高中数学立体几何三视图练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何-三视图练习题
1.下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是( ).
A .①②
B .①③
C .③④
D .②④
2.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( ).
3.一个几何体的三视图如图所示,则该几何体的直观图可以是 ( )
4.在一个几何体的三视图中,正(主)视图和俯视图如图所示,则相应的侧(左)视图可以为( ).
5.如图,直观图所示的原平面图形是( )
A.任意四边形
B.直角梯形
C.任意梯形
D.等腰梯形 6.将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )
7. 一个多面体的三视图分别为正方形、等腰三角形和矩形,如图所示,则该多面体的体积为( )
A .24 cm 3
B .48 cm 3
C .32 cm 3
D .28 cm 3
第7题 第8题
8.若正四棱锥的正(主)
视图和俯视图如图所示,则该几何体的表面积是(
).
A .4
B .4+410
C .8
D .4+411
9.如下图是某几何体的三视图,其中正(主)视图是腰长为2的等腰三角形,侧(左)视图是半径为1的半圆,则该几何体的体积是( ).
A .π
B ..π
3 C .3π D .3π3
第9题 第10题
10.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )
A.
34000cm 3 B.3
8000cm 3
C.32000cm D.34000cm 11.3
,且一个内角为60o 的菱形,俯视图为正方形,那么这个几何体的表面积为( ) A .23 B .43 C . 4
D . 8
E
F D
I
A H
G B
C E
F D
A B
C 侧视
图1
图2 B
E
A .
B
E
B .
B
E
C .
B E
D .
第11题 第12题 第13题 12.一空间几何体的三视图如图所示,则该几何体的体积为( ). A.223π+ B. 423π+ C. 232π+
D. 23
4π+ 13.如果一个几何体的三视图如图所示(单位长度: cm), 则此几何体的表面积是( )
A. 2(2042)cm +
B.21 cm
C. 2
(2442)cm + D. 24 cm
14.若一个螺栓的底面是正六边形,它的正(主)视图和俯视图如图所示,则它的体积是( ).
A .273+12π
B .93+12π
C .273+3π
D .543+3π
第14题 第15题 15.一个五面体的三视图如下,正视图与侧视图是等腰直角三角形,俯视图为直角梯形,部
分边长如图所示,则此五面体的体积为___________.
第16题 第17题 16. 如图是一个几何体的三视图,若它的体积是33a =__________
17.设某几何体的三视图如下(尺寸的长度单位为m )。则该几何体的体积为___________ 3
m
18.一块边长为10 cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形作侧面,以它们的公共顶点P 为顶点,加工成一个如图所示的正四棱锥容器,当x =6 cm 时,该容器的容积为__________cm 3
.
第18题 第19题
第20题
19.一个正三棱柱的侧棱长和底面边长相等,体积为
23,它的三视图中的俯视图如图所示,侧(左)视图是一个矩形,则这个矩形的面积是__________. 20.如图是一个空间几何体的三视图,若直角三角形的直角边长均为1,则这个几何体的外接球的表面积为__________.
21. 如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直,图为该四棱锥的主视图和左视图,它们是腰长为6 cm
的全等的等腰直角三角形.(1)根据图所给的主视图、左视图,画出相应的俯视图,并求出该俯视图的面积;(2)求P A
.
22.下图是一个几何体的直观图及它的三视图(其中正(主)视图为直角梯形,俯视图为正方形,侧(左)视图为直角三角形,尺寸如图所示).(1)求四棱锥P -ABCD 的体积;(2)若G 为BC 的中点,求证:AE ⊥PG.
23. 已知某几何体的直观图和三视图如图14所示,主视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形,(1)求证:11//BC C B N 平面;(2)求证:11BN C B N 平面; (3)求此几何体的体积.
正视图 侧视图 俯视图
图14