河北科技大学大学物理答案第9章

合集下载

习题第9章

习题第9章

第9章 质心运动定理 动量定理
习题
9-1 设质量为m 的质点M 在Oxy 平面内运动,其运动方程为cos x a kt =,sin y b kt =,式中a 、b 及k 都是常数,求作用于质点M 上的力。

答案:力F
的大小:F mk = 力F 的方向:tan y
x F y F x
β== 9-2 设质点M 以初速度0υ从O 点与水平Ox 成α角射出,不计空气阻力,求质
点M 在重力作用下的运动规律。

答案:质点的运动方程:020cos 1sin 2
x t y t gt υαυα=⎧⎪⎨=-⎪⎩ 9-3如图所示,均质杆OA ,长2l ,重为P ,绕O 轴在铅垂面内转动。

杆与水平线成ϕ角时,其角速度和角加速度分别为ω和α,求该瞬时轴O 的约束反力。

答案:
9-4 匀质杆AB 长为l ,质量为m ,匀质圆盘半径5
l r =,质量为2m ,在水平面作纯滚动,当30ϕ=时,杆上B 端沿铅垂方向向下滑的速度为B υ。

试求此瞬时
系统的总动量。

答案:122
x y B B p p m υυ=+=-p i j i j 9-5 物A 质量为5kg ,物B 质量为10kg ,A 、B 与水平面间的摩擦因数为0.25.现A 向右运动而撞击B 。

开始时,B 处于静止状态,撞击后,A 、B 一同向右运动,历时4s 停止。

求撞击前A 的速度,并求撞击时A 、B 相互作用的冲量。

答案:030/m s υ=,,100x e I N s =⋅
2(cos sin )Ox Pl F g ωφαφ=-+2(sin cos )Oy Pl F P g ωφαφ=+
-。

大学物理第九章习题答案

大学物理第九章习题答案

第九章 真空中的静电场9–1 如图9-1所示,电量为+q 的三个点电荷,分别放在边长为a 的等边三角形ABC 的三个顶点上,为使每个点电荷受力为零,可在三角形中心处放另一点电荷Q ,则Q 的电量为 。

解:由对称性可知,只要某个顶点上的电荷受力为零即可。

C 处电荷所受合力为零,需使中心处的点电荷Q 对它的引力F 与A ,B 两个顶点处电荷的对它的斥力F 1,F 2三力平衡,如图9-2所示,即)21(F F F +-=因此12cos30F F ︒=即2202cos304πq aε=︒解得q Q 33=9-2 真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+λ 和-λ,点P 1和P 2与两带电线共面,其位置如图9-3所示,取向右为坐标x 正向,则1P E = ,2P E = 。

解:(1)P 1点场强为无限长均匀带电直线λ,-λ在该点产生的场强的矢量和,即λλ-+=E E E 1P其大小为i i i E dd d P 000ππ2π21ελελελ=+=方向沿x 轴正方向。

(2)同理可得i i i E dd d P 000π3π2)3(π22ελελελ-=-=方向沿x 轴负方向。

图9–2图9-3C B图9–19-3 一个点电荷+q 位于一边长为L 的立方体的中心,如图9-4所示,则通过立方体一面的电通量为 。

如果该电荷移到立方体的一个顶角上,那么通过立方体每一面的电通量是 。

解:(1)点电荷+q 位于立方体的中心,则通过立方体的每一面的电通量相等,所以通过每一面的通量为总通量的1/6,根据高斯定理1d in Sq ε⋅=∑⎰⎰E S ,其中S 为立方体的各面所形成的闭合高斯面,所以,通过任一面的电通量为0d 6Sqε⋅=⎰⎰E S 。

(2)当电荷+q 移至立方体的一个顶角上,与+q 相连的三个侧面ABCD 、ABFE 、BCHF 上各点的E 均平行于各自的平面,故通过这三个平面的电通量为零,为了求另三个面上的电通量,可以以+q 为中心,补作另外7个大小相同的立方体,形成边长为2L 且与原边平行的大立方体,如图9–5所示,这个大立方体的每一个面的电通电都相等,且均等于6εq ,对原立方体而言,每个面的面积为大立方体一个面的面积的1/4,则每个面的电通量也为大立方体一个面的电通量的1/4,即此时通过立方体每一面的电通量为0111d 4624Sqε⋅⋅=⎰⎰E S 。

大学物理_第九章_课后答案

大学物理_第九章_课后答案

∫L B


� ⋅ dl = µ 0 ∑ I = 0 ,与
∫L
� � � B外 ⋅ dl = ∫ 0 ⋅ dl = 0 是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实 �
际上以上假设并不真实存在,所以使得穿过 L 的电流为 I ,因此实际螺线管若是无限长时, 只是 B外 的轴向分量为零,而垂直于轴的圆周方向分量 B⊥ = 的距离.
b ),(3)导体圆筒内( b < r < c )以及(4)电缆外( r > c )各点处磁感应强度的大小 � � 解: ∫ B ⋅ dl = µ 0 ∑ I
L
(1) r < a
Ir 2 B 2πr = µ 0 2 R B= µ 0 Ir 2πR 2
(2) a < r < b
B 2πr = µ 0 I B= µ0 I 2πr
(3) b < r < c
B 2πr = − µ 0 I
r 2 − b2 + µ0 I c2 − b2 µ 0 I (c 2 − r 2 ) B= 2πr (c 2 − b 2 )
(4) r > c
B 2πr = 0 B=0
题 9-16 图
题 9-17 图
9-17 在半径为 R 的长直圆柱形导体内部,与轴线平行地挖成一半径为 r 的长直圆柱形空 腔,两轴间距离为 a ,且 a > r ,横截面如题9-17图所示.现在电流I沿导体管流动,电流均 匀分布在管的横截面上,而电流方向与管的轴线平行.求: (1)圆柱轴线上的磁感应强度的大小; (2)空心部分轴线上的磁感应强度的大小. 解:空间各点磁场可看作半径为 R ,电流 I 1 均匀分布在横截面上的圆柱导体和半径为 r 电 流 − I 2 均匀分布在横截面上的圆柱导体磁场之和. (1)圆柱轴线上的 O 点 B 的大小: 电流 I 1 产生的 B1 = 0 ,电流 − I 2 产生的磁场

大学物理答案第9章

大学物理答案第9章

第九章 静 电 场9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )题9-1图 分析与解 “无限大”均匀带电平板激发的电场强度为2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ). 9-2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )(C )(D )分析与解但不也9-3 (A )(B )(C )(D )*9-4 偶极子将(A )(B )(C )(D )题9-4图分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B ).9-5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析 考虑到极限情况,假设电子与质子电量差值的最大范围为2×10-21e ,中子电量为10-21e ,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为二个氧原子间的库仑力与万有引力之比为显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力.9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32的上夸克和两个带e31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20m),中子内的两个下夸克之间相距2.60×10-15m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律F 与径向单位矢量e r 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求P 点的电场强度.分析依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 2.0q 的解9-8 (2)分析 L ,它在点P (1)若点P (2)若点P P 的电证 (1)E L/-L/P =⎰(2)当棒长L 此结果与无限长带电直线周围的电场强度分布相同[图(b )].这说明只要满足r 2/L 2<<1,带电长直细棒可视为无限长带电直线.9-9 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.题9-9图分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθδδd sin π2d d 2⋅⋅==R S q ,在点O 激发的电场强度为由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有积分得02/π004d cos sin 2εδθθθεδ⎰==E9-10 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0.试计算在分子的对称轴线上,距分子较远处的电场强度.题9-10图分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0,利用教材第5-3节中电偶极子在延长线上的电场强度可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布. 解1 水分子的电偶极矩解2 由于r 2=代入得(+r x2029-11 分析 (1(2)量,即:解 (1) (2)设F 显然有F +9-12 .分析 .因而方法2:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=SS d s E Φ解1 由于闭合曲面内无电荷分布,根据高斯定理,有 依照约定取闭合曲面的外法线方向为面元d S 的方向,解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为9-13 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理地球表面电荷面密度 单位面积额外电子数9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解依照上述分析,由高斯定理可得R r <R r >9-15 .求离轴线为r 分析只有侧面布.解 r <R 1, R 1<r <R 2r >R 2,9-16 分析W ′=-W .(1)其中E 是点电荷Q 1、Q 3产生的合电场强度.(2)根据电场力作功与电势能差的关系,有 其中V 0是Q 1、Q 3在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1所受的合力为零 解得Q Q Q 414132-=-=由点电荷电场的叠加,Q 1、Q 3激发的电场在y 轴上任意一点的电场强度为将Q 2从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1、Q 3在点O 的电势将Q 2从点O 推到无穷远处的过程中,外力作功比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.9-17 已知均匀带电长直线附近的电场强度近似为其中λ为电荷线密度.(1)求在r =r 1和r =r 2两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取?试说明. 解 (1)由于电场力作功与路径无关,若沿径向积分,则有 (2)不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →9-18 分析 的电势.解 q 2=2q 19-19 分析分布.解 9-20 (2)分析 通常可采用两种方法.方法(1)由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=pp V l E d 可求得电势分布.(2)利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为 在球面内电场强度为零,电势处处相等,等于球面的电势其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1)由高斯定理可求得电场分布 由电势⎰∞⋅=rV l E d 可求得各区域的电势分布.当r ≤R 1时,有当R 1≤r ≤R 2时,有 当r ≥R 2时,有(2)两个球面间的电势差解2 (1)由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1,则 若该点位于两个球面之间,即R 1≤r ≤R 2,则 若该点位于两个球面之外,即r ≥R 2,则 (2)两个球面间的电势差9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题9-21图分析解 当r ≤R 时得()r E =当r ≥R 时得()r E =当r ≤R 时当r ≥R 时9-22 布;(2)分析解 由电势叠加,轴线上任一点P 的电势的()x x Rεσxr r r εσV R-+=+=⎰22222d 2(1)(2)轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R xεσx V (2) 电场强度方向沿x 轴方向.(3)将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得 当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过0.3%和0.8%,这已足以满足一般的测量精度.9-23 两个很长的共轴圆柱面(R 1=3.0×10-2m ,R 2=0.10 m ),带有等量异号的电荷,两者的电势差为450V.求:(1)圆柱面单位长度上带有多少电荷?(2)r =0.05 m 处的电场强度.解 (1)由习题9-15的结果,可得两圆柱面之间的电场强度为 根据电势差的定义有 解得1812120m C 101.2ln/π2--⋅⨯==R R U ελ (2)解得两圆柱面之间r =0.05m 处的电场强度9-24即 .但是要 m )分析 解由k0E 得=T9-25年消耗的能量为3000kW ·h ,则可为多少个家庭提供一年的能量消耗?解 (1)若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量 即可融化约90吨冰.(2)一个家庭一年消耗的能量为一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能. 9-26 已知水分子的电偶极矩p =6.17×10-30C ·m .这个水分子在电场强度E =1.0×105V ·m -1的电场中所受力矩的最大值是多少?分析与解在均匀外电场中,电偶极子所受的力矩为当电偶极子与外电场正交时,电偶极子所受的力矩取最大值.因而有9-27电子束焊接机中的电子枪如图所示,K 为阴极,A 为阳极,阴极发射的电子在阴极和阳极电场加速下聚集成一细束,以极高的速率穿过阳极上的小孔,射到被焊接的金属上使两块金属熔化在一起.已知V 105.24AK ⨯=U ,并设电子从阴极发射时的初速度为零,求:(1)电子到达被焊接金属时具有的动能;(2)电子射到金属上时的速度.分析电子被阴极和阳极间的电场加速获得动能,获得的动能等于电子在电场中减少的势能.由电子动能与速率的关系可以求得电子射到金属上时的速度.解(1)依照上述分析,电子到达被焊接金属时具有的动能(2)由于电子运动的动能远小于电子静止的能量,可以将电子当做经典粒子处理.电子射到金属上时的速度题9-27。

大学物理第9章习题解答

大学物理第9章习题解答

第9章 真空中的静电场 习题解答9-1 精密的实验已表明,一个电子与一个质子的电量在实验误差为e 2110-±的范围内是相等的,而中子的电量在e 2110-±的范围内为零。

考虑这些误差综合的最坏情况,问一个氧原子(含8个电子、8个质子、8个中子)所带的最大可能净电荷是多少?若将原子看成质点,试比较两个氧原子间的电力和万有引力的大小,其净力是引力还是斥力?解:(1)一个氧原子所带的最大可能净电荷为 e q 21max 1024-⨯±= (2)两个氧原子间的电力和万有引力的大小之比为6222711221921122222max 0108.2)1067.116(1067.6)106.11024(1085.84141------⨯≈⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯=≤r r rm G r q f f G e ππε氧 其净力是引力。

9-2 如习题9-2图所示,在直角三角形ABC 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强。

解:根据点电荷场强大小的公式22014q qE kr r==πε, 点电荷q 1在C 点产生的场强大小为112014q E AC =πε 994-1221.810910 1.810(N C )(310)--⨯=⨯⨯=⨯⋅⨯ 方向向下。

点电荷q 2在C 点产生的场强大小为2220||14q E BC =πε994-1224.810910 2.710(N C )(410)--⨯=⨯⨯=⨯⋅⨯, 方向向右。

C 处的总场强大小为E =44-110 3.24510(N C )==⨯⋅,总场强与分场强E 2的夹角为12arctan33.69E E ==︒θ.9-3 半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电荷线密度分别为+λ和-λ,求圆心处的场强。

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

9-1两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求小线圈回路中产生的感应电动势的大小. 解:在轴线上的磁场()()22003322222IR IR B x R x R xμμ=≈>>+32202xr IR BS πμφ==v xr IR dt dx x r IR dt d 422042202332πμπμφε=--=-=9-2如图所示,有一弯成θ 角的金属架COD 放在磁场中,磁感强度B ϖ的方向垂直于金属架COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v ϖ向右滑动,v ϖ与MN 垂直.设t =0时,x = 0.求当磁场分布均匀,且B ϖ不随时间改变,框架内的感应电动势i ε.解:12m B S B xy Φ=⋅=⋅,θtg x y ⋅=,vt x =22212/()/i d dt d Bv t tg dt Bv t tg εϕθθ=-=-=⋅,电动势方向:由M 指向N9-3 真空中,一无限长直导线,通有电流I ,一个与之共面的直角三角形线圈ABC 放置在此长直导线右侧。

已知AC 边长为b ,且与长直导线平行,BC 边长为a ,如图所示。

若线圈以垂直于导线方向的速度v 向右平移,当B 点与直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和方向。

解:当线圈ABC 向右平移时,AB 和AC 边中会产生动生电动势。

当C 点与长直导线的距离为d 时,AC 边所在位置磁感应强度大小为:02()IB a d μπ=+AC 中产生的动生电动势大小为:xr IRx vC DOxMθBϖv ϖ02()AC AC IbvBl v a d μεπ==+,方向沿CA 方向如图所示,在AB 边上取微分元dl ,微分元dl 中的动生电动势为,()AB d v B dl ε=⨯⋅v v v其方向沿BA 方向。

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

大学物理(少学时)第9章电磁感应与电磁场课后习题答案9-1两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求小线圈回路中产生的感应电动势的大小.解:在轴线上的磁场()()22003322222IR IR B x R x R xμμ=≈>>+32202xr IR BS πμφ==v xr IR dt dx x r IR dt d 422042202332πμπμφε=--=-=9-2如图所示,有一弯成θ 角的金属架COD 放在磁场中,磁感强度B ?的方向垂直于金属架COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v ?向右滑动,v ?与MN 垂直.设t =0时,x = 0.求当磁场分布均匀,且B ?不随时间改变,框架内的感应电动势i ε.解:12m B S B xy Φ=?=?,θtg x y ?=,vt x =22212/()/i d dt d Bv t tg dt Bv t tg ε?θθ=-=-=?,电动势方向:由M 指向N9-3 真空中,一无限长直导线,通有电流I ,一个与之共面的直角三角形线圈ABC 放置在此长直导线右侧。

已知AC 边长为b ,且与长直导线平行,BC 边长为a ,如图所示。

若线圈以垂直于导线方向的速度v 向右平移,当B 点与直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和方向。

解:当线圈ABC 向右平移时,AB 和AC 边中会产生动生电动势。

当C 点与长直导线的距离为d 时,AC 边所在位置磁感应强度大小为:02()IB a d μπ=+AC 中产生的动生电动势大小为:xr IRx vC DOxMθBv ?02()AC AC IbvBl v a d μεπ==+,方向沿CA 方向如图所示,在AB 边上取微分元dl ,微分元dl 中的动生电动势为,()AB d v B dl ε=??v v v其方向沿BA 方向。

大学物理课后习题答案第九章

大学物理课后习题答案第九章

第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。

求2t s =时,回路中感应电动势的大小和方向。

解:310)62(-⨯+-=Φ-=t dtd ε 当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。

已知导轨处于均匀磁场B ϖ中,B ϖ的方向与回路的法线成60°角,如图所示,B ϖ的大小为B =kt (k 为正常数)。

设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。

解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φρρ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。

3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。

求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。

解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0ρρ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。

设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υρ垂直离开导线。

大学物理答案第九章

大学物理答案第九章

振幅A与初相位 三、振幅 与初相位φ 的确定
ψ = Acos(ωt +φ)
dψ = − Asin ω +φ) ω ( t dt
简谐振动的振幅和初相位由振动的初始状态决定。 简谐振动的振幅和初相位由振动的初始状态决定。 初始状态决定
已知t=0时,振动量Ψ的振动状态为 ψ0, dψ
ψ0 = Acosφ
− 1
dΨ dt 0 2 A= Ψ0 + ω
2
dΨ dt φ = tan−1 0 ω 0 Ψ
说明: (1) 一般来说φ 的取值在 - π和π(或0和2π)之间; (2) 在应用上面的式子求φ 时,一般来说有两个值, 还要由初始条件来判断应该取哪个值; (3)常用方法:先求A,然后由 Ψ0=Acosφ 、 (dΨ /dt)0=-Aωsinφ 两者的共同部分求φ 。
1 2 Ekmax = kA 2
Ekmin = 0
势 能
Ep = 1 kx2 2
1 2 2 = kA cos (ω +φ0) t 2
1 2 Epmax = kA 2
Epmin = 0
机械能
1 2 E = Ek + Ep = kA 2
简谐振动系统机械能守恒
E
E (1/2)kA2
Ep
o
Ek
Ep = Ek
t
T
x t
由起始能量求振幅
1 2 E = kA 2
2E0 2E A= = k k
LC振荡电路中,电容器上的电 量q和电路中的电流I分别为:
q =Q cos(ωt +φ) 0 I = −ωQ sin ωt +φ) ( 0

河北科技大学大学物理答案第9章

河北科技大学大学物理答案第9章

第9章思考题9-1理想气体物态方程就是根据哪些实验定律导出得,其适用条件就是什么?9-2内能与热量得概念有何不同?下面两种说法就是否正确?(1)物体得温度愈高,则热量愈多;(2)物体得温度愈高,则内能愈大?9-3 在p—V图上用一条曲线表示得过程就是否一定就是准静态过程?理想气体经过自由膨胀由状态(p1,V1,T1)改变到状态(p2,V2,T1),这一过程能否用一条等温线表示.9-4有可能对物体传热而不使物体得温度升高吗?有可能不作任何热交换,而系统得温度发生变化吗?9-5在一个房间里,有一台电冰箱在运转着,如果打开冰箱得门,它能不能冷却这个房间?空调为什么会使房间变凉?9-6根据热力学第二定律判别下列两种说法就是否正确?(1)功可以全部转化为热,但热不能全部转化为功;(2)热量能够从高温物体传到低温物体,但不能从低温物体传到高温物体。

9—7 一条等温线与一条绝热线就是否能有两个交点?为什么?9—8 为什么热力学第二定律可以有许多不同得表述?9—9 瓶子里装一些水,然后密闭起来。

忽然表面得一些水温度升高而蒸发成汽,余下得水温变低,这件事可能吗?它违反热力学第一定律吗?它违反热力学第二定律吗?9—10有一个可逆得卡诺机,以它做热机使用时,若工作得两热源温差愈大,则对做功越有利;当作制冷机使用时,如果工作得两热源温差愈大时,对于制冷机就是否也愈有利?(从效率上谈谈)9-11可逆过程就是否一定就是准静态过程?准静态过程就是否一定就是可逆过程?有人说“凡就是有热接触得物体,它们之间进行热交换得过程都就是不可逆过程。

”这种说法对吗?9-12如果功变热得不可逆性消失了,则理想气体自由膨胀得不可逆性也随之消失,就是这样吗?9—13热力学第二定律得统计意义就是什么?如何从微观角度理解自然界自发过程得单方向性?9—14西风吹过南北纵贯得山脉:空气由山脉西边得谷底越过,流动到山顶到达东边,在向下流动。

空气在上升时膨胀,下降时压缩。

2020年河北科技大学大学物理答案第9章

2020年河北科技大学大学物理答案第9章

作者:旧在几作品编号:2254487796631145587263GF24000022时间:2020.12.13第9章思考题9-1 理想气体物态方程是根据哪些实验定律导出的,其适用条件是什么?9-2内能和热量的概念有何不同?下面两种说法是否正确?(1) 物体的温度愈高,则热量愈多;(2) 物体的温度愈高,则内能愈大?9-3 在p-V图上用一条曲线表示的过程是否一定是准静态过程?理想气体经过自由膨胀由状态(p1,V1,T1)改变到状态(p2,V2,T1),这一过程能否用一条等温线表示。

9-4有可能对物体传热而不使物体的温度升高吗?有可能不作任何热交换,而系统的温度发生变化吗?9-5在一个房间里,有一台电冰箱在运转着,如果打开冰箱的门,它能不能冷却这个房间?空调为什么会使房间变凉?9-6根据热力学第二定律判别下列两种说法是否正确?(1) 功可以全部转化为热,但热不能全部转化为功;(2) 热量能够从高温物体传到低温物体,但不能从低温物体传到高温物体。

9-7 一条等温线和一条绝热线是否能有两个交点?为什么?9-8 为什么热力学第二定律可以有许多不同的表述?9-9 瓶子里装一些水,然后密闭起来。

忽然表面的一些水温度升高而蒸发成汽,余下的水温变低,这件事可能吗?它违反热力学第一定律吗?它违反热力学第二定律吗?9-10有一个可逆的卡诺机,以它做热机使用时,若工作的两热源温差愈大,则对做功越有利;当作制冷机使用时,如果工作的两热源温差愈大时,对于制冷机是否也愈有利?(从效率上谈谈)9-11可逆过程是否一定是准静态过程?准静态过程是否一定是可逆过程?有人说“凡是有热接触的物体,它们之间进行热交换的过程都是不可逆过程。

”这种说法对吗?9-12如果功变热的不可逆性消失了,则理想气体自由膨胀的不可逆性也随之消失,是这样吗?9-13热力学第二定律的统计意义是什么?如何从微观角度理解自然界自发过程的单方向性?9-14西风吹过南北纵贯的山脉:空气由山脉西边的谷底越过,流动到山顶到达东边,在向下流动。

大学物理课后习题答案第九章

大学物理课后习题答案第九章

第9章 电稳感应和电磁场 习题及答案1.通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:(t 2 6t35) 10 Wb 。

求t 2s 时,回路中感应电动势的大小和方向。

解: d(2t 6) 10 3dt当t 2s 时,0.01V由楞次定律知, 感应电动势方向为逆时针方向2.长度为I 的金属杆ab 以速率 在导电轨道abed 上平行移动。

已知导轨处于均匀磁场B 中,B 的方向与回路的法线成 60°角,如图所示, B 的大 小为B = kt (k 为正常数)。

设t 0时杆位于ed 处,求:任一时 刻t 导线回路中感应电动势的大小和方向。

解:任意时刻通过通过回路面积的磁通量为1 2 B dS Bl teos60 -kl t2导线回路中感应电动势为方向沿abeda 方向。

3.如图所示,一边长为 a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且 B k (1 x ), k 0。

求:(1)穿过正方形线框的磁通量;(2)当k 随时间t 按k (t ) k °t ( k 。

为正值常量)变化时,线框中感生电流的大小和方向。

解:(1)通过正方形线框的磁通量为(2)当k k °t 时,通过正方形线框的磁通量为21a 2k °t (1 尹)正方形线框中感应电动势的大小为d mdtkl taaS B dS 0 Badx ak 0 (1x)dxdt^ko(12a)正方形线框线框中电流大小为1-a),方向:顺时针方向 2壘cos tin2任一时刻线圈中的感应电动势为a 2k o R(14.如图所示,矩形线圈与载有电流I l °COS t 长直导线共面。

设线圈的长为b ,宽为a ; t 0时,线圈的AD 边与长直导线重合;线圈以匀速度 垂直离开导线。

求任一时刻线圈中的感应电动势的大小。

解:建立图示坐标系,长直导线在右边产生的磁感应强度 大小为ol 2 xt 时刻通过线圈平面的磁通量为SBdSa -olbdx 2 xd 010b a cos t dt 2 [( ta)tsin tlnt a〒]5.如图所示,在两平行载流的无限长直导线的平面内有一矩形线圈。

大学物理习题答案第九章

大学物理习题答案第九章

[习题解答]9-3 两个相同的小球质量都是m ,并带有等量同号电荷q ,各用长为l 的丝线悬挂于同一点。

由于电荷的斥力作用,使小球处于图9-9所示的位置。

如果θ角很小,试证明两个小球的间距x 可近似地表示为.解 小球在三个力的共同作用下达到平衡,这三个力分别是重力m g 、绳子的张力T 和库仑力f 。

于是可以列出下面的方程式,(1),(2)(3)因为θ角很小,所以,.利用这个近似关系可以得到,(4). (5)将式(5)代入式(4),得图9-9,由上式可以解得.得证。

9-4在上题中,如果l = 120 cm,m = 0.010 kg,x = 5.0 cm,问每个小球所带的电量q为多大?解在上题的结果中,将q解出,再将已知数据代入,可得.9-5氢原子由一个质子和一个电子组成。

根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r0 = 5.29⨯10-11m。

质子的质量M = 1.67⨯10-27kg,电子的质量m = 9.11⨯10-31kg,它们的电量为±e =1.60⨯10-19C。

(1)求电子所受的库仑力;(2)电子所受库仑力是质子对它的万有引力的多少倍?(3)求电子绕核运动的速率。

解(1)电子与质子之间的库仑力为.(2)电子与质子之间的万有引力为.所以.(3)质子对电子的高斯引力提供了电子作圆周运动的向心力,所以,从上式解出电子绕核运动的速率,为.9-6 边长为a的立方体,每一个顶角上放一个电荷q。

(1)证明任一顶角上的电荷所受合力的大小为.(2) F的方向如何?解立方体每个顶角上放一个电荷q,由于对称性,每个电荷的受力情况均相同。

对于任一顶角上的电荷,例如B角上的q B,它所受到的力、和大小也是相等的,即.首先让我们来计算的大小。

图9-10由图9-10可见,、和对的作用力不产生x方向的分量;对的作用力f1的大小为,f1的方向与x轴的夹角为45︒。

对的作用力f2的大小为,f2的方向与x轴的夹角为0︒。

大学物理第9章习题答案

大学物理第9章习题答案

⼤学物理第9章习题答案第4篇电磁学第9章静电场9.1 基本要求1掌握静电场的电场强度和电势的概念以及电场强度叠加原理和电势叠加原理。

掌握电势与电场强度的积分关系。

能计算⼀些简单问题中的电场强度和电势。

了解电场强度与电势的微分关系。

2理解静电场的规律:⾼斯定理和环路定理。

理解⽤⾼斯定理计算电场强度的条件和⽅法。

3了解导体的静电平衡条件,了解介质的极化现象及其微观解释。

了解各向同性介质中D和E之间的关系。

了解介质中的⾼斯定理。

4了解电容和电能密度的概念。

9.2基本概念1电场强度E :试验电荷0q 所受到的电场⼒F 与0q 之⽐,即0q =F E 2电位移D :电位移⽮量是描述电场性质的辅助量。

在各向同性介质中,它与场强成正⽐,即ε=D E 3电场强度通量e Φ:e Sd Φ=E S电位移通量:D Sd Φ=D S4电势能pa E :0pa aE q d ∞=?E l (设0p E ∞=)5电势a V :0pa a aE V d q ∞==? E l (设0V ∞=)电势差ab U :ab a b U V V =- 6场强与电势的关系(1)积分关系 a aV d ∞=7电容C:描述导体或导体组(电容器)容纳电荷能⼒的物理量。

孤⽴导体的电容:Q C V =;电容器的电容:Q C U= 8静电场的能量:静电场中所贮存的能量。

电容器所贮存的电能:22222CU Q QUW C ===电场能量密度e w :单位体积的电场中所贮存的能量,即22e E w ε=9.3基本规律1库仑定律:12204rq q rπε=F e 2叠加原理(1)电场强度叠加原理:在点电荷系产⽣的电场中任⼀点的场强等于每个点电荷单独存在时在该点产⽣的场强的⽮量和。

(2)电势叠加原理:在点电荷系产⽣的电场中,某点的电势等于每个点电荷单独存在时在该点产⽣的电势的代数和。

3⾼斯定理:真空中静电场内,通过任意闭合曲⾯的电场强度通量等于该曲⾯所包围的电量的代数和的1/ε 0倍。

大学物理标准答案第9章

大学物理标准答案第9章

第九章 静 电 场9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )题 9-1 图分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).9-2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ).9-3 下列说法正确的是( )(A ) 电场强度为零的点,电势也一定为零(B ) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).9-5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析考虑到极限情况,假设电子与质子电量差值的最大范围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max<<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律 ()r r r re r q q e e e F N 78.3π41π412202210===εε F 与径向单位矢量e r 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度.解 根据上述分析2020π1)2/(2π41aq a q E P εε==题 9-7 图9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1Lr Q εE -=(2) 在棒的垂直平分线上,离棒为r 处的电场强度为 2204π21Lr r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度 ⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=L E i E d(2) 若点P 在棒的垂直平分线上,如图(a )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==L y E E j j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=L rq E20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2202/32222041π2d π41Lr r Q r x L x rQ E L/-L/+=+=⎰εε 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(b )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.9-9 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.题 9-9 图 分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθδδd sin π2d d 2⋅⋅==R S q ,在点O 激发的电场强度为 ()i E 2/3220d π41d r x q x +=ε 由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθδθεεd cos sin 2 d sin π2cos π41d π41d 02303/2220=⋅=+=R RR r x q x E积分得 02/π004d cos sin 2εδθθθεδ⎰==E 9-10 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.题 9-10 图分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41x p εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布. 解1 水分子的电偶极矩θθcos 2cos 200er p p ==在电偶极矩延长线上30030030cos π1cos 4π412π41x θer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2xεe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得 ()⎥⎥⎦⎤⎢⎢⎣⎡--+-=22/30202001cos 2cos π42x xr r x r x e E θθε 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x r x x r x xr r x θθθcos 2231cos 21cos 2032/3032/30202,将上式化简并略去微小量后,得 300cos π1x θe r εE = 9-11 两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.题 9-11 图 分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有 ()i i E E E x r x r x r x -=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2ελελ (2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+- 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.9-12 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.题 9-12 图分析 方法1:作半径为R 的平面S 与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理 ∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 方法2:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R R E 22ππcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为()r E e e e E ϕθθϕϕθϕsin sin cos sin cos ++= r θθR e S d d sin d 2=ER ER ER S S 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰ϕϕθθϕθϕθS E Φ 9-13 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⋅⨯-=-≈=2902m C 1006.1π4/E R q E εσ单位面积额外电子数25cm 1063.6)/(-⨯=-=e n σ9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有 ⎰==⋅s Q E r S E 0i 2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解 依照上述分析,由高斯定理可得R r <时, 302π34π4r E r ερ= 假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ=R r >时, 302π34π4R E r ερ= 考虑到电场强度沿径向朝外,带电球体外的电场强度为r e rR E 2033ερ=9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 . 题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=ER 1 <r <R 2 , L λq =∑rελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变00π2π2ΔεσrL εL λr ελE === 9-16 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.题 9-16 图分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-= 由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势 的叠加得Q 1 、Q 3 在点O 的电势dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 9-17 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2= 其中λ为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等.9-18 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为 R q εV 0π41= 当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1=0.40 mm ,带有电量q 1=1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV 当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量 q 2=2q 1 ,雨滴表面电势V 5722π4113102==R q εV 9-19 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a )放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布.解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布, ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x <<--=⋅=⎰ d 0l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 00a -a x l E l E ()a x a V >-=⋅+⋅=⎰⎰ d d 00a a x εσl E l E 电势变化曲线如图(b )所示. 9-20 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?题 9-20 图分析 通常可采用两种方法.方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2)利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQ V 0π4= 在球面内电场强度为零,电势处处相等,等于球面的电势 R εQ V 0π4=其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布 ()()()22021********* π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1 时,有 20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E当R 1 ≤r ≤R 2 时,有 202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1≤r ≤R 2 ,则202012π4π4R εQ r εQ V += 若该点位于两个球面之外,即r ≥R 2 ,则 rεQ Q V 0213π4+= (2) 两个球面间的电势差 ()2011012112π4π42R εQ R εQ V V U R r -=-== 9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理 ⎰⎰=⋅V V d 1d 0ρεS E 可求得电场分布E (r ),再根据电势差的定义 ()l E d ⋅=-⎰b ab a r V V 并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E =当r ≥R 时02/ππ2ερl R rl E =⋅得 ()r εR ρr E022= 取棒表面为零电势,空间电势的分布有当r ≤R 时()()22004d 2r R ερr εr ρr V R r -==⎰当r ≥R 时 ()rR εR ρr r εR ρr V Rr ln 2d 20202==⎰ 如图所示是电势V 随空间位置r 的分布曲线. 9-22 一圆盘半径R =3.00 ×10-2 m .圆盘均匀带电,电荷面密度σ=2.00×10-5 C·m -2.(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.题 9-22 图分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 如图所示,圆盘上半径为r 的带电细圆环在轴线上任一点P 激发的电势220d π2π41d x r r r σεV += 由电势叠加,轴线上任一点P 的电势的 ()x x R εσx r rr εσV R -+=+=⎰22002202d 2 (1) (2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R x εσx V (2) 电场强度方向沿x 轴方向. (3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 6911=V-1m V 6075⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有 V 1695π40==xεq V 1-20m V 5649π4⋅==x εq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过 0.3%和0.8%,这已足以满足一般的测量精度.9-23 两个很长的共轴圆柱面(R 1 =3.0×10-2m ,R 2 =0.10 m ),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题9-15 的结果,可得两圆柱面之间的电场强度为 rελE 0π2=根据电势差的定义有 120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln /π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 475 7π2-⋅==rE ελ 9-24 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子(H 11)以多大的动能(以电子伏特表示)运动,才能从很远处到达与另一个质子相接触的距离? (2)平均热运动动能达到此值时,温度有多高? (质子的半径约为1.0 ×10-15 m ) 分析 作为估算,可以将质子上的电荷分布看作球对称分布,因此质子周围的电势分布为 rεe V 0π4= 将质子作为经典粒子处理,当另一质子从无穷远处以动能E k 飞向该质子时,势能增加,动能减少,如能克服库仑斥力而使两质子相碰,则质子的初始动能Re r eV E 2π41202R k 0ε=≥ 假设该氢原子核的初始动能就是氢分子热运动的平均动能,根据分子动理论知:kT E 23k = 由上述分析可估算出质子的动能和此时氢气的温度.解 (1) 两个质子相接触时势能最大,根据能量守恒eV 102.72π415202R K0⨯==≥Re r εeV E 由20k021v m E =可估算出质子初始速率 17k 00s m 102.1/2-⋅⨯==m E v该速度已达到光速的4%.(2) 依照上述假设,质子的初始动能等于氢分子的平均动能kT E E 23k k0== 得 K 106.5329k0⨯≈=kE T 实际上在这么高的温度下,中性原子已被离解为电子和正离子,称作等离子态,高温的等离子体不能用常规的容器来约束,只能采用磁场来约束(托卡马克装置)9-25 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30 C .(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J· kg )(2) 假设每一个家庭一年消耗的能量为3 000kW·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量kg 1098.8Δ4⨯===LqU L E m 即可融化约 90 吨冰. (2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ00===E qU E E n 一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.9-26 已知水分子的电偶极矩p =6.17×10-30 C· m .这个水分子在电场强度E =1.0 ×105 V · m -1的电场中所受力矩的最大值是多少?分析与解 在均匀外电场中,电偶极子所受的力矩为E p M ⨯=当电偶极子与外电场正交时,电偶极子所受的力矩取最大值.因而有m N 1017.625max ⋅⨯==-pE M9-27 电子束焊接机中的电子枪如图所示,K 为阴极,A 为阳极,阴极发射的电子在阴极和阳极电场加速下聚集成一细束,以极高的速率穿过阳极上的小孔,射到被焊接的金属上使两块金属熔化在一起.已知V 105.24AK⨯=U ,并设电子从阴极发射时的初速度为零,求:(1)电子到达被焊接金属时具有的动能;(2)电子射到金属上时的速度.分析 电子被阴极和阳极间的电场加速获得动能,获得的动能等于电子在电场中减少的势能.由电子动能与速率的关系可以求得电子射到金属上时的速度.解 (1)依照上述分析,电子到达被焊接金属时具有的动能eV 105.24AK k ⨯==eU E(2)由于电子运动的动能远小于电子静止的能量,可以将电子当做经典粒子处理.电子射到金属上时的速度m/s 1037.927⨯==m E v k题 9-27。

大学物理第9章题库答案

大学物理第9章题库答案

大学物理第9章题库答案.第九章电磁场填空题(简单)1、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈,直导线中的电流由上向下,当线圈以垂直于导线的速度背离导线时,线圈中的感应电动势,当线圈平行导线向上运动时,线圈中的感应电动势。

(填>0,<0,=0)(设顺时针方向的感应电动势为正)(<0, =0)2、磁场的高斯定律表明磁场是,因为磁场发生变化而引起电磁感应,是不同于回路变化时产生的。

相同之处是。

(无源场,动生电动势,磁通量发生改变)3、只要有运动电荷,其周围就有产生;而法拉弟电磁感应定律表明,只要发生变化,就有产生。

(磁场,磁通量,感应电动势)4、一磁铁自上向下运动,穿过一闭合导体回路,(如图7),当磁铁运动到a 处和b处时,回路中感应电流的方向分别是和。

(逆时针,顺时针)5、电磁感应就是由生的现象,其主要定律为,其中它的方向是由定律来决定,即。

(磁,电,电磁感应定律,楞次,见p320)6、当穿过某回路中的磁通量发生变化时,电路中(填一定或不一定)产生感应电流;电路中(填一定或不一定)产生感应电动势。

(不一定, 一定)7、在电磁感应中,感应电动势的大小与闭合回路的磁通量成正比。

(对时间的变化率)8、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈,直导线中的电流由上向下,当线圈平行导线向下运动时,线圈中的感应电动势,当线圈以垂直于导线的速度靠近导线时,线圈中的感应电动势。

(填>0,<0,=0)(设顺时针方向的感应电动势为正)(=0,>0)9、将条形磁铁插入与冲击电流计串连的金属环中,有-5q=2.010c ?的电荷通过电流计,若连接电流计的电路总电阻25R =Ω,则穿过环的磁通量的变化=?ΦWb 。

(4510q R --?=-?)10、电磁波是变化的和变化的在空间以一定的速度传播而形成的。

(电场,磁场) 11、如图所示,金属杆AOC 以恒定速度υ在均匀磁场B 中垂直于磁场方向运动,已知AO OC L ==,则杆中的动生电动势的大小为。

大学物理第九章练习参考答案

大学物理第九章练习参考答案

第九章 电磁感应 电磁场理论练 习 一一.选择题1. 在一线圈回路中,规定满足如图1所示的旋转方向时,电动势 ,磁通量为正值。

若磁铁沿箭头方向进入线圈,则有( B ) (A) d /dt 0, 0 ; (B) d /dt 0, 0 ; (C) d /dt 0,0 ; (D) d /dt 0,0。

2. 一磁铁朝线圈运动,如图2所示,则线圈内的感应电流的方向(以螺线管内流向为准)以及电表两端电势U A 和U B 的高低为( C )(A) I 由A 到B ,U A U B ; (B) I 由B 到A ,U A U B ; (C) I 由B 到A ,U A U B ; (D) I 由A 到B ,U A U B 。

3. 一长直螺线管,单位长度匝数为n ,电流为I ,其中部放一面积为A ,总匝数为N ,电阻为R 的测量线圈,如图3所示,开始时螺线管与测量线圈的轴线平行,若将测量线圈翻转180°,则通过测量线圈某导线截面上的电量q 为( A ) (A) 2nINA /R ; (B)nINA /R ; (C)NIA /R ; (D)nIA /R 。

4. 尺寸相同的铁环和铜环所包围的面积中,磁通量的变化率相同,则环中( A ) (A )感应电动势相同,感应电流不同; (B )感应电动势不同,感应电流相同; (C )感应电动势相同,感应电流相同; (D )感应电动势不同,感应电流不同。

S N v图1· ·GA B NS 图2IIA图3二.填空题1.真空中一长度为0l 的长直密绕螺线管,单位长度的匝数为n ,半径为R ,其自感系数L可表示为0220l R n L πμ=。

2. 如图4所示,一光滑的金属导轨置于均匀磁场B v中,导线ab 长为l ,可在导轨上平行移动,速度为v ,则回路中的感应电动势ε=θsin Blv ,a 、b 两点的电势a U < b U (填<、=、>),回路中的电流I=R Blv /sin θ,电阻R 上消耗的功率P=R Blv /)sin (2θ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9章思考题9-1 理想气体物态方程是根据哪些实验定律导出的,其适用条件是什么?9-2内能和热量的概念有何不同?下面两种说法是否正确?(1) 物体的温度愈高,则热量愈多;(2) 物体的温度愈高,则内能愈大?9-3 在p-V图上用一条曲线表示的过程是否一定是准静态过程?理想气体经过自由膨胀由状态(p1,V1,T1)改变到状态(p2,V2,T1),这一过程能否用一条等温线表示。

9-4有可能对物体传热而不使物体的温度升高吗?有可能不作任何热交换,而系统的温度发生变化吗?9-5在一个房间里,有一台电冰箱在运转着,如果打开冰箱的门,它能不能冷却这个房间?空调为什么会使房间变凉?9-6根据热力学第二定律判别下列两种说法是否正确?(1) 功可以全部转化为热,但热不能全部转化为功;(2) 热量能够从高温物体传到低温物体,但不能从低温物体传到高温物体。

9-7 一条等温线和一条绝热线是否能有两个交点?为什么?9-8 为什么热力学第二定律可以有许多不同的表述?9-9 瓶子里装一些水,然后密闭起来。

忽然表面的一些水温度升高而蒸发成汽,余下的水温变低,这件事可能吗?它违反热力学第一定律吗?它违反热力学第二定律吗?9-10有一个可逆的卡诺机,以它做热机使用时,若工作的两热源温差愈大,则对做功越有利;当作制冷机使用时,如果工作的两热源温差愈大时,对于制冷机是否也愈有利?(从效率上谈谈)9-11可逆过程是否一定是准静态过程?准静态过程是否一定是可逆过程?有人说“凡是有热接触的物体,它们之间进行热交换的过程都是不可逆过程。

”这种说法对吗?9-12如果功变热的不可逆性消失了,则理想气体自由膨胀的不可逆性也随之消失,是这样吗?9-13热力学第二定律的统计意义是什么?如何从微观角度理解自然界自发过程的单方向性?9-14西风吹过南北纵贯的山脉:空气由山脉西边的谷底越过,流动到山顶到达东边,在向下流动。

空气在上升时膨胀,下降时压缩。

若认为这样的上升、下降过程是准静态的,试问这样的过程是可逆的吗?9-15 一杯热水置于空气中,他总要冷却到与周围环境相同的温度。

这一过程中,水的熵减少了,这与熵增加原理矛盾吗?9-16一定量气体经历绝热自由膨胀。

既然是绝热的,即0d =Q ,那么熵变也应该为零。

对吗?为什么?习 题9-1 一定量的某种理想气体按C pV =2(C 为恒量)的规律膨胀,分析膨胀后气体的温度的变化情况。

解:已知(1) 2C pV =理想气体状态方程(2) RT MpV μ=,将(2)式代如(1)式,得C V RT M=⋅μ,整理,R MCT V μ=⋅对于一定质量的理想气体,M为定值,令'R MCC μ=,则'C T V =⋅,所以膨胀后气体温度成比例降低。

9-2 0.020kg 的氦气温度由17℃升到27℃,若在升温的过程中:(1)体积保持不变;(2)压强保持不变;(3)不与外界交换热量,试分别求出气体内能的改变,吸收的热量,外界对气体所作的功。

(设氦气可看作理想气体)解:理想气体内能是温度的单值函数,一过程中气体温度的改变相同,所以内能的改变也相同,为:热量和功因过程而异,分别求之如下:(1)等容过程:V=常量 A =0 由热力学第一定律,(2)等压过程: 由热力学第一定律, 负号表示气体对外作功,(3)绝热过程 Q =0 由热力学第一定律9-3分别通过下列过程把标准状态下的0.014kg 氮气压缩为原体积的一半:(1)等温过程;(2)绝热过程;(3)等压过程。

试分别求出在这些过程中内能的改变,传递的热量和外界对气体所作的功。

设氮气可看作理想气体,且R C V 25m ,。

解(1)等温过程:理想气体内能是温度的单值函数,过程中温度不变,故 由热力学第一定律 负号表示系统向外界放热(2)绝热过程由 或 得由热力学第一定律 另外,也可以由及先求得A(3)等压过程,有或 而所以 = ==由热力学第一定律,也可以由 求之另外,由计算结果可见,等压压缩过程,外界作功,系统放热,内能减少,数量关系为,系统放的热等于其内能的减少和外界作的功。

9-4在标准状态下0.016kg 的氧气,分别经过下列过程从外界吸收了80cal 的热量。

(1)若为等温过程,求终态体积。

(2)若为等体过程,求终态压强。

(3)若为等压过程,求气体内能的变化。

设氧气可看作理想气体,且R C V 25m ,。

解:(1)等温过程 则故(2)等体过程 (3)等压过程9-5 1mol 单原子理想气体的温度从300K 增加到350K ,(1)容积保持不变;(2)压强保持不变。

问在这两个过程中各吸收了多少热量?增加了多少内能?对外做了多少功? 解:(1)等体过程由热力学第一定律得E Q ∆= 吸热J T R M T C ME Q V 25.623)300350(31.82323=-⨯⨯=∆=∆=∆=μμ对外作功 0=W (2)等压过程J T R i M T C MQ p 75.1038)300350(31.82522=-⨯⨯=∆+=∆==μμ吸热 T R iM T C ME V ∆=∆=∆2μμ内能增加J T R M T C ME V 25.623)300350(31.82323=-⨯⨯=∆=∆=∆μμ对外作功 J E Q W 41525.62375.1038=-=∆-=9-6 1mol 的氢气,在压强为51.010Pa ⨯,温度为20℃时,其体积为0V 。

如先保持体积不变,加热使其温度升高到80℃,然后使其作等温膨胀,体积变为原体积的2倍。

试计算该过程中吸收的热量,气体对外做的功和气体内能的增量。

解: 558.31601246.522V E C T R T J ∆=∆==∆=⨯⨯= 9-7标准状态下21.610kg -⨯的氧气,分别经过下列过程并从外界吸收334.4J 的热,(1)经等体过程,求末状态的压强; (2)经等温过程,求末状态的体积; (3)经等压过程,求气体内能的改变。

解:已知 kg M O 2106.12-⨯= J Q 4.334= R C V 25= (1) 等体过程 0=W T C E Q V ∆=∆=ν吸 由过程方程)(10132.110013.115.27334.305550000Pa T T P P T P T P ⨯=⨯⨯==⇒= (2)等温过程:,0T T =,0=∆E ,lnV VRT Q ν= L V 2.114.225.00=⨯=, ,2946.015.27331.85.03.334ln0=⨯⨯==RT Q V V ν (3)等压过程:T C Q p p ∆=ν,R C p 27=,)(86.2384.33475C E ,V J Q C C T C Q T p p V Pp=⨯==∆=∆=∆νν 9-8 1mol 双原子分子理想气体作如习题9-8图的可逆循环过程,其中1—2为直线,2—3为绝热线,3—1为等温线。

已知122T T =,138V V =,试求:(1)各过程的功,内能增量和传递的热量(用1T 和已知常数表示)(2)此循环的效率η。

(注:循环效率QW=η,W 为每一循环过程气体对外所做净功,1Q 为每一循环过程气体吸收的热量)解:13128,2 ,25,1V V T T R C V ====ν (1)各过程中的功、内能增量和热量21→:1125RT T C E V =∆=∆ν,11222V p V p C TpV =⇒= 4.12=+=ii γ,又因为32→是绝热过程,12121111222,2p p V V V T V T ==⇒=--γγ32→绝热过程125.225,0RT T R T C E W Q V =∆=∆=∆-==ν13→等温过程:13113332ln 3ln,0RT V V RT Q W E -====∆ν(2)此过程的循环效率:%7.302ln 132ln 3111112=-=-=-==RT RT Q Q Q W η)m 3-3习题9-9图p 2p 13习题9-8图O9-9 1mol 单原子分子理想气体的循环过程如习题9-9图所示,其中c 点的温度为c T =600K .试求: (1)ab ﹑bc ﹑ca 各个过程系统吸收的热量;(2)经一循环系统所做的净功; (3)循环的效率。

(ln2=0.693) 解:mol 1=ν R C V 23= K T T a c 600== (1) 等压过程b a →:K 30060021=⨯==⇒=a a b b b a b a T V V T T T V V c b →等体过程: 02=W)(5.373930031.8231J T C E Q V V =⨯⨯⨯=∆=∆=νa c →等温过程:)(3.34552ln ln,033J RT V V RT Q E a caa ====∆(2)经一循环系统所做的净功;)3.9625.62323.34555.3739-J Q Q W (放吸=-+==(3) 循环的效率:%4.133.34555.37393.962=+==Q W η 9-10 如习题9-10图所示, C 是固定的绝热壁,D 是可动活塞,C ﹑D 将容器分成A ﹑B 两部分。

开始时A ﹑B 两室中各装入同种类的理想气体,它们的温度T ﹑体积V ﹑压强p 均相同,并与大气压强相平衡。

先对A ﹑B 两部分气体缓慢加热,当对A 和B 给予相等的热量Q 以后,A 室中气体的温度升高度数与B 室中气体的温度升高度数之比为7:5。

(1)求该气体的定容摩尔热容C V 和定压摩尔热容C p 。

(2)B 室中气体吸收的热量有百分之几用于对外作功?解:由题意可知:p p p B A ==,V V V B A ==,T T T B A ==,57,=∆∆=B A B A T T Q Q (1) A 室为等体过程,B 室为等压过程,BP B A V A T C Q T C Q ∆=∆=νν 57=⇒V P C C )31.8( 5.3 ,5.2 ,5711--⋅⋅===∴+==K mol J R R C R C R C C C C P V V P V P(2)BV B A A V A T C E E T C Q ∆=∆∆=∆=νν75=∆∆⇒A B E E 72175=⇒-=-==∆∆B B B B B B B A B Q W Q W Q W Q E E 9-11如习题9-11图所示,体积为L 30的圆柱形容器内有一能上下自由活动的活塞(活塞的质量和厚度可忽略),容器内盛有1摩尔﹑温度为127℃的单原子分子理想气体。

若容器外大气压强为1标准大气压,气温为27℃,求当容器内气体与周围达到平衡时需向外放热多少?(摩尔气体常量R =8.31J·mol -1·K -1) 解:已知,23,1R C V ==νK,300 K,40021==T T mol 1=ν 由理想气体状态方程RT pV ν=可得,)Pa (10018.1103040031.853111⨯=⨯⨯==-V RT p ,)m (1061.2410013.130031.8335222-⨯=⨯⨯==p RT V由于初态压强和温度均高于外界,而且容器是密闭的,活塞能上下自由活动,故气体首先降温至与外界压强相等达到中间态,此过程为等体过程;此后再经历等压过程达到末态,温度也与外界相等。

相关文档
最新文档