左眼,调整位置,使得右眼、大拇指、被测物体在一条直线上;第三步:闭上右眼,睁开左眼,此时看到被测物体出现在大拇指左侧,与大拇指指向的位置有一段横向距离,参照被测物体的大小,估算横向距离的长度;第四步:将横向距离乘以10(人的手臂长度与眼距的比值一般为10),得到的值约为被测物体离观测,点的距离值.如图是用“跳眼法”估测前方一辆汽车到观测点距离的示意图,该汽车的长度大约为4米,则汽车到观测点的距离约为( )A .40米B .60米C .80米D .100米23.(2022·贵州贵阳)如图,在ABC 中,D 是AB 边上的点,B ACD ∠=∠,:1:2AC AB =,则ADC 与ACB△的周长比是( )A.B .1:2C .1:3D .1:424.(2022·江苏连云港)如图,将矩形ABCD 沿着GE 、EC 、GF 翻折,使得点A 、B 、D 恰好都落在点O 处,且点G 、O 、C 在同一条直线上,同时点E 、O 、F 在另一条直线上.小炜同学得出以下结论:△GF △EC ;△AB =AD ;△GE ;△OC ;△△COF △△CEG .其中正确的是( )A .△△△B .△△△C .△△△D .△△△25.(2022·重庆)如图,ABC 与DEF 位似,点O 为位似中心,相似比为2:3.若ABC 的周长为4,则DEF 的周长是( )A .4B .6C .9D .16 本号*资料皆来源于微信:数学26.(2021·山东淄博)如图,在Rt ABC 中,90ACB CE ∠=︒,是斜边AB 上的中线,过点E 作EF AB ⊥交AC 于点F .若4,BC AEF =△的面积为5,则sin CEF ∠的值为( )A .35B C .45D 27.(2021·吉林长春)如图,在平面直角坐标系中,点A 、B 在函数(0,0)k y k x x=>>的图象上,x 过点A 作x 轴的垂线,与函数(0)ky x x=->的图象交于点C ,连结BC 交x 轴于点D .若点A 的横坐标为1,3BC BD =,则点B 的横坐标为( )A .32B .2C .52D .328.(2021·黑龙江黑龙江)如图,平行四边形ABFC 的对角线AF BC 、相交于点E ,点O 为AC 的中点,连接BO 并延长,交FC 的延长线于点D ,交AF 于点G ,连接AD 、OE ,若平行四边形ABFC 的面积为48,则EOG S ∆的面积为( )A .4B .5C .2D .329.(2021·黑龙江)如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,点E 在BC 的延长线上,连接DE ,点F 是DE 的中点,连接OF 交CD 于点G ,连接CF ,若4CE =,6OF =.则下列结论:△2GF =;△OD =;△1tan 2CDE ∠=;△90ODF OCF ∠=∠=︒;△点D 到CF .其中正确的结论是( )A .△△△△B .△△△△C .△△△△D .△△△△30.(2021·海南)如图,在菱形ABCD 中,点E F 、分别是边BC CD 、的中点,连接AE AF EF 、、.若菱形ABCD 的面积为8,则AEF 的面积为( ) 本号资料*皆来源于微信:数学A .2B .3C .4D .531.(2021·广西来宾)如图,矩形纸片ABCD ,:AD AB =,点E ,F 分别在AD ,BC 上,把纸片如图沿EF 折叠,点A ,B 的对应点分别为A ',B ',连接AA '并延长交线段CD 于点G ,则EFAG的值为( )A B .23C .12D 32.(2021·江苏连云港)如图,ABC 中,BD AB ⊥,BD 、AC 相交于点D ,47AD AC =,2AB =,150ABC ∠=︒,则DBC △的面积是( )A B C D 33.(2021·浙江绍兴)如图,Rt ABC 中,90BAC ∠=︒,1cos 4B =,点D 是边BC 的中点,以AD 为底边在其右侧作等腰三角形ADE ,使ADE B ∠=∠,连结CE ,则CE AD的值为( )A .32 B C D .2二、填空题34.(2022·湖南邵阳)如图,在ABC 中,点D 在AB 边上,点E 在AC 边上,请添加一个条件_________,使ADE ABC △△∽.35.(2021·贵州黔西)如图,A B C '''与ABC 是位似图形,点O 为位似中心,若OA A A '=',则A B C '''与ABC 的面积比为__.36.(2020·辽宁盘锦)AOB 三个顶点的坐标分别为()5,0A ,()0,0O ,()3,6B ,以原点O 为位似中心,相似比为23,将AOB 缩小,则点B 的对应点'B 的坐标是__________.37.(2020·辽宁锦州)如图,在ABC 中,D 是AB 中点,//DE BC ,若ADE 的周长为6,则ABC 的周长为______.38.(2020·湖南娄底)若1()2b d a c a c ==≠,则b d a c-=-________. 39.(2020·湖南湘潭)若37y x =,则x y x -=________.40.(2020·贵州黔东南)如图,矩形ABC D 中,AB =2,BC ,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ △BC 于点Q ,则PQ =_____.41.(2021·的矩形叫做黄金矩形.黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计.已知四边形ABCD 是黄金矩形,边AB 1,则该矩形的周长为 __________________.42.(2021·贵州黔东南)已知在平面直角坐标系中,△AOB 的顶点分别为点A (2,1)、点B (2,0)、点O (0,0),若以原点O 为位似中心,相似比为2,将△AOB 放大,则点A 的对应点的坐标为________. 43.(2021·吉林)如图,为了测量山坡的护坡石坝高,把一根长为4.5m 的竹竿AC 斜靠在石坝旁,量出竿上AD 长为1m 时,它离地面的高度DE 为0.6m ,则坝高CF 为__________m .44.(2021·内蒙古)如图,在Rt ABC 中,90ACB ∠=︒,过点B 作BD CB ⊥,垂足为B ,且3BD =,连接CD,与AB相交于点M,过点M作MN CB⊥,垂足为N.若2AC=,则MN的长为__________.45.(2022·广西)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是________米.46.(2022·浙江杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB△BC,DE△EF,DE=2.47m,则AB=_________m.47.(2022·北京)如图,在矩形ABCD中,若13,5,4AFAB ACFC===,则AE的长为_______.48.(2022·上海)如图,在△AB C中,△A=30°,△B=90°,D为A B中点,E在线段AC上,AD DEAB BC=,则AEAC=_____.49.(2022·广西)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为______米.50.(2022·黑龙江)如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ……在x 轴上且11OA =,212OA OA =,322OA OA =,432OA OA =……按此规律,过点1A ,2A ,3A ,4A ……作x 轴的垂线分别与直线y =交于点1B ,2B ,3B ,4B ……记11OA B ,22OA B △,33OA B ,44OA B ……的面积分别为1S ,2S ,3S ,4S ……,则2022S =______.51.(2022·湖北鄂州)如图,在边长为6的等边△AB C 中,D 、E 分别为边BC 、AC 上的点,AD 与BE 相交于点P ,若BD =CE =2,则△ABP 的周长为 _____.52.(2022·辽宁沈阳)如图,将矩形纸片ABCD 折叠,折痕为MN ,点M ,N 分别在边AD ,BC 上,点C ,D 的对应点分别在E ,F 且点F 在矩形内部,MF 的延长线交BC 与点G ,EF 交边BC 于点H .2EN =,4AB =,当点H 为GN 三等分点时,MD 的长为______.53.(2022·湖南常德)如图,已知F 是ABC 内的一点,FD BC ∥,FE AB ∥,若BDFE 的面积为2,13BD BA =,14BE BC =,则ABC 的面积是________.54.(2021·四川内江)如图,矩形ABCD 中,6AB =,8BC =,对角线BD 的垂直平分线EF 交AD 于点E 、交BC 于点F ,则线段EF 的长为 __.55.(2021·甘肃兰州)如图,在矩形ABCD 中,1AB =,3AD =.△以点A 为圆心,以不大于AB 长为半径作弧,分别交边AD ,AB 于点E ,F ,再分别以点E ,F 为圆心,以大于12EF 长为半径作弧,两弧交于点P ,作射线AP 分别交BD ,BC 于点O ,Q ;△分别以点C ,Q 为圆心,以大于12CQ 长为半径作弧,两弧交于点M ,N ,作直线MN 交AP 于点G ,则OG 长为______.56.(2021·辽宁营口)如图,矩形ABCD 中,5AB =,4BC =,点E 是AB 边上一点,3AE =,连接DE ,点F 是BC 延长线上一点,连接AF ,且12F EDC ∠=∠,则CF =_________.57.(2021·江苏无锡)如图,在Rt ABC △中,90BAC ∠=︒,AB =6AC =,点E 在线段AC 上,且1AE =,D 是线段BC 上的一点,连接DE ,将四边形ABDE 沿直线DE 翻折,得到四边形FGDE ,当点G 恰好落在线段AC 上时,AF =________.58.(2020·四川眉山)如图,等腰ABC 中,10AB AC ==,边AC 的垂直平分线交BC 于点D ,交AC 于点E .若ABD △的周长为26,则DE 的长为________.59.(2020·四川宜宾)在直角三角形AB C 中,90,ACB D ︒∠=是AB 的中点,BE 平分ABC ∠交AC 于点E 连接CD 交BE 于点O ,若8,6AC BC ==,则OE 的长是________.60.(2020·山东潍坊)如图,矩形ABCD 中,点G ,E 分别在边,BC DC 上,连接,,AG EG AE ,将ABG 和ECG分别沿,AG EG 折叠,使点B ,C 恰好落在AE 上的同一点,记为点F .若3,4CE CG ==,则sin DAE ∠=_______.三、解答题61.(2021·江苏南通)如图,利用标杆DE 测量楼高,点A ,D ,B 在同一直线上,DE AC ⊥,BC AC ⊥,垂足分别为E ,C .若测得1m AE =, 1.5m DE =,5m CE =,楼高BC 是多少?62.(2021·广西贵港)尺规作图(只保留作图痕迹,不要求写出作法),如图,已知ABC ,且AB >A C . 本号资料皆来源于微信公众#号:数学(1)在AB 边上求作点D ,使DB =DC ;(2)在AC 边上求作点E ,使ADE △AC B .63.(2021·广西玉林)如图,在ABC 中,D 在AC 上,//DE BC ,//DF AB .(1)求证:DFC △△AED ;(2)若13CD AC =,求DFC AED S S △△的值.64.(2021·湖北黄冈)如图,在ABC 和DEC 中,A D ∠=∠,BCE ACD ∠=∠.(1)求证:ABC DEC △△;(2)若:4:9ABC DEC S S =,6BC =,求EC 的长.65.(2020·湖北省直辖县级单位)在平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC上找出一点M,使点M是BC的中点;(2)如图2,在BD上找出一点N,使点N是BD的一个三等分点.66.(2022·上海)如图所示,在等腰三角形AB C中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE²=AQ·AB求证:(1)△CAE=△BAF;(2)CF·FQ=AF·BQ67.(2022·吉林长春)如图△、图△、图△均是55⨯的正方形网格,每个小正方形的边长均为1,其顶点称为格点,ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中ABC 的形状是________;(2)在图△中确定一点D ,连结DB 、DC ,使DBC △与ABC 全等:(3)在图△中ABC 的边BC 上确定一点E ,连结AE ,使ABE CBA △∽△:(4)在图△中ABC 的边AB 上确定一点P ,在边BC 上确定一点Q ,连结PQ ,使PBQ ABC △∽△,且相似比为1:2.68.(2022·湖南常德)在四边形ABCD 中,BAD ∠的平分线AF 交BC 于F ,延长AB 到E 使BE FC =,G 是AF 的中点,GE 交BC 于O ,连接GD .(1)当四边形ABCD 是矩形时,如图,求证:△GE GD =;△BO GD GO FC ⋅=⋅.(2)当四边形ABCD 是平行四边形时,如图,(1)中的结论都成立,请给出结论△的证明.69.(2022·湖北黄冈)问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是△ABC 的角平分线,可证AB AC =BD CD.小慧的证明思路是:如图2,过点C 作CE △AB ,交AD 的延长线于点E ,构造相似三角形来证明AB AC =BD CD .(1)尝试证明:请参照小慧提供的思路,利用图2证明AB AC =BD CD; (2)应用拓展:如图3,在Rt △AB C 中,△BAC =90°,D 是边BC 上一点.连接AD ,将△ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.△若AC =1,AB =2,求DE 的长;△若BC =m ,△AED =α,求DE 的长(用含m ,α的式子表示).70.(2022·山东泰安)如图,矩形ABCD 中,点E 在DC 上,DE BE =,AC 与BD 相交于点O .BE 与AC 相交于点F .(1)若BE 平分CBD ∠,求证:BF AC ⊥;(2)找出图中与OBF 相似的三角形,并说明理由;(3)若3OF =,2EF =,求DE 的长度.71.(2022·四川自贡)如图,用四根木条钉成矩形框ABCD ,把边BC 固定在地面上,向右推动矩形框,矩形框的形状会发生改变(四边形具有不稳定性).(1)通过观察分析,我们发现图中线段存在等量关系,如线段EB 由AB 旋转得到,所以EB AB =.我们还可以得到FC = , EF = ;(2)进一步观察,我们还会发现EF △AD ,请证明这一结论;(3)已知BC 30,DC 80==cm cm ,若BE 恰好经过原矩形DC 边的中点H ,求EF 与BC 之间的距离.72.(2021·四川雅安)如图,OAD △为等腰直角三角形,延长OA 至点B 使OB OD =,其对角线AC ,BD 交于点E .(1)求证:OAF DAB △≌△;(2)求DF AF的值.73.(2021·广西贺州)如图,在Rt ABC 中,90C ∠=︒,D 是AB 上的一点,以AD 为直径的O 与BC 相切于点E ,连接AE ,DE .(1)求证:AE 平分BAC ∠;(2)若30B ∠=︒,求CE DE的值.74.(2021·湖南永州)如图1,AB 是O 的直径,点E 是O 上一动点,且不与A ,B 两点重合,EAB ∠的平分线交O 于点C ,过点C 作CD AE ⊥,交AE 的延长线于点D .(1)求证:CD 是O 的切线;(2)求证:22AC AD AO =⋅;(3)如图2,原有条件不变,连接,BE BC ,延长AB 至点M ,EBM ∠的平分线交AC 的延长线于点P ,CAB ∠的平分线交CBM ∠的平分线于点Q .求证:无论点E 如何运动,总有P Q ∠=∠.75.(2021·湖南益阳)如图,在等腰锐角三角形ABC 中,AB AC =,过点B 作BD AC ⊥于D ,延长BD 交ABC 的外接圆于点E ,过点A 作AF CE ⊥于F ,,AE BC 的延长线交于点G .(1)判断EA 是否平分DEF ∠,并说明理由;(2)求证:△BD CF =;△22BD DE AE EG =+⋅.76.(2021·黑龙江绥化)如图所示,四边形ABCD 为正方形,在ECH 中,90,,ECH CE CH HE ∠=︒=的延长线与CD 的延长线交于点F ,点D B H 、、在同一条直线上.(1)求证:CDE CBH ≌;(2)当15HB HD =时,求FD FC 的值; (3)当3,4HB HG ==时,求sin CFE ∠的值.77.(2021·山西)阅读与思考,请阅读下列科普材料,并完成相应的任务. 图算法 图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系:9325F C =+得出,当10C =时,50F .但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种利用特制的线条进行计算的方法就是图算法.再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?我们可以利用公式12111R R R =+求得R 的值,也可以设计一种图算法直接得出结果:我们先来画出一个120︒的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.任务:(1)请根据以上材料简要说明图算法的优越性;(2)请用以下两种方法验证第二个例子中图算法的正确性:△用公式12111R R R =+计算:当17.5R =,25R =时,R 的值为多少; △如图,在AOB 中,120AOB ∠=︒,OC 是AOB 的角平分线,7.5OA =,5OB =,用你所学的几何知识求线段OC 的长.78.(2022·辽宁大连)综合与实践问题情境:数学活动课上,王老师出示了一个问题:如图1,在ABC 中,D 是AB 上一点,ADC ACB ∠=∠.求证ACD ABC ∠=∠.独立思考:(1)请解答王老师提出的问题.实践探究:(2)在原有问题条件不变的情况下,王老师增加下面的条件,并提出新问题,请你解答.“如图2,延长CA至点E ,使CE BD =,BE 与CD 的延长线相交于点F ,点G ,H 分别在,BF BC 上,BG CD =,BGH BCF ∠=∠.在图中找出与BH 相等的线段,并证明.” 本号资料皆来源@于微信:数学问题解决:(3)数学活动小组河学时上述问题进行特殊化研究之后发现,当90BAC ∠=︒时,若给出ABC 中任意两边长,则图3中所有已经用字母标记的线段长均可求,该小组提出下面的问题,请你解答.“如图3,在(2)的条件下,若90BAC ∠=︒,4AB =,2AC =,求BH 的长.”79.(2022·广东深圳)(1)【探究发现】如图△所示,在正方形ABCD 中,E 为AD 边上一点,将AEB △沿BE 翻折到BEF 处,延长EF 交CD 边于G 点.求证:BFG BCG △≌△(2)【类比迁移】如图△,在矩形ABCD 中,E 为AD 边上一点,且8,6,AD AB ==将AEB △沿BE 翻折到BEF 处,延长EF 交BC 边于点,G 延长BF 交CD 边于点,H 且,FH CH =求AE 的长.(3)【拓展应用】如图△,在菱形ABCD 中,E 为CD 边上的三等分点,60,D ∠=︒将ADE 沿AE 翻折得到AFE △,直线EF 交BC 于点,P 求CP 的长.80.(2022·山东烟台)(1)【问题呈现】如图1,△ABC 和△ADE 都是等边三角形,连接BD ,CE .求证:BD =CE .(2)【类比探究】如图2,△ABC 和△ADE 都是等腰直角三角形,△ABC =△ADE =90°.连接BD ,CE .请直接写出BD CE的值.(3)【拓展提升】如图3,△ABC和△ADE都是直角三角形,△ABC=△ADE=90°,且ABBC=ADDE=34.连接BD,CE.△求BDCE的值;△延长CE交BD于点F,交AB于点G.求sin△BFC的值.。
九年级数学《相似三角形的周长与面积》导学案
《相似三角形的周长与面积》导学案一、教学目标知识与技能1.理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。
2.能用相似三角形周长的比等于相似比、面积比等于相似比的平方来解决简单的问题。
过程与方法1.经历探索相似三角形性质的过程,并在探究过程中发展学生积极的情感、态度、价值观,体验解决问题策略的多样性。
2.在探索实践中培养学生分析问题、解决问题的能力。
情感态度与价值观1. 在获得知识的过程中培养学习的自信心,知道数学来源于生活有服务于生活。
2. 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.二、重点难点重点理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。
难点相似三角形性质的灵活运用,及对“相似三角形面积的比等于相似比的平方”性质的理解,特别是对它的反向应用的理解,即对“由面积比求相似比”的理解.三、学情分析相似三角形的周长与面积在初中数学和中考中占有重要的位置,同时,在日常生活生产中也有广泛的应用,因此这是一节很重要的课题。
学生已学习相似形的性质和判定,以及全等三角形的有关知识,在此基础上研究本节课,学生应感到并不困难。
小结:1.本节学习的数学知识:(1)相似三角形(或多边形)长的比等于相似比.(2)相似三角形(或多边形)的面积比等于相似比的平方(3)相似三角形对应高的比、对应中线的比、对应角的平分线的比五、设计思路本节课开始让学生回顾旧内容,再根据提出的问题,让学生对相似三角形的周长、高、中线、角平分线、面积之间的关系进行猜测,然后从理论上,对学生的猜测逐一进行证明。
从两相似三角形周长和面积两方面进行探索,让学生在探索中得出结论,在探索中培养学生初步的发现能力和概括能力。
27.2.3 相似三角形的周长与面积一、自主探究问题一:相似三角形、相似多边形的周长之间的关系 1、已知:△ABC ∽△A'B'C',相似比为k ,求证:'''ABC A B C C k C =V V2、猜想:相似多边形的周长之间有什么关系?3、根据以上两个问题你会得到什么结论?问题二:相似三角形对应高、面积之间的关系1、已知:△ABC ∽△A'B'C',相似比为k ,AD ,''A D 分别是高线,求证:''A D kA D=2、已知:△ABC ∽△A'B'C',相似比为k ,AD ,''A D 分别是高线,求证:'''2ABC A B C S k S =V V .B 'C ''CB 'C ''3、已知:四边形ABCD 相似于四边形A'B'C'D',相似比为k ,它们的面积比是多少?4、根据以上讨论,归纳结论.问题三; 相似三角形对应中线、角的平分线之间的关系已知:△ABC ∽△A'B'C',相似比为k ,AD ,''A D 分别是中线,则''A D A D的值是多少?若AD ,''A D 分别是角平分线呢?由此你会得到什么结论?二、尝试应用1、(2010福建泉州市惠安县)两个相似三角形的面积比是9:16,则这两个三角形的相似比是( )A.9:1B. 3:4C.9:4D.3:16 2、(2010重庆市)已知△ABC 与△DEF 相似且对应中线的比为2:3,则△ABC 与△DEF 的周长比为_____________.3、如图,在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D ,△ABC 的周长是24,面积是48,求△DEF 的周长和面积.D CB ADC 'D'CE FA 'B 'C 'D '三、补偿提高1、(2010重庆潼南县)△ABC与△DEF的相似比为3:4,则△ABC与△DEF的周长比为.2、(2009年宜宾)若一个图形的面积为2,那么将它与成中心对称的图形放大为原来的两倍后的图形面积为()A.8B. 6C.4D.23、(2009年安顺)如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为1:4.其中正确的有:A.0个B.1个C.2个D3个4、如图,有一块三角形铁片ABC,已知最长边BC=12cm,高AD=8cm要把它加工成一个矩形铁片,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,且矩形的长是宽的2倍,问加工成的铁片的面积是多少?。
2024年河北省中考数学一轮复习考点突破课件:相似三角形(含位似)
(2)AE=_______.
第六节 相似三角形(含位似)
突
破
子题衍生 △ACE 与△BDE 的周长比为 __2_∶__3__;△BDE 与△ACE 的面积比为
重 ___9_∶__4__. 难
题
型
第六节 相似三角形(含位似)
突
破
仿真再练一 [2023·石家庄 47 中模拟]如下图,在 Rt△ABC 中,
第六节 相似三角形(含位似)
■考点二 相似三角形(多边形)的性质与判定(8 年 5 考)
定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三
相 角形对应边的比叫做相似比.
似
三
1. 平行于三角形一边的直线和其他两边(或两边的延长线)相
角
交,所截得的三角形与原三角形⑨__相__似__.
形 2. ⑩___两__ 角对应相等的两个三角形相似.
相似三角形(含位似)
对接版本 人教 九下第二十七章 P23~59. 冀教 九上第二十五章 P57~102. 北师 九上第四章 P76~123.
第六节 相似三角形(含位似)
■考点一 比例线段的相关概念
线段的比:两条线段的比是两条线段的长度之比.
比例线段:在四条线段 a,b,c,d 中,如果 a 与 b 的比等于 c 与
突
破
5 如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下
重 的阴影三角形与原三角形不相似的是 ( C )
难
题
型
第六节 相似三角形(含位似)
突
破
仿真再练二 已知 Rt△ABC 中,∠BAC=90°,过点 A 作一条直线,使其将
重 △ABC 分成两个相似的三角形.观察下列图中尺规作图痕迹,作法错误的是 (
2020年中考数学压轴题专题3 相似三角形的存在性问题学案(原版+解析)
专题三 相似三角形的存在性问题【考题研究】相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。
难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快.【解题攻略】相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。
应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).【解题类型及其思路】相似三角形存在性问题需要注意的问题:1、若题目中问题为△ABC ∽△DEF ,则对应线段已经确定。
2、若题目中为△ABC 与 △DEF 相似,则没有确定对应线段,此时有三种情况:①△ABC ∽△DEF ,②△ABC ∽△FDE 、 ③△ABC ∽△EFD 、3、若题目中为△ABC 与 △DEF 并且有 ∠A 、 ∠D (或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC ∽△DEF ,②、△ABC ∽△DFE 需要分类讨论上述的各种情况。
【典例指引】类型一 【确定符合相似三角形的点的坐标】典例指引1.(2019·贵州中考真题)如图,抛物线212y x bx c =++与直线132y x =+分别相交于A ,B 两点,且此抛物线与x 轴的一个交点为C ,连接AC ,BC .已知(0,3)A ,(3,0)C -.(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使MB MC-的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ PA⊥交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与ABC∆相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【举一反三】(2019·海南模拟)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线335y x=+相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,∥PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ∥PM,垂足为点Q,如图2,是否存在点P,使得∥CNQ与∥PBM 相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.类型二 【确定符合相似三角形的动点的运动时间或路程等】典例指引2.(2019年广东模拟)如图,在矩形OABC 中,AO =10,AB =8,沿直线CD 折叠矩形OABC 的一边BC ,使点B 落在OA 边上的点E 处,分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系,抛物线2y ax bx c =++经过O ,D ,C 三点. (1)求AD 的长及抛物线的解析式;(2)一动点P 从点E 出发,沿EC 以每秒2个单位长的速度向点C 运动,同时动点Q 从点C 出发,沿CO 以每秒1个单位长的速度向点O 运动,当点P 运动到点C 时,两点同时停止运动,设运动时间为t 秒,当t 为何值时,以P ,Q ,C 为顶点的三角形与△ADE 相似?(3)点N 在抛物线对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请直接写出点M 与点N 的坐标(不写求解过程);若不存在,请说明理由.【举一反三】(2019·湖南模拟)如图,已知直线y =-x +3与x 轴、y 轴分别交于A ,B 两点,抛物线y =-x 2+bx +c 经过A ,B 两点,点P 在线段OA 上,从点O 出发,向点A 以1个单位/秒的速度匀速运动;同时,点Q 在线段AB 上,从点A 出发,向点B 以2个单位/秒的速度匀速运动,连接PQ ,设运动时间为t 秒.(1)求抛物线的解析式;(2)问:当t 为何值时,∥APQ 为直角三角形;(3)过点P 作PE ∥y 轴,交AB 于点E ,过点Q 作QF ∥y 轴,交抛物线于点F ,连接EF ,当EF ∥PQ 时,求点F 的坐标;(4)设抛物线顶点为M ,连接BP ,BM ,MQ ,问:是否存在t 的值,使以B ,Q ,M 为顶点的三角形与以O ,B ,P 为顶点的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.类型三 【确定符合相似三角形的函数解析式或字母参数的值】典例指引3.(2019·江苏中考真题)如图,二次函数245y x x =-++图象的顶点为D ,对称轴是直线l ,一次函数215y x =+的图象与x 轴交于点A ,且与直线DA 关于l 的对称直线交于点B .(1)点D 的坐标是 ______;(2)直线l 与直线AB 交于点C ,N 是线段DC 上一点(不与点D 、C 重合),点N 的纵坐标为n .过点N 作直线与线段DA 、DB 分别交于点P ,Q ,使得DPQ ∆与DAB ∆相似. ①当275n =时,求DP 的长; ②若对于每一个确定的n 的值,有且只有一个DPQ ∆与DAB ∆相似,请直接写出n 的取值范围 ______.【举一反三】(2018武汉中考)抛物线L :y =﹣x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B .(1)直接写出抛物线L 的解析式;(2)如图1,过定点的直线y =kx ﹣k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值;(3)如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标.【新题训练】1.(2019·长沙市开福区青竹湖湘一外国语学校初三月考)如图1,已知抛物线;C 1:y =﹣1m(x +2)(x ﹣m )(m >0)与x 轴交于点B 、C (点B 在点C 的左侧),与y 轴交于点E .(1)求点B 、点C 的坐标;(2)当△BCE 的面积为6时,若点G 的坐标为(0,b ),在抛物线C 1的对称轴上是否存在点H ,使得△BGH 的周长最小,若存在,则求点H 的坐标(用含b 的式子表示);若不存在,则请说明理由;(3)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.2.(2020·浙江初三期末)边长为2的正方形OABC 在平面直角坐标系中的位置如图所示,点D 是边OA 的中点,连接CD ,点E 在第一象限,且DE DC ⊥,DE DC =.以直线AB 为对称轴的抛物线过C ,E 两点.(1)求抛物线的解析式;(2)点P 从点C 出发,沿射线CB 每秒1个单位长度的速度运动,运动时间为t 秒.过点P 作PF CD ⊥于点F ,当t 为何值时,以点P ,F ,D 为顶点的三角形与COD ∆相似? (3)点M 为直线AB 上一动点,点N 为抛物线上一动点,是否存在点M ,N ,使得以点M ,N ,D ,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.3.(2020·长沙市长郡双语实验中学初三开学考试)如图,抛物线y =ax 2﹣2ax +c 的图象经过点C (0,﹣2),顶点D 的坐标为(1,﹣83),与x 轴交于A 、B 两点.(1)求抛物线的解析式.(2)连接AC ,E 为直线AC 上一点,当△AOC ∽△AEB 时,求点E 的坐标和AEAB的值. (3)点C 关于x 轴的对称点为H 5FC +BF 取最小值时,在抛物线的对称轴上是否存在点Q ,使△QHF 是直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由. 4.(2019·贵州初三)如图,已知抛物线y =13x 2+bx +c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由.5.(2020·河南初三)如图,在平面直角坐标系中,抛物线243y x bx c =-++与x 轴交于A 、D 两点,与y 轴交于点B ,四边形OBCD 是矩形,点A 的坐标为(1,0),点B 的坐标为(0,4),已知点E (m ,0)是线段DO 上的动点,过点E 作PE ⊥x 轴交抛物线于点P ,交BC 于点G ,交BD 于点H . (1)求该抛物线的解析式;(2)当点P 在直线BC 上方时,请用含m 的代数式表示PG 的长度;(3)在(2)的条件下,是否存在这样的点P ,使得以P 、B 、G 为顶点的三角形与△DEH 相似?若存在,求出此时m 的值;若不存在,请说明理由.6.(2020·浙江初三期末)如图①,在平面直角坐标系中,抛物线2y x =的对称轴为直线l ,将直线l 绕着点()0,2P 顺时针旋转α∠的度数后与该抛物线交于AB 两点(点A 在点B 的左侧),点Q 是该抛物线上一点(1)若45α∠=︒,求直线AB 的函数表达式 (2)若点p 将线段分成2:3的两部分,求点A 的坐标(3)如图②,在(1)的条件下,若点Q 在y 轴左侧,过点p 作直线//l x 轴,点M 是直线l 上一点,且位于y 轴左侧,当以P ,B ,Q 为顶点的三角形与PAM ∆相似时,求M 的坐标7.(2020·上海初三)如图,在平面直角坐标系xOy 中,抛物线y =13x 2+mx +n 经过点B (6,1),C (5,0),且与y 轴交于点A . (1)求抛物线的表达式及点A 的坐标;(2)点P 是y 轴右侧抛物线上的一点,过点P 作PQ ⊥OA ,交线段OA 的延长线于点Q ,如果∠PAB =45°.求证:△PQA ∽△ACB ;(3)若点F 是线段AB (不包含端点)上的一点,且点F 关于AC 的对称点F ′恰好在上述抛物线上,求FF ′的长.8.(2019·江苏初三期末)如图,抛物线y =ax 2+5ax +c (a <0)与x 轴负半轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C 点,D 是抛物线的顶点,过D 作DH ⊥x 轴于点H ,延长DH 交AC 于点E ,且S △ABD :S △ACB =9:16,(1)求A 、B 两点的坐标;(2)若△DBH 与△BEH 相似,试求抛物线的解析式.9.(2019·湖南中考模拟)如图,顶点坐标为(2,﹣1)的抛物线y =ax 2+bx +c (a ≠0)与y 轴交于点C (0,3),与x 轴交于A 、B 两点. (1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC 交于点D ,连接AC 、AD ,求△ACD 的面积;(3)点E 为直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F .问是否存在点E ,使得以D 、E 、F 为顶点的三角形与△BCO 相似?若存在,求点E 的坐标;若不存在,请说明理由.10.(2019·西安市铁一中学中考模拟)如图,抛物线2(0)y ax bx c a =++≠的顶点坐标为(2,1)-,并且与y 轴交于点(0,3)C ,与x 轴交于A 、B 两点.(1)求抛物线的表达式.(2)如图1,设抛物线的对称轴与直线BC 交于点D ,点E 为直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F ,问是否存在点E ,使得以D 、E 、F 为顶点的三角形与BCO V 相似.若存在,求出点E 的坐标;若不存在,请说明理由.11.(2019·广东中考模拟)如图,在平面直角坐标系xoy 中,直线122y x =+与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx +c 的对称轴是32x =-且经过A 、C 两点,与x 轴的另一交点为点B .(1)①直接写出点B 的坐标;②求抛物线解析式.(2)若点P 为直线AC 上方的抛物线上的一点,连接PA ,PC .求△PAC 的面积的最大值,并求出此时点P 的坐标.(3)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似?若存在,直接写出点M 的坐标;若不存在,请说明理由.12.(2019·江苏泗洪姜堰实验学校中考模拟)如图,抛物线2481293y x x =--与x 轴交于A 、C 两点,与y 轴交于B 点. (1)求△AOB 的外接圆的面积;(2)若动点P 从点A 出发,以每秒2个单位沿射线AC 方向运动;同时,点Q 从点B 出发,以每秒1个单位沿射线BA 方向运动,当点P 到达点C 处时,两点同时停止运动.问当t 为何值时,以A 、P 、Q 为顶点的三角形与△OAB 相似?(3)若M 为线段AB 上一个动点,过点M 作MN 平行于y 轴交抛物线于点N . ①是否存在这样的点M ,使得四边形OMNB 恰为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.②当点M 运动到何处时,四边形CBNA 的面积最大?求出此时点M 的坐标及四边形CBAN 面积的最大值.13.(2019·陕西中考真题)在平面直角坐标系中,已知抛物线L :()2y ax c a x c =+-+经过点A (-3,0)和点B (0,-6),L 关于原点O 对称的抛物线为L '. (1)求抛物线L 的表达式;(2)点P 在抛物线L '上,且位于第一象限,过点P 作PD ⊥y 轴,垂足为D .若△POD 与△AOB 相似,求符合条件的点P 的坐标.14.(2019·湖南中考真题)如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.15.(2018·四川中考真题)如图,抛物线y =12x 2+bx +c 与直线y =12x +3交于A ,B 两点,交x 轴于C 、D 两点,连接AC 、BC ,已知A (0,3),C (﹣3,0). (1)求抛物线的解析式;(2)在抛物线对称轴l 上找一点M ,使|MB ﹣MD |的值最大,并求出这个最大值; (3)点P 为y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ ⊥PA 交y 轴于点Q ,问:是否存在点P 使得以A ,P ,Q 为顶点的三角形与△ABC 相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.16.(2019·湖南中考真题)如图1,△AOB 的三个顶点A 、O 、B 分别落在抛物线F 1:21733y x x =+的图象上,点A 的横坐标为﹣4,点B 的纵坐标为﹣2.(点A 在点B 的左侧) (1)求点A 、B 的坐标;(2)将△AOB 绕点O 逆时针旋转90°得到△A 'OB ',抛物线F 2:24y ax bx =++经过A '、B '两点,已知点M 为抛物线F 2的对称轴上一定点,且点A '恰好在以OM 为直径的圆上,连接OM 、A 'M ,求△OA 'M 的面积;(3)如图2,延长OB '交抛物线F 2于点C ,连接A 'C ,在坐标轴上是否存在点D ,使得以A 、O 、D 为顶点的三角形与△OA 'C 相似.若存在,请求出点D 的坐标;若不存在,请说明理由.专题三相似三角形的存在性问题【考题研究】相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。
中考数学一轮复习专题解析—相似三角形
中考数学一轮复习专题解析—相似三角形复习目标1.了解相似图形和相似三角形的概念。
2.掌握三角形相似的判定方法和性质并学会运用。
考点梳理一、相似图形1.形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.2.比例线段的相关概念如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm b a =,或写成n m b a ::=. 注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位. 在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注意:(1)当两个比例式的每一项都对应相同,两个比例式才是同一比例式.(2)比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. 3. 比例的性质基本性质:(1)bc ad d c b a =⇔=::;(2)b a c b c c a ⋅=⇔=2::.注意:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.更比性质(交换比例的内项或外项):()()()a b c d a c d c b d b ad b c a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 反比性质(把比的前项、后项交换):cd a b d c b a =⇒=. 合比性质:dd c b b a d c b a ±=±⇒=. 注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间 发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a c c d a a b d c b a 等等. 等比性质: 如果)0(≠++++====n f d b n m f e d c b a ,那么b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.4.比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.推论:(1)平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.(2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边.5.黄金分割把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB 例1.如果0ab cd =≠,则下列正确的是( )A .::a c b d =B .::a d c b =C .::a b c d =D .::d c b a = 【答案】B【分析】根据比例的基本性质,列出比例式即可.【详解】解:∵0ab cd =≠,∵::a d c b =,故选:B .例2.两个相似多边形的一组对应边的长分别为6cm ,9cm ,那么它们的相似比为( )A .23B C .49 D .94【答案】A【分析】根据相似多边形的性质求解即可;【详解】两个相似多边形一组对应边的长分别为6cm ,9cm ,∵它们的相似比为:6293=.故选A .二、相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∵”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注意:∵对应性:即两个三角形相似时,通常把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.∵顺序性:相似三角形的相似比是有顺序的.∵两个三角形形状一样,但大小不一定一样.∵全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.三、相似三角形的等价关系(1)反身性:对于任一ABC ∆有ABC ∆∵ABC ∆.(2)对称性:若ABC ∆∵'''C B A ∆,则'''C B A ∆∵ABC ∆.(3)传递性:若ABC ∆∵C B A '∆'',且C B A '∆''∵C B A ''''''∆,则ABC ∆∵C B A ''''''∆.四、相似三角形的基本定理定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:五、三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
江苏省镇江实验学校2022年初三中考数学复习教学案:用相似三角形解决问题(2)
江苏省镇江实验学校2022年初三中考数学复习教学案:6主备:罗彬课型:新授严玲凤班级姓名学号【学习目标】1、使学生了解中心投影的意义。
2、通过测量活动,综合运用判定三角形相似的条件和三角形相似的性质解决问题,增强用数学的意识加深对判定三角形相似的条件和三角形相似的性质的明白得。
3、通过操作、观看等数学活动,探究中心投影与平行投影的区别,并运用中心投影的相关知识解决一些实际问题。
【重点难点】运用三角形相似的判定和性质解决实际问题。
【自主学习】读一读:阅读课本79-80页想一想:1.如图所示,在房子外的屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区在()A、△ACEB、△ABDC、四边形BCEDD、△BDF练一练:E D某人身高1.6m,在路灯A 的照耀下影长为DE,他与灯杆AB 的距离BD=5m,求(1)AB=6m.求DE(精确到0.1m)(2)DE=2.5m ,求AB【例题教学】1、为了测量路灯(OS )的高度,把一根长1.5米的竹竿(AB )竖直立在水平地面上,测得竹竿的影子(BC )长为1米,然后拿竹竿向远离路灯方向走了4米(BB ‘),再把竹竿竖立在地面上, 测得竹竿的影长(B ‘C ‘)为1.8米,求路灯离地面的高度.2、小华同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发觉身后的影子顶部刚好触到AC 的底部,当他向前再步行12m 到达Q 点时,发觉身前的影子的顶端接触到路灯BD 的底部.已知小华身高为1.6m ,两个路灯的高度差不多上9.6m .(1)求两个路灯之间的距离.(2)当小华同学走到路灯BD 处时,他在路灯AC 下的影子长是多少?【课堂检测】1、下列说法错误的是 ( )A:太阳光线能够看成平行光线.B:在平行光线的照耀下,不同物体的物高与影长成比例. C:在点光源的照耀下,不同物体的物高与影长成比例D: 在点光源的照耀下,物体所产生的投影为中心投影2、这是圆桌正上方的灯泡(看着一个点)发出的光线照耀桌面后,在地面上形成阴影圆形的示意图,已知桌面的直径为1.2米,桌面距离地面1米。
2020春中考数学一轮复习专题:相似三角形
2020春中考数学一轮复习专题:相似三角形(1)【复习目标】1.了解线段的比,成比例线段;通过建筑、艺术等方面的实例了解黄金分割.2. 了解相似三角形的概念,掌握相似三角形的判定及直角三角形相似的判定;会用相似三角形证明角相等或线段成比例,或进行角的度数和线段长度的计算等【课堂研讨】考点一比例性质1.已知513ba=,则a ba b-+的值是2.已知三个数1,2, 3 ,请你再添上一个(只填一个)数,使它们能构成一个比例式,则这个数是。
3. 在RtΔABC中,∠ACB=90°,CD⊥AB于D,AC=6,AD=4,则AB= .4.已知点C是线段AB的黄金分割点,若ACAB≈0.6 18,那么CBAC的近似值是_______ 5.如图,直线l1∥l2∥l3,另两条直线分别交l1,l2,l3于点A,B,C及点D,E,F,且AB=3,DE=4,EF=2,则BC=______.★6. (1)如图,AD是△ABC的中线,P是AD的中点,延长BP交AC于点F,若AC的长为6,求AF的长(2)已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,求AC的长.第(1)题第(2)题BACDE1.如图,已知△ABC ∽△ADB 中,CD =6,AD =2,BD =3,则AB =_____, BC =_____.2.如图,在△ABC 中,EF ∥BC ,12AE EB =,S 梯形BCFE =8,则S △ABC 的值是3、如图,在△ABC 中,∠B =45°,BC =5,高AD =4,矩形EFPQ 的一边QP 在BC 边上,E 、F 分别在AB 、AC 上,AD 交EF 于点H . (1)求证:BCEFAD AH =; (2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求出最大面积;4、如图,在R t △ABC 中,∠ACB =90°,AC =5cm ,∠BAC =60°,动点M 从点B 出发,在BA 边上以每秒2cm 的速度向点A 匀速运动,同时动点N 从点C 出发,在CB 边上以每秒3cm 的速度向点B 匀速运动,设运动时间为t 秒(05≤≤t ),连接MN . (1)若△MBN 与△ABC 相似,求t 的值;(2)当t 为何值时,四边形ACNM 的面积最小?并求出最小值.1.如图,在大小为4×4的正方形网格中,是相似三角形的是________(请填上编号).2.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是 ( )A.∠ABD=∠C B.∠ADB=∠ABCC.AB CBBD CD= D.AD ABAB AC=3. 如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC= 14BC.图中相似三角形共有()A.1对 B.2对C.3对 D.4对4、(1)提出问题:如图①,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连接AM,以AM为边作等边△AMN,连接CN.求证:∠ABC=∠ACN.(2)类比探究:如图②,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其他条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.(3)拓展延伸:如图③,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B,C),连接AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连接CN,试探究∠ABC与∠ACN 的数量关系,并说明理由.5. 如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.相似三角形拓展提升训练一、填空题1.如图,△ABC∽△DEF,相似比为1∶2,若BC=1,则EF的长是()A.1 B.2 C.3 D.42.如图,在研究相似问题时,甲、乙两同学的观点如下:甲:将边长为3,4,5的三角形按图中的方式向外扩张,得到新三角形,它们的对应边间距均为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图②的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对 B.两人都不对 C.甲对,乙不对 D.甲不对,乙对3.如图,在△ABC中,AB=AC,点D在边BC上,连接AD,将线段AD绕点A逆时针旋转到AE,使得∠DAE=∠BAC,连接DE交AC于F,图中相似的三角形有______对.第3题第4题第5题P A4、如图,AD 是△ABC 的中线,F 在AC 上CF=3AF ,若BF 的长为6,则PF 的长为______.5、如图,梯形ABCD 中,AD ∥BC ,∠B =∠ACD =90°,AB =2,DC =3,则△ABC 与△DCA 的面积比为______________6、如图,P 为平行四边形ABCD 边AD 上一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,S 1,S 2,若S =2,则S 1+S 2=______第6题 第7题7、如图,小明用长为3 m 的竹竿CD 做测量工具,测量学校旗杆AB 的高度,移动竹竿,使竹竿与旗杆的距离DB =12 m ,则旗杆AB 的高为_________________8、如图,梯形ABCD 中,AD ∥BC ,∠D=90°,∠ABC=60°,CD=33AD=16,点P 是AD 边上的一点,∠CPB=120°.①△PCB 与△ABP 相似吗?为什么? ②求△ABP 的面积S 。
2022年中考数学复习学案 相似三角形有关的面积问题
中考数学复习之相似三角形有关的面积问题(学案)知识与方法梳理 处理面积问题的三种方法 1. 公式法2. 割补法(分割求和,补形作差)3. 转化法(相似类、同底类、共高或等高类)利用常见结构进行转化是在复杂背景下处理面积问题的通常思路,在转化过程中需要结合背景的特点.动态背景:要抓住变化过程中所求面积不变的特征;函数背景:优先考虑公式法,或者割补之后采用公式法,也可结合几何特征进行转化; 探索规律背景:根据结构特征确定第一项的处理办法,后续进行类比. 面积问题中的常见结构举例结构识别FGBC H E Ah hA C hD BBCDA适用特征 平行连通比例线段比相关结论 面积比等于相似比的平方高相同或相等,面积比等于底之比两者联系在复杂背景下,这两种转化手段常常配合使用例1:如图,在Rt ABC △中,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连接1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连接2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,连接3BE 交1CD 于4D ;…,如此继续.若分别记11BD E △,22BD E △,33BD E △,…,n n BD E △的面积为123S S S ,,,…,n S ,则n S =____________ABC S △(用含n 的代数式表示).E 3E 2E 1D 4D 3D 2D 1CBA分析:题目中的相似三角形非常之多,三角形的面积关系也非常之多,这是面积问题同学们需要面对的第一大难题,处理好这些关系,才能最终解决问题;解:1.易知E1为AC的中点,S∆ABE1=12S∆ABC,D1为AB的中点,S∆BD1E1=12S∆ABE1,故S∆BDE=14S∆ABC;2.D1E1||BC,1112D EAC=,故E2为E1C的三等分点,12113BE E BCES S∆∆=,D2为BE1的三等分点,故222123BD E BE ES S∆∆=,112BE C ABCS S∆∆=,故2219BD E ABCS S∆∆=3.易知221123D ED E=,111AC2D E=,故221AC3D E=,D3为BE2的四等分点,231211212BE E BE E ABCS S S∆∆∆==,,而33116BD E ABCS S∆∆=;综合上述,猜想S n=21(1)ABCSn∆+练习题1. 如图,△ABC 的面积为63cm 2,D 是BC 上的一点,且BD :CD =2:1,DE △AC 交AB 于点E ,延长DE 到F ,使FE :ED =2:1,连接CF ,则△CD F 的面积为 .FED CBA2. 如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,G 为EC 的中点,连接DG 并延长交BC 的延长线于点F ,BE 与DF 交于点O .若△ADE 的面积为S ,则四边形BOGC 的面积为_______.G ODCAE BF3. 如图,在梯形ABCD 中,AB △CD ,AB =3CD ,对角线AC ,BD 交于点O ,中位线EF与AC ,BD 分别交于点M ,N ,则图中阴影部分的面积是梯形ABCD 面积的( ) A .12 B .13 C .14 D .47NMEO CFBD4. 如图,点A 1,A 2,A 3,A 4在射线OA 上,点B 1,B 2,B 3在射线OB 上,且A 1B 1△A 2B 2△A 3B 3,A 2B 1△A 3B 2△A 4B 3.若△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,则图中阴影部分的面积为_______.O A 11A 2A 3A 4B 2B 3AB 145. 如图,点D 是△ABC 的边AB 的延长线上一点,点F 是边BC 上的一个动点(不与点B重合).以BD ,BF 为邻边作平行四边形BDEF ,又AP △BE ,且AP =BE (点P ,E 在直线AB 的同侧),若14BD AB,则△PBC 的面积与△ABC 的面积的比值是___________. AB CDE FP G6. 如图,已知直线l 1:y =23x +83与直线l 2:y =-2x +16相交于点C ,直线l 1,l 2分别交x 轴于A ,B 两点,矩形DEFG 的顶点D ,E 分别在l 1,l 2上,顶点F ,G 都在x 轴上,且点G 与点B 重合,那么S 矩形DEFG :S △ABC =____________.yxl 2O DB EF(G )Al 1C7. 已知:如图,DE 是△ABC 的中位线.点P 是DE 的中点,连接CP 并延长交AB 于点Q ,那么S △DPQ :S △ABC =_________.Q PE D CBA8. 如图,在△ABC 中,CE :EB =1:2,DE △AC .若△ABC 的面积为S ,则△ADE 的面积为____________.ECA9. 如图,已知△ABC △△DCE △△HEF ,三条对应边BC ,CE ,EF 在同一条直线上,连接BH ,分别交AC ,DC ,DE 于点P ,Q ,K .若△DQK 的面积为2,则图中阴影部分的面积为__________.HK QPD CA10. 如图,在△ABC 中,AB =AC ,M ,N 分别是AB ,AC 的中点,D ,E 为BC 上的点,连接DN ,EM 交于点F .若AB =13cm ,BC =10cm ,DE =5cm ,则图中阴影部分的面积为___________.FE DB MC参考答案1.422.7 4 S3.C4.21 25.3 46.8:9 7.1:248.2 9 S9.26 10.30cm2。
2023年中考数学一轮复习之必考点题型全归纳与分层精练-相似三角形(解析版)
专题22相似三角形【专题目录】技巧1:巧用“基本图形”探索相似条件技巧2:巧作平行线构造相似三角形技巧3:证比例式或等积式的技巧【题型】一、相似图形的概念和性质【题型】二、平行线分线段成比例定理【题型】三、相似三角形的判定【题型】四、相似三角形的性质【题型】五、利用相似三角形解决实际问题【题型】六、位似图形的概念与性质【题型】七、平面直角坐标系与位似图形【考纲要求】1、了解比例线段的有关概念及其性质,并会用比例的性质解决简单的问题.2、了解相似多边形,相似三角形的概念,掌握其性质和判定并会运用.3、了解位似变换和位似图形的概念,掌握并运用其性质.【考点总结】一、相似图形及比例线段解直相似图形在数学上,我们把形状相同的图形称为相似图形.相似多边形若两个边数相同的多边形,它们的对应角相等、对应边成比例,则这两个多边形叫做相似多边形。
特征:对应角相等,对应边成比例。
比例线段的定义在四条线段a,b,c,d中,如果其中两条线段的比等于另外两条线段的比,即a cb d(或a∶b=c∶d),那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.【考点总结】二、相似三角形【技巧归纳】技巧1:巧用“基本图形”探索相似条件相似三角形的四类结构图:1.平行线型.2.相交线型.角三角形的应用比例线段的性质(1)基本性质:a b =c d ad =bc ;(2)合比性质:a b =c d a +b b =c +d d ;(3)等比性质:若a b =c d =…=m n (b +d +…+n ≠0),那么a +c +…+m b +d +…+n =a b.黄金分割点C 把线段AB 分成两条线段AC 和BC ,如果AC AB =BC AC ,则线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.3.子母型.4.旋转型.【类型】一、平行线型1.如图,在△ABC 中,BE 平分∠ABC 交AC 于点E ,过点E 作ED ∥BC 交AB 于点D.(1)求证:AE·BC =BD·AC ;(2)如果S △ADE =3,S △BDE =2,DE =6,求BC 的长.【类型】二、相交线型2.如图,点D ,E 分别为△ABC 的边AC ,AB 上的点,BD ,CE 交于点O ,且EO BO =DO CO,试问△ADE 与△ABC 相似吗?请说明理由.【类型】三、子母型3.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F.求证:AB AC =DF AF .【类型】四、旋转型4.如图,已知∠DAB =∠EAC ,∠ADE =∠ABC.求证:(1)△ADE ∽△ABC ;(2)AD AE =BD CE .参考答案1.(1)证明:∵ED ∥BC ,∴∠ADE =∠ABC.又∵∠A =∠A ,∴△ADE ∽△ABC.∴AE AC =DE BC.∵BE 平分∠ABC ,∴∠DBE =∠EBC.∵ED ∥BC ,∴∠DE B =∠EBC.∴∠DBE =∠DEB.∴DE =BD.∴AE AC =BD BC.即AE·BC =BD·AC.(2)解:设h △ADE 表示△ADE 中DE 边上的高,h △BDE 表示△BDE 中DE 边上的高,h △ABC 表示△ABC 中BC 边上的高.∵S △ADE =3,S △BDE =2,∴S △ADE S △BDE =12·DE·h △ADE 12·DE·h △BDE =h △ADE h △BDE =32.∴h △ADE h △ABC =35.∵△ADE ∽△ABC ,∴DE BC =h △ADE h △ABC =35.∵DE =6,∴BC =10.2.解:相似.理由如下:因为EO BO =DO CO,∠BO E =∠COD ,∠DOE =∠COB ,所以△BOE ∽△COD ,△DOE ∽△COB.所以∠EBO =∠DCO ,∠DEO =∠CBO.因为∠ADE =∠DCO +∠DEO ,∠ABC =∠EBO +∠CBO ,所以∠ADE =∠ABC.又因为∠A =∠A ,所以△ADE ∽△ABC.3.证明:∵∠BAC =90°,AD ⊥BC 于点D ,∴∠BAC =∠A DB =90°.又∵∠CBA =∠ABD(公共角),∴△ABC ∽△DBA.∴AB AC =DB DA,∠BAD =∠C.∵AD ⊥BC 于点D ,E 为AC 的中点,∴DE =EC.∴∠BDF =∠CDE =∠C.∴∠BDF =∠BAD.又∵∠F =∠F ,∴△DBF ∽△ADF.∴DB AD =DF AF .∴AB AC =DF AF.(第3题)点拨:当所证等积式或比例式运用“三点定型法”不能定型或能定型而不相似,条件又不具备成比例线段时,可考虑用中间比“搭桥”,称为“等比替换法”,有时还可用“等积替换法”,例如:如图,在△ABC 中,AD ⊥BC 于点D ,D E ⊥AB 于点E ,DF ⊥AC 于点F ,求证:AE·AB =AF·AC.可由两组“射影图”得AE·AB=AD 2,AF·AC =AD 2,∴AE·AB =AF·AC.4.证明:(1)∵∠DAB =∠EAC ,∴∠DAE =∠BAC.又∵∠ADE =∠ABC ,∴△ADE ∽△ABC.(2)∵△ADE ∽△ABC ,∴AD AE =AB AC.∵∠DAB =∠EAC ,∴△ADB ∽△AEC.∴AD AE =BD CE.技巧2:巧作平行线构造相似三角形【类型】一、巧连线段的中点构造相似三角形1.如图,在△ABC 中,E ,F 是边BC 上的两个三等分点,D 是AC 的中点,BD 分别交AE ,AF 于点P ,Q ,求BP PQ QD.【类型】二、过顶点作平行线构造相似三角形2.如图,在△ABC 中,AC =BC ,F 为底边AB 上一点,BFAF =32,取CF 的中点D ,连接AD 并延长交BC 于点E ,求BE EC 的值.【类型】三、过一边上的点作平行线构造相似三角形3.如图,在△ABC 中,AB >AC ,在边AB 上取一点D ,在AC 上取一点E ,使AD =AE ,直线DE 和BC的延长线交于点P.求证:BP CP =BD EC .【类型】四、过一点作平行线构造相似三角形4.如图,在△ABC 中,点M 为AC 边的中点,点E 为AB 上一点,且AE =14AB ,连接EM 并延长交BC 的延长线于点D.求证:BC =2CD.参考答案1.解:如图,连接DF ,∵E ,F 是边BC 上的两个三等分点,∴BE =EF =FC.∵D 是AC 的中点,∴AD =CD.∴DF 是△ACE 的中位线.∴DF ∥AE ,且DF =12AE.∴DF ∥PE.∴∠BEP =∠BFD.又∵∠EBP 为公共角,∴△BEP ∽△BFD.∴BE BF =BP BD.∵BF =2BE ,∴BD =2BP.∴BP =PD.∴DF =2PE.∵DF ∥AE ,∴∠APQ =∠FDQ ,∠PAQ =∠DFQ.∴△APQ ∽△FDQ.∴PQ QD =AP DF.设PE =a ,则DF =2a ,AP =3a.∴PQQD =AP DF =3 2.∴BP PQ QD =53 2.2.解:如图,过点C 作CG ∥AB 交AE 的延长线于点G.∵CG ∥AB ,∴∠DAF =∠G.又∵D 为C F 的中点,∴CD =DF.在△ADF 和△GDC DAF =∠G ,ADF =∠CDG ,=CD ,∴△ADF ≌△GDC(AAS ).∴AF =CG.∵BF AF =32,∴AB AF =5 2.∵AB ∥CG ,∴∠CGE =∠BAE ,∠BCE =∠ABE.∴△ABE ∽△GCE.∴BE EC =AB CG =AB AF =52.3.证明:如图,过点C 作CF ∥AB 交DP 于点F ,∴∠PFC =∠PDB ,∠PCF =∠PBD.∴△PCF ∽△PBD.∴BP CP =BD CF.∵AD ∥CF ,∴∠ADE =∠EFC.∵AD =AE ,∴∠ADE =∠AED.∵∠AED =∠CEP ,∴∠EFC =∠CEP.∴EC =CF.∴BP CP =BD EC.4.证明:(方法一)如图①,过点C 作CF ∥A B ,交DE 于点F ,(第4题①)∴∠FCD =∠B.又∵∠D 为公共角,∴△CDF ∽△BDE.∴CF BE =CD BD.∵点M 为AC 边的中点,∴AM =CM.∵CF ∥AB ,∴∠A =∠MCF.又∵∠AME =∠CM F ,∴△AME ≌△CMF.∴AE =CF.∵AE =14AB ,BE =AB -AE ,∴BE =3AE.∴AE BE =13.∵CF BE =CD BD,∴AE BE =CD BD =13,即BD =又∵BD =BC +CD ,∴BC =2CD.(第4题②)(方法二)如图②,过点C 作CF ∥DE ,交AB 于点F ,∴AE AF =AM AC.又∵点M 为AC 边的中点,∴AC =2AM.∴2AE =AF.∴AE =EF.又∵AE AB =14,∴BF EF=2.又∵CF ∥DE ,∴BF FE =BC CD =2.∴BC =2CD.(第4题③)(方法三)如图③,过点E 作EF ∥BC ,交AC 于点F ,∴∠AEF =∠B.又∵∠A 为公共角,∴△AEF ∽△ABC.∴EF BC =AE AB =AF AC.由AE =14AB ,知EF BC =AE AB =AF AC =14,∴EF =14BC ,AF =14AC.由EF ∥CD ,易证得△EFM ∽△DCM ,∴EF CD =MF MC.又∵AM =MC ,∴MF =12MC ,∴EF =12CD.∴BC =2CD.(第4题④)(方法四)如图④,过点A 作AF ∥BD ,交DE 的延长线于点F ,∴∠F =∠D ,∠FAE =∠B.∴△AEF ∽△BED.∴AE BE =AF BD.∵AE =14AB ,∴AE =13BE.∴AF =13BD.由AF ∥CD ,易证得△AFM ∽△CDM.又∵AM =MC ,∴AF =CD.∴CD =13BD.∴BC =2CD.点拨:由已知线段的比,求证另外两线段的比,通常添加平行线,构造相似三角形来求解.技巧3:证比例式或等积式的技巧【类型】一、构造平行线法1.如图,在△ABC 中,D 为AB 的中点,DF 交AC 于点E ,交BC 的延长线于点F ,求证:AE·CF =BF·EC.2.如图,已知△ABC 的边AB 上有一点D ,边BC 的延长线上有一点E ,且AD =CE ,DE 交AC 于点F ,求证:AB·DF =BC·EF.【类型】二、三点定型法3.如图,在▱ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F.求证:DC AE =CF AD .4.如图,在△ABC 中,∠BAC =90°,M 为BC 的中点,DM ⊥BC 交CA 的延长线于D ,交AB 于E.求证:AM 2=MD·ME.【类型】三、构造相似三角形法5.如图,在等边三角形ABC中,点P是BC边上任意一点,AP的垂直平分线分别交AB,AC于点M,N.求证:BP·CP=BM·CN.【类型】四、等比过渡法6.如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG·DF=DB·EF.7.如图,CE是Rt△ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP于点G,交CE于点D.求证:CE2=DE·PE.【类型】五、两次相似法8.如图,在Rt△ABC中,AD是斜边BC上的高,∠ABC的平分线BE交AC于E,交AD于F.求证:BF BE =AB BC .9.如图,在▱ABCD 中,AM ⊥BC ,AN ⊥CD ,垂足分别为M ,N.求证:(1)△AMB ∽△AND ;(2)AM AB =MN AC .【类型】六、等积代换法10.如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F.求证:AE AF =AC AB .【类型】七、等线段代换法11.如图,在等腰三角形ABC 中,AB =AC ,AD ⊥BC 于点D ,点P 是AD 上一点,CF ∥AB ,延长BP 交AC 于点E ,交CF 于点F ,求证:BP 2=PE·PF.12.如图,已知AD 平分∠BAC ,AD 的垂直平分线EP 交BC 的延长线于点P.求证:PD 2=PB·PC.参考答案1.证明:如图,过点C 作CM ∥AB 交DF 于点M.∵CM ∥AB ,∴∠FCM =∠B ,∠FMC =∠FDB.∴△CMF ∽△BDF.∴BF CF =BD CM.又∵CM ∥AD ,∴∠A =∠ECM ,∠ADE =∠CME.∴△ADE ∽△CME.∴AE EC =AD CM.∵D 为AB 的中点,∴BD =AD.∴BD CM =AD CM .∴BF CF =AE EC.即AE·CF =BF·EC.2.证明:过点D 作DG ∥BC ,交AC 于点G ,易知△DGF ∽△ECF ,△ADG ∽△ABC.∴EF DF =CE DG ,AB BC =AD DG.∵AD =CE ,∴CE DG =AD DG .∴AB BC =EF DF.即AB·DF =BC·EF.点拨:过某一点作平行线,构造出“A ”型或“X ”型的基本图形,通过相似三角形转化线段的比,从而解决问题.3.证明:∵四边形ABCD 是平行四边形,∴A E ∥D C ,∠A =∠C.∴∠CDF =∠E.∴△FCD ∽△DAE.∴DC AE =CF AD.4.证明:∵DM ⊥BC ,∠BAC =90°,∴∠B +∠BEM =90°,∠D +∠DEA =90°.∵∠BEM =∠DEA ,∴∠B =∠D.又∵M 为BC 的中点,∠BAC =90°,∴BM =AM.∴∠B =∠BAM.∴∠BAM =∠D.即∠EAM =∠D.又∵∠AME =∠DMA.∴△AME ∽△DMA.∴AM MD =ME AM.即AM 2=MD·ME.5.证明:如图,连接PM ,PN.∵MN 是AP 的垂直平分线,∴MA =MP ,NA =NP.∴∠1=∠2,∠3=∠4.又∵△ABC 是等边三角形,∴∠B =∠C =∠1+∠3=60°.∴∠2+∠4=60°.∴∠5+∠6=120°.又∵∠6+∠7=180°-∠C =120°,∴∠5=∠7.∴△BPM ∽△CNP.∴BP CN =BM CP.即BP·CP =BM·CN.6.证明:(1)∵AB =AC ,∴∠ABC =∠ACB.∵DE ∥BC ,∴∠ABC +∠EDB =180°,∠ACB +∠FED =180°.∴∠FED =∠EDB.又∵∠EDF =∠DBE ,∴△DEF ∽△BDE.(2)由△DEF ∽△BDE 得DE BD =EF DE.即DE 2=DB·EF.又由△DEF ∽△BDE ,得∠GED =∠EFD.∵∠GDE =∠EDF ,∴△GDE ∽△EDF.∴DG DE =DE DF.即DE 2=DG·DF.∴DG·DF =DB·EF.7.证明:∵BG ⊥AP ,PE ⊥AB ,∴∠AEP =∠DEB =∠AGB =90°.∴∠P +∠PAB =90°,∠PAB +∠AB G =90°.∴∠P =∠ABG.∴△AEP ∽△DEB.∴AE DE =PE BE.即AE·BE =PE·DE.又∵∠CEA =∠BEC =90°,∴∠CAB +∠ACE =90°.又∵∠ACB =90°,∴∠CAB +∠CBE =90°.∴∠ACE =∠CBE.∴△AEC CEB.∴AE CE =CE BE.即CE 2=AE·BE.∴CE 2=DE·PE.8.证明:由题意得∠BDF =∠BAE =90°.∵BE 平分∠ABC ,∴∠DBF =∠ABE.∴△BDF ∽△BAE.∴BD AB =BF BE.∵∠BAC =∠BDA =90°,∠ABC =∠DBA.∴△ABC ∽△DBA.∴AB BC =BD AB.∴BF BE =AB BC.9.证明:(1)∵四边形ABCD 为平行四边形,∴∠B =∠D.∵AM ⊥BC ,AN ⊥CD ,∴∠AMB =∠AND =90°.∴△AMB ∽△AND.(2)由△AMB ∽△AND 得AM AN =AB AD,∠BAM =∠DAN.又AD =BC ,∴AM AN =AB BC.∵AM ⊥BC ,AD ∥BC ,∴∠MAD =∠AMB =90°.∴∠B +∠BAM =∠MAN +∠NAD =90°.∴∠B =∠MAN.∴△AMN ∽△BAC.∴AM AB =MN AC.10.证明:∵AD ⊥BC ,DE ⊥AB ,∴∠ADB =∠AED =90°.又∵∠BAD =∠DAE ,∴△ABD ∽△ADE.∴AD AB =AE AD.即AD 2=AE·AB.同理可得AD 2=AF·AC.∴AE·AB =AF·AC.∴AE AF =AC .11.证明:连接PC ,如图所示.∵AB =AC ,AD ⊥BC ,∴AD 垂直平分BC ,∠ABC =∠ACB.∴BP =CP.∴∠1=∠2∴∠ABC -∠1=∠ACB -∠2,即∠3=∠4.∵CF ∥AB ,∴∠3=∠F.∴∠4=∠F.又∵∠CPF =∠CPE ,∴△CPF ∽△EPC.∴CP PE =PF CP,即CP 2=PF·PE.∵BP =CP ,∴BP 2=PE·PF.12.证明:如图,连接PA ,∵EP 是AD 的垂直平分线,∴PA =PD.∴∠PD A =∠PAD.∴∠B +∠BAD =∠DAC +∠CAP.又∵AD 平分∠BAC ,∴∠BAD =∠DAC.∴∠B =∠CAP.又∵∠APC =∠BPA ,∴△PAC ∽△PBA.∴PA PB =PC PA.即PA 2=PB·PC.∵PA =PD ,∴PD 2=PB·PC.【题型讲解】【题型】一、相似图形的概念和性质例1、如图,在△ABC 中,DE ∥AB ,且CD BD =32,则CE CA 的值为()A .35B .23C .45D .32【答案】A【提示】根据平行线分线段成比例定理得到比例式即可解答.【详解】解:∵DE //AB ,∴32CE CD AE BD ==∴CE CA 的值为35.故答案为A .【题型】二、平行线分线段成比例定理例2、如图,在ABC ∆中,//DE BC ,9AD =,3DB =,2CE =,则AC 的长为()A .6B .7C .8D .9【答案】C 【提示】根据平行线分线段成比例定理,由DE ∥BC 得AD AE DB EC =,然后利用比例性质求EC 和AE 的值即可【详解】∵//DE BC ,∴AD AE DB EC =,即932AE =,∴6AE =,∴628AC AE EC =+=+=.故选C .【题型】三、相似三角形的判定例3、如图,已知DAB CAE ∠=∠,那么添加下列一个条件后,仍然无法判定A ABC DE ∽△△的是()A .AB AC AD AE =B .AB BC AD DE =C .B D ∠=∠D .C AED∠=∠【答案】B【提示】利用相似三角形的判定依次判断可求解.【详解】解:∵∠DAB=∠CAE ,∴∠DAE=∠BAC ,A 、若AB AC AD AE =,且∠DAE=∠BAC ,可判定△ABC ∽△ADE ,故选项A 不符合题意;B 、若AB BC AD DE =,且∠DAE=∠BAC ,无法判定△ABC ∽△ADE ,故选项B 符合题意;C 、若∠B=∠D ,且∠DAE=∠BAC ,可判定△ABC ∽△ADE ,故选项C 不符合题意;D 、若∠C=∠AED ,且∠DAE=∠BAC ,可判定△ABC ∽△ADE ,故选项D 不符合题意;故选:B .【题型】四、相似三角形的性质例4、如图,在ABC ∆中,D 、E 分别是AB 和AC 的中点,15BCED S =四边形,则ABC S ∆=()A .30B .25C .22.5D .20【答案】D【提示】首先判断出△ADE ∽△ABC ,然后根据相似三角形的面积比等于相似比的平方即可求出△ABC 的面积.【详解】解:根据题意,点D 和点E 分别是AB 和AC 的中点,则DE ∥BC 且DE=12BC ,故可以判断出△ADE ∽△ABC,根据相似三角形的面积比等于相似比的平方,可知ADE S ∆:ABC S ∆=1:4,则BCED S 四边形:ABC S ∆=3:4,题中已知15BCED S =四边形,故可得ADE S ∆=5,ABC S ∆=20故本题选择D【题型】五、利用相似三角形解决实际问题例5、为测量某河的宽度,小军在河对岸选定一个目标点A ,再在他所在的这一侧选点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,然后找出AD 与BC 的交点E ,如图所示.若测得BE =90m ,EC =45m ,CD =60m ,则这条河的宽AB 等于()A .120mB .67.5mC .40mD .30m【答案】A 【解析】∵∠ABE=∠DCE,∠AEB=∠CED,∴△ABE ∽△DCE,∴AB BE CD CE=.∵BE =90m ,EC =45m ,CD =60m ,∴()906012045AB m ⨯==故选A.【物高问题】【题型】六、位似图形的概念与性质例6、如图,△ABC 与△DEF 位似,点O 为位似中心.已知OA ∶OD =1∶2,则△ABC 与△DEF 的面积比为()A .1∶2B .1∶3C .1∶4D .1∶5【答案】C【提示】根据位似图形的性质即可得出答案.【详解】由位似变换的性质可知,//,//AB DE AC DF∴12OA OB OD OE ==12AC OA DF OD ∴==∴△ABC 与△DEF 的相似比为:1∶2∴△ABC 与△DEF 的面积比为:1∶4故选C .【题型】七、平面直角坐标系与位似图形例7、如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm .则投影三角板的对应边长为()A .20cmB .10cmC .8cmD .3.2cm【答案】A【提示】根据对应边的比等于相似比列式进行计算即可得解.【详解】解:设投影三角尺的对应边长为xcm ,∵三角尺与投影三角尺相似,∴8:x =2:5,解得x =20.故选:A .相似三角形(达标训练)一、单选题1.如图,已知∥DE BC ,12AD BD =,则ADE V 与ABC 的周长之比为()A .1:2B .1:4C .1:9D .1:3【答案】D 【分析】根据平行线的性质及相似三角形的判定定理可得:ABC ADE ∽,相似三角形的对应边成比例,且周长比等于相似比,据此即可解答.【详解】解:∵∥DE BC ,∴ADE B ∠=∠,∵A A ∠=∠,∴ABC ADE ∽,∵AD :DB =1:2,∴AD :AB =1:3,∴13ADE ABC C C ∆∆=::,即ADE 与ABC 的周长比为1:3.故选:D .【点睛】题目主要考查相似三角形的判定与性质,平行线的性质,熟练掌握相似三角形的判定定理及其性质是解题关键.2.如图,在ABC 中,高BD 、CE 相交于点.F 图中与AEC △一定相似的三角形有()A .1个B .2个C .3个D .4个【答案】C 【分析】利用相似三角形的判定方法可得AEC △∽ADB ,AEC △∽FEB ,AEC △∽FDC △,可求解.【详解】解:A A ∠=∠ ,90AEC ADB ∠=∠=︒,AEC ∴ ∽ADB ,ACE ABD ∴∠=∠,又90AEC BEC ∠=∠=︒ ,AEC ∴ ∽FEB ,ACE ACE ∠=∠ ,90AEC ADB ∠=∠=︒,AEC ∴ ∽FDC △,故选C【点睛】本题考查了相似三角形的判定,掌握相似三角形的判定方法是解题的关键.3.在△ABC 中,D 、E 分别是AB 、AC 的中点,则△ADE 与△ABC 的面积之比为()A .16B .14C .13D .12【答案】B【分析】容易证明两个三角形相似,求出相似比,相似三角形的周长之比等于相似比,面积比等于相似比的平方.【详解】解:由题意得DE 为△ABC 的中位线,那么DE ∥BC ,DE :BC =1:2.∴△ADE ∽△ABC ,∴△ADE 与△ABC 的周长之比为1:2,∴△ADE 与△ABC 的面积之比为:4,即14.故选:B .【点睛】此题考查的是相似三角形的性质,三角形中位线定理,掌握相似三角形的周长之比等于相似比,面积比等于相似比的平方是解决此题关键.4.如图,D 是ABC 的边BC 上的一点,那么下列四个条件中,不能够判定△ABC 与△DBA 相似的是()A .C BAD∠=∠B .BAC BDA ∠=∠C .AC AD BC AB =D .2AB BD BC=⋅【答案】C【分析】由相似三角形的判定定理即可得到答案.【详解】解:C BAD ∠=∠,B B ∠=∠,ABC ∽DBA ,故选项A 不符合题意;BAC BDA ∠=∠,B B ∠=∠,ABC ∽DBA ,故选项B 不符合题意;AC AD BC AB=,但无法确定ACB ∠与BAD ∠是否相等,所以无法判定两三角形相似,故选项C 符合题意;2AB BD BC =⨯即AB BC BD AB=,B B ∠=∠,ABC ∽DBA ,故选项D 不符合题意.故选:C .【点睛】本题考查相似三角形的判定定理,熟练掌握相关定理是解题的关键.5.已知ABC ∽A B C ''' ,AD 和A D ''是它们的对应角平分线,若8AD =,12A D ''=,则ABC 与A B C ''' 的面积比是()A .2:3B .4:9C .3:2D .9;4【答案】B【分析】根据相似三角形的性质:对应角平分线的比等于相似比,面积的比等于相似比的平方求解即可.【详解】ABC ∽A B C ''' ,AD 和A D ''是它们的对应角平分线,8AD =,12A D ''=,∴两三角形的相似比为::8:122:3AD A D '==',则ABC 与'''A B C 的面积比是:4:9.故选:B【点睛】本题考查的是相似三角形的性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.二、填空题6.如图所示,某校数学兴趣小组利用标杆BE 测量建筑物的高度,已知标杆BE 高为1.5m ,测得AB =3m ,AC =10m ,则建筑物CD 的高是_____m .【答案】5【分析】根据题意和图形,利用三角形相似的性质,可以计算出CD 的长,从而可以解答本题.【详解】∵EB ⊥AC ,DC ⊥AC ,∴EB ∥DC ,∴AEB ADC ∠=∠,ABE ACD ∠=∠,又∵A A ∠=∠,∴△ABE ∽△ACD ,∴AB AC =BE CD,∵BE =1.5m ,AB =3m ,AC =10m ,∴3 1.510CD=,解得,5CD =,即建筑物CD 的高是5m ,故答案为:5.【点睛】本题考查了相似三角形的应用、相似比等知识,正确得出相似三角形是解题的关键.7.如图所示,要使ABC ADE ~,需要添加一个条件__________(填写一个正确的即可)【答案】ADE B∠=∠【分析】根据已有条件,加上一对角相等就可以证明ABC 与ADE V 相似,依据是:两角对应相等的两个三角形相似.【详解】解:添加ADE B ∠=∠,A A∠=∠ ABC ADE∴ ~故答案为:ADE B ∠=∠.【点睛】本题主要考查了三角形相似的判定方法,牢记三角形相似的判定方法是做出本题的关键.三、解答题8.如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点,且AD :AB =AE :AC =2:3.(1)求证:△ADE∽△ABC;(2)若DE=4,求BC的长.【答案】(1)见解析(2)BC=6.【分析】(1)直接根据相似三角形的判定方法判定即可;(2)利用相似三角形的性质即可求解.(1)证明:∵∠A=∠A,AD:AB=AE:EC=2:3,即23 AD AEAB EC==,∴△ADE∽△ABC;(2)解:∵△ADE∽△ABC,∴AD DEAB BC=,243BC=,∴BC=6.【点睛】本题考查了三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.相似三角形(提升测评)一、单选题1.如图,在菱形ABCD中,点E在AD边上,EF∥CD,交对角线BD于点F,则下列结论中错误的是()A .DE DF AE BF =B .EF DF AD DB =C .EF DF CD BF =D .EF DF CD DB=【答案】C【分析】根据已知及平行线分线段成比例定理进行分析,可得CD ∥BF ,依据平行线成比例的性质和相似三角形的性质即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∵EF ∥CD ,∴EF ∥AB ,∴DE DF AE BF =,△DEF ∽△DAB ,∴EF DF AB DB=,∵AB =AD =CD ,∴EF DF AD DB =,EF DF CD DB=,∴选项A 、B 、D 正确;选项C 错误;故选:C .【点睛】此题考查平行四边形的性质、相似三角形的判定与性质以及平行线分线段成比例定理;熟练掌握平行四边形的性质,证明三角形相似是解决问题的关键.2.如图1为一张正三角形纸片ABC ,其中D 点在AB 上,E 点在BC 上.今以DE 为折线将B 点往右折后,BD 、BE 分别与AC 相交于F 点、G 点,如图2所示.若10AD =,16AF =,14DF =,8BF =,则CG 的长度为多少?()A .7B .8C .9D .10【答案】C 【分析】根据三角形ABC 是正三角形,可得∠A =∠B =60°,△AFD ∽△BFG ,即可求出FG =7,而AD =10,DF =14,BF =8,可得AB =32=AC ,故CG =AC -AF -FG =9.【详解】解: 三角形ABC 是正三角形,60A B ∴∠=∠=︒,AFD BFG ∠=∠ ,AFD BFG ∴∆∆∽,∴DF AF FG BF =,即14168FG =,7FG ∴=,10AD = ,14DF =,8BF =,32AB ∴=,32AC ∴=,321679CG AC AF FG ∴=--=--=;故选:C .【点睛】本题考查等边三角形中的翻折问题,解题的关键是掌握翻折的性质,证明AFD BFG ∆∆∽,从而求出FG 的长度.3.如图,在平面直角坐标系中有A ,B 两点,其中点A 的坐标是(-2,1),点B 的横坐标是2,连接AO ,BO .已知90AOB ∠=︒,则点B 的纵坐标是()A .B .4CD .2【答案】B 【分析】先过点A 作AC x ⊥轴于点C ,过点B 作BD x ⊥轴于点D ,构造相似三角形,再利用相似三角形的性质列出比例式,计算求解即可.【详解】解:过点A 作AC x ⊥轴于点C ,过点B 作BD x ⊥轴于点D ,则90ACO ODB ∠=∠=︒,90B BOD ∠+∠=︒,90AOB ∠=︒Q ,90AOC BOD ∴∠+∠=︒,B AOC ∴∠=∠,ACO ∴ ∽ODB △,AC CO OD DB∴=,又A 的坐标是()2,1-,点B 的横坐标是2,∴AC =1,CO =2,OD =2,122DB∴=,即4DB =,∴:B 的纵坐标是4.故选:B .【点睛】本题主要考查了相似三角形的判定与性质,通过作垂线构造相似三角形是解决问题的关键.4.如图,D 是ABC △的边上的一点,过点D 作BC 的平行线交AC 于点E ,连接BE ,过点D 作BE 的平行线交AC 于点F ,则下列结论错误的是()A .AD AF BD EF =B .AF DF AE EB =C .=AD AE AB AC D .CAF FE DE B =【答案】D【分析】根据DF BE ∥,DE BC ∥找到对应线段成比例或相似三角形对应线段的比相等,判断即可.【详解】解:DF BE ∥,AD AF BD EF∴=,故A 选项比例式正确,不符合题意;DF BE ∥,ADF ABE ∴△∽△,DF AF EB AE∴=,故B 选项比例式正确,不符合题意;DE BC ∥,AD AE AB AC∴=,故C 选项比例式正确,不符合题意;DE BC ∥,DE AF BC FEAF AC =≠∴故D 选项比例式不正确,符合题意.故选D .【点睛】本题主要考查了平行线分线段成比例,相似三角形的判定和性质,解题的关键是找准对应线段.二、填空题5.如图,小明想测量一棵树的高度,他发现树的影子落在了地上和墙上,此时测得地面上的影长BD 为4m ,墙上的影子CD 长为1m ,同一时刻一根长为1m 的垂直于地面上的标杆的影长为0.5m ,则树的高度为______m .【答案】9【分析】设地面影长对应的树高为m x ,根据同时同地物高与影长成正比列出比例式求出x ,然后加上墙上的影长CD 即为树的高度.【详解】解:设地面影长对应的树高为m x ,由题意得,140.5x =,解得8x =,墙上的影子CD 长为1m ,∴树的高度为()819m +=.故答案为:9.【点睛】本题考查利用投影求物高.熟练掌握同时同地物高与影长成正比是解题的关键.6.如图,梯形ABCD 中,AD BC ∥,2BC AD =,点F 在BC 的延长线上,AF 与BD 相交于点E ,与CD 边相交于点G .如果2AD CF =,那么DEG ∆与CFG ∆的面积之比等于______.【答案】16:7##167【分析】根据ADG FCG ∆∆∽和ADE FBE ∆∆∽,根据相似三角形对应边成比例和相似三角形的面积比等于相似比的平方,即可求解.【详解】解:AD BC ,ADG FCG ∴∆∆∽,2AD AG CF GF∴==,∴ADG ∆与CFG ∆的面积之比4:1,AD BC ,ADE FBE ∴∆∆∽,25AD AE BF EF ∴==,令GF a =,则2AG a =,设,2AE x EG a x ==-,:(2)2:5x a a x ∴+-=,67x a ∴=,68,77AE a EG a ∴==,:3:4AE EG =,∴DEG ∆与ADE ∆的面积之比是4:3,∴DEG ∆与CFG ∆的面积之比是16:7.故答案为:16:7.【点睛】此题考查了相似三角形的判定与性质,熟练掌握并运用:相似三角形对应边成比例、相似三角形三、解答题7.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,连接AF 交CG 于点K ,H 是AF 的中点,连接CH .(1)求tan ∠GFK 的值;(2)求CH 的长.【答案】(1)12(2)CH =【分析】(1)由正方形的性质得出AD =CD =BC =1,CG =FG =CE =3,,AD BC GF BE ∥∥,∠G =90°,证出ADK FGK V :V ,得出比例式求出3342GK DG ==,即可得出结果;(2)由正方形的性质求出AB =BC =1,CE =EF =3,∠E =90°,延长AD 交EF 于M ,连接AC 、CF ,求出AM =4,FM =2,∠AMF =90°,根据正方形性质求出∠ACF =90°,根据直角三角形斜边上的中线性质求出12CH AF =,根据勾股定理求出AF ,即可得出结果.(1)解:∵四边形ABCD 和四边形CEFG 是正方形,∴AD =CD =BC =1,CG =FG =CE =3,,AD BC GF BE ∥∥,∠G =90°,∴DG =CG -CD =2,AD GF ∥,∴ADK FGK V :V ,∴DK :GK =AD :GF =1:3,∴3342GK DG ==,∴312tan 32GK GFK FG ∠===;(2)解:∵正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,∴AB =BC =1,CE =EF =3,∠E =90°,延长AD 交EF 于M ,连接AC 、CF ,如图所示:则AM =BC +CE =1+3=4,FM =EF-AB =3-1=2,∠AMF =90°,∵四边形ABCD 和四边形GCEF 是正方形,∴∠ACD =∠GCF =45°,∴∠ACF =90°,∵H 为AF 的中点,∴12CH AF =,在Rt △AMF 中,由勾股定理得:22224225AF AM FM =+=+=,∴152CH AF ==.【点睛】本题考查了相似三角形的判定与性质、三角函数、勾股定理,正方形的性质,直角三角形斜边上的中线性质;本题有一定难度,特别是(2)中,需要通过作出辅助线运用直角三角形斜边上的中线性质才能得出结果.8.如图所示,BEF 的顶点E 在矩形ABCD 对角线AC 的延长线上,13BC AB AE ==,,与FB 交于点G ,连接AF ,满足ABF ∽CEB ,其中A 对应C B ,对应E F ,对应B(1)求证:30FAD ∠=︒.(2)若13CE =,求tan FEA ∠的值.【答案】(1)见解析937【分析】(1)由相似可得FAB BCE ∠∠=,再由矩形的性质得AD BC ∥90DAB ABC ∠∠==︒,,从而可求得180FAD DAB DAC ∠∠∠++=︒,则有FAD BAC ∠∠=,即可求得FAD ∠的度数;(2)结合(1)可求得73AE =,再由相似的性质求得33AF =tan FEA ∠的值.(1)ABF ∽CEB ,FAB BCE ∠∠∴=,四边形ABCD 是矩形,∴90AD BC DAB ABC ∠=∠=︒∥,,DAC ACB ∴∠=∠,180BCE ACB ∠∠+=︒ ,180FAB DAC ∠∠∴+=︒,即180FAD DAB DAC ∠∠∠++=︒,90180FAD DAC ∠∠∴+︒+=︒,90FAD DAC ∠∠∴+=︒,90DAB ∠=︒ ,90BAC DAC ∠∠∴+=︒,FAD BAC ∠∠∴=,在Rt ABC中,tan 3BC BAC AB ∠== ,30BAC ∴∠=︒,30FAD ∠∴=︒;(2)由(1)得9030ABC BAC ∠∠=︒=︒,,2212AC BC ∴==⨯=,17233AE AC CE ∴=+=+=,ABF ∽CEB ,AF AB BC CE∴=,即113AF =,∴=AF 由(1)得:90FAD DAC ∠∠+=︒,则90FAE ∠=︒,在Rt FAE中,tan 3AF FEA AE ∠==【点睛】本题主要考查相似三角形的性质,矩形的性质,解直角三角形,解答的关键是结合图形及相应的性质求得FAD BAC ∠∠=.。
第18节相似三角形-中考数学一轮知识复习课件
相似比为13 ,把线段 AB 缩短,则点 A 的对应 点 A'的坐标为__(_2_,_1_)_或_(_-__2,__-__1)__.
知识清单
线段的比和比例线段 1.线段的比:两条线段__长_度___的比叫做 两条线段的比. 注意:求两条线段的比,要求长度单位相 同;线段的比与选用的长度单位无关. 2.对于四条线段 a,b,c,d,如果其中 两条线段的比__等__于__另外两条线段的比,就 说这四条线段是成比例线段.
=6-6-32x -38 x2=-38 x2+32 x.
当 x≥2 时,S 随 x 增大而减少.
与 AC 交于点 G,则相似三角形共有( C )
A.3 对
B.5 对
C.6 对
D.8 对
针对训练 6.(2019·凉山州改编)如图,∠ABD=∠BCD= 90°,DB 平分∠ADC,过点 B 作 BM∥CD 交 AD 于 点 M.连接 CM 交 DB 于点 N.求证:BD2=AD·CD.
证明:∵DB 平分∠ADC, ∴∠ADB=∠CDB. 且∠ABD=∠BCD=90°. ∴△ABD∽△BCD. ∴ABDD =BCDD . ∴BD2=AD·CD.
4.(2020·宁夏)在平面直角坐标系中,△ ABC 的三个顶点的坐标分别是 A(1,3),B(4, 1),C(1,1).
(1)画出△ABC 关于 x 轴成轴对称的△A1B1C1; (2)画出△ABC 以点 O 为位似中心,位似比为 1∶2 的△A2B2C2.
解:(1)(2)如图所示,△A1B1C1,△A2B2C2即为所求.
(2)若AADC =37 ,求FAGF 的值.
初中数学_相似三角形中的基本图形教学设计学情分析教材分析课后反思
专题6:相似三角形中的基本图形教学目标:1.通过梳理使学生掌握相似三角形中的基本图形,熟悉这些基本图形的特征,能在复杂图形中加以识别。
2.在综合题目中较快识别出相似的基本图形,能根据条件找出隐藏的基本图形,或者通过添加辅助线构造出完整的基本图形来建立数学模型,从而解决相关问题。
3、通过问题的解决,体验探究问题成功的乐趣,提高学习几何的兴趣。
重点和难点重点:在综合题中识别出相似的基本图形,,灵活运用相似知识解决相关问题。
深化学生对基本图形模型的理解。
难点:从复杂图形中识别相似的基本图形,并利用相似知识解决问题。
相似有关的综合性问题的解决技巧和方法的渗透。
教学过程:一、教师赠言:每个人心中都有一座山世上最难攀登的山其实是自己往上走哪怕只有一小步也有新高度做最好的自己我能(设计意图:让学生斗志昂扬的宣读赠言,教师鼓励同学们每天都能更进一步,奋力拼搏,做最棒的自己。
)二、温故知新:1.判定三角形相似的方法:2.相似三角形的性质:(设计意图:新旧知识之间有相互一致的特征,学生通过复习旧知识,激活认知结构中的原有知识,为促其顺利迁移,获得本节知识奠定基础。
)三、相似三角形基本图形梳理:(8种类型)A BCD E D E A BC (D)E ABC ABCD EA BCD E AEBC(D)1221ABCD E(学生课前积累平时学习中的各类基本图形,体会这些基本图形之间的联系) 四、构建模型、探求方法:(设计意图:通过题组的形式帮助学生梳理各类型的基本图形。
掌握这些基本图形的性质与特点,熟悉的模型在已有知识经验的基础上抽象出数学概念是帮助学生理解数学知识的有效学习方法。
)(一)基本图形一:平行型相似三角形 如图①~③所示,在△ABC 中,点D,E 分别是AB ,AC 上(或延长线上或反向延长线上)的点,且DE ∥BC,则△ADE ∽ △ABC 。
(引导学生给每一个基本图形命名,“A ”型和“X ”型。
) 【培优训练】:1.(2014.随州)如图,在△ABC 中,两条中线BE,CD 相交于点O,则S △DOE ∶S △COB=( )A.1∶4B.2∶3C.1∶3D.1∶2 2.(2013•乌鲁木齐)如图,AB ∥GH ∥CD ,点H 在BC 上,AC 与BD 交于点G ,AB=2,CD=3,则GH的长为 .【方法归纳】:______________________________________________(学生抢答并总结方法) (二)基本图形二:相交型相似三角形 【知识点睛】如图①,∠AED=∠B,则△AED ∽△ABC; 如图②,∠ACD=∠B,则△ACD ∽△ABC; 如图③,∠A=∠D,则△AOB ∽△DOC.(引导学生给每一个基本图形命名,反“A ”型和反“X ”型。
相似三角形中考复习(知识点+题型分类练习)
相似三角形一、知识概述1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等。
2.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。
3.相似三角形的定义对应边成比例、对应角相等的两个三角形叫做相似三角形.4.相似三角形的基本性质①相似三角形的对应边成比例、对应角相等.②相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
③相似三角形的周长比等于相似比④面积比等于相似比的平方温馨提示:①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当且仅当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.5. 相似三角形的判定定理①平行于三角形一边的直线和其他两边或其延长线相交,所得的三角形与原三角形相似;②三边对应成比例的两个三角形相似;③两角对应相等的两个三角形相似;④两边对应成比例且夹角相等的两个三角形相似。
温馨提示:(1)判定三角形相似的几条思路:①条件中若有平行,可采用判定定理1;②条件中若有一对角相等(包括隐含的公共角或对顶角),可再找一对角相等或找夹边对应成比例;③条件中若有两边对应成比例,可找夹角相等;但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.④条件中若有等腰关系,可找顶角相等或底角相等,也可找腰和底对应成比例。
(2)在综合题中,注意相似知识的灵活运用,并熟练掌握线段代换、等比代换、等量代换技巧的应用,培养综合运用知识的能力。
(3)运用相似的知识解决一些实际问题,要能够在理解题意的基础上,把它转化为纯数学知识的问题,要注意培养当数学建模的思想。
考点19 相似三角形模型-备战2023届中考数学一轮复习考点梳理(解析版)
考点19 相似三角形基本模型相似三角形在初中数学中因为不同类型的规律比较明显,所以被总结了很多的模型,比如:A 字图、8字图、母子三角形、一线三等角、手拉手相似等。
而掌握了这类模型的套路后,可以更快的应对相似三角形类的应用。
所以考生需要对该考点完全掌握。
一、A 字图及其变型二、8字图及其变型三、一般母子型四、一线三等角五、手拉手模型考向一、A 字图及其变型“斜A 型”型在圆中的应用:如图可得:△PAB ∽△PCD1.如图,在△ABC中,DE∥BC,DE=2,BC=6,则的值为( )A.B.C.D.【分析】利用平行线的性质和相似三角形的判定与性质解答即可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴===,故选:C.2.如图,在△ABC中,DE∥FG∥BC,AD:AF:AB=1:2:5,则S△ADE:S四边形DEGF:S四边形FGCB=( )A.1:2:5B.1:4:25C.1:3:25D.1:3:21【分析】由DE∥FG∥BC,可得△ADE∽△AFG∽△ABC,又由AD:AF:AB=1:2:5,利用相似三角形的面积比等于相似比的平方,即可求得S△ADE:S△AFG:S△ABC=1:4:25,然后设△ADE的面积是a,则△AFG和△ABC的面积分别是3a,21a,即可求两个梯形的面积,继而求得答案.【解答】解:∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∴AD:AF:AB=1:2:5,∴S△ADE:S△AFG:S△ABC=1:4:25,设△ADE的面积是a,则△AFG和△ABC的面积分别是4a,25a,则S四边形DFGE=S△AFG﹣S△ADE=3a,S四边形FBCG=S△ABC﹣S△AFG=21a,∴S△ADE:S四边形DFGE:S四边形FBCG=1:3:21.故选:D.3.将一张直角三角形纸片沿一条直线剪开,将其分成一张三角形纸片与一张四边形纸片,如果所得四边形纸片ABCD如图5所示,其中∠A=∠C=90°,AB=7厘米,BC=9厘米,CD=2厘米,那么原来的直角三角形纸片的面积是 54或 平方厘米.【分析】分两种情况讨论,由勾股定理求出AD长,由三角形面积公式求出四边形ABCD的面积,由相似三角形的性质,即可解决问题.【解答】解:(1)分别延长CD,BA交于M,连接BD,设△MBC的面积是S(cm2),∵∠C=∠DAB=90°,∴DC2+BC2=AB2+AD2=BD2,∴22+92=72+AD2,∴AD=6(cm),∴△ADB的面积=AD•AB=×6×7=21(cm2),△DCB的面积=DC•BC=×2×9=9(cm2),∴四边形ABCD的面积=21+9=30(cm2),∴△DMA的面积=(S﹣30)(cm2),∵∠M=∠M,∠MAD=∠MCB,∴△MDA∽△MBC,∴===,∴=,∴S=54(cm2).(2)分别延长AD,BC交于N,设△NAB的面积是S′(cm2),由(1)知四边形ABCD的面积=30(cm2),∵∠N=∠N,∠NCD=∠A=90°,∴△NCD∽△NAB,∴===,∴=,∴S′=(cm2),∴原来的直角三角形纸片的面积是54cm2或cm2.故答案为:54或.4.如图,矩形DEFG的边DE在△ABC的边BC上,顶点G、F分别在边AB、AC上.已知BC=6cm,DE =3cm,EF=2cm,那么△ABC的面积是 12 cm2.【分析】过点A作AN⊥BC,先利用相似三角形的判定说明△AGF∽△ABC,再利用相似三角形的性质求出△ABC的高,最后利用三角形的面积得结论.【解答】解:过点A作AN⊥BC,垂足为N,交GF于点M.∵四边形DEFG是矩形,∴GF∥DE,GF=DE=3cm,EF=MN=2cm.设AM=acm,则AN=(a+2)cm.∵GF∥DE,∴△AGF∽△ABC.∴=.∴=.∴a=2.∴AN=4cm.S△ABC=BC•AN=6×4=12(cm)2.故答案为:12.5.如图▱ABCD中,点E在BA的延长线上,连接EC、BD交于点G,EC交AD于F,已知EA:AB=1:2.(1)求EF:EC;(2)求FG:GC.【分析】(1)利用平行线分线段成比例定理和比例的性质求解即可;(2)利用相似三角形的判定,先说明△EAF∽△CDF,再利用相似三角形的性质和比例的性质求出BC:FD,最后通过说明△FDG∽△CBG,利用相似三角形的性质得结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,AD∥BC,AD=BC.(1)∵EA:AB=1:2,∴=.∵AD∥BC,∴==.(2)∵AB ∥CD ,∴△EAF ∽△CDF .∴===.∴==.∵AD ∥BC ,∴△FDG ∽△CBG .∴==.考向二、8字图及其变型“蝴蝶型”变型1.如图,在△ABC 中,中线AD 与中线BE 相交于点G ,联结DE .下列结论成立的是( )A .B .C .D .【分析】由AD ,BE 是△ABC 的中线,得到DE 是△ABC 的中位线,推出△DEG ∽△ABG ,△CDE ∽△CBA ,由相似三角形的性质即可解决问题.【解答】解:AD ,BE 是△ABC 的中线,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∴△DEG∽△ABG,∴DG:AG=DE:AB=1:2,BG:EG=AB:DE,==,∴DG=AG,∵BG:EG=AB:DE=2:1,∴GB:BE=2:3,∴S△AGB:S△AEB=2:3,∵AE=EC,∴S△AEB=S△ABC,∴S△AGB=S△ABC,∵△CDE∽△CBA,∴==,∴S△CDE=S△ABC,∴=,结论成立的是=,故选:C.2.如图,在平行四边形ABCD中,F为BC的中点,延长AD至点E,使DE:AD=1:3,连接EF交DC 于点G,则S△CFG:S△DEG等于( )A.9:4B.2:3C.4:9D.3:2【分析】利用平行四边形的性质可得AD∥BC,AD=BC,,再根据线段中点的定义可得CF=BC=AD,然后证明8字模型相似三角形△EDG∽△FCG,利用相似三角形的性质进行计算即可解答.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵F为BC的中点,∴CF=BC,∴CF=AD,∵AE∥CF,∴∠E=∠GCF,∠EDG=∠C,∴△EDG∽△FCG,∵DE:AD=1:3,∴DE=AD,∴S△CFG:S△DEG=()2=()2=()2=,故选:A.3.如图,在正方形ABCD中,E为AD上的点,连接CE.以点E为圆心,以任意长为半径作弧分别交EC,ED于点N,M,再分别以M,N为圆心,以大于MN长为半径作弧,两弧在∠CED内交于点P,连接EP并延长交DC于点H,交BC的延长线于点G.若AB=16,AE:AD=1:4,则EH的长为 6 .【分析】根据题中作图判断EP是∠DEC的角平分线,利用线段比和勾股定理求出EC,再利用角平分线的性质和平行线的性质得到CG,利用相似三角形的判定和性质求出DH,最后利用勾股定理得结论.【解答】解:∵以点E为圆心,以任意长为半径作弧分别交EC,ED于点N,M,再分别以M,N为圆心,以大于MN长为半径作弧,两弧在∠CED内交于点P,连接EP,∴EP是∠DEC的角平分线,∴∠DEG=∠CEG.∵四边形ABCD是正方形,∴AD=DC=AB=16,∠D=90°,AD∥BC.∵AE:AD=1:4,AE+ED=16,∴AE=4,ED=12.在Rt△EDC中,EC===20.∵AD∥BC,∴∠G=∠DEG=∠CEG.∴EC=CG=20.∵AD∥BC,∴△EDH∽△GCH.∴===.∵DH+HC=CD=16,∴DH=6.在Rt△EDH中,EH====6.故答案为:6.4.如图,在▱ABCD中,G是CD延长线上一点,连接BG交AC,AD于E,F.(1)求证:△ABE∽△CGE;(2)若AF=2FD,求的值.【分析】(1)根据平行四边形对边平行,得到∠ABE=∠CGE,再利用对顶角相等,可得△ABE∽△CGE;(2)利用平行四边形对边平行,证明△AEF∽△CEB,得到,再由(1)得,,从而求解.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB∥CD,∴∠ABE=∠CGE,又∵∠AEB=∠CGE,∴△ABE∽△CGE.(2)解:设FD=m,则AF=2m,∴AD=3m,∵四边形ABCD为平行四边形,∴AD∥BC,BC=AD=3m,∴∠EAF=∠ECB,∠AFE=∠CBE,∴△AEF∽△CEB∴==,又∵△ABE∽△CGE,∴==.即的值为.5.以下各图均是由边长为1的小正方形组成的网格,A,B,C,D均在格点上.(1)在图①中,的值为 1:3 ;(2)利用网格和无刻度的直尺作图,保留痕迹,不写作法.①如图②,在AB上找一点P,使AP=3;②如图③,在BD上找一点P,使△APB∽△CPD.【分析】(1)如图①中,利用平行线的性质求解即可.(2)①根据勾股定理得AB的长为5,再根据相似三角形的判定方法即可找到点P;②作点A的对称点A′,连接A′C与BD的交点即为要找的点P,使△APB∽△CPD.【解答】解:(1)如图①中,∵AB∥CD,∴△PCD∽△PBA.∴==,故答案为:1:3;(2)①取格点E,F,连接EF交AB于点P,点P即为所求的点.由勾股定理知:AB==5.∵AP=3,∴BP=2.∵BE∥FA,∴△EPB∽△FPA.∵AP:BP=AF:BE=3:2.∴取格点E,F,连接EF交AB于点P,点P即为所求的点;②如图③所示,作点A的对称点A′,连接A′C,交BD于点P,点P即为所要找的点,∵AB ∥CD ,∴△APB ∽△CPD .考向三、一般母子型:联系应用:切割线定理:如图,PB 为圆O 切线,B 为切点,则:△PAB ∽△PBC得:1.如图,在△ABC 中,CD ⊥AB 于点D ,有下列条件:①∠A =∠BCD ;②∠A +∠BCD =∠ADC ;③;④BC 2=BD •BA .其中能判断△ABC 是直角三角形的有( )A .0个B .1个C .2个D .3个【分析】根据题目中①②③④给出的条件分别判定△BCD ∽△BAC 或△ABC ∽△ACD 即可求得∠ACB =90°,计算能求证△BCD ∽△BAC 或△ABC ∽△ACD 的个数即可解题.【解答】解:①∵∠A =∠BCD ,∠A +∠ACD =90°,∴∠BCD +∠ACD =90°,故本命题成立;②条件不足,无法求证∠ACB =90°,故本命题错误;③∵BD :CD =BC :AC ,∠ADC =∠CDB =90°,∴Rt △ADC ∽Rt △CDB ,(因为都有一个直角,斜边直角边成比例)∴∠ACD =∠B ;∵∠B +∠BCD =90°,其中:∠A 是公共角AB 是公共边BD 与BC 是对应边∴∠ACD+∠BCD=90°,∵∠ACB=∠ACD+∠BCD,∴∠ACB=90°;故本命题正确;④∵BC2=BD×BA,∴=,∵∠B=∠B,∴△ABC∽△CBD,∴∠ACB=90°,故本命题成立,故选:D.2.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E为斜边AB的中点,则=( )A.B.C.D.【分析】利用相似三角形的判定与性质得到∠BCD=∠A=22.5°,利用三角形的外角的性质得到∠CED=45°,利用直角三角形斜边上的中线等于斜边的一半,得到AE=CE=BE=AB,设CD=DE=x,则CE=,AD=(+1)x,代入化简即可得出结论.【解答】解:∵∠ACB=90°,∠ACD=3∠BCD,∴∠BCD=22.5°,∠ACD=67.5°.∵∠ACB=90°,CD⊥AB,∴△BCD∽△BAC,∴∠BCD=∠A=22.5°.∵∠ACB=90°,E为斜边AB的中点,∴AE=CE=BE=AB.∴∠ECA=∠A=22.5°,∴∠CED=∠A+∠ECA=45°,∵CD⊥AB,∴CD=DE.设CD=DE=x,则CE=,∴AE=x,∴AD=AE+DE=(+1)x,∴=+1.故选:B.3.如图,在△ABC中,∠A=90°,点D、E分别在AC、BC边上,BD=CD=2DE,且∠C+∠CDE=45°,若AD=6,则BC的长为 8 .【分析】首先根据等腰三角形的性质和已知条件证出∠BDE=90°,作DF⊥BC于F,则BF=CF,△DEF ∽△BED∽△BDF,得出===,设EF=x,则DF=2x,BF=CF=4x,得出BC=8x,DE=x,得出CD=BD=2x,AC=6+2x,证明△CDF∽△CBA,得出=,代入计算即可得出结果.【解答】解:∵∠A=90°,∴∠ABD+∠ADB=90°,∵BD=CD,∴∠DBC=∠C,∴∠ADB=∠DBC+∠C=2∠C,∵∠C+∠CDE=45°∴2∠C+∠CDE=90°,∴∠ADB+∠CDE=90°,∴∠BDE=90°,作DF⊥BC于F,如图所示:则BF=CF,△DEF∽△BED∽△BDF,∴===,设EF=x,则DF=2x,BF=CF=4x,∴BC=8x,DE=x,∴CD=BD=2x,AC=6+2x,∵∠DFC=∠A=90°,∠C=∠C,∴△CDF∽△CBA,∴=,即=,解得:x=,∴BC=8;故答案为:8.4.如图,在Rt△ABC中,∠ABC=90°,点D是斜边AC的中点,连接DB,线段AE⊥线段BD交BC于点E,交DB于点G,垂足为点G.(1)求证:EB2=EG•EA;(2)联结CG,若∠CGE=∠DBC,求证:BE=CE.【分析】(1)根据相似三角形的判定与性质可得结论;(2)由直角三角形的性质得BD=AC=CD,再由相似三角形的判定与性质可得EC2=GE•EA,结合(1)的结论可得答案.【解答】证明:(1)∵AE⊥BD,∴∠BGE=90°,∵∠ABC=90°,∴∠BGE=∠ABE,∵∠BEG=∠AEB,∴△ABE∽△BGE,∴=,即EB2=EG•EA;(2)在Rt△ABC中,点D是斜边AC的中点,∴BD=AC=CD,∴∠DBC=∠DCB,∵∠CGE=∠DBC,∴∠CGE=∠DCB,∵∠GEC=∠GEC,∴△GEC∽△CEA,∴=,∴EC2=GE•EA,由(1)知EB2=EG•EA,∴EC2=EB2,∴BE=CE.考向四、一线三等角:同侧型(通常以等腰三角形或者等边三角形为背景)异侧型1.如图,AB⊥BD于点B,ED⊥BD于点D.AB=2,DE=4,BD=6.点C为BD上一点,连接AC、CE.当BC=( )时,可使AC⊥CE.A.3B.2或4C.D.2或3【分析】根据垂直定义可得∠B=∠D=∠ACE=90°,从而利用直角三角形的两个锐角互余可得∠A+∠ACB=90°,再利用平角定义可得∠ACB+∠ECD=90°,然后利用同角的余角相等可得∠ECD=∠A,从而证明△ABC∽△CDE,最后利用相似三角形的性质进行计算即可解答.【解答】解:∵AB⊥BD,ED⊥BD,∴∠B=∠D=90°,∴∠A+∠ACB=90°,∵AC⊥CE,∴∠ACE=90°,∴∠ACB+∠ECD=180°﹣∠ACE=90°,∴∠ECD=∠A,∴△ABC∽△CDE,∴=,∴=,解得:BC=2或BC=4,∴当BC=2或4时,可使AC⊥CE,故选:B.2.如图,点A,B,C在同一直线上,∠A=∠DBE=∠C,则下列结论:①∠D=∠CBE,②△ABD∽△CEB,③=,其中正确的结论有( )个.A.0B.1C.2D.3【分析】根据三角形内角和和平角的定义可得①正确,进行可得△ABD∽△CEB,得出②正确;由相似三角形的性质可知,相似三角形的对应线段成比例,得出结论.【解答】解:由图可知,∠A+∠D+∠ABD=180°,∠ABD+∠DBE+∠CBE=180°,∵∠A=∠DBE,∴∠D=∠CBE,故①正确;∵∠A=∠C,∴△ABD∽△CEB,故②正确;∴=,故③正确;故选:D.3.如图,在矩形ABCD中,点E是对角线上一点,连接AE并延长交CD于点F,过点E作EG⊥AE交BC 于点G,若AB=8,AD=6,BG=2,则AE=( )A.B.C.D.【分析】过点E作EN⊥BC,垂足为N,延长NE交AD于点M,根据矩形的性质可得AD=BC=6,∠DAB =∠ABC=90°,从而可得四边形AMNB是矩形,进而可得∠AMN=90°,AB=MN=8,AM=BN,MN ∥AB,然后设ME=x,则EN=MN﹣EM=8﹣x,再证明A字模型相似三角形△DME∽△DAB,并利用相似三角形的性质求出DM,从而求出AM,GN的长,最后证明一线三等角模型相似三角形△AME∽△ENG,利用相似三角形的性质列出关于x的方程,进行计算即可求出ME,AM的长,从而在Rt△AME 中,利用勾股定理进行计算即可解答.【解答】解:过点E作EN⊥BC,垂足为N,延长NE交AD于点M,∴∠ENB=90°,∵四边形ABCD是矩形,∴AD=BC=6,∠DAB=∠ABC=90°,∴四边形AMNB是矩形,∴∠AMN=90°,AB=MN=8,AM=BN,MN∥AB,∴∠DME=∠DAB=90°,∠DEM=∠DBA,∴△DME∽△DAB,∴=,设ME=x,则EN=MN﹣EM=8﹣x,∴=,∴DM=x,∴BN=AM=AD﹣DM=6﹣x,∵BG=2,∴GN=BN﹣BG=4﹣x,∵EG⊥AE,∴∠AEG=90°,∴∠AEM+∠GEN=90°,∵∠AEM+∠MAE=90°,∴∠MAE=∠GEN,∵∠AME=∠ENG=90°,∴△AME∽△ENG,∴=,∴=,∴x1=,x2=8,经检验:x1=,x2=8都是原方程的根,x2=8(舍去),∴ME=,AM=6﹣x=,∴AE===,故选:B.4.如图,在△ABC中,AB=10,BC=34,cos∠ABC=,射线CM∥AB,D为线段BC上的一动点且和B,C不重合,联结DA,过点D作DE⊥DA交射线CM于点E,联结AE,作EF=EC,交BC的延长线于点F,设BD=x.(1)如图1,当AD∥EF,求BD的长;(2)若CE=y,求y关于x的函数解析式,并写出定义域;(3)如图2,点G在线段AE上,作∠AGD=∠F,若△DGE与△CDE相似,求BD的长.【分析】(1)可推出△ABD是等腰三角形,从而求得BD;(2)作AK⊥BC于K,EH⊥CF于H,可证得△AKD∽△DHE,可求得AK=8,DK=x﹣6,EH=y,DH=34﹣x+y,进一步求得结果;(3)推出可以是△GDE∽△CDE或△GDE∽△CED,当△GDE∽△CDE时,可推出△GDE≌△CDE及△ABD≌△AGD,进而求得此时BD的值;当△GDE∽△CED时,推出四边形ADFED是平行四边形,再根据△AKD∽△DTE,进而求得此时BD.【解答】解:(1)如图1,作AK⊥BC于K,∴BK=AB•cos∠ABC=10×=6,∴AK===8,∵EF=EC,∴∠ECF=∠F,∵CM∥AB,AD∥EF,∴∠B=∠ECF,∠ADB=∠F,∴∠B=∠ADB,∴AB=AD,∴BD=2BK=12;(2)如图2,作AK⊥BC于K,EH⊥CF于H,∴∠ADK=∠CHE=90°,∴∠ADK+∠DAK=90°,∵AD⊥DE,∴∠ADE=90°,∴∠ADK+∠EDH=90°,∴∠DAK=∠EDH,∴△AKD∽△DHE,∴=,∵BD=x,BK=6,BC=34,∴DK=x﹣6,DC=34﹣x,∵∠ECF=∠ABD,∴CH=CE•cos∠ECF=y•cos∠ABD=,∴EH=y,∴DH=DC+CH=34﹣x+,∴=,化简,得,y=,当∠HDE=∠ECF时,DE∥CE,∴∠DAK=∠ECH=∠ABD,∴DK=AK•tan∠DAK=8•tan∠ABK=8×=,此时,BD=BK+DK=6+=,∴6<x<;(3)如图3,∵∠AGD=∠F,∠AGD+∠DGE=180°,∴∠DGE+∠F=180°,∵∠ECF+∠DCE=180°,∠F=∠ECF,∴∠DGE=∠DCE,∴△GDE∽△CDE或△GDE∽△CED,当△GDE∽△CDE时,∠GDE=∠CDE,∵DE=DE,∴△CDE≌△GDE(AAS),∴DG=DC,∵∠ADE=90°,∴∠ADB+∠EDC=∠ADG+∠GDE=90°,∴∠ADB=∠ADG,∵∠ABD=∠ECF=∠F,∴∠ABD=∠AGD,∵AD=AD,∴△ABD≌△AGD(AAS),\∴DB=DG,∴BD=CD=BC=17,∵6<BD<,∴BD=17不符合题意,舍去;当△GDE∽△CED时,如图4,∠GDE=∠DEC,∠GED=∠CDE,∴DG∥CE,CD∥GE,∴四边形CDGE是平行四边形,由(1)(2)知,AK=8,DK=x﹣6,CD=34﹣x,△AKD∽△DTE,∴ET=AK=8,CT=BK=6,DT=40﹣x,∴=,∴=,∴x=8,综上所述:BD=8.考向五、手拉手相似模型:模型名称几何模型图形特点具有性质相似型手拉手△ABC ∽△ADEA 、D 、E 逆时针A 、B 、C 逆时针连结BD 、CE ①△ABD ∽△ACE ②△AOB ∽△HOC③旋转角相等④A 、B 、C 、H 四点共圆“反向”相似型手拉手△ABC ∽△ADE A 、D 、E 顺时针A 、B 、C 逆时针A 、D 、E`逆时针作△ADE 关于AD 对称的△ADE`性质同上①②③1.如图,△ABC 中,∠BAC =30°,∠ACB =90°,且△ABC ∽△AB 'C ',连接CC ',将CC ′沿C ′B ′方向平移至EB ',连接BE ,若CC '=,则BE 的长为( )A .1B .C .D .2【分析】连接BB′,在Rt△ABC中,利用锐角三角函数的定义可得=,再利用相似三角形的性质可得=,∠ACB =∠AC ′B′=90°,∠BAC =∠B ′AC ′=30°,从而利用等式的性质可得∠BAB ′=∠CAC ′,进而可证△BAB ′∽△CAC ′,然后利用相似三角形的性质可得∠BB ′A =∠CC ′A ,==,再利用平移的性质可得CC ′∥B ′E ,==,从而利用平行线的性质可得∠BB ′E =30°,最后证明△BCA ∽△BEB ′,从而可得∠BEB ′=90°,进而在Rt △BEB ′中,利用锐角三角函数的定义进行计算即可解答.【解答】解:连接BB ′,∵∠BAC=30°,∠ACB=90°,∴cos30°==,∵△ABC∽△AB'C',∴=,∠ACB=∠AC′B′=90°,∠BAC=∠B′AC′=30°,∴∠BAC+∠CAB′=∠B′AC′+∠CAB′,∴∠BAB′=∠CAC′,∴△BAB′∽△CAC′,∴∠BB′A=∠CC′A,==,由平移得:CC′=B′E=,CC′∥B′E,∴==,∵CC′∥B′E,∴∠CC′B′+∠AB′C′+∠BB′A+∠BB′E=180°,∴∠CC′B′+∠AB′C′+∠CC′A+∠BB′E=180°,∴∠AC′B′+∠AB′C′+∠BB′E=180°,∵∠AC′B′=90°,∠B′AC′=30°,∴∠AB′C′=90°﹣∠B′AC′=60°,∴∠BB′E=30°,∴∠BB′E=∠CAB=30°,∴△BCA∽△BEB′,∴∠BEB′=∠ACB=90°,∴BE=B′E•tan30°=×=,故选:B.2.如图,在△ABC中,AB=AC=3,BC=6,点P在边AC上运动(可与点A,C重合),将线段BP 绕点P逆时针旋转120°,得到线段DP,连接BD,CD,则CD长的最小值为 .【分析】以BC为边构建出和△BPD相似的三角形,通过将CD边转化为其他边来求值.【解答】解:如图所示,以BC为底边向上作等腰△BQC,使∠BQC=120°,连接PQ.由题意可得△BQC和△BPD均为顶角为120°的等腰三角形,可得,∠QBC=∠PBD=30°,∴∠QBC﹣∠QBD=∠PBD﹣∠QBD,∴∠PBQ=∠DBC,∴△PBQ∽△DBC,∴,∴当PQ⊥AC时,有PQ最小,即此时CD最小,如图所示,设OP′⊥AC,延长AQ与BC交K,此时QP'为QP的最小值,可得AK⊥BC,∵△BQC中,∠BQC=120°,BC=6,∴BK=3,∠QBK=30°,∴QK=,∵AB=AC=3,KC=3,∴AK==6,∴AQ=AK﹣QK=5,∵∠AP'Q=∠AKC=90°,∠QAP'=∠CAK,∴△AQP'∽△ACK,∴,∴,∴QP'=,∴CD=P′=.3.已知在Rt△ABC中,CD⊥AB于点D.(1)在图1中,写出其中两对相似三角形.(2)已知BD=1,DC=2,将△CBD绕着点D按顺时针方向进行旋转得到△C'BD,连接AC',BC.①如图2,判断AC'与BC之间的位置及数量关系,并证明;②在旋转过程中,当点A,B,C'在同一直线时,求BC的长.【分析】(1)利用两个角相等可得△ABC∽△ACD,△BCD∽△BAC;(2)①利用两边成比例且夹角相等证明△DBC∽△DC'A,得,∠DC'A=∠DBC,可得结论;②分点C'在线段AB或AB的延长线两种情形,分别画出图形,利用勾股定理列方程可得答案.【解答】解:(1)∵CD⊥AB,∴∠ADC=∠BDC=∠ACB=90°,∴△ABC∽△ACD,△BCD∽△BAC;(2)①,AC'⊥BC,理由如下:由(1)知,在图1中,△ABC∽△CBD∽△ACD,∴,如图2,∵∠BDC'=∠CDA=90°,∴∠BDC=∠C'DA,∴△DBC∽△DC'A,∴,∠DC'A=∠DBC,∵∠DEB=∠CEC',∴∠C'FE=∠BDC'=90°,∴AC'⊥BC,∴,AC'⊥BC;②如图,当点A、B、C'在同一直线上时,由①知,,AC'⊥BC,设BC=x,AC'=2x,在Rt△ACB中,由勾股定理得,x2+(2x﹣)2=(2)2,解得x=(负值舍去),如图,当A、C'、B在同一直线上时,同理可得,x2+(2x+)2=(2)2,解得x=(负值舍去),综上:BC=或.1.(2022秋•泗阳县期末)如图,利用标杆BE测量建筑物的高度,已知标杆BE高2m,测得AB=3m,BC =6m.则建筑物CD的高是( )A.4m B.9m C.8m D.6m【分析】利用相似三角形的性质求解即可.【解答】解:∵EB∥CD,∴△AEB∽△ADC,∴=,∴=,∴CD=6(m),故选:D.2.(2022秋•成华区期末)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF,已知四边形BDEF是平行四边形,.若△ADE的面积为1,则平行四边形BDEF的面积为( )A.3B.4C.5D.6【分析】利用平行四边形的性质先说明△ADE∽△ABC、△CEF∽△CBA,再利用相似三角形的性质求出△ADE、△ABC、△CEF的面积,最后利用面积的和差关系得结论.【解答】解:∵四边形BDEF是平行四边形,∴DE∥BC,EF∥AB.∴△ADE∽△ABC,△CEF∽△CBA.∵,∴=.∴=.∴=()2=,=()2=.∵S△ADE=1,∴S△ABC=9,S△CEF=4.∵S△ADE+S△CEF+S平行四边形BDEF=S△ABC,∴S平行四边形BDEF=9﹣1﹣4=4.故选:B.3.(2022秋•海淀区校级月考)如图,在等腰△ABC中,AB=AC=9,BP=BC=2,D在AC上,且∠APD =∠B,则CD= .【分析】根据已知易得BC=6,从而可得CP=4,再利用等腰三角形的性质可得∠B=∠C,从而利用三角形内角和定理可得∠BAP+∠APB=180°﹣∠B,然后利用平角定义可得∠APB+∠DPC=180°﹣∠B,从而可得∠DPC=∠BAP,进而可得△ABP∽△PCD,最后利用相似三角形的性质进行计算即可解答.【解答】解:∵BP=BC=2,∴BC=3BP=6,∴CP=BC﹣BP=6﹣2=4,∵AB=AC=9,∴∠B=∠C,∴∠BAP+∠APB=180°﹣∠B,∵∠APD=∠B,∴∠APB+∠DPC=180°﹣∠APD=180°﹣∠B,∴∠DPC=∠BAP,∴△ABP∽△PCD,∴=,∴=,∴CD=,故答案为:.4.(2022秋•万州区期末)如图,矩形ABCD中,AB=6,BC=9,E为CD的中点,F为BC上一点,BF<FC,且AF⊥FE.对角线AC与EF交于点G,则GC的长为 .【分析】根据矩形的性质可得∠B=∠FCE=90°,由∠AFB+∠EFC=∠AFB+∠BAF可得∠EFC=∠BAF,以此证明△ABF∽△FCE,根据相似三角形的性质得,设BF=x,则CF=9﹣x,以此列出方程解得BF=3,CF=6,过点G作GH⊥BC于点H,再证明△CHG∽△CBA,△FHG∽△FCE,得到,,联立两式子,算出CH、GH,最后根据勾股定理即可求解.【解答】解:∵四边形ABCD为矩形,∴∠B=∠FCE=90°,∵AF⊥FE,∴∠AFB+∠EFC=90°,∵∠AFB+∠BAF=90°,∴∠EFC=∠BAF,∴△ABF∽△FCE,∴,设BF=x,则CF=9﹣x,∵四边形ABCD为矩形,AB=6,E为CD的中点,∴CE=3,∴,整理得:x2﹣9x+18=0,解得:x1=3,x2=6,∵BF<FC,∴BF=3,CF=6,过点G作GH⊥BC于点H,如图,∵AB⊥BC,DC⊥BC,∴GH∥AB,GH∥CD,∴△CHG∽△CBA,△FHG∽△FCE,∴,,∴①,②,联立①②得:,解得:,在Rt△CHG中,由勾股定理得GC=.故答案为:.5.(2022•安徽模拟)在数学探究活动中,小明进行了如下操作:如图,将两张等腰直角三角形纸片ABC 和CDE如图放置(其中∠ACB=∠E=90°,AC=BC,CE=DE).CD、CE分别与AB边相交于M、N 两点.请完成下列探究:(1)若AC=2,则AN•BM的值为 4 ;(2)过M作MF⊥AC于F,若=,则的值为 .【分析】(1)由等腰直角三角形的性质可得∠A=∠B=45°,∠MCN=45°,可得∠ACN=∠ACM+∠MCN=∠ACM+45°,∠BMC=∠ACM+∠A=∠ACM+45°,即可证明△ACN∽△BMC,可得=,即可求解;(2)过点C作CG⊥AB于点G,可得∠CGN=∠CFM=90°,由等腰直角三角形的性质可得∠NCG+∠MCG=45°,∠ACM+∠MCG=45°,从而可得∠NCG=∠MCF,可证得△GCN∽△FCM,可得==,设CG=4k,则CF=5k,AC=4k,即可求解=.【解答】解:(1)∵△ABC和△CDE为等腰直角三角形,∴∠A=∠B=45°,∠MCN=45°,BC=AC=2,∵∠ACN=∠ACM+∠MCN=∠ACM+45°,∠BMC=∠ACM+∠A=∠ACM+45°,∴∠ACN=∠BMC,∴△ACN∽△BMC,∴=,∵BC=AC=2,∴AN•BM=AC•BC=4,故答案为:4;(2)如图,过点C作CG⊥AB于点G,∵MF⊥AC,∴∠CGN=∠CFM=90°,∵∠NCG+∠MCG=45°,∠ACM+∠MCG=45°,∴∠NCG=∠MCF,∴△GCN∽△FCM,∵=,∴==,设CG=4k,则CF=5k,AC=4k,∴=,故答案为:.6.(2022秋•驻马店期末)如图,AD是Rt△ABC斜边上的高,若AB=4cm,BC=10cm,求BD的长.【分析】根据射影定理列出算式,代入数据计算即可.【解答】解:由射影定理得,AB2=BD•BC,则BD==1.6.7.(2022秋•开化县期中)如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.(1)求证:△ABC∽△DEC;(2)若AC:DC=2:3,BC=6,求EC的长.【分析】(1)由∠BCE=∠ACD,可得出∠BCA=∠ECD,结合∠A=∠D,可证出△ABC∽△DEC;(2)由△ABC∽△DEC,利用相似三角形的性质可得出AC:DC=BC:CE,结合已知条件,可求出EC 的长.【解答】(1)证明:∵∠BCE=∠ACD,∴∠BCE+∠ECA=∠ACD+∠ACE,即∠BCA=∠ECD.又∵∠A=∠D,∴△ABC∽△DEC.(2)解:∵△ABC∽△DEC,AC:DC=2:3,∴AC:DC=BC:CE=2:3,而BC=6,∴EC=9,∴EC的长为9.8.(2022秋•奉贤区期中)如图,已知在四边形ABCD中,AD∥BC.E为边CB延长线上一点,联结DE 交边AB于点F,联结AC交DE于点G,且=.(1)求证:AB∥CD;(2)如果AE2=AG•AC,求证:=.【分析】(1)由AD∥BC,得到△ADG∽△CEG,根据相似三角形的性质即可得到结论;(2)由AE2=AG•AC易得△AEG∽△ACE,所以∠AEG=∠ACE=∠DAG,可得△ADG∽△EDA,再根据相似三角形的性质可得结论.【解答】证明:(1)∵AD∥BC,∴△ADG∽△CEG,∴=,∵=,∴=,∴AB∥CD;(2)∵AE2=AG•AC,∴=,∵∠EAG=∠CAE,∴△AEG∽△ACE,∴∠AEG=∠ACE,∵AD∥BC,∴∠ACE=∠DAG,∴∠DAG=∠AEG,∵∠ADG=∠EDA,∴△ADG∽△EDA,∴,即=.9.(2022秋•长安区校级月考)如图,已知AB∥EF∥CD,AC,BD相交于点E,EF:AB=2:3.(1)若CE=4,求AE的长;(2)若CD=6,求AB的长;(3)若四边形ABFE的面积为8,直接写出△CEF的面积.【分析】(1)根据AB∥EF得到△CEF∽△CAB,接着利用相似三角形的性质得到EF:AB=2:3=CE:CA,由此求出CA=6即可求解;(2)根据AB∥EF∥CD,得到△ABE∽△CDE,接着得到AB:CD=AE:CE,利用比例的性质最后得到EFAE:CE=AB:CD=1:2即可求出AB=3;(3)由于△CEF∽△CAB得到S△CEF:S△CAB===,由此即可求解.【解答】解:(1)∵AB∥EF,∴△CEF∽△CAB,∴EF:AB=2:3=CE:CA,∵CE=4,∴2:3=4:CA,∴CA=6,∴AE=CA﹣CE=6﹣4=2;(2)∵AB∥EF∥CD,∴△ABE∽△CDE,∴AB:CD=AE:CE,∵EF:AB=2:3=CE:CA,∴CE:EA=2:1,∴AE:CE=AB:CD=1:2,而CD=6,∴AB=3;(3)∵△CEF∽△CAB,∴S△CEF:S△CAB===,∴=,∴=,∴S△CEF=.10.(2022•文山州模拟)如图,在△ABC中,∠A=90°,D、E分别是AB、BC上的点,过B、D、E三点作⨀O,交CD延长线于点F,AC=3,BC=5,AD=1.(1)求证:△CDE∽△CBF;(2)当⨀O与CD相切于点D时,求⨀O的半径;(3)若S△CDE=3S△BDF,求DF的值.【分析】(1)根据圆内接四边形的性质可得∠BED+∠BFD=180°,再根据同角的补角相等可得∠CED =∠BFD,然后根据两角相等的两个三角形相似进行证明即可解答;(2)连接OD,过点O作OM⊥BD,垂足为M,可得DM=BM=DB,∠OMD=90°,从而可得∠ODM+∠MOD=90°,再在Rt△ABC中利用勾股定理求出AB的长,从而求出BD,DM的长,然后在Rt△ACD 中,利用勾股定理求出CD的长,再利用切线的性质可得∠ODC=90°,最后利用一线三等角相似模型证明△DMO∽△CAD,从而利用相似三角形的性质进行计算即可解答;(3)过点D作DH⊥BC,垂足为H,过点B作BG⊥CF,垂足为G,根据△BDC的面积=BC•DH=BD•AC=BG•CD,可求出DH=,BG=,再根据已知S△CDE=3S△BDF,可得=,然后设DF=x,则CE=15x,从而利用(1)的结论,进行计算即可解答.【解答】(1)证明:∵四边形BEDF是⊙O的内接四边形,∴∠BED+∠BFD=180°,∵∠BED+∠CED=180°,∴∠CED=∠BFD,∵∠DCE=∠BCF,∴△CDE∽△CBF;(2)连接OD,过点O作OM⊥BD,垂足为M,∴DM=BM=DB,∠OMD=90°,∴∠ODM+∠MOD=90°,∵∠A=90°,BC=5,AC=3,∴AB===4,∵AD=1,∴BD=AB﹣AD=4﹣1=3,∴DM=BD=,在Rt△ADC中,CD===,∵⨀O与CD相切于点D,∴∠ODC=90°,∴∠ODM+∠ADC=180°﹣∠ODC=90°,∴∠MOD=∠ADC,∵∠OMD=∠A=90°,∴△DMO∽△CAD,∴=,∴=,∴DO=,∴⨀O的半径为;(3)过点D作DH⊥BC,垂足为H,过点B作BG⊥CF,垂足为G,∵△BDC的面积=BC•DH=BD•AC=BG•CD,∴BC•DH=BD•AC=BG•CD,∴5DH=3×3=BG,∴DH=,BG=,∵S△CDE=3S△BDF,∴CE•DH=3×DF•BG,∴CE•DH=3DF•BG,∴CE=3DF•,∴==,∴设DF=x,则CE=15x,由(1)得:△CDE∽△CBF,∴=,∴=,解得:x=,经检验:x=是原方程的根,∴DF=x=,∴DF的长为.1.(2022•巴中)如图,在平面直角坐标系中,C为△AOB的OA边上一点,AC:OC=1:2,过C作CD∥OB交AB于点D,C、D两点纵坐标分别为1、3,则B点的纵坐标为( )A.4B.5C.6D.7【分析】根据CD∥OB得出,根据AC:OC=1:2,得出,根据C、D两点纵坐标分别为1、3,得出OB=6,即可得出答案.【解答】解:∵CD∥OB,∴,∵AC:OC=1:2,∴,∵C、D两点纵坐标分别为1、3,∴CD=3﹣1=2,∴,解得:OB=6,∴B点的纵坐标为6,故选:C.2.(2022•凉山州)如图,在△ABC中,点D、E分别在边AB、AC上,若DE∥BC,,DE=6cm,则BC的长为( )A.9cm B.12cm C.15cm D.18cm【分析】根据=,得到=,根据DE∥BC,得到∠ADE=∠B,∠AED=∠C,得到△ADE∽△ABC,根据相似三角形对应边成比例即可得出答案.【解答】解:∵=,∴=,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴=,∴=,∴BC=15(cm),故选:C.3.(2022•哈尔滨)如图,AB∥CD,AC,BD相交于点E,AE=1,EC=2,DE=3,则BD的长为( )A.B.4C.D.6【分析】利用平行线证明判定三角形相似,得到线段成比例求解.【解答】解:∵AB∥CD,∴△ABE∽△CDE,∴=,即=,∴BE=1.5,∴BD=BE+DE=4.5.故选:C.4.(2022•雅安)如图,在△ABC中,D,E分别是AB和AC上的点,DE∥BC,若=,那么=( )A.B.C.D.【分析】根据相似三角形的判定定理和性质定理解答即可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,∵=,∴=,∴==.故选:D.5.(2022•扬州)如图,在△ABC中,AB<AC,将△ABC以点A为中心逆时针旋转得到△ADE,点D在BC 边上,DE交AC于点F.下列结论:①△AFE∽△DFC;②DA平分∠BDE;③∠CDF=∠BAD,其中所有正确结论的序号是( )A.①②B.②③C.①③D.①②③【分析】由旋转的性质得出∠BAC=∠DAE,∠B=∠ADE,AB=AD,∠E=∠C,进而得出∠B=∠ADB,得出∠ADE=∠ADB,得出DA平分∠BDE,可判断结论②符合题意;由∠AFE=∠DFC,∠E=∠C,得出△AFE∽△DFC,可判断结论①符合题意;由∠BAC=∠DAE,得出∠BAD=∠FAE,由相似三角形的性质得出∠FAE=∠CDF,进而得出∠BAD=∠CDF,可判断结论③符合题意;即可得出答案.【解答】解:∵将△ABC以点A为中心逆时针旋转得到△ADE,∴∠BAC=∠DAE,∠B=∠ADE,AB=AD,∠E=∠C,∴∠B=∠ADB,∴∠ADE=∠ADB,∴DA平分∠BDE,∴②符合题意;∵∠AFE=∠DFC,∠E=∠C,∴△AFE∽△DFC,∴①符合题意;∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠FAE,∵△AFE∽△DFC,∴∠FAE=∠CDF,∴∠BAD=∠CDF,∴③符合题意;故选:D.6.(2022•达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F 处,若CD=3BF,BE=4,则AD的长为( )A.9B.12C.15D.18【分析】证明△BEF∽△CFD,求得CF,设BF=x,用x表示DF、CD,由勾股定理列出方程即可求解.【解答】解:∵四边形ABCD是矩形,∴AD=BC,∠A=∠EBF=∠BCD=90°,∵将矩形ABCD沿直线DE折叠,∴AD=DF=BC,∠A=∠DFE=90°,∴∠BFE+∠DFC=∠BFE+∠BEF=90°,∴∠BEF=∠CFD,∴△BEF∽△CFD,∴,∵CD=3BF,∴CF=3BE=12,设BF=x,则CD=3x,DF=BC=x+12,∵∠C=90°,∴Rt△CDF中,CD2+CF2=DF2,∴(3x)2+122=(x+12)2,解得x=3(舍去0根),∴AD=DF=3+12=15,故选:C.7.(2022•云南)如图,在△ABC中,D、E分别为线段BC、BA的中点,设△ABC的面积为S1,△EBD的面积为S2,则=( )A .B .C .D .【分析】根据三角形的中位线定理,相似三角形的面积比等于相似比的平方解答即可.【解答】解:在△ABC 中,D 、E 分别为线段BC 、BA 的中点,∴DE 为△ABC 的中位线,∴DE ∥AC ,DE =AC ,∴△BED ∽△BAC ,∵=,∴=,即=,故选:B .8.(2022•锦州)如图,在正方形ABCD 中,E 为AD 的中点,连接BE 交AC 于点F .若AB =6,则△AEF 的面积为 3 .【分析】由正方形的性质可知AE =3,AD //BC ,则可判断△AEF ∽△CBF ,利用相似三角形的性质得到,然后根据三角形面积公式得到S △AEF =S △ABE .【解答】解:∵四边形ABCD 是正方形,∴AD =BC =AB =6,AD ∥BC ,∵E 为AD 的中点,∴AE =AB =3,∵AE ∥BC ,∴△AEF ∽△CBF ,∴==,∴S △AEF :S △ABF =1:2,∴S△AEF=S△ABE=××3×6=3.故答案为:3.9.(2022•牡丹江)如图,在等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,点D 在BC边上,DE与AC相交于点F,AH⊥DE,垂足是G,交BC于点H.下列结论中:①AC=CD;②AD2=BC•AF;③若AD=3,DH=5,则BD=3;④AH2=DH•AC,正确的是 ②③ .【分析】①根据等腰直角三角形可知∠B=∠ACB=45°,若AC=CD,则∠ADC=∠CAD=67.5°,这个根据已知得不出来,所以①错误;②证明△AEF∽△ABD,列比例式可作判断;④证明△ADH∽△BAH,列比例式可作判断;③先计算AH的长,由④中得到的比列式计算可作判断.【解答】解:①∵△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∵∠ADC=∠B+∠BAD,而∠BAD的度数不确定,∴∠ADC与∠CAD不一定相等,∴AC与CD不一定相等,故①错误;②∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵∠B=∠AED=45°,∴△AEF∽△ABD,∴=,∵AE=AD,AB=BC,∴AD2=AF•AB=AF•BC,∴AD2=AF•BC,故②正确;④∵∠DAH=∠B=45°,∠AHD=∠AHD,∴△ADH∽△BAH,∴=,∴AH2=DH•BH,而BH与AC不一定相等,故④不一定正确;③∵△ADE是等腰直角三角形,∴∠ADG=45°,∵AH⊥DE,∴∠AGD=90°,∵AD=3,∴AG=DG=,∵DH=5,∴GH===,∴AH=AG+GH=2,由④知:AH2=DH•BH,∴(2)2=5BH,∴BH=8,∴BD=BH﹣DH=8﹣5=3,故③正确;本题正确的结论有:②③故答案为:②③.10.(2022•东营)如图,在△ABC中,点F、G在BC上,点E、H分别在AB、AC上,四边形EFGH是矩形,EH=2EF,AD是△ABC的高,BC=8,AD=6,那么EH的长为 .【分析】设AD交EH于点R,由矩形EFGH的边FG在BC上证明EH∥BC,∠EFC=90°,则△AEH∽△ABC,得=,其中BC=8,AD=6,AR=6﹣EH,可以列出方程=,解方程求出EH 的值即可.【解答】解:设AD交EH于点R,∵矩形EFGH的边FG在BC上,∴EH∥BC,∠EFC=90°,∴△AEH∽△ABC,∵AD⊥BC于点D,∴∠ARE=∠ADB=90°,∴AR⊥EH,∴=,∵EF⊥BC,RD⊥BC,EH=2EF,∴RD=EF=EH,∵BC=8,AD=6,AR=6﹣EH,∴=,解得EH=,∴EH的长为,故答案为:.11.(2022•上海)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图(1)所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,α的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义.如图(2)所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度.【分析】(1)根据题意可得BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,然后在Rt△AEC 中,利用锐角三角函数的定义求出AE的长,进行计算即可解答;(2)根据题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,然后证明A字模型相似三角形△ABH∽△GCH,从而可得=,再证明A字模型相似三角形△ABF∽△EDF,从而可得=,进而可得=,最后求出BC的长,从而求出AB的长.【解答】解:(1)如图:由题意得:BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,在Rt△AEC中,AE=CE•tanα=a tanα(米),∴AB=AE+BE=(b+a tanα)米,∴灯杆AB的高度为(a tanα+b)米;(2)由题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,∵∠AHB=∠GHC,∴△ABH∽△GCH,∴=,∴=,∵∠F=∠F,∴△ABF∽△EDF,∴=,∴=,∴=,∴BC=0.9米,∴=,∴AB=3.8米,∴灯杆AB的高度为3.8米.1.(2022•贺州)如图,在△ABC中,DE∥BC,DE=2,BC=5,则S△ADE:S△ABC的值是( )A.B.C.D.【分析】根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵DE=2,BC=5,∴S△ADE:S△ABC的值为,故选:B.2.(2022•南岗区三模)如图,点E在菱形ABCD的边CD的延长线上,连接BE交AD于点F,则下列式子一定正确的是( )A.B.C.D.。
《中考大一轮数学复习》课件 相似三角形
D B
)
)1Biblioteka 第3题 第4题 图① 图② 4. (2013·上海)如图, 已知在△ABC 中, 点 D, E, F 分别是边 AB, AC, BC 上的点, DE∥BC, EF∥AB, 且 AD∶DB=3∶5, 那么 CF∶CB 等于( A ) A. 5∶8 B. 3∶8 C. 3∶5 D. 2∶5 5. (2014·河北)在研究相似问题时,甲、乙同学的观点如下: 甲:将边长为 3,4,5 的三角形按图①的方式向外扩张,得到新三角形,它们的对应边间距均为 1,则新三角形与原 三角形相似. 乙:将邻边为 3 和 5 的矩形按图②的方式向外扩张,得到新矩形,它们的对应边间距均为 1,则新矩形与原矩形不相 似. 对于两人的观点,下列说法正确的是( A ) 7 A. 两人都对 B. 两人都不对 C. 甲对,乙不对 D. 甲不对,乙对
2. 相似多边形的判断及性质 (1)多边形相似的判断:各角对应相等,各边对应成比例. (2)相似多边形的性质: ①对应角________,对应边________. ②周长之比等于____________,面积之比等于________. (3)相似多边形对应边的比称为相似比. 3. 相似三角形的定义及性质 (1)定义:如果两个三角形的各角对应________,各边对应________,那么这两个三角形相似. (2)相似三角形的性质: ①相似三角形的对应角____________,对应边________. ②相似三角形的对应高的比、对应角平分线的比、对应中线的比都等于________. ③相似三角形的周长之比等于________,面积之比等于________.
2 3
中考大一轮复习讲义◆ 数学
课前预测 你很棒
热点一 比例性质的应用 热点搜索 与比例性质相关的题目中,主要是运用比例的性质对比式进行各种 变形,得出所需的计算结果.
4.5相似三角形(含位似)-简单数学之2022年中考一轮复习一点三练系列(解析版)(全国适用)
第四章三角形4.5相似三角形(含位似)一、课标解读1.了解比例的基本性质、线段的比、成比例的线段;通过建筑、艺术上的实例了解黄金分割。
2.通过具体实例认识图形的相似。
了解相似多边形和相似比。
3.掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例。
4.了解相似三角形的判定定理及其证明。
5.了解相似三角形的性质定理。
6.了解图形的位似,知道利用位似可以将一个图形放大或缩小。
7.会利用图形的相似解决一些简单的实际问题。
二、知识点回顾知识点1. 比例线段1.定义:对于四条线段a,b,c,d,如果其中两条线段的比(即它们长度的比)与另两条线段的比相等,如a b=cd(即ad=bc),我们就说这四条线段成比例.2.基本性质:性质1:若ab=cd,则ad=bc (b≠0,d≠0).性质2:若ab=cd,则a±bb=c±dd(b≠0,d≠0).性质3:若ab=cd=…=mn(b+d+…+n≠0),则a+c+…+mb+d+…+n=ab.3.比例中项:如果ab=bc,即b2=ac,就把b叫做a,c的比例中项.知识点2. 平行线分线段成比例1.基本事实:两条直线被一组平行线所截,所得的对应线段.如图1,若l1∥l2∥l3,则ABBC=DEEF或ABAC=DEDF.2.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.如图2,3,若DE∥BC,则ADDB=AEEC,ADAB=AEAC等.知识点3 相似三角形的性质及判定1.定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比叫做相似比.2.相似三角形的性质:(1)相似三角形的对应角相等,对应边成比例;(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比;(3)相似三角形周长的比等于相似比,面积的比等于相似比的平方.知识点4 相似三角形的判定方法1.(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.(2)三边对应成比例的两个三角形相似.(3)两边对应成比例且对应边的夹角相等的两个三角形相似.(4)两角分别相等的两个三角形相似.(5)斜边和一直角边对应成比例.2. 常见的相似三角形模型(1)A字型及其变形已知BC∥DE 已知∠1=∠B 已知∠1=∠B(2)X字型及其变形已知AB∥DE 已知∠A=∠D(3)旋转型(4)垂直型双垂直型 三垂直型一线三等角型知识点5 相似多边形1.概念:两个边数相等的多边形,如果它们的角对应相等,边对应成比例,那么这两个多边形叫做相似多边形,对应边的比叫做相似比.2.性质: (1)相似多边形的对应角相等,对应边成比例;(2)相似多边形周长的比等于相似比,面积的比等于相似比的平方.知识点5 位似1.位似图形的定义:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形,这点叫做位似中心,这时我们说这两个图形关于这点位似,它们的相似比又称为位似比.2.位似图形的性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.3.位似变换的坐标:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即若原图形的某一点坐标为(x,y),则其位似图形对应点的坐标为(kx,ky)或(-kx,-ky).三、热点训练热点1:相似图形的概念和性质一练基础1.(2022·福建三明·一模)如图,已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,B,C,D,E,F,若DE=7,EF=10,则A BB C的值为()A.710B.107C.717D.1017【答案】A【解析】【分析】根据平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例,求解即可.解:∵DE =7,EF =10,a ∥b ∥c ,∴710AB DE BC EF ==,故选A .【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.2.(2021·广东·二模)如图,在△ABC 中,点D 是AB 边上的一点.以B 为圆心,以一定长度为半径画弧,分别交AB 、BC 于点F 、G ,以D 为圆心,以相同的半径画弧,交AD 于点M ,以M 为圆心,以FG 的长度为半径画弧,交 MN于点N ,连接DN 并延长交AC 于点E .则下列式子中错误的是( )A .AD AEBD EC=B .AB ACBD EC=C .AD DEBD BC=D .AD AEAB AC=【答案】C 【解析】【分析】由平行线分线段成比例可得=AD AE BD EC ,=AD AEAB AC ,=AB AC BD EC由相似三角形的性质可得=AD DE AB BC ,即可求解.【详解】解:由题意可得:∠ABC =∠ADE ,∴DE ∥BC ,∴=AD AE BD EC ,=AD AEAB AC ,=AB AC BD EC,故选项A ,B ,D 不合题意,∵DE ∥BC ,∴△ADE ∽△ABC ,∴=AD DEAB BC,故选项C 符合题意,【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的性质是解题的关键.3.(2022·上海虹口·九年级期末)已知点P是线段AB上的黄金分割点,AP>PB,线段AB=2厘米,那么线段AP=____________.【答案】)1cm【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AP AB,代入数据即可得出AP的长.【详解】解:由于P为线段AB的黄金分割点,且AP是较长线段;则AP=AB=1,1.【点睛】本题考查黄金分割的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割.4.(2021·上海市徐汇中学九年级阶段练习)已知点P是线段AB的黄金分割点(AP>BP),AB=4,那么AP=____.【答案】25-2##-2+25【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AP AB,代入数据即可得出AP的长.【详解】解:由于P为线段AB的黄金分割点,且AP是较长线段,AB=4,则AP AB×4=2.故答案为2.【点睛】.5.(2018·安徽相山·中考模拟)若23a c eb d f===,则2323a c eb d f-+-+=______.【答案】2 3【解析】【分析】根据23a c eb d f===可得222,,333a b c d e f===,把a,c,e代入所求代数式中,约分后即可求得结果.【详解】∵23a c eb d f===∴222,,333 a b c d e f ===∴2222323223233323233233b d fa c eb d fb d f b d f b d f-´+´-+-+==´= -+-+-+故答案为:2 3【点睛】本题考查了比例的性质,求代数式的值,根据比例的性质变形是关键.6.(2021·四川德阳·的矩形叫做黄金矩形.黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计.已知四边形ABCD是黄金矩形,边AB1,则该矩形的周长为__________________.【答案】2或4【解析】【分析】分两种情况:①边AB为矩形的长时,则矩形的宽为3②边AB为矩形的宽时,则矩形的长为2=,求出矩形的周长即可.【详解】解:分两种情况:①边AB1)3=,\矩形的周长为:134-+=;②边AB为矩形的宽时,则矩形的长为:1)2=,\矩形的周长为12)2+=+;综上所述,该矩形的周长为2或4,故答案为:2或4.【点睛】本题考查了黄金分割,熟记黄金分割的比值是解题的关键.二练巩固7.(2022·上海杨浦·九年级期末)已知点P是线段AB上的一点,线段AP是PB和AB的比例中项,下列结论中,正确的是()A.PBAP=B.PBAB=C.APAB=D.APPB=【答案】C【解析】【分析】设AB=1,AP=x,则PB=1-x,由比例中项得出AP2=PB·AB,代入解一元二次方程即可解答.【详解】解:设AB=1,AP=x,则PB=1-x,∵线段AP是PB和AB的比例中项,∴AP2=PB·AB,即x2=1-x,∴x2+x-1=0,解得:1x2x=,∴PB=1∴PBAP=,APAB=APPB故选:C.【点睛】本题考查比例中项、线段的比、解一元二次方程,熟知比例中项的定义是解答的关键.8.(2021·四川巴中·中考真题)两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:如图,点P是线段AB上一点(AP>BP),若满足BP APAP AB=,则称点P是AB的黄金分割点.黄金分割在日常生活中处处可见,例如:主持人在舞台上主持节目时,站在黄金分割点上,观众看上去感觉最好.若舞台长20米,主持人从舞台一侧进入,设他至少走x米时恰好站在舞台的黄金分割点上,则x满足的方程是( )A.(20﹣x)2=20x B.x2=20(20﹣x)C.x(20﹣x)=202D.以上都不对【答案】A【解析】【分析】点P是AB的黄金分割点,且PB<PA,PB=x,则PA=20−x,则BP APAP AB=,即可求解.【详解】解:由题意知,点P是AB的黄金分割点,且PB<PA,PB=x,则PA=20−x,∴BP AP AP AB=,∴(20−x)2=20x,故选:A.【点睛】本题考查了黄金分割,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.9.(2021·全国·九年级专题练习)如果四条线段a、b、c、d构成a cb d=,0m>,则下列式子中,成立的是()A.b ca d=B.a c mb d m+=+C.a b d cb d--=D.a c cb d d+=+【答案】D【解析】【分析】根据比例的性质变形,再进行判断.【详解】解:A、∵a cb d=,0m>,∴b da c=;故本选项错误;B 、∵a cb d =,0m >,∴ac m bd m +¹+;故本选项错误;C 、∵a cb d =,0m >,∴a b dc bd --=-;故本选项错误;D 、∵a cb d =,0m >,∴ac c bd d+=+;故本选项正确.故选D .【点睛】本题考查了比例的基本性质,熟练掌握比例的基本性质是解题的关键.10.(2011·上海·中考模拟)若线段c 是线段a ,b 的比例中项,且4a =,9b =,则c =_____________.【答案】6【解析】【分析】根据比例中项的定义可得c 2=ab ,从而易求c .【详解】解:∵线段c 是线段a ,b 的比例中项,∴c 2=ab ,∵a =4,b =9,∴c 2=36,∴c =6(负数舍去),故答案是:6.【点睛】本题考查了比例线段,解题的关键是理解比例中项的含义.11.(2021·四川内江·中考真题)已知非负实数a ,b ,c 满足123234a b c---==,设23S a b c =++的最大值为m ,最小值为n ,则nm的值为 __.【答案】1116+##0.6875【解析】【分析】设123234a b c k ---===,则21a k =+,32b k =+,34c k =-,可得414S k =-+;利用a ,b ,c 为非负实数可得k 的取值范围,从而求得m ,n 的值,结论可求.【详解】解:设123234a b ck---===,则21a k=+,32b k=+,34c k=-,23212(32)3(34)414S a b c k k k k\=++=++++-=-+.aQ,b,c为非负实数,\210 320 340kkk+ìï+íï-î………,解得:13 24k -…….\当12k=-时,S取最大值,当34k=时,S取最小值.1414162mæö\=-´-+=ç÷èø,3414114n=-´+=.\1116nm=.故答案为:11 16【点睛】本题主要考查了比例的性质,解不等式组,非负数的应用等,设123234a b ck---===是解题的关键.12.(2021·浙江·诸暨市暨阳初级中学一模)AD为面积为30 的锐角三角形ABC的高,∠ACB=2∠BAD,线段AB上的点E将AB分成两条线段的比为3∶2,过点E作BC的平行线交AC于点F,若AD=6,则CF =_______.【答案】4或6【解析】【分析】根据三角形面积公式求得BC=10,根据角的和差倍数可得∠B=∠BAC,继而由等角对等边的性质可得BC =AC=10,根据线段比例即可求解.【详解】∵S△ABC=12AD BC×=30,AD=6,∴BC=10,在Rt △ABD 中,∠BAD =90°﹣∠B ,∠B =90°﹣∠BAD ,在Rt △ACD 中,∠CAD =90°﹣∠ACB ,∵∠ACB =2∠BAD ,∴∠CAD =90°﹣2∠BAD ,∴∠BAC =∠CAD +∠BAD =90°﹣∠BAD ,∴∠B =∠BAC ,∴BC =AC =10,∵点E 将AB 分成两条线段的比为3∶2,EF ∥BC ,∴2210455CF AC ==´=,或3310655CF AC ==´=,故答案为:4或6.【点睛】本题考查角的和差倍数关系,等角对等边的性质,线段的比例,解题的关键是求得BC =AC =10.三练拔高13.(2021·全国·九年级专题练习)如图,四边形ABCD 中,P 为对角线BD 上一点,过点P 作//PE AB ,交AD 于点E ,过点P 作//PF CD ,交BC 于点F ,则下列所给的结论中,不一定正确的是( ).A .PE PF AB CD =B .AE BF DE CF =C .1CF AE BC AD +=D .1PE PF AB CD+=【答案】A【解析】【分析】根据//PE AB ,可证△EPD ∽△ABD ,△BFP ∽△BCD ,即可判断A ;由//PE AB ,//PF CD 可得AE BP ED PD =,BF BP FC PD =可判断B ;由//PE AB ,//PF CD ,可得AE BP AD BD =,FC PD BC BD=,可判断C ,由 //PE AB ,可证△EPD ∽△ABD ,△BFP ∽△BCD ,可判定D .【详解】解:A .∵//PE AB ,∴∠DEP =∠A ,∠DPE =∠DBA ,∴△EPD ∽△ABD ,∴ EP DP AB DB=,∵//PF CD ,∴∠BPF =∠BDC ,∠BFP =∠C ,∴△BFP ∽△BCD ,∴PF BP CD DB =,∵DP BP DB DB ¹,∴PE PF AB CD¹,故选项A 不正确;B .∵//PE AB ,//PF CD ,∴AE BP ED PD =,BF BP FC PD =,∴AE BF DE CF=,故选项B 正确;C .∵//PE AB ,//PF CD ,∴AE BP AD BD =,FC PD BC BD =,∴1AE FC BP PD AD BC BD BD+=+=,故选项C 正确,1CF AE BC AD+= ,D .∵//PE AB ,∴∠DEP =∠A ,∠DPE =∠DBA ,∴△EPD ∽△ABD ,∴ EP DP AB DB=,∵//PF CD ,∴∠BPF =∠BDC ,∠BFP =∠C ,∴△BFP ∽△BCD ,∴PF BP CD DB =,∴ 1EP PF DP PB DP PB AB CD DB BD BD++=+==,故选项D 正确.故选择A .【点睛】本题考查平行线截线段比例,和三角形相似判定与性质,掌握平行线截线段长比例,和三角形相似判定与性质是解题关键.14.(2021·全国·0.618)»的矩形称为黄金矩形,这被称为黄金分割比例.如图,名画《蒙娜丽莎的微笑》的整个画面的主体部分很好地体现了黄金分割比例,其中矩形ABCD 是黄金矩形,若我们把一个正方形AEFD 嵌入黄金矩形ABCD 中(正方形的边长等于黄金矩形的宽),这样就创造了一个新的黄金矩形BEFC .如果把这个过程重复数次,接着我们要在每个正方形内画一条圆弧,让每个圆弧的半径等于它所在正方形的边长就会得到下面这张图,若AB a =,则图中弧HF 的长为( )A B .2pC .22a p·D .32a p·【答案】C 【解析】【分析】根据黄金矩形的定义,求出BE 长,再用弧长公式求解即可.【详解】解:∵矩形ABCD 是黄金矩形,AB a =,∴BC AB =,BC =,∵矩形BEFC 是黄金矩形,∴BE CB =2BE GH a ==,弧HF 的长为2901802a GH p p ·=×,故选:C .【点睛】本题考查了黄金分割和弧计算,解题关键是利用黄金分割求出半径,再熟练运用弧长公式进行计算.15.(2022·福建福州·一模)如图,在四边形ABCD 中,AB = 5,∠A = ∠B = 90°,O 为AB 中点,过点O 作OM ⊥CD 于点M .E 是AB 上的一个动点(不与点A ,B 重合),连接CE ,DE ,若∠CED = 90°且CE DE = 43.现给出以下结论:(1)△ADE 与△BEC 一定相似;(2)以点O 为圆心,OA 长为半径作⊙O ,则⊙O 与CD 可能相离;(3)OM 的最大值是52;(4)当OM 最大时,CD =12524.其中正确的是 _________ .(写出所有正确结论的序号)【答案】(1)(3)(4)【解析】【分析】利用“一线三垂直”可以判定△ADE 与△BEC 相似;再利用四边形ADMO 与四边形MOBC 相似,可知225OM AE AE =-+,即可得出OM 最大值为52,即可判定(2)、(3)、(4).【详解】解:∵∠A = ∠B = 90°,∠CED = 90°,∴∠AED = ∠BCE ,∴V ADE ∼V BEC .故(1)正确;∵∠OMC = 90°,∴∠ADM +∠AOM =180°,∠ADM +∠MCB =180°,∴∠AOM =∠MCB ,∴四边形ADMO 与四边形MOBC 相似,∴AD OM OM BC=,∴2OM AD BC=g ∵△ADE ∼△BEC ∴34AD AE DE BE BC CE ===,∴AD BC AE BE =g g ,∴2OM AE BE =g ,即()25-OM AE AE =g ,∴225OM AE AE=-+∴当AE =BE =52时,OM 值最大,最大值为52.∴以点O 为圆心,OA 长为半径作⊙O ,则⊙O 与CD 不可能相离,故(2)错误,(3)正确,∵当OM 最大时,点O 与点E 重合(如图所示),AE =BE =OM =52,∴AED MED @V V ,BCE MCE @V V ,∴AD =MD ,BC =MC ,∴CD =AD +BC ,∵34AD DE BE CE ==,34AE DE BC CE ==,解得:158AD =,103BC =,∴CD =AD +BC =12524.故答案为:(1)(3)(4)【点睛】本题主要考查的是四边形中相似的应用,熟练的进行边的比值的转化时本题的解题关键.16.(2021·湖南湘潭·中考真题)德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿”.如图①,点C 把线段AB 分成两部分,如果0.618CB AC =»,那么称点C 为线段AB 的黄金分割点.(1)特例感知:在图①中,若100AB =,求AC 的长;(2)知识探究:如图②,作⊙O 的内接正五边形:①作两条相互垂直的直径MN 、A I ;②作ON 的中点P ,以P 为圆心,PA 为半径画弧交OM 于点Q ;③以点A 为圆心,AQ 为半径,在⊙O 上连续截取等弧,使弦AB BC CD DE AQ ====,连接AE ;则五边形ABCDE 为正五边形.在该正五边形作法中,点Q 是否为线段OM 的黄金分割点?请说明理由.(3)拓展应用:国旗和国徽上的五角星是革命和光明的象征,是一个非常优美的几何图形,与黄金分割有着密切的联系.延长题(2)中的正五边形ABCDE 的每条边,相交可得到五角星,摆正后如图③,点E 是线段PD 的黄金分割点,请利用题中的条件,求cos72°的值.【答案】(1)61.8;(2)是,理由见解析;(3【解析】【分析】(1)根据黄金分割的定义求解即可;(2)设⊙O 的半径为a ,则OA =ON =OM =a ,利用勾股定理求出PA ,继而求出OQ ,MQ ,即可作出判断;(3)先求出正五边形的每个内角,即可得到∠PEA =∠PAE =18010872°-°=°,根据已知条件可知cos 72°=12AE PE,再根据点E 是线段PD 的黄金分割点,即可求解.【详解】0.618»,,即0.618100AC AC -=»,解得:AC ≈61.8;(2)Q 是线段OM 的黄金分割点,理由如下:设⊙O 的半径为a ,则OA =ON =OM =a ,∴OP ∴PA PQ =,∴OQ ∴MQ MQ OQ =∴Q 是线段OM 的黄金分割点;(3)正五边形的每个内角为:()521801085-´°=°,∴∠PEA =∠PAE =18010872°-°=°,∴cos 72°=12AE PE,∵点E 是线段PD 的黄金分割点,∴DE PE =,又∵AE =ED ,∴AE PE =,∴cos72°=12AEPE=【点睛】本题考查黄金分割、勾股定理、锐角三角函数,解题的关键是读懂题意正确解题.热点2:相似三角形的性质与判定一练基础1.(2022·福建三明·一模)下列各组图形中,不一定相似的是()A.任意两个等腰直角三角形B.任意两个等边三角形C.任意两个矩形D.任意两个正方形【答案】C【解析】【分析】根据相似图形的判定定理,对选项进行一一分析,找出符合题意的答案.【详解】解:A、任意两个等腰直角三角形,根据等腰直角三角形的性质,两腰分别相等,它们两边的比值成比例,夹角为直角相等,根据相似三角形的判定定理可得任意两个等腰直角三角形相似,故不符合题意;B、任意两个等边三角形,三边分别相等,两个三角形三边对应成比例,根据三角形相似的判定定理可得任意两个等边三角形相似,故不符合题意;C、任意两个矩形,虽然对应角都等于90°相等,但对应边不一定成比例,任意两个矩形,不一定相似,故符合题意;D、任意两个正方形,四边各自相等,可得它们对应边成比例,对应角都是90°相等,根据多边形相似的判定定理可得任意两个正方形相似,故不符合题意.故选C.【点睛】本题考查相似图形的识别,掌握图形相似的定义即图形的形状相同,但大小不一定相同的是相似形与判定定理是解题关键.2.(2021·贵州毕节·九年级阶段练习)在图(1)、(2)所示的△ABC中,AB=4,AC=6.将△ABC分别按照图中所标注的数据进行裁剪,对于各图中剪下的两个阴影三角形而言,下列说法正确的是()A.只有(1)中的与△ABC相似B.只有(2)中的与△ABC相似C.都与△ABC相似D.都与△ABC不相似【答案】B【解析】【分析】根据相似三角形判定定理,两边对应成比例夹角相等,两个三角形相似,先求出两个三角形中夹角相等的两边的比值,看是否相等可判断A不正确,B正确,进而可判断C与D即可.【详解】解:图形(1)中标字母如图,∵BE=2,BA=4,23BEBA=,BF=3,BC不定,3BF BEBC BC BA=¹,∴(1)中的△BEF不与△ABC相似,故选项A不正确;图2中标字母如图,∵GC=4,BH=1,AB=4,AC=6.∴AH=AB-BH=4-1=3,AG=AC-GC=6-4=2,∴2142AGAB==,3162AHAC==,∴AG AH AB AC=,∵∠HAG=∠CAB,∴△AHG ∽△ACB ,故选项B 正确,,故选项C 不正确,选项D 不正确.故选择B .【点睛】本题考查相似三角形的判定,掌握三角形相似的判定方法是解题关键.3.(2022·江苏兴化·九年级期末)如图,如果BAD CAE Ð=Ð,那么添加下列一个条件后,仍不能确定ABC ADE V :V 的是( )A .B DÐ=ÐB .AB DE AD BC =C .C AED Ð=ÐD .AB AC AD AE=【答案】B【解析】【分析】根据题意可得EAD CAB Ð=Ð,然后根据相似三角形的判定定理逐项判断,即可求解.【详解】解:∵BAD CAE Ð=Ð,∴EAD CAB Ð=Ð,A 、若添加B D Ð=Ð,可用两角对应相等的两个三角形相似,证明ABC ADE V :V ,故本选项不符合题意;B 、若添加AB DE AD BC=,不能证明ABC ADE V :V ,故本选项符合题意;C 、若添加C AED Ð=Ð,可用两角对应相等的两个三角形相似,证明ABC ADE V :V ,故本选项不符合题意;D 、若添加AB AC AD AE=,可用两边对应成比例,且夹角相等的两个三角形相似,证明ABC ADE V :V ,故本选项不符合题意;【点睛】本题主要考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.4.(2021·湖北当阳·一模)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和10cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为( )A .3cmB .4cmC .4.5cmD .5cm 【答案】D【解析】【分析】根据相似三角形的对应边成比例求解可得.【详解】解:设另一个三角形的最长边长为x cm ,根据题意,得:2.5510x =,解得:5x =,即另一个三角形的最长边长为5cm ,故选D .【点睛】本题主要考查相似三角形的性质,解决本题的关键是要熟练掌握相似三角形的性质.5.(2021·河南伊川·九年级期中)如图,在ABC V 中,6,4AC AB ==,点D 与点A 在直线BC 的同侧,且ACD ABC Ð=Ð,2CD =,点E 是线段BC 延长线上的动点,当DCE V 和ABC V 相似时线段CE 的长为( )A .3B .43C .3或43D .4或34【答案】C 【解析】根据ACD ABC Ð=Ð,可得A DCE Ð=Ð ,然后分两种情况讨论,即可求解.【详解】解:∵ACD ABC Ð=Ð,ACD DCE A ABC Ð+Ð=Ð+Ð ,∴A DCE Ð=Ð ,当 B CDE A C V :V 时,∴CD CE AB AC= ,∵6,4AC AB ==,2CD =,∴246CE = ,解得:3CE = ;当B CED A C V :V 时,∴CE CD AB AC= ,∵6,4AC AB ==,2CD =,∴246CE = ,解得:43CE =∴线段CE 的长为3或43.故选:C【点睛】本题主要考查了相似三角形的性质,熟练掌握相似三角形的性质定理是解题的关键.6.(2021·广东·东莞市石龙第二中学模拟预测)如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,若△ABC 的面积为4,则四边形BCED 的面积为___.【答案】3【解析】【分析】由题意知DE 是ABC V 的中位线,有12DE BC DE BC =∥,,从而得ADE ABC △△∽,有212ADE ABC S S æö=ç÷èøV V ,求出ADE S V 的值,对ABC ADE BCED S S S =-V V 四边形计算求解即可.【详解】解:由题意知DE 是ABC V 的中位线∴12DE BC DE BC =∥,∴ADE ABC△△∽∴212ADE ABC S S æö=ç÷èøV V ∵=4ABC S △∴=1ADE S V ∴=3ABC ADE BCED S S S =-V V 四边形故答案为:3.【点睛】本题考查了中位线,相似三角形的性质.解题的关键在于明确相似三角形的面积比等于相似比的平方.7.(2021·广东惠阳·二模)如图,AB ,CD 相交于O 点,△AOC ∽△BOD ,OC :CD =1:3,AC =2,则BD 的长为 __.【答案】4【解析】【分析】根据OC :CD =1:3,求得OC :OD =1:2,根据相似三角形的对应边的比相等列出方程,计算即可.【详解】∵OC :CD =1:3,∴OC :OD =1:2,∵△AOC ∽△BOD,∴AC OC BD OD=,即212 BD=,解得:BD=4,故答案为:4.【点睛】本题考查的是相似三角形的性质,掌握相似三角形的对应角相等,对应边的比相等是解题的关键.8.(2022·江苏溧阳·九年级期末)如果两个相似三角形的周长比是1︰4,那么它们的面积比是_________.【答案】1:16【解析】【分析】根据相似三角形的相似比等于周长比,可得两个相似三角形的相似比是1︰4,再由相似三角形的面积比等于相似比的平方,即可求解.【详解】解:∵两个相似三角形的周长比是1︰4,∴两个相似三角形的相似比是1︰4,∴它们的面积比是1:16.故答案为:1:16【点睛】本题主要考查了相似三角形的性质,熟练掌握相似三角形的相似比等于周长比,相似三角形的面积比等于相似比的平方是解题的关键.二练巩固9.(2022·福建福州·一模)如图,点D,E分别在△ABC的边AB,AC上,且AD = 1,BD = 5,AE = 2,∠AED = ∠B,则AC的长是()A.2.4B.2.5C.3D.4.5【答案】C【解析】【分析】由AED B Ð=Ð,DAE CAB Ð=Ð可证DAE CAB ∽△△,有DA AE CA AB =,计算求解即可.【详解】解:∵AED B Ð=Ð,DAE CAB Ð=Ð,∴DAE CAB ∽△△,∴DA AE CA AB =,∴1251AC =+,解得3AC =,故选:C .【点睛】本题考查了相似三角形的判定与性质,解题的关键在于证明三角形相似.10.(2021·湖南·师大附中梅溪湖中学二模)如图,在菱形ABCD 中,点F 在线段CD 上,连接EF ,且∠CBE +∠EFC =180°,DF =2,FC =3.则DB =( )A .6B .C .5D .【答案】D【解析】【分析】根据菱形的性质可得BD =2DE ,BC =CD =5,从而得到∠CBE =∠CDB ,再由∠CBE +∠EFC =180°,可得∠CBE =∠CDB =∠DFE ,从而得到△DEF ∽△DCB ,可得到2DE DF BC DE=,解得DE ,即可求解.【详解】解:在菱形ABCD 中,BD =2DE ,BC =CD =DF +FC =2+3=5,∴∠CBE =∠CDB ,∵∠CBE +∠EFC =180°,∠DFE +∠EFC =180°,∴∠CBE =∠DFE ,∴∠CBE =∠CDB =∠DFE ,∵∠CDB =∠EDF ,∴△DEF ∽△DCB ,∴DE DF DC BD = ,∴2DE DF BC DE =,∴252DE DE= ,解得:DE ,∴2DB DE =.故选:D【点睛】本题主要考查了相似三角形的判定和性质,菱形的性质,熟练掌握相似三角形的判定和性质定理,菱形的性质定理是解题的关键.11.(2021·广东花都·三模)如图,在平行四边形ABCD 中,E 是AB 边上一点,若AE :AB =1:3,则S △AEF :S △ADC =( )A .1:12B .1:9C .1:6D .1:3【答案】A【解析】【分析】先判断出△AEF 与△DCF 是相似,利用性质可求面积比,再由△AEF 与△ADF 是等高的三角形,也可得出面积比,最后根据S △ADC =S △CDF +S △ADF 计算比值即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∵AE :AB =1:3,∴AE :CD =1:3,∵AE ∥CD ,∴△AEF ∽△CDF ,∴21(9AEF CDF S AE S CD ==V V ,13EF AE DF CD ==,∴S △CDF =9S △AEF ,S △ADF =3S △AEF ,∵S △ADC =S △CDF +S △ADF ,∴19312AEF AEF ADC AEF AEF S S S S S ==+V V V V V ,故选:A .【点睛】本题考查相似三角形的判定和性质,平行四边形的性质等知识,解题的关键是熟练掌握相似和平行四边形的基本知识,属于中考常考题型.12.(2021·山东济南·中考真题)如图,在ABC V 中,90ABC Ð=°,30C Ð=°,以点A 为圆心,以AB 的长为半径作弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12B D 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,连接DE ,则下列结论中不正确的是( )A .BE DE=B .DE 垂直平分线段AC C.EDC ABC S S △△D .2BD BC BE=×【答案】C【解析】【分析】由题中作图方法易证AP 为线段BD 的垂直平分线,点E 在AP 上,所以BE=DE ,再根据,90ABC Ð=°,30C Ð=°得到ABD D 是等边三角形,由“三线合一”得AP 平分BAC Ð,则30PAC C Ð=Ð=°,AE CE =,且30°角所对的直角边等于斜边的一半,故12AB AD AC ==,所以DE 垂直平分线段AC ,证明~EDC ABC D D 可得ED CD AB BC =即可得到结论.【详解】由题意可得:AD AB =,点P 在线段BD 的垂直平分线上AD AB =Q ,\点A 在线段BD 的垂直平分线上\AP 为线段BD 的垂直平分线Q 点E 在AP 上,\BE=DE ,故A 正确;Q 90ABC Ð=°,30C Ð=°,60BAC \Ð=°且12AB AD AC ==ABD \D 为等边三角形且AD CD=AB AD BD \==,AP \平分BAC Ð1302EAC BAC \Ð=Ð=°,AE EC \=,ED \垂直平分AC ,故B 正确;30ECD ACB Ð=Ð=°Q ,90EDC ABC Ð=Ð=°,EDC ABC \D D ∽,ED CD AB AB BC BC \===,213EDC ABC s s D D \==,故C 错误;ED BE =Q ,AB CD BD==BE BD BD BC\=,2BD BC BE \=×,故D 正确故选C .【点睛】本题考查30°角的直角三角形的性质、线段垂直平分线的判定和性质,相似三角形的判定和性质,掌握这些基础知识为解题关键.13.(2021·山西·太原五中九年级阶段练习)如图,D 、E 分别是ABC V 的边AB 、BC 上的点,且//DE AC ,若:1:3BDE CDE S S =V V ,则DOE AOC S S V V :的值( )A .13B .14C .19D .116【答案】D【解析】【分析】证明:1:3=BE EC ,得出:1:4BE BC =;证明BDE BAC D D ∽,DOE AOC D D ∽,得到14DE BE AC BC ==,由相似三角形的性质即可解决问题.【详解】解::1:3BDE CDE S S D D =Q ,:1:3BE EC \=;:1:4BE BC \=;//DE AC Q ,BDE BAC \D D ∽,DOE AOC D D ∽,\14DE BE AC BC ==,21:()16DOE AOC DE S S AC D D \==.故选:D .【点睛】本题主要考查了相似三角形的判定及其性质的应用问题,解题的关键是灵活运用相似三角形的判定及其性质来分析、判断、推理或解答.14.(2021·四川绵阳·中考真题)如图,在ACD △中,6AD =,5BC =,()2AC AB AB BC =+,且DAB DCA V :V ,若3AD AP =,点Q 是线段AB 上的动点,则PQ 的最小值是( )A B C D .85【答案】A【解析】【分析】根据相似三角形的性质得到A D C DB D A D =,得到4BD =,4AB BD ==,过B 作BH AD ^于H ,根据等腰三角形的性质得到132AH AD ==,根据勾股定理得到BH ==,当PQ AB ^时,PQ 的值最小,根据相似三角形的性质即可得到结论.【详解】解:DAB DCA D D Q :,AD CD BD AD\=,656BD BD +\=,解得:4BD =(负值舍去),DAB DCA D D Q :,9362AC CD AB AD \===,32AC AB \=,()2AC AB AB BC =+Q ,()232AB AB AB BC æö\=+ç÷èø,4AB \=,4AB BD \==,过B 作BH AD ^于H ,132AH AD \==,BH \=,3,6AD AP AD ==Q ,2AP \=,当PQ AB ^时,PQ 的值最小,90,AQP AHB PAQ BAHÐ=Ð=°Ð=ÐQ APQ ABH \D D :,AP PQ AB BH\=,24\PQ \故选:A .【点睛】本题考查了相似三角形的判定和性质,勾股定理,等腰三角形的判定和性质,正确的作出辅助线构造相似三角形是解题的关键.15.(2021·福建·莆田八中九年级阶段练习)如图,点D 在等边三角形ABC 的边BC 上,连接AD ,线段AD 的垂直平分线EF 分别交边AB 、AC 于点E 、F .当CD =2BD 时,AE AF 的值为___.【答案】45##0.8【解析】。
2024年中考福建专用数学一轮知识点训练复习《相似三角形的性质与判定》考点梳理及典例讲解课件
90°,
又∵∠ACB=∠ACP+∠PCD=90°,∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴=2,即=2,∴h3=
2h2,∵△PAB∽△PBC,∴,∴h1=h2,∴=
2=2h2·h2=h2h3.即:=h2·h3.
中,说法错误的是( D )
A.△ABE与△ECD相似
B.△ABE与△AED相似
D.∠BAE=∠ADE
D
4.(2023·徐州)如图,在△ABC中,∠B=90°,∠A=30°,BC
=2,D为AB的中点.若点E在边AC上,且=,则AE的长 为( D )
A.1
B.2
D.1或2
D
5.下列四个命题中,真命题的个数是( C )(1)底边和腰对应成比例的两个等腰三角形相似;(2)底边和底边上的高对应成比例的两个等腰三角形相似;(3)底边和一腰上的高对应成比例的两个等腰三角形相似;(4)腰和腰上的高对应成比例的两个等腰三角形相似.
17.已知:如图,梯形ABCD中,DC∥AB,AC=AB,过点D作
BC的平行线交AC于点E.(1)如果∠DEC=∠BEC,求证:CE2=ED·CB;
可以.故答案为:③(答案不唯一).
15.(2023·温州)如图,已知矩形ABCD,点E在CB延长线上,
点F在BC延长线上,过点F作FH⊥EF交ED的延长线于点H,
连接AF交EH于点G,GE=GH.(1)求证:BE=CF;
解:(1)证明:∵FH⊥EF,∴∠HFE
=90°,∵GE=GH,∴FG=EH=GE
顶端到地面的高度,EF表示人眼到地面的高度,AB、CD、
EF在同一平面内,点A、C、E在一条水平直线上.已知AC=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第25课时 相似三角形
班级: 姓名: 学习目标
1、理解相似三角形的对应角相等、对应边成比例、周长比等于相似比、面积比等于相似比的平方。
2、 掌握两个三角形相似的条件,知道两角对应相等的两三角形相似,两边对应成比例且夹角相等的三角形相似,三边对应成比例的两个三角形相似。
3、能应用图形相似解决一些实际问题,会把实际问题转化为数学问题。
学习重难点 把实际问题转化成相似三角形的数学模型
学习过程:
一知识梳理
1、相似三角形的定义
____________________________________________ 三角形叫做相似三角形.
2、相似三角形的判定
(1)_________________________,两三角形相似.
(2)_________________________,两三角形相似.
(3)_________________________,两三角形相似.
3、相似三角形的性质
(1)相似三角形的对应角________,对应边________.
(2)相似三角形的周长比等于________.
(3)相似三角形的对应边上的高、中线、角平分线的比等于________.
(4)相似三角形的面积比等于______________.
二典型例题
1.相似三角形的判定
(1)(中考指要P93第3题)如图,△ABC 中,784A AB ∠=︒=,,6AC =.将△
ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...
的是( )
(2)如图,已知△ABC 中,D 为边AC 上一点,P 为边AB 上一点,128AB AC ==,,6AD =,当AP 的长度为 时,
△ADP 和
△ABC 相
似.
2.相似三角形的性质
△ABC 与△DEF 的相似比为1:4,则△ABC 与△DEF 的周长比为( )
A .1:2
B .1:3
C .1:4
D .1:16
3.相似三角形的性质与判定的综合应用
(1)如图,在矩形ABCD 中,对角线AC BD ,交于点O ,过EA CA ⊥交DB 的延长线于点E ,若34AB BC ==,,则
AG BC ⊥于点G ,AF DE ⊥于点F ,EAF GAC ∠=∠.
①求证:△ADE ∽△ABC ;
②若35AD AB ==,,求
AF
AG
的值.
(3)(中考指要例1)如图,在等腰三角形ABC 中,1202BAC AB AC ∠=︒==,,点D 是BC 边上的一个动点,在AC 上取一点E ,使30ADE ∠=︒.
①求证:△ABD ∽△DCE ;
②设BD x AE y ==,,求y 关于x 的函数关系式并写出自变量x 的取值范围;
③求AE 的最小值。
④若点D 在线段BC 上运动,则点E 的运动路径长为 。
(4)(中考指要例2)(2015武汉)已知锐角△ABC 中,边BC 长为12,高AD 长为8
(1) 如图,矩形EFGH 的边GH 在BC 边上,其余两个顶点E F 、分别在AB AC 、边上,EF 交AD 于点K
① 求AK
EF 的值。
② 设EH x =,矩形EFGH 的面积为S ,求S 与x 的函数关系式,并求S 的最大值
(2) 若AB AC ,正方形PQMN 的两个顶点在△ABC 一边上,另两个顶点分别在△ABC 的另两边上,直接写出正方形PQMN 的边长
三、中考预测
如图,已知P 为AOB ∠的边OA 上的一点,且2OP =.以P 为顶点的MPN ∠ 的两边分别交射线OB 于M N ,两点,且60MPN AOB ∠=∠=︒.当MPN ∠以点P 为旋转中心,PM 边与PO 重合的位置开始,按逆时针方向旋转(MPN ∠保持不变)时,M N ,两点在射线OB 上同时以不同的速度向右平行移动.设,OM x ON y ==(0y x >>),△POM 的面积为S .
(1)判断:△OPN 与△PMN 是否相似,并说明理由;
(2)写出y 与x 之间的关系式;
(3)试写出S 随x 变化的函数关系式,并确定S 的取值范围.
四、反思总结
1.本节课你复习了哪些内容?
2.通过本节课的学习,你还有哪些困难?
五、达标检测
1. 两个相似三角形的面积比是9∶16,则这两个三角形的周长比是( )
A .9∶16
B .3∶4
C .9∶4
D .3∶1
2. 6如图,在△ABC 中,DE ∥BC ,263AD AB DE ===,,,则BC 的长为( )
A .9
B .6
C .4
D .3
3.如图所示,身高1.6m 的小华站在距路灯杆5m 的C 点处,测得她在灯光下的影长CD 为2.5m ,则路灯的高度AB 为______.
4.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )
A. ABP C ∠=∠
B. APB ABC ∠=∠
C. AC AB AB
AP = D.CB AC BP AB = M N B P A O
5.在△ABC 中,P 为边AB 上一点.
(1) 如图1,若ACP B ∠∠=,求证:2
·
AC AP AB =; (2) 若M 为CP 的中点,2AC =,
① 如图2,若3PBM ACP AB ∠∠=,=,求BP 的长;
② 如图3,若4560ABC A BMP ∠︒∠∠︒=,==,直接写出BP 的长.
6.小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下: 如示意图,小明边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度1.20.830CD m CE m CA m =,=,=(点A E C 、、在同一直线上).已知小明的身高EF 是1.7m ,请你帮小明求出楼高AB (结果精确到0.1m ).。