高三理科数学第一轮复习§1.1: 集合
新教材高考数学一轮复习第一章1.1集合课件
(3)A
解析 (1)(数形结合)由数轴可知
所以A∪B={x|1≤x<4},故选C.
(2)满足x,y∈ N*,y≥x,且x+y=8的元素(x,y)有(1,7),(2,6),(3,5),(4,4),共4个,故
A∩B中元素的个数为4.
(3)∵A∪B={-1,0,1,2},
∴∁U(A∪B)={-2,3}.故选A.
A.{1,4} B.{1,4,5}
)
C.{4,5} D.{6,7}
答案 C
解析 由题意得∁UB={1,4,5},又A={2,3,4,5},所以A∩(∁UB)={4,5},故选C.
5.(202X江苏南京六校5月联考,1)已知集合A={x|x2-2x<0},B={x|x<1},则
A∪B=
.
答案 (-∞,2)
D.[-4,4]
(2)(202X年1月8省适应测试)已知M,N均为R的子集,且∁RM⊆N,则
M∪(∁RN)=(
A.⌀
B.M
)
C.N
D.R
(3)(202X山东潍坊一模,1)设集合A={2,4},B={x∈N|x-3≤0},则A∪B=(
A.{1,2,3,4}
B.{0,1,2,3,4}
C.{2}
D.{x|x≤4}
= 2
=
=
1
,
4
或
1
2
= 0,
1
故 a=0 或4.
= 1,
解题心得与集合中的元素有关问题的求解策略:
(1)确定集合中的代表元素是什么,即集合是数集、点集,还是其他类型的
集合.
(2)看这些元素满足什么限制条件.
(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验
高三数学一轮复习 第1单元 1.1 集合的概念与运算课件 理 新人教A版
1.集合元素的三个特征:确定性、互异性、 无序性 . 2.集合的表示法:列举法、 描述法 、图示法.
提示:(1)注意集合表示的列举法与描述法在形式上的区别,列举法一般适合 于有限集,而描述法一般适合于无限集.
(2)注意集合中元素的互异性:集合{x|x2-2x+1=0}可写为{1},但不可写为 {1,1}. 3.元素与集合的关系有:属于和不属于,分别用符号∈ 和 ∉ 表示.
结合思想方法的运用.
二、集合的运算 1.两个集合的交、并、补的运算分别与逻辑联结词且、或、非对应,但不能等同
和混淆. 2.数形结合的思想方法在集合的运算中也是常见的,对于一般的集合运算时可用
文氏图直观显示,例如若A⊆S,B⊆S,则全集S最多被四个集合A∩B,A∩(∁SB), B∩(∁SA)和∁U(A∪B)所划分;对于可以用区间表示的数集可以利用数轴进行集合 的运算.
【例2】 (2010·衡水中学调研)已知集合A={x|x2+ x+1=0},B={y|y=x2+a,
x∈R},若A∩B≠∅,则a的取值范围是( )
A.(-∞,- ] B.
C.
D.(-∞,-2]
解析:由x2+ x+1=0得(2x+1)(x+2)=0,则x=- ,或x=-2,
既A= ≤- .
. 又B={y|y=x2+a,x∈R}=[a,+∞).由A∩B≠∅,知a
1.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩 (Venn)图是( )
解析:N={x|x2+x=0}={-1,0},则N M,故选B. 答案:B
2. 已知集合A={-1,2},B={x|mx+1=0},若A∩B=B,则所有实数m的值组 成的集合是( ) A.{-1,2} B.{1,- } C.{1,0,- } D.{-1,0, } 解析:∵A∩B=B,即B⊆A,若m=0,B=∅⊆A; 若m≠0,B={x|x=- };由B⊆A得:- =-1或- =2, ∴m=1或m=- .综上选C. 答案:C
1.1 集合与集合的运算
={x|-2≤x<4}. (2)当P≠⌀时,由P∪Q=Q,得P⊆Q,所以
a 1 2, 2a 1 5, 2a 1 a 1,
解得0≤a≤2;
高考第一轮复习用书· 数学(理科)
第一章 1.1 集合与集合的运算
当P=⌀,即2a+1<a+1时,有P⊆Q,得a<0. 综上,实数a的取值范围是(-∞,2]. 【点评】求集合的交、并、补集时,注意数形结合的运用;P ∪Q=Q⇔P⊆Q,P∩Q=P⇔P⊆Q,当子集是待定的集合时,要
高考第一轮复习用书· 数学(理科)
2
第一章 1.1 集合与集合的运算
(2)已知集合A={x|ax -3x-4=0,x∈R},若A中至多有一个元素, 则实数a的取值范围是 .
【分析】(1)按照新的定义,先确定集合A*B中的元素,然后求 出该集合中所有元素之和. (2)集合A是方程ax -3x-4=0的解集,A中至多有一个元素,则a ≠0时,应有Δ≤0;a=0时,恰有一个元素. 【解析】(1)依据A*B的定义,当A={1,2},B={0,2}时,A*B={0, 2,4},因此A*B中所有元素之和为6.
∪A.
5.A∩ UA=⌀,A∪ UA=U, U( UA)=A.
高考第一轮复习用书· 数学(理科)
第一章 1.1 集合与集合的运算
6. (A∪B)=( UA)∩( UB), (A∩B)=( UA)∪( UB).
U U
7.A∪B=A⇔B⊆A,A∩B=A⇔A⊆B,A⊆B且B⊆C⇒A⊆C.
高考第一轮复习用书· 数学(理科)
【点评】理解子、交、并、补集的概念,掌握有关术语和符 号,熟练掌握两个集合之间包含关系的判断问题.在判断两个 抽象集合之间的关系时,则应尽可能地把问题具体化、形象 化;在判断两个具体集合之间的关系时,要弄清楚集合元素所 具有的形式及其含有哪些元素.
2021届新高考版高考数学一轮复习课件:§1.1 集合(讲解部分)
实践探究
例 (2016北京文,16)某网店统计了连续三天售出商品的种类情况:第一天
售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出
的商品有3种,后两天都售出的商品有4种,则该网店:
①第一天售出但第二天未售出的商品有
种;
②这三天售出的商品最少有
种.
解题导引 “网购”是现代购物的重要方式之一,本题以售出商品的种类 为背景,取材于人A必修113页的“阅读与思考——集合中元素的个数”, 考查了集合运算和Venn图等基本知识,同时也涉及化归与转化、数形结合 的数学思想. ①可以通过集合交、补运算确定元素个数;②中“三天共售出的商品种类 最少”应该是第三天与前二天售出的商品种类完全相同时,总的种类最少. 解析 ①设第一天售出的商品为集合A,则A中有19个元素,第二天售出的 商品为集合B,则B中有13个元素.由于前两天都售出的商品有3种,则A∩B 中有3个元素.如图所示, 所以该网店第一天售出但第二天未售出的商品有19-3=16(种). ②由①知,前两天售出的商品为19+13-3=29(种),当第三天售出的18种都是 前两天售出的商品时,这三天售出的商品种类最少,售出的商品最少为29种.
由图可知∁U(M∪N)=(∁UM)∩(∁UN)={2,7},故选B. (2)A={x|x2+x-2≤0}={x|-2≤x≤1},U=R,∴∁UA={x|x<-2或x>1},又B={x|x< 0},∴借助数轴可知(∁UA)∩B={x|x<-2}.故选C. 答案 (1)B (2)C
方法总结 集合的基本运算包括集合的交、并、补运算,解决此类运算问 题一般应注意以下几点:一是看集合的表示方法,用列举法表示的集合,易 用Venn图求解,用描述法表示的数集,常借助数轴分析得出结果,二是对集 合进行化简,有些集合是可以化简的,通过化简集合,可使问题变得简单明 了,易于解决.
高考数学一轮复习第一章集合与常用逻辑用语1.1集合与集合的运算公开课课件省市一等奖完整版
方法 3 与集合有关的新概念问题的解题策略
与集合有关的新概念问题属于信息迁移类问题,它是化归思想的具体运 用,这类试题的特点是:通过给出新的数学概念或新的运算方法,在新的 情境下完成某种推理证明,这是集合命题的一个新方向.常见的有定义 新概念、新公式、新运算和新法则等类型. 解此类题的一般思路: 1.理解问题中的新概念、新公式、新运算、新法则的含义. 2.利用学过的数学知识进行逻辑推理. 3.对选项进行筛选、验证、定论. 例4 (2016浙江名校协作体测试,8)在n元数集S={a1,a2,…,an}中,设x(S)=
A∩A=A A∪A=A ∁U⌀=U
3.两个常用结论 A∩B=A⇔A⊆B;A∪B=B⇔A⊆B. 4.设有限集合A,card(A)=n(n∈N*),则 (1)A的子集个数是⑧ 2n ; (2)A的真子集个数是⑨ 2n-1 ; (3)A的非空子集个数是⑩ 2n-1 ; (4)A的非空真子集个数是 2n-2 .
⑥ A⫋B(或B⫌A)
集合相等
集合A与集合B中元素相同,那么 A=B 就说集合A与集合B相等
Venn图表示
考点二 集合的运算
1.集合间的运算
名称
自然语言描述
ห้องสมุดไป่ตู้
符号语言表示
并集
对于两个给定集合A、B,由所有 属于集合A或属于集合B的元素 组成的集合
A∪B={x|x∈A,或x∈B}
交集 补集
对于两个给定集合A、B,由所有 属于集合A且属于集合B的元素 组成的集合
集合中的元素必须是互异的.对于一个给定的集合,它的任何两个元素都是不同 的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素
集合与其中元素的排列顺序无关,如{a,b,c}与{b,c,a}是相同的集合.这个特性通 常被用来判断两个集合的关系
高三数学一轮复习 第1章 集合与常用逻辑用语第1课时 集合的概念与运算精品课件
• 集合是高中数学的基础内容,也是高考数学的必考内容,难度 不大,一般是一道选择题或填空题.通过对近两年高考试题的统 计分析可以看出,对集合内容的考查一般以两种方式出现:一是 考查集合的概念、集合间的关系及集合的运算.
• (3){x|x2-ax-1=0}和{a|方程x2-ax-1=0有实根}的意义不 同.{x|x2-ax-1=0}表示由二次方程x2-ax-1=0的解构成的集 合,而集合{a|方程x2-ax-1=0有实根}表示方程x2-ax-1=0有 实数解时参数a的范围构成的集合.
【变式训练】 1.现有三个实数的集合,既可以表示为a,ba,1, 也可表示为{a2,a+b,0},则 a2 011+b2 011=________.
命题与量 词、 基本 逻辑 联结 词
1.了解命题的概念. 2.了解逻辑联结词“或”、“且”、“非”的含义. 3.理解全称量词与存在量词的含义. 4.能正确地对含有一个量词的命题进行否定.
充分条件、
必要
条件 1.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四
与命
种命题的相互关系.
题的 2.理解必要条件、充分条件与充要条件的意义.
①集合 S={a+b 3|a,b 为整数}为封闭集; ②若 S 为封闭集,则一定有 0∈S; ③封闭集一定是无限集; ④若 S 为封闭集,则满足 S⊆T⊆R 的任意集合 T 也是封闭集. 其中的真命题是________.(写出所有真命题的序号)
序号 结论
理由
• 【全解全析】对于任意整数 a1,b1,a2,b2,有 a1+b1 3+a2+b2 3
B.{a|a≤2或a≥4}
(通用版)高考数学一轮复习1.1集合讲义文
第一节集合一、基础知识批注——理解深一点 1.集合的有关概念 (1)集合元素的三个特性:确定性、无序性、互异性. 元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中. (2)集合的三种表示方法:列举法、描述法、图示法. (3)元素与集合的两种关系:属于,记为 ∈ ;不属于,记为 ∁ . (4)五个特定的集合及其关系图:N*或 N+表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. 2.集合间的基本关系 (1)子集:一般地,对于两个集合 A,B,如果集合 A 中任意一个元素都是集合 B 中的元素,则称 A 是 B 的子集,记作 A⊆B(或 B⊇A). (2)真子集:如果集合 A 是集合 B 的子集,但集合 B 中至少有一个元素不属于 A,则称 A 是 B 的真子集, 记作 A∁B 或 B∁A. A∁B⇔Error!既要说明 A 中任何一个元素都属于 B,也要说明 B 中存在一个元素不属于 A. (3)集合相等:如果 A⊆B,并且 B⊆A,则 A=B. 两集合相等:A=B⇔Error!A 中任意一个元素都符合 B 中元素的特性,B 中任意一个元素也符合 A 中元 素的特性. (4)空集:不含任何元素的集合.空集是任何集合 A 的子集,是任何非空集合 B 的真子集.记作∁.0,{0},∁,{∁}之间的关系:∁≠{∁}, ∁∈{∁},∁⊆{∁},0∁∁,0∁{∁},0∈{0},∁⊆{0}. 3.集合间的基本运算 (1)交集:一般地,由属于集合 A 且属于集合 B 的所有元素组成的集合,称为 A 与 B 的交集,记作 A∩B,即 A∩B={x|x∈A,且 x∈B}. (2)并集:一般地,由所有属于集合 A 或属于集合 B 的元素组成的集合,称为 A 与 B 的并集,记作 A∪ B,即 A∪B={x|x∈A,或 x∈B}. (3)补集:对于一个集合 A,由全集 U 中不属于集合 A 的所有元素组成的集合称为集合 A 相对于全集 U 的补集,简称为集合 A 的补集,记作∁UA,即∁UA={x|x∈U,且 x∁A}. 求集合 A 的补集的前提是“A 是全集 U 的子集”,集合 A 其实是给定的条件.从全集 U 中取出集合 A 的全 部元素,剩下的元素构成的集合即为∁UA.二、常用结论汇总——规律多一点 (1)子集的性质:A⊆A,∁⊆A,A∩B⊆A,A∩B⊆B. (2)交集的性质:A∩A=A,A∩∁=∁,A∩B=B∩A. (3)并集的性质:A∪B=B∪A,A∪B⊇A,A∪B⊇B,A∪A=A,A∪∁=∁∪A=A. (4)补集的性质:A∪∁UA=U,A∩∁UA=∁,∁U(∁UA)=A,∁AA=∁,∁A∁=A. (5)含有 n 个元素的集合共有 2n 个子集,其中有 2n-1 个真子集,2n-1 个非空子集. (6)等价关系:A∩B=A⇔A⊆B;A∪B=A⇔A⊇B.三、基础小题强化——功底牢一点∁一∁判一判∁对的打“√”,错的打“ × ”∁ (1)若{x2,1}={0,1},则 x=0,1.( ) (2){x|x≤1}={t|t≤1}.( ) (3){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.( ) (4)任何一个集合都至少有两个子集.( ) (5)若 A∁B,则 A⊆B 且 A≠B.( ) (6)对于任意两个集合 A,B,关系(A∩B)⊆(A∪B)恒成立.( ) (7)若 A∩B=A∩C,则 B=C.( )答案:(1)× (2)√ (3)× (4)× (5)√ (6)√ (7)×(二)选一选1.已知集合 A={x∈R|0<3-x≤2},B={x∈R|0≤x≤2},则 A∪B=( )A.[0,3] B.[1,2]C.[0,3)D.[1,3]解析:选 C 因为 A={x∈R|0<3-x≤2}={x∈R|1≤x<3},所以 A∪B={x∈R|0≤x<3}.2.若集合 A={x∈N|x≤ 10},a=2 2,则下面结论中正确的是( )A.{a}⊆AB.a⊆AC.{a}∈AD.a∁A解析:选 D 因为 2 2不是自然数,所以 a∁A. 3.(2018·全国卷Ⅱ)已知集合 A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则 A 中元素的个数为( )A.9B.8C.5D.4解析:选 A 法一:将满足 x2+y2≤3 的整数 x,y 全部列举出来,即 (- 1, -1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有 9个.故选 A.法二:根据集合 A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆 x2+y2=3 中有 9 个整点,即为集合 A 的元素个数,故选 A.(三)填一填4.若集合 A={x|-2<x<1},B={x|x<-1 或 x>3},则 A∩B=________.解析:由集合交集的定义可得 A∩B={x|-2<x<-1}.答案:{x|-2<x<-1}5.已知集合 U={-1,0,1},A={x|x=m2,m∈U},则∁UA=________. 解析:∵A={x|x=m2,m∈U}={0,1},∴∁UA={-1}.答案:{-1}考点一 集合的基本概念 [典例] (1)(2017·全国卷Ⅲ)已知集合 A={(x,y)|x2+y2=1},B={(x,y)|y=x},则 A∩B 中元素的个数为( )A.3 B.2C.1D.0{ } (2)已知 a,b∈R,若 a,ba,1 ={a2,a+b,0},则 a2 019+b2 019 的值为( )A.1B.0C.-1D.±1[解析] (1)因为 A 表示圆 x2+y2=1 上的点的集合,B 表示直线 y=x 上的点的集合,直线 y=x 与圆 x2+y2=1 有两个交点,所以 A∩B 中元素的个数为 2. (2)由已知得 a≠0,则ba=0,所以 b=0,于是 a2=1,即 a=1 或 a=-1.又根据集合中元素的互异性可知 a=1 应舍去,因此 a=-1,故 a2 019+b2 019=(-1)2 019+02 019=-1.[答案] (1)B (2)C[解题技法] 与集合中的元素有关的解题策略(1)确定集合中的代表元素是什么,即集合是数集还是点集.(2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.[提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意.[题组训练]1.设集合 A={0,1,2,3},B={x|-x∈A,1-x∁A},则集合 B 中元素的个数为( )A.1B.2C.3D.4解析:选 A 若 x∈B,则-x∈A,故 x 只可能是 0,-1,-2,-3,当 0∈B 时,1-0=1∈A;当-1∈B 时,1-(-1)=2∈A;当-2∈B 时,1-(-2)=3∈A;当-3∈B 时,1-(-3)=4∁A,所以 B={-3},故集合 B 中元素的个数为 1.2.若集合 A={x∈R|ax2-3x+2=0}中只有一个元素,则 a 等于( )A.92B.98C.0D.0 或9 8解析:选 D 若集合 A 中只有一个元素,则方程 ax2-3x+2=0 只有一个实根或有两个相等实根.当 a=0 时,x=23,符合题意. 当 a≠0 时,由 Δ=(-3)2-8a=0,得 a=9,8 所以 a 的值为 0 或98. 3.(2018·厦门模拟)已知 P={x|2<x<k,x∈N},若集合 P 中恰有 3 个元素,则 k 的取值范围为.∁解析:因为 P 中恰有 3 个元素,所以 P={3,4,5},故 k 的取值范围为 5<k≤6.∁答案:(5,6]考点二 集合间的基本关系 [典例] (1)已知集合 A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则( )A.B⊆A B.A=BC.A∁BD.B∁A(2)(2019·湖北八校联考)已知集合 A={x∈N*|x2-3x<0},则满足条件 B⊆A 的集合 B 的个数为( )A.2B.3C.4D.8(3)已知集合 A={x|-1<x<3},B={x|-m<x<m},若 B⊆A,则 m 的取值范围为________.[解析] (1)由 x2-3x+2=0 得 x=1 或 x=2,∴A={1,2}.由题意知 B={1,2,3,4},比较 A,B 中的元素可知 A∁B,故选 C.(2)∵A={x∈N*|x2-3x<0}={x∈N*|0<x<3}={1,2},又 B⊆A,∴满足条件 B⊆A 的集合 B 的个数为 22=4,故选 C.(3)当 m≤0 时,B=∁,显然 B⊆A.当 m>0 时,因为 A={x|-1<x<3}.若 B⊆A,在数轴上标出两集合,如图,所以Error!所以 0<m≤1.综上所述,m 的取值范围为(-∞,1].[答案] (1)C (2)C (3)(-∞,1][变透练清]1.(变条件)若本例(2)中 A 不变,C={x|0<x<5,x∈N},则满足条件 A⊆B⊆C 的集合 B 的个数为( )A.1 B.2C.3D.4解析:选 D 因为 A={1,2},由题意知 C={1,2,3,4},所以满足条件的 B 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.2.(变条件)若本例(3)中,把条件“B⊆A”变为“A⊆B”,其他条件不变,则 m 的取值范围为________. 解析:若 A⊆B,由Error!得 m≥3,∴m 的取值范围为[3,+∞).答案:[3,+∞)3.已知集合 A={1,2},B={x|x2+mx+1=0,x∈R},若 B⊆A,则实数 m 的取值范围为________.解析:①若 B=∁,则 Δ=m2-4<0,解得-2<m<2;②若 1∈B,则 12+m+1=0,解得 m=-2,此时 B={1},符合题意;③若 2∈B,则 22+2m+1=0,{ } 解得 m=-52,此时 B= 2,12 ,不合题意.综上所述,实数 m 的取值范围为[-2,2).答案:[-2,2)[解题技法]判定集合间基本关系的两种方法和一个关键两种①化简集合,从表达式中寻找两集合的关系;方法 一个 关键②用列举法(或图示法等)表示各个集合,从元素(或图形)中寻找关系 关键是看它们是否具有包含关系,若有包含关系就是子集关系,包括相等和 真子集两种关系考点三 集合的基本运算 考法(一) 集合的运算[典例] (1)(2018·天津高考)设集合 A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1} B.{0,1}C.{-1,0,1}D.{2,3,4}(2)已知全集 U=R,集合 A={x|x2-3x-4>0},B={x|-2≤x≤2},则如图所示阴影部分所表示的集合为( )A.{x|-2≤x<4} B.{x|x≤2 或 x≥4} C.{x|-2≤x≤-1} D.{x|-1≤x≤2} [解析] (1)∵A={1,2,3,4},B={-1,0,2,3}, ∴A∪B={-1,0,1,2,3,4}. 又 C={x∈R|-1≤x<2}, ∴(A∪B)∩C={-1,0,1}. (2)依题意得 A={x|x<-1 或 x>4}, 因此∁RA={x|-1≤x≤4},题中的阴影部分所表示的集合为(∁RA)∩B={x|-1≤x≤2}. [答案] (1)C (2)D [解题技法] 集合基本运算的方法技巧 (1)当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算,也可借助 Venn 图运算.(2)当集合是用不等式表示时,可运用数轴求解.对于端点处的取舍,可以单独检验.(3)集合的交、并、补运算口诀如下:交集元素仔细找,属于 A 且属于 B;并集元素勿遗漏,切记重复仅取一;全集 U 是大范围,去掉 U 中 a 元素,剩余元素成补集.考法(二) 根据集合运算结果求参数[典例] (1)已知集合 A={x|x2-x-12>0},B={x|x≥m}.若 A∩B={x|x>4},则实数 m 的取值范围是( )A.(-4,3)B.[-3,4]C.(-3,4)D.(-∞,4](2)(2019·河南名校联盟联考)已知 A={1,2,3,4},B={a+1,2a},若 A∩B={4},则 a=( )A.3B.2C.2 或 3D.3 或 1[解析] (1)集合 A={x|x<-3 或 x>4},∵A∩B={x|x>4},∴-3≤m≤4,故选 B.(2)∵A∩B={4},∴a+1=4 或 2a=4.若 a+1=4,则 a=3,此时 B={4,6},符合题意;若 2a=4,则a=2,此时 B={3,4},不符合题意.综上,a=3,故选 A.[答案] (1)B (2)A[解题技法]根据集合的运算结果求参数值或范围的方法(1)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若集合是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取到.(2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解.(3)根据求解结果来确定参数的值或取值范围.[题组训练]1.已知集合 A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则 A∪B=( )A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}解析:选 C 因为集合 B={x|-1<x<2,x∈Z}={0,1},而 A={1,2,3},所以 A∪B={0,1,2,3}.2.(2019·重庆六校联考)已知集合 A={x|2x2+x-1≤0},B={x|lg x<2},则(∁RA)∩B=( )( ) A. 12,100( ) B. 12,2[ ) C. 12,100D.∁[ ] ( ) ( ) 解析:选 A 由题意得 A= -1,12 ,B=(0,100),则∁RA=(-∞,-1)∪ 12,+∞ ,所以(∁RA)∩B= 12,100.3.(2019·合肥质量检测)已知集合 A=[1,+∞),B=Error!,若 A∩B≠∁,则实数 a 的取值范围是( )A.[1,+∞)[ ) C. 23,+∞解析:选 A 因为 A∩B≠∁,[ ] B. 12,1D.(1,+∞)所以Error!解得 a≥1.[课时跟踪检测] 1.(2019·福州质量检测)已知集合 A={x|x=2k+1,k∈Z},B={x|-1<x≤4},则集合 A∩B 中元素的个数为( )A.1 B.2C.3D.4解析:选 B 依题意,集合 A 是由所有的奇数组成的集合,故 A∩B={1,3},所以集合 A∩B 中元素的个数为 2.2.设集合 U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=( )A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}解析:选 A 因为 A={1,3,5},B={3,4,5},所以 A∪B={1,3,4,5}.又 U={1,2,3,4,5,6},所以∁U(A∪B)={2,6}.3.(2018·天津高考)设全集为 R,集合 A={x|0<x<2},B={x|x≥1},则 A∩(∁RB)=( )A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}解析:选 B ∵全集为 R,B={x|x≥1},∴∁RB={x|x<1}. ∵集合 A={x|0<x<2},∴A∩(∁RB)={x|0<x<1}. 4.(2018·南宁毕业班摸底)设集合 M={x|x<4},集合 N={x|x2-2x<0},则下列关系中正确的是( )A.M∩N=MB.M∪(∁RN)=MC.N∪(∁RM)=RD.M∪N=M解析:选 D 由题意可得,N=(0,2),M=(-∞,4),所以 M∪N=M.5.设集合 A=Error!,B={x|ln x≤0},则 A∩B 为( )( ) A. 0,12B.[-1,0)[ ) C. 12,1D.[-1,1]解析:选 A ∵12≤2x<2, 即2- 1≤2x<21 2, ∴ - 1≤x<12, ∴ A= Error!.∵ lnx≤0, 即lnx≤ln1, ∴0<x≤1,∴B={x|0<x≤1},∴A∩B=Error!.6.(2019·郑州质量测试)设集合 A={x|1<x<2},B={x|x<a},若 A∩B=A,则 a 的取值范围是( )A.(-∞,2]B.(-∞,1]C.[1,+∞)D.[2,+∞)解析:选 D 由 A∩B=A,可得 A⊆B,又因为 A={x|1<x<2},B={x|x<a},所以 a≥2.7.已知全集 U=A∪B 中有 m 个元素,(∁UA)∪(∁UB)中有 n 个元素.若 A∩B 非空,则 A∩B 的元素个数为( )A.mnB.m+nC.n-mD.m-n解析:选 D 因为(∁UA)∪(∁UB)中有 n 个元素,如图中阴影部分所示,又 U=A∪B 中有 m 个元素,故 A∩B 中有 m-n 个元素.8.定义集合的商集运算为BA=Error!,已知集合 A={2,4,6},B=Error!,则集合BA∪B 中的元素个数为 ()A .6B .7C .8D .9解析:选B 由题意知,B ={0,1,2},=,则∪B =,B A {0,12,14,16,1,13}B A {0,12,14,16,1,13,2}共有7个元素.9.设集合A ={x |x 2-x -2≤0},B ={x |x <1,且x ∈Z},则A ∩B =________.解析:依题意得A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2},因此A ∩B ={x |-1≤x <1,x ∈Z}={-1,0}.答案:{-1,0}10.已知集合U =R ,集合A =[-5,2],B =(1,4),则下图中阴影部分所表示的集合为________.解析:∵A =[-5,2],B =(1,4),∴∁U B ={x |x ≤1或x ≥4},则题图中阴影部分所表示的集合为(∁U B )∩A ={x |-5≤x ≤1}.答案:{x |-5≤x ≤1}11.若集合A ={(x ,y )|y =3x 2-3x +1},B ={(x ,y )|y =x },则集合A ∩B 中的元素个数为________.解析:法一:由集合的意义可知,A ∩B 表示曲线y =3x 2-3x +1与直线y =x 的交点构成的集合.联立得方程组Error!解得Error!或Error!故A ∩B =,所以A ∩B 中含有2个元素.{(13,13),∁1,1∁}法二:由集合的意义可知,A ∩B 表示曲线y =3x 2-3x +1与直线y =x 的交点构成的集合.因为3x 2-3x +1=x 即3x 2-4x +1=0的判别式Δ>0,所以该方程有两个不相等的实根,所以A ∩B 中含有2个元素.答案:212.已知集合A ={x |log 2x ≤2},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是__________.解析:由log 2x ≤2,得0<x ≤4,即A ={x |0<x ≤4},而B ={x |x <a },由于A ⊆B ,在数轴上标出集合A ,B ,如图所示,则a >4.答案:(4,+∞)13.设全集U=R,A={x|1≤x≤3},B={x|2<x<4},C={x|a≤x≤a+1}.(1)分别求A∩B,A∪(∁U B);(2)若B∪C=B,求实数a的取值范围.解:(1)由题意知,A∩B={x|1≤x≤3}∩{x|2<x<4}={x|2<x≤3}.易知∁U B={x|x≤2或x≥4},所以A∪(∁U B)={x|1≤x≤3}∪{x|x≤2或x≥4}={x|x≤3或x≥4}.(2)由B∪C=B,可知C⊆B,画出数轴(图略),易知2<a<a+1<4,解得2<a<3.故实数a的取值范围是(2,3).。
高中数学第一轮复习系列1-集合 (1)
第一章集合、命题逻辑与充要条件第1讲集合的概念一、考纲研读1.通过实例,了解集合的含义,体会元素与集合的“属于”关系;2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3.理解集合之间包含与相等的含义,能识别给定集合的子集;4.在具体情境中,了解全集与空集的含义。
二、知识梳理1.集合:某些指定的集在一起成为集合。
a∈;若b不是集合A的元(1)集合中的对象称,若a是集合A的元素,记作Ab∉;素,记作A(2)集合中的元素必须满足:、与;确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用、或;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(4)常用数集及其记法:非负整数集(或自然数集),记作;正整数集,记作;整数集,记作;有理数集,记作;实数集,记作。
2.集合的包含关系:(1)集合A的任何一个元素都是集合B的元素,则称A是B的(或B包含A),A⊂);记作A⊆B(或B集合相等:构成两个集合的元素完全一样。
若A⊆B且B⊇A,则称A等于B,记作A=B;若A⊆B且A≠B,则称A是B的,记作A≠⊂B;(2)简单性质:1)A⊆A;2)Φ⊆A;3)若A⊆B,B⊆C,则A⊆C;4)若集合A是n 个元素的集合,则集合A有个子集(其中2n-1个真子集);三、考点难点整合考点1 集合中元素的正确识别[知识归纳]识别集合的元素关键是看竖线前面的符号是什么[考点分析]考查考生对集合概念的认识和理解[例1] 已知集合P={x∈N|1≤x≤10},Q={x∈R|x2+x-6=0},则P∩Q等于( ) A.{2} B.{1,2} C.{2,3} D.{1,2,3}巩固训练11-1.若集合M ={0,l ,2},N ={(x ,y)|x -2y +1≥0且x -2y -1≤0,x ,y ∈M },则N中元素的个数为( )A .9B .6C .4D .21-2.设集合},4121|{Z k k x x A ∈+==,若29=x ,则下列关系正确的是( ) A .A x ⊂ B .A x ∈ C .A x ∈}{ D .A x ⊂}{考点2 集合相等的含义及其运用[知识归纳]集合相等要求集合里面的元素要完全一样。
高考数学一轮总复习第一章集合与常用逻辑用语不等式 1集合课件
1.判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.
(1)任何一个集合都至少有两个子集.
( ×)
(2){ = 2 + 1} = { = 2 + 1} = { , | = 2 + 1}. ( × )
∈
∉
不属于
______;如果不是集合中的元素,就说________集合,记作______.
列举法
描述法
图示法
(3)集合的表示方法:________、________、________.
(4)常用数集及其记法:
数集 非负整数集(或自然数集)
符号
___
正整数集 整数集 有理数集 实数集
∗ 或( )
_________
+
___
___
___
复数
集
___
2.集合间的基本关系
分类
子集
真子集
文字语言
任意一个
不属于
记法
⊆
_______(或
⊇
_______)
⫋
_______(或
Ý
_______)
=
_______
相等
空集
符号语言
不含任何元素的集合
⌀
___
3.集合的基本运算
(2)(2023年全国乙卷)设集合 = ,集合 = {| < 1}, = {| − 1 < < 2},
则{| ≥ 2} =(
A.∁
√
∪
)
B. ∪ ∁
第一章 集合 —2022届高三数学一轮复习备考
第一章 第一节 集合1.集合与元素(1)集合中元素的三个特性:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于,用符号∈或∉表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法2.集合的基本关系⎪⎩⎪⎨⎧⊂⊄⊆=⊆⊆⊆≠),,(),,()()1(B A A B B A B A A B B A B A 则若真包含则若相等包含其中,若B A ⊆,则称A 是B 的子集,若B A ≠⊂,则称A 是B 的真子集.(2)空集:不含任何元素的集合叫做空集,记为φ.规定:空集是任何集合的子集、空集是任何非空集合的真子集.(3)集合中元素个数与子集个数的关系:若有限集合A 中有n 个元素,则集合A 的子集个数为2n ,真子集个数为2n -1,非空真子集个数为2n -2. 3.集合的基本运算(1)并集的常考性质A ⊆A ∪B,B ⊆A ∪B.A ⊆B ⇔A ∪B=B. A ∪B=∅⇔A=B=∅. (2)交集的常考性质A ∩B ⊆A,A ∩B ⊆B.A ⊆B ⇔A ∩B=A. A ∩B=A ∪B ⇔A=B. (3)补集的常考性质A ∪(∁U A)=U A ∩(∁U A)=∅∁U (∁U A)=A∁U (A ∩B)=(∁U A)∪(∁U B)∁U (A ∪B)=(∁U A)∩(∁U B).考点1 集合的含义与表示1.已知集合A ={0,1,2},则集合B =中元素的个数是( ) A .1 B .3C .5D .92.若集合A ={−1,1},B ={0,2},则集合{z|z =x +y,x ∈A,y ∈B}中的元素的个数为( ) A .5 B .4 C .3 D .23.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x −y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .104.已知集合A ={(x,y)|x,y ∈N ∗,y ≥x},B ={(x,y)|x +y =8},则A ∩B 中元素的个数为() A .2 B .3C .4D .65.已知集合A ={(x,y)│x 2+y 2=1},B ={(x,y)│y =x},则A ∩B 中元素的个数为( ) A .3B .2C .1D .06.已知集合A ={(x , y)|x 2+y 2≤3 , x ∈Z , y ∈Z },则A 中元素的个数为( ) A .9 B .8 C .5 D .47.已知集合A ={(x,y)|x,y 为实数,且x 2+y 2=1},B ={(x,y)|x,y 为实数,且x +y =1},则A ∩B 的元素个数为( )A .4B .3C .2D .1{}|,x y x A y A -∈∈8.若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=.9.若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( )A.4B.2C.0D.0或410.已知集合A={x|ax=1},B={x|x2-1=0},若A⊆B,则a的取值构成的集合是( )A.{-1}B.{1}C.{-1,1}D.{-1,0,1}11.已知M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值为( )(A)1 (B)-1 (C)1或-1 (D)0或1或-112.设集合A={x|(x-a)2<1},且2∈A,3∉A,则实数a的取值范围为________.考点2 集合间关系1.若P={x|x<1},Q={x|x>−1},则( )A.P⊆Q B.Q⊆P C.C R P⊆Q D.Q⊆C R P2.已知集合A={x|x2-2x>0},B={x||x−2|≤5},则( )A、A∩B=B、A∪B=RC、B⊆AD、A⊆B3.已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是( ) A.(−∞,−1] B.[1,+∞) C.[−1,1] D.(−∞,−1] ∪[1,+∞)4.已知集合M={0,1,2,3,4},N={1,3,4,5},P=M∩N,则P的真子集共有( ) (A)2个(B)4个(C)6个(D)7个5.已知集合A={x|x2−3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )A.1 B.2 C.3 D.46.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=( ) A.∅B.S C.T D.Z∪B=A,则m= .7.已知集合8.若集合A={1,a,b},B={a,a2,ab},且A∪B=A∩B,则实数a的取值集合是.9.已知a ∈R,b ∈R,若{ a,ln(b+1),1}={a 2,a+b,0},则a2018+b2018=________.考点3 集合间的基本运算1.已知集合A={1,2,3,4},2{|,}B x x n n A ==∈,则A ∩B= ( )(A){1,4} (B){2,3} (C){9,16}(D){1,2}2.已知集合A ={x |x =3n +2,n ∈N},B ={6,8,10,12,14},则集合A ∩B 中的元素个数为( )(A) 5 (B)4 (C)3 (D)23.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则C U A ∩B =( ) A. {}1- B. {}0,1 C. {}1,2,3- D. {}1,0,1,3-4.已知全集U =R,A ={x|x ≤0},B ={x|x ≥1},则集合C U (A ∪B)=( ) A .{x|x ≥0} B .{x|x ≤1} C .{x|0≤x ≤1} D .{x|0<x <1}5.已知集合P ={x |x 2−2x ≥0},Q ={x |1<x ≤2},则(∁R P)∩Q =( )A .[0,1)B .(0,2]C .(1,2)D .[1,2]6.设集合{}1,1,2,3,5A =-,{}2,3,4B = ,C ={x ∈R|1⩽x <3} ,则()A C B =( )A. {2}B. {2,3}C. {-1,2,3}D. {1,2,3,4}7.已知集合均为全集的子集,且C U (AUB )={4},,则A ∩C U B =( )A.{3} B .{4}C .{3,4}D .8.若全集U ={1,2,3,4,5,6},M ={2,3},N ={1,4},则集合{5,6}等于( ) A .M ∪N B .M ∩N C .(C n M )∪(C n N ) D .(C n M )∩(C n N )B A 、}4,3,2,1{=U {1,2}B =∅9.已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N ∩C I M =∅,则M ∪N =( )A .MB .NC .ID .∅10.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =() A .–4 B .–2 C .2 D .411.已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A .∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}12.设集合A ={x ∈Z||x+1|≤3},B ={x|32x≤1},则A ∩B =( )A .{﹣4,﹣3,﹣2,0,2}B .{2}C .{﹣4,﹣3,﹣2,﹣1,2}D .{1,2}13.已知集合104x A xx ⎧⎫-=<⎨⎬-⎩⎭,{}2230B x x x =--≥,则A B 等于( )A .(-1,1]B .(](),11,-∞-+∞C .[3,4)D .(][),13,-∞-+∞14.已知集合02xA x x ⎧⎫=≤⎨⎬+⎩⎭,集合{}0B x x =>,则A B =( )A .{}2x x ≥-B .{}2x x >-C .{}0x x ≥D .{}0x x >15.已知全集为,集合,,则( )A .B .{x|2≤x ≤4}C .D .16.设集合 则=( )A .B .C .D .17.设全集U=R,集合A={x|2x-x 2>0},B={y|y=e x +1},则A ∪B 等于( ) A.{x|x<2}B.{x|1<x<2}C.{x|x>1}D.{x|x>0}R 112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭{}2|680B x x x =-+≤R A C B ={}|0x x ≤{}|024x x x ≤<>或{}|024x x x <≤≥或2{|2,},{|10},x A y y x B x x ==∈=-<R AB (1,1)-(0,1)(1,)-+∞(0,)+∞18.设集合A ={x||x −1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( )A .[0,2]B .(1,3)C .[1,3)D .(1,4)19.设集合M ={x|x 2=x},N ={x|lg x ≤0},则M ∪N =( )A .[0,1]B .(0,1]C .[0,1)D .(−∞,1]20.已知全集为R,集合A={x|lgx ≤1},B={x|x 2-6x+8≤0},则A ∩(∁R B)=.21.已知U={y|y=log 2x,x>1}, P={y|y =1x ,x >2},则∁U P= ( )11A.[) B.(0,)221C.(0,)D. (,0][,)2+∞ +∞ -∞⋃+∞,22.已知集合A ={x |0<log 4x <1},B ={x |e x-2≤1},则A ∪B =( ) A .(﹣∞,4) B .(1,4)C .(1,2)D .(1,2]。
高中数学一轮复习第一讲:集合
②数形结合进行判断
3.集合的基本运算
例6、已知集合 = −2, −1,0,1,2 , = | 2 − − 6 ≥ 0 , 则 ∩ = ( )
A. −2, −1,0,1
B. 0,1,2
C. −2
D. 2
答案:C
解析:方法一
因为 = | − − ≥ = (−∞, −] ∪ [, +∞), 而 = −, −, , , ,
. | = 3, ∈
. | = 3 − 1, ∈
C. | = 3 − 2, ∈
. ∅
答案:A
解析:因为整数集 = | = 3, ∈ ∪ | = 3 + 1, ∈ ∪ | = 3 + 2, ∈ ,U=Z
所以 ( ∪ )= | = 3, ∈
4.4 ∩ = ↔ ∪ = ↔ , ↔ ∩ = ∅
02 复习策略
二、复习策略
1.明确子集、真子集、空集、并集、交集、补集、全集的概念,了解这些概念的
区别。
2.在解题过程中充分利用分类讨论、数形结合、等价转化等数学思想,优化解题
过程。
A. ( ∪ )
B. ∪
C. ∪
D. ( ∩ )
答案:A
解析:由题意得:
∩ = | < ,则 ( ∪ )= | ≥ ,选项A正确
= | ≥ ,则 ∪ = | > − ,选项B错误
= | ≤ −或 ≥ , ∪ = | < 或 ≥ ,选项C错误
用数学符号语言表示:
一个元素a,一个集合A 属于: ∈ 不属于: a A
1.3 集合元素的特征
备考2024年新高考数学一轮复习专题1-1 集合含详解
专题1.1集合题型一利用集合元素的特征解决元素与集合的问题题型二集合与集合之间的关系题型三集合间的基本运算题型四集合间的交并补混合运算题型五Venn 图题型六集合的含参运算题型一利用集合元素的特征解决元素与集合的问题例1.(2022秋·湖南永州·高三校考阶段练习)若{}2122a a a ∈-+,,则实数a 的值为______.例2.(2022·上海·高一统考学业考试)“notebooks”中的字母构成一个集合,该集合中的元素个数是______________练习1.(2022秋·贵州·高三统考期中)若{}{},,101a a a =,则=a __________.练习2.(2022秋·天津南开·高三南开中学校考期中)已知集合{}1,2,3,4,5,6A =,(){},,,B x y x A y A xy A =∈∈∈,则集合B 中的元素个数为________.练习3.(2022秋·北京海淀·高三校考期中)设集合{},A x y =,{}20,B x=,若A B =,则2x y +=______.练习4.(2021秋·湖北·高三校联考阶段练习)已知集合2{,1,}A a b =,2{,,0}B a b =,若{1}A B ⋂=,则=a __________.练习5.(2023·全国·高三专题练习)含有3个实数的集合既可表示成,,1ba a⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,则20222022a b +=_____.题型二集合与集合之间的关系例3.(2023·河南开封·统考三模)已知集合{}1,0,1A =-,{},,B x x ab a b A ==∈,则集合B 的真子集个数是()A .3B .4C .7D .8例4.(2021秋·高三课时练习)下列各式:①{}10,1,2⊆,②{}{}10,1,2∈,③{}{}0,1,20,1,2⊆,④{}0,1,2∅⊆,⑤{}{}2,1,00,1,2=,其中错误的个数是()A .1B .2C .3D .4练习6.(2023春·吉林长春·高二长春市第十七中学校考阶段练习)已知集合{}|15A x x =-<<,{}Z 18B x x =∈<<.(1)求R Að(2)求A B ⋂的子集个数练习7.(2023春·江西南昌·高三校考阶段练习)已知集合{A =第一象限的角},{B =锐角},{C =小于90°的角},给出下列四个命题;①A B C ==;②A C ⊆;③C A ⊆;④A C B ⊆=.其中正确的命题有()A .0个B .1个C .2个D .3个练习8.(2023·全国·高三专题练习)已知集合(){}22,|4A x y x y =+=,(){}|,0B x y x y =+=,则A ∩B 的子集个数()A .1B .2C .3D .4练习9.(2022秋·高三课时练习)设集合{|M x x A =∈,且}x B ∉,若{1,3,5,6,7}A =,{2,3,5}B =,则集合M 的非空真子集的个数为()A .4B .6C .7D .15练习10.(2021秋·高一课时练习)(多选)下列说法正确的是()A .空集没有子集B .{}{}21,2|320x x x ⊆-+=C .{}{}2|,R |,Ry y x x y y x x =∈⊆=∈D .非空集合都有真子集题型三集合间的基本运算例5.(2023·四川·四川省金堂中学校校联考三模)若集合{}10,lg 01x A x B x x x +⎧⎫=≤=≤⎨⎬-⎩⎭∣∣,则A B = ()A .[)1,1-B .(]0,1C .[)0,1D .()0,1例6.(2023·山东菏泽·统考二模)已知全集{}|0U x x =≥,集合(){}|20A x x x =-≤,则U A =ð()A .(2,)+∞B .[2,)+∞C .()(),02,-∞⋃+∞D .(,0][2,)-∞⋃+∞练习11.(2023·全国·模拟预测)已知集合{}215A x x =∈-<N ,{}320B x x =-≥,则A B = ()A .{}0,1,2,3B .{}1,2,3C .{}1,2D .{}2,3练习12.(江西省赣抚吉十一校联盟体2023届高三下学期4月联考数学(理)试卷)已知集合{2},{73}M x N x x =<=-<<∣∣,则M N ⋂=()A .{3}xx <∣B .{03}xx ≤<∣C .{73}xx -<<∣D .{74}xx -<<∣练习13.(2023·黑龙江齐齐哈尔·统考二模)设集合{}12A x x =-<,[]{}2,0,2xB y y x ==∈,则()A .()1,3AB ⋂=B .[)1,4A B =C .(]1,4A B =-D .(]1,3A B ⋃=-练习14.(2023·内蒙古呼和浩特·统考二模)已知全集{|33}U x x =-<<,集合{}2|20A x x x =+-<,则U A =ð()A .(2,1]-B .(3,2][1,3)--⋃C .[2,1)-D .(3,1)(1,3)-- 练习15.(2023·北京·人大附中校考模拟预测)已知集合(){}lg 2M x y x ==-,{}e 1x N y y ==+,则M N ⋃=()A .(),-∞+∞B .()1,+∞C .[)1,2D .()2,+∞题型四集合间的交并补混合运算例7.(四川省遂宁市2023届高三三诊考试数学(理)试卷)已知集合{}|12M x x =-≥,{}1,0,1,2,3N -=,则()RM N ⋂=ð()A .{}0,1,2B .{}1,2C .{}1,0,1,2-D .{}2,3例8.(山东省淄博市部分学校2023届高一下学期4月阶段性诊断考试数学试卷)已知集合{}21,{ln 1}x A x B x x =>=>∣∣,则下列集合为空集的是()A .()R A B ðB .()A BR ðC .A B⋂D .()()A B R RI痧练习16.(天津市部分区2023届高三二模数学试卷)设全集{}1,2,3,4,5,6U =,集合{}{}1,3,5,2,3,4A B ==,则()UB A ⋂=ð()A .{}3B .{}2,4C .{}2,3,4D .{}0,1,3练习17.(2023·江苏连云港·统考模拟预测)已知全集{}N |07U A B x x =⋃=∈≤≤,(){}1,3,5,7U A B = ð,则集合B =()A .{}0,2,4,6B .{}2,4,6C .{}0,2,4D .{}2,4练习18.(2023·河南·校联考模拟预测)已知全集{1,2,3,4,5}U =,集合{}2320M xx x =-+=∣,{}2Z 650N x x x =∈-+<∣,则集合()U M N ð中的子集个数为()A .1B .2C .16D .无数个练习19.(2023·福建·统考模拟预测)已知全集*2{N ,80}I x x x =∈|<,{1,3,4,7}A =,{4,5,6,7}B =,则()I A B ⋃=ð()A .{2,5,6}B .{1,2,3,8}C .{2,8}D .{1,3,4,5,6,7}练习20.(2023·广东·统考模拟预测)集合{}2xA y y ==,(){}2log 32B x y x ==-,则()R B A ⋂=ð()A .2,3⎛⎫+∞ ⎪⎝⎭B .20,3⎡⎤⎢⎥⎣⎦C .20,3⎛⎤ ⎥⎝⎦D .2,3⎛⎤-∞ ⎥⎝⎦题型五Venn 图例9.(2023·山东潍坊·统考二模)已知集合{}|10M x x =+≥,{}|21xN x =<,则下列Venn 图中阴影部分可以表示集合{}|10x x -≤<的是()A .B .C .D .例10.(2022秋·广东·高三统考阶段练习)已知全集U ,集合A 和集合B 都是U 的非空子集,且满足A B B ⋃=,则下列集合中表示空集的是()A .()U A B⋂ðB .A B⋂C .()()U UA B ⋂痧D .()U A B ∩ð练习21.(2023春·广东惠州·高三校考阶段练习)集合{}{}0,1,2,4,8,0,1,2,3A B ==,将集合,A B 分别用如下图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为2的是()A .B .C .D .练习22.(2023春·湖南·高二临澧县第一中学校联考期中)已知全集U =R ,集合{}02A x x =∈<≤Z ,{}1,0,1,2,3B =-,则图中阴影部分表示的集合为()A .{}2,0-B .{}2,3-C .{}2,0,2-D .{}2,0,3-练习23.(2022秋·高三单元测试)(多选)如图,U 为全集,M P S 、、是U 的三个子集,则阴影部分所表示的集合是()A .()U P S M ⎡⎤⋂⋂⎣⎦ðB .()M P SC .()U M P S⋂⋂ðD .()U M P S⋂⋃ð练习24.(2023·云南昆明·高三昆明一中校考阶段练习)某班一个课外调查小组调查了该班同学对物理和历史两门学科的兴趣爱好情况,其中该班同学对物理或历史感兴趣的同学占90%,对物理感兴趣的占56%,对历史感兴趣的占74%,则既对物理感兴趣又对历史感兴趣的同学占该班学生总数的比练习是()A .70%B .56%C .40%D .30%练习25.(2023春·湖南·高三校联考期中)设集合1Z 32A x x ⎧⎫=∈-<<⎨⎬⎩⎭,{}1,0,1,2B =-,能正确表示图中阴影部分的集合是()A .{}1,0,1-B .{}1,2C .{}0,1,2D .{}2题型六集合的含参运算例11.(广东省汕头市2023届高三二模数学试卷)已知集合{}21,3,A a =,{1,2}B a =+,且A B A ⋃=,则a 的取值集合为()A .{}1-B .{2}C .{1,2}-D .{1,1,2}-例12.(2020秋·安徽芜湖·高三校考阶段练习)若集合{}2|60A x x x =+-=,{|10}B x mx =+=,且BA ,求实数m 的值.练习26.(2022秋·山东菏泽·高三校联考期中)已知集合{}23A x a x a =≤≤+,{|1B x x =<-或5}x >.(1)若1a =-,求A B ⋃R ð;(2)若A B ⋂=∅,求a 的取值范围.练习27.(2023·河南开封·开封高中校考模拟预测)设集合{2A x x =<∣或{}4},1x B x a x a ≥=≤≤+∣,若()A B =∅R ð,则a 的取值范围是()A .1a ≤或4a >B .1a <或4a ≥C .1a <D .4a >练习28.(2023·全国·模拟预测)设集合{(1)(3)0}A xx x =+-≤∣,{}5B x a x a =-<<,若A B ⊆,则实数a 的取值范围是()A .[]3,4B .(3,4)C .(,4]-∞D .[3,)+∞练习29.(2023·全国·高三专题练习)设全集U =R ,{}|325M x a x a =<<+,{}|21P x x =-≤≤.(1)若0a =,求()UM P ⋂ð.(2)若U M P ⊆ð,求实数a 的取值范围.练习30.(2023·全国·高三专题练习)已知{}23A x x =-≤≤,{}23B x a x a =-<<,全集U =R (1)若2a =,求()U A B ∩ð;(2)若A B ⊇,求实数a 的取值范围.专题1.1集合题型一利用集合元素的特征解决元素与集合的问题题型二集合与集合之间的关系题型三集合间的基本运算题型四集合间的交并补混合运算题型五Venn 图题型六集合的含参运算题型一利用集合元素的特征解决元素与集合的问题例1.(2022秋·湖南永州·高三校考阶段练习)若{}2122a a a ∈-+,,则实数a 的值为______.【答案】2【分析】分1a =,222a a a =-+分别求解,再根据元素的互异性即可得答案.【详解】解:当1a =时,则2221a a -+=不满足元素的互异性,故1a ≠;所以222a a a -+=,解得:1a =(舍)或2a =,故实数a 的值为2.故答案为:2.例2.(2022·上海·高一统考学业考试)“notebooks”中的字母构成一个集合,该集合中的元素个数是______________【答案】7【分析】根据集合中元素的互异性知集合中不能出现相同的元素.【详解】根据集合中元素的互异性,“notebooks”中的不同字母为“n ,o ,t ,e ,b ,k ,s”,共7个,故该集合中的元素个数是7;故答案为:7.练习1.(2022秋·贵州·高三统考期中)若{}{},,101a a a =,则=a __________.【答案】101-.【分析】由集合相等和元素互异性,进行求解.【详解】由题意得101,101,a a ≠⎧⎨=⎩所以101a =-.故答案为:-101.练习2.(2022秋·天津南开·高三南开中学校考期中)已知集合{}1,2,3,4,5,6A =,(){},,,B x y x A y A xy A =∈∈∈,则集合B 中的元素个数为________.【答案】14【分析】根据元素特征,采用列举法表示出集合B ,由此可得元素个数.【详解】由题意得:()()()()()()()()()(){()1,1,1,2,1,3,1,4,1,5,1,6,2,1,2,2,2,3,3,1,3,2,B =()()()}4,1,5,1,6,1,B ∴中元素个数为14.故答案为:14.练习3.(2022秋·北京海淀·高三校考期中)设集合{},A x y =,{}20,B x =,若A B =,则2x y +=______.【答案】2【分析】根据集合相等可得出关于x 、y 的方程组,解出这两个未知数的值,即可得解.【详解】由集合元素的互异性可知20x ≠,则0x ≠,因为A B =,则200x x y x ⎧=⎪=⎨⎪≠⎩,解得10x y =⎧⎨=⎩,因此,22x y +=.故答案为:2.练习4.(2021秋·湖北·高三校联考阶段练习)已知集合2{,1,}A a b =,2{,,0}B a b =,若{1}A B ⋂=,则=a __________.【答案】1-【分析】根据集合相等及集合中元素的互异性求解即可.【详解】由集合2{,1,}A a b =,2{,,0}B a b =,若{1}A B ⋂=,则集合B 中21a =或1b =,若21a =,则1a =-或1(a =舍去),此时1b ≠±且0b ≠;若1b =,则集合A 中21b =,不符合集合中元素的互异性,不成立,综上, 1.a =-故答案为:1-练习5.(2023·全国·高三专题练习)含有3个实数的集合既可表示成,,1ba a⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,则20222022a b +=_____.【答案】1【分析】根据集合相等,则元素完全相同,分析参数,列出等式,即可求得结果.【详解】因为{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,显然0a ≠,故0ba=,则0b =;此时两集合分别是{}{}2,1,0,,,0a a a ,则21a =,解得1a =或1-.当1a =时,不满足互异性,故舍去;当1a =-时,满足题意.所以2022202220222022(1)01a b +=-+=故答案为:1.题型二集合与集合之间的关系例3.(2023·河南开封·统考三模)已知集合{}1,0,1A =-,{},,B x x ab a b A ==∈,则集合B 的真子集个数是()A .3B .4C .7D .8【答案】C【分析】根据题意得到集合B ,然后根据集合B 中元素的个数求集合B 的真子集个数即可.【详解】由题意得{}1,0,1B =-,所以集合B 的真子集个数为3217-=.故选:C.例4.(2021秋·高三课时练习)下列各式:①{}10,1,2⊆,②{}{}10,1,2∈,③{}{}0,1,20,1,2⊆,④{}0,1,2∅⊆,⑤{}{}2,1,00,1,2=,其中错误的个数是()A .1B .2C .3D .4【答案】B【分析】由元素与集合的关系,集合与集合的关系考查所给式子是否正确即可.【详解】由元素与集合的关系可知{}10,1,2∈,故①错误;由集合与集合的关系可知{}{}10,1,2⊆,故②错误;任何集合都是自身的子集,故③正确;空集是任何非空集合的子集,故④正确;集合中的元素具有互异性和无序性,故⑤正确;综上可得,只有①②错误.故选B .练习6.(2023春·吉林长春·高二长春市第十七中学校考阶段练习)已知集合{}|15A x x =-<<,{}Z 18B x x =∈<<.(1)求R Að(2)求A B ⋂的子集个数【答案】(1){R 5A x x =≥ð或}1x ≤-(2)8【分析】(1)根据补集的定义即可得解;(2)根据交集的定义求出A B ⋂,再根据子集的定义即可得解.【详解】(1)因为{}|15A x x =-<<,所以{R 5A x x =≥ð或}1x ≤-;(2){}{}Z 182,3,4,5,6,7B x x =∈<<=,所以{}2,3,4A B = ,所以A B ⋂的子集个数有328=个.练习7.(2023春·江西南昌·高三校考阶段练习)已知集合{A =第一象限的角},{B =锐角},{C =小于90°的角},给出下列四个命题;①A B C ==;②A C ⊆;③C A ⊆;④A C B ⊆=.其中正确的命题有()A .0个B .1个C .2个D .3个【答案】A【分析】根据任意角的定义和集合的基本关系求解.【详解】A ={第一象限角},只需要终边落在第一象限的都是属于第一象限角.B ={锐角},是指大于0 而小于90 的角.C ={小于90 的角},小于90 的角包括锐角,零角和负角.根据集合的含义和基本运算判断:①A B C ==,①错误;②A C ⊆,比如,361A ∈ ,但361C ∉ ,②错误;③C A ⊆,比如0C ∈ ,但0A ∉ ,③错误;④A C B ⊆=,④错误;∴正确命题个数为0个.故选:A .练习8.(2023·全国·高三专题练习)已知集合(){}22,|4A x y x y =+=,(){}|,0B x y x y =+=,则A ∩B 的子集个数()A .1B .2C .3D .4【答案】D【分析】根据集合A 与集合B 中方程的几何意义,利用直线过圆心判断直线与圆的位置关系,确定交集中元素的个数,进而求解.【详解】集合(){}22,|4A x y x y =+=表示以(0,0)为圆心,2为半径的圆上的所有点,集合(){}|,0B x y x y =+=表示直线0x y +=上的所有点,因为直线0x y +=经过圆心(0,0),所以直线与圆相交,所以A B ⋂的元素个数有2个,则A B ⋂的子集个数为4个,故选:D .练习9.(2022秋·高三课时练习)设集合{|M x x A =∈,且}x B ∉,若{1,3,5,6,7}A =,{2,3,5}B =,则集合M 的非空真子集的个数为()A .4B .6C .7D .15【答案】B【分析】求得集合M ,即可求得结果.【详解】根据题意知,集合{M xx A =∈∣且}{1,6,7}x B ∉=,其非空真子集的个数为3226-=.故选:B练习10.(2021秋·高一课时练习)(多选)下列说法正确的是()A .空集没有子集B .{}{}21,2|320x x x ⊆-+=C .{}{}2|,R |,Ry y x x y y x x =∈⊆=∈D .非空集合都有真子集【答案】BD【分析】根据空集是任何集合的子集,是任何非空集合的真子集,可判断出选项AD 的正误;选项B ,通过解方程,可求出集合{}2|320x x x -+=中的元素,从而判断出选项B 正确;选项C ,通过求出两集合的元素满足的条件,从而判断出集合{}|,R y y x x =∈与{}2|,R y y x x =∈间的关系,从而判断出选项C 错误.【详解】对于选项A ,因为空集是任何集合的子集,所以空集也是它自身的子集,所以选项A 错误;对于选项B ,由2320x x -+=,得到1x =或2x =,所以{}{}2|3201,2x x x -+==,所以选项B 正确;对于选项C ,因为{}|,R R y y x x =∈=,{}{}2|,R |0y y x x y y =∈=≥,所以{}{}2|,R |,R y y x x y y x x =∈⊆=∈,所以选项C 错误;对于选项D ,因为空集是任何非空集合的真子集,所以选项D 正确.故选:BD题型三集合间的基本运算例5.(2023·四川·四川省金堂中学校校联考三模)若集合{}10,lg 01x A xB x x x +⎧⎫=≤=≤⎨⎬-⎩⎭∣∣,则A B = ()A .[)1,1-B .(]0,1C .[)0,1D .()0,1【答案】D【分析】先化简集合A ,B ,再利用交集运算求解.【详解】解:由题意得{11},{01}A xx B x x =-≤<=<≤∣∣,()0,1A B ∴= ,故选:D.例6.(2023·山东菏泽·统考二模)已知全集{}|0U x x =≥,集合(){}|20A x x x =-≤,则U A =ð()A .(2,)+∞B .[2,)+∞C .()(),02,-∞⋃+∞D .(,0][2,)-∞⋃+∞【答案】A【分析】解一元二次不等式化简集合A ,再利用补集的定义求解作答.【详解】集合(){}|20[0,2]A x x x =-≤=,而全集[0,)U =+∞,所以(2,)U A =+∞ð.故选:A练习11.(2023·全国·模拟预测)已知集合{}215A x x =∈-<N ,{}320B x x =-≥,则A B = ()A .{}0,1,2,3B .{}1,2,3C .{}1,2D .{}2,3【答案】C【分析】根据交集的定义求解即可.【详解】由条件可知,{}{}30,1,2A x x =∈<=N ,{}23203B x x x x ⎧⎫=-≥=≥⎨⎬⎩⎭,所以{1,2}A B = .故选:C.练习12.(江西省赣抚吉十一校联盟体2023届高三下学期4月联考数学(理)试卷)已知集合{2},{73}M x x N x x =<=-<<∣∣,则M N ⋂=()A .{3}xx <∣B .{03}xx ≤<∣C .{73}xx -<<∣D .{74}xx -<<∣【答案】B【分析】根据集合交集运算可得.【详解】因为{2}{04},{73}M x x x x N x x =<=≤<=-<<∣∣∣所以{|03}M N x x ⋂=≤<.故选:B练习13.(2023·黑龙江齐齐哈尔·统考二模)设集合{}12A x x =-<,[]{}2,0,2xB y y x ==∈,则()A .()1,3AB ⋂=B .[)1,4A B =C .(]1,4A B =-D .(]1,3A B ⋃=-【答案】C【分析】先解绝对值不等式得出集合,再根据交集并集概念计算求解即可.【详解】因为{}{}1213A x x x x =-<=-<<,[]{}{}2,0,214xB y y x y y ==∈=≤≤,所以[)1,3A B ⋂=,(]1,4A B =- .故选:C.练习14.(2023·内蒙古呼和浩特·统考二模)已知全集{|33}U x x =-<<,集合{}2|20A x x x =+-<,则U A =ð()A .(2,1]-B .(3,2][1,3)--⋃C .[2,1)-D .(3,1)(1,3)-- 【答案】B【分析】计算{}21A x x =-<<,再计算补集得到答案.【详解】{}{}2|2021A x x x x x =+-<=-<<,则(3,2][1,3)U A =--⋃ð.故选:B练习15.(2023·北京·人大附中校考模拟预测)已知集合(){}lg 2M x y x ==-,{}e 1x N y y ==+,则M N ⋃=()A .(),-∞+∞B .()1,+∞C .[)1,2D .()2,+∞【答案】B【分析】根据给定条件,求出函数的定义域、值域,再利用并集的定义求解作答.【详解】集合(){}{}{}lg 2202M x y x x x x x ==-=-=,即(2,)M =+∞,e 11x +>,则(1,)N =+∞,所以()1,M N =+∞U .故选:B题型四集合间的交并补混合运算例7.(四川省遂宁市2023届高三三诊考试数学(理)试卷)已知集合{}|12M x x =-≥,{}1,0,1,2,3N -=,则()RM N ⋂=ð()A .{}0,1,2B .{}1,2C .{}1,0,1,2-D .{}2,3【答案】A【分析】解出集合{|1M x x =≤-或}3x ≥,再根据补集和交集的含义即可得到答案.【详解】12x -≥,解得3x ≥或1x ≤-,则{|1M x x =≤-或}3x ≥,则()R 1,3M =-ð,故(){}R 0,1,2M N ⋂=ð,故选:A.例8.(山东省淄博市部分学校2023届高一下学期4月阶段性诊断考试数学试卷)已知集合{}21,{ln 1}x A x B x x =>=>∣∣,则下列集合为空集的是()A .()R AB ðB .()A BR ðC .A B⋂D .()()A B R RI痧【答案】B【分析】根据指数函数和对数函数的单调性分别求出集合,A B ,然后利用集合的运算逐项进行判断即可求解.【详解】集合{|21}{|0}x A x x x ==>>,集合{|ln 1}{|e}B x x x x =>=>,所以R {|0}A x x =≤ð,R {|e}B x x =≤ð,对于A ,()R {|0e}A B x x =<≤ ð,故选项A 不满足题意;对于B ,()A B =∅R I ð,故选项B 满足题意;对于C ,={|e}A B x x > ,故选项C 不满足题意;对于D ,()(){|0}A B x x =≤R R 痧,故选项D 不满足题意,故选:B .练习16.(天津市部分区2023届高三二模数学试卷)设全集{}1,2,3,4,5,6U =,集合{}{}1,3,5,2,3,4A B ==,则()UB A ⋂=ð()A .{}3B .{}2,4C .{}2,3,4D .{}0,1,3【答案】B【分析】由集合的运算求解.【详解】(){}{}{}2,4,62,42,3,4U A B ⋂==⋂ð.故选:B练习17.(2023·江苏连云港·统考模拟预测)已知全集{}N |07U A B x x =⋃=∈≤≤,(){}1,3,5,7U A B = ð,则集合B =()A .{}0,2,4,6B .{}2,4,6C .{}0,2,4D .{}2,4【答案】A【分析】由{}N |07U A B x x =⋃=∈≤≤可知集合U 中的元素,再由(){}1,3,5,7U A B = ð即可求得集合B .【详解】由(){}1,3,5,7U A B = ð知,{}{}1,3,5,71,3,5,,7U B A ⊆⊆ð又因为{}{}7017N 2356|04U A B x x =⋃=∈≤≤=,,,,,,,,所以B ={}0,2,4,6.故选:A.练习18.(2023·河南·校联考模拟预测)已知全集{1,2,3,4,5}U =,集合{}2320M xx x =-+=∣,{}2Z 650N x x x =∈-+<∣,则集合()U M N ð中的子集个数为()A .1B .2C .16D .无数个【答案】B【分析】首先求集合,M N ,再求集合的运算.【详解】先求{}1,2M =,{Z 1}5}2,4|,{3N x x =∈<<=,所以{}1,2,3,4M N =U ,则(){}5U M N = ð,所以子集的个数为122=.故选:B练习19.(2023·福建·统考模拟预测)已知全集*2{N ,80}I x x x =∈|<,{1,3,4,7}A =,{4,5,6,7}B =,则()I A B ⋃=ð()A .{2,5,6}B .{1,2,3,8}C .{2,8}D .{1,3,4,5,6,7}【答案】C【分析】利用集合的交并补运算即可求解.【详解】{1,2,3,4,5,6,7,8}I =,{1,3,4,5,6,7}A B = ,故(){}2,8I A B ⋃=ð.故选:C .练习20.(2023·广东·统考模拟预测)集合{}2x A y y ==,(){}2log 32B x y x ==-,则()R B A ⋂=ð()A .2,3⎛⎫+∞ ⎪⎝⎭B .20,3⎡⎤⎢⎥⎣⎦C .20,3⎛⎤ ⎥⎝⎦D .2,3⎛⎤-∞ ⎥⎝⎦【答案】C【分析】求出集合A 、B ,利用补集和交集的定义可求得集合()B A R ð.【详解】因为{}{}20xA y y y y ===>,(){}{}22log 323203B x y x x x x x ⎧⎫==-=->=>⎨⎬⎩⎭,则23B x x ⎧⎫=≤⎨⎬⎩⎭R ð,因此,()R 20,3B A ⎛⎤= ⎥⎝⎦ð.故选:C.题型五Venn 图例9.(2023·山东潍坊·统考二模)已知集合{}|10M x x =+≥,{}|21xN x =<,则下列Venn 图中阴影部分可以表示集合{}|10x x -≤<的是()A .B .C .D .【答案】A【分析】化简集合M ,N ,根据集合的运算判断{}|10x x -≤<为两集合交集即可得解.【详解】{}|10[1,)M x x =+≥=-+∞ ,{}|21(,0)xN x =<=-∞,{}|10M N x x ∴-=≤< ,由Venn 图知,A 符合要求.故选:A例10.(2022秋·广东·高三统考阶段练习)已知全集U ,集合A 和集合B 都是U 的非空子集,且满足A B B ⋃=,则下列集合中表示空集的是()A .()U AB ⋂ðB .A B⋂C .()()U UA B ⋂痧D .()U A B ∩ð【答案】D【分析】利用Venn 图表示集合,,U A B ,结合图像即可找出表示空集的选项.【详解】由Venn 图表示集合,,U A B 如下:,由图可得()U BA B A = 痧,A B A = ,()()U U UA B B ⋂=痧,()U A B =∅ ð,故选:D练习21.(2023春·广东惠州·高三校考阶段练习)集合{}{}0,1,2,4,8,0,1,2,3A B ==,将集合,A B 分别用如下图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为2的是()A .B .C .D .【答案】B【分析】利用图象求得正确答案.【详解】{}0,1,2A B = ,所以:A 选项,阴影部分表示{}0,1,2,不符合题意.B 选项,阴影部分表示{}4,8,符合题意.C 选项,阴影部分表示{}3,不符合题意.D 选项,阴影部分表示{}3,4,8,不符合题意.故选:B练习22.(2023春·湖南·高二临澧县第一中学校联考期中)已知全集U =R ,集合{}02A x x =∈<≤Z ,{}1,0,1,2,3B =-,则图中阴影部分表示的集合为()A .{}2,0-B .{}2,3-C .{}2,0,2-D .{}2,0,3-【答案】D【分析】根据集合的交并补运算即可求解.【详解】全集为U ,集合{}2,1,1,2A =--,{}1,0,1,2,3B =-,{}{}1,1,2,2,1,0,1,2,3A B A B ⋂=-⋃=--,图中阴影部分表示是A B ⋃去掉A B ⋂的部分,故表示的集合是{}2,0,3-.故选:D .练习23.(2022秋·高三单元测试)(多选)如图,U 为全集,M P S 、、是U 的三个子集,则阴影部分所表示的集合是()A .()U P S M⎡⎤⋂⋂⎣⎦ðB .()M P SC .()U M P S⋂⋂ðD .()U M P S⋂⋃ð【答案】AC 【分析】分析出阴影部分为M P 和U S ð的子集,从而选出正确答案.【详解】图中阴影部分是M P 的子集,不属于集合S ,属于集合S 的补集,即U S ð的子集,满足要求的为()()U U P S M M P S ⎡⎤=⎣⎦ 痧,均表示阴影部分,BD 不合要求.故选:AC练习24.(2023·云南昆明·高三昆明一中校考阶段练习)某班一个课外调查小组调查了该班同学对物理和历史两门学科的兴趣爱好情况,其中该班同学对物理或历史感兴趣的同学占90%,对物理感兴趣的占56%,对历史感兴趣的占74%,则既对物理感兴趣又对历史感兴趣的同学占该班学生总数的比练习是()A .70%B .56%C .40%D .30%【答案】C【分析】根据公式()()()()card A B card A card B card A B ⋃=+-⋂列方程求解即可.【详解】对物理感兴趣的同学占56%,对历史感兴趣的同学占74%,这两组的比练习数据都包含了既对物理感兴趣又对历史感兴趣的同学的比练习,设既对物理感兴趣又对历史感兴趣的同学占该班学生总数的比练习为x ,则对物理或历史感兴趣的同学的比练习是56%+74%-x ,所以56%+74%-x =90%,解得40x =%,故选:C.练习25.(2023春·湖南·高三校联考期中)设集合1Z 32A x x ⎧⎫=∈-<<⎨⎬⎩⎭,{}1,0,1,2B =-,能正确表示图中阴影部分的集合是()A .{}1,0,1-B .{}1,2C .{}0,1,2D .{}2【答案】B 【分析】先求得集合{}2,1,0A =--,结合题意及集合的运算,即可求解.【详解】由题意,集合{}1Z 32,1,02A x x ⎧⎫=∈-<<=--⎨⎬⎩⎭,根据图中阴影部分表示集合B 中元素除去集合A 中的元素,即为{}1,2.故选:B.题型六集合的含参运算例11.(广东省汕头市2023届高三二模数学试卷)已知集合{}21,3,A a =,{1,2}B a =+,且A B A ⋃=,则a 的取值集合为()A .{}1-B .{2}C .{1,2}-D .{1,1,2}-【答案】B 【分析】由集合和元素的关系及并集的定义讨论即可.【详解】由题意可得:23a +=或22a a +=若23a +=,此时211a a =⇒=,集合A 的元素有重复,不符合题意;若22a a +=,解得2a =或1a =-,显然2a =时符合题意,而211a a =-⇒=同上,集合A 的元素有重复,不符合题意;故2a =.故选:B例12.(2020秋·安徽芜湖·高三校考阶段练习)若集合{}2|60A x x x =+-=,{|10}B x mx =+=,且B A ,求实数m 的值.【答案】13m =或12m =-或0m =【分析】分0m =和0m ≠两种情况讨论,结合已知即可得解.【详解】{}{}2|603,2A x x x =+-==-,当0m =时,B =∅A ,当0m ≠时,1{|10}B x mx m ⎧⎫=+==-⎨⎬⎩⎭,因为B A ,所以13m -=-或12m-=,所以13m =或12-,综上所述,13m =或12m =-或0m =.练习26.(2022秋·山东菏泽·高三校联考期中)已知集合{}23A x a x a =≤≤+,{|1B x x =<-或5}x >.(1)若1a =-,求A B ⋃R ð;(2)若A B ⋂=∅,求a 的取值范围.【答案】(1){}25A C B x x ⋃=-≤≤R (2)1232x a a ⎧⎫-≤≤>⎨⎬⎩⎭或【分析】(1)根据题意,先求出集合A 的补集,再利用集合的并集运算求解即可;(2)根据集合的包含关系分A =∅和A ≠∅两种情况进行讨论即可求解.【详解】(1)若1a =-,则集合{}22A x x =-≤≤,所以{}15B x x =-≤≤R ð,所以{}25A C B x x ⋃=-≤≤R ;(2)因为集合{}23A x a x a =≤≤+,{|1B x x =<-或5}x >,因为A B ⋂=∅,所以分以下两种情况:若A =∅,即23a a >+,解得3a >,满足题意,若A ≠∅,则213523a a a a ≥-⎧⎪+≤⎨⎪≤+⎩解得122a -≤≤,综上所述a 的取值范围为1232x a a ⎧⎫-≤≤>⎨⎬⎩⎭或练习27.(2023·河南开封·开封高中校考模拟预测)设集合{2A x x =<∣或{}4},1x B x a x a ≥=≤≤+∣,若()A B =∅R ð,则a 的取值范围是()A .1a ≤或4a >B .1a <或4a ≥C .1a <D .4a >【答案】B【分析】先求出A R ð,根据()A B =∅R ð,可求得结果.【详解】由集合{2A x x =<∣或4}x ≥,得{24}A x x =≤<R ∣ð,又集合{}1B x a x a =≤≤+∣且()A B =∅R ð,则1a +<2或4a ≥,即1a <或4a ≥.故选:B.练习28.(2023·全国·模拟预测)设集合{(1)(3)0}A xx x =+-≤∣,{}5B x a x a =-<<,若A B ⊆,则实数a 的取值范围是()A .[]3,4B .(3,4)C .(,4]-∞D .[3,)+∞【答案】B 【分析】根据集合的包含关系列出关于a 的不等式组即可.【详解】由已知可得,集合{}13A xx =-≤≤∣,{}5B x a x a =-<<,因为A B ⊆,所以351a a >⎧⎨-<-⎩,(注意端点值是否能取到),解得34a <<,故选:B .练习29.(2023·全国·高三专题练习)设全集U =R ,{}|325M x a x a =<<+,{}|21P x x =-≤≤.(1)若0a =,求()UM P ⋂ð.(2)若U M P ⊆ð,求实数a 的取值范围.【答案】(1)(){}|20U M P x x =-≤≤ ð;(2)71,,23∞⎛⎤⎡⎫--+∞ ⎪⎥⎢⎝⎦⎣⎭.【分析】(1)利用集合的补集和交集的运算知识即可求解.(2)求出U P ð,U M P ⊆ð,分=∅≠∅,M M ,两种情况讨论,根据集合的运算求解即可.【详解】(1)当0a =时,{}|05=<<M x x ,{}|21P x x =-≤≤,所以{0U M x x =≤ð或5}x ³,(){}|20U M P x x ⋂=-≤≤ð;(2) 全集U =R ,{}|21P x x =-≤≤,{2U P x x ∴=<-ð或1}x >,⊆ U M P ð,∴分=∅≠∅,M M ,两种情况讨论.(1)当M 蛊时,如图可得,325252a a a <+⎧⎨+≤-⎩或32531a a a <+⎧⎨≥⎩,72a ∴≤-或153a ≤<;(2)当M =∅时,应有:325a a ≥+,解得5a ≥;综上可知,72a ∴≤-或13a ≥,故得实数a 的取值范围71,23∞⎛⎤⎡⎫--+∞ ⎪⎥⎢⎝⎦⎣⎭.练习30.(2023·全国·高三专题练习)已知{}23A x x =-≤≤,{}23B x a x a =-<<,全集U =R(1)若2a =,求()U A B ∩ð;(2)若A B ⊇,求实数a 的取值范围.【答案】(1)(){}20U A B x x ⋂=-≤≤ð(2)(][],10,1-∞-⋃【分析】(1)根据交集与补集的运算求解即可;(2)分B =∅与B ≠∅由条件列不等式求范围即可.【详解】(1)当2a =时,{}06B x x =<<,所以{0U B x x =≤ð或}6x ≥,又{}23A x x =-≤≤,所以(){}20U A B x x ⋂=-≤≤ð.(2)由题可得:当B =∅时,有23a a -≥,解得a 的取值范围为(],1-∞-;当B ≠∅时有232233a a a a -<⎧⎪-≥-⎨⎪≤⎩,解得a 的取值范围为[]0,1,综上所述a 的取值范围为(][],10,1-∞-⋃.。
高三数学第一轮复习-知识点
高三数学第一轮复习-知识点高中数学一轮复习知识点第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01.集合与简易逻辑知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性.集合的性质:①任何一个集合是它本身的子集,记为AA;②空集是任何集合的子集,记为A;③空集是任何非空集合的真子集;如果AB,同时BA,那么A=B.如果AB,BC,那么AC.[注]:①Z={整数}(√)②已知集合S中A的补集是一个有限集,则集合A也是有限集.(某)(例:S=N;A=N,则CA={0})③空集的补集是全集.④若集合A=集合B,则CBA=,CAB=CS(CAB)=D(注:CAB=).3.①{(某,y)|某y=0,某∈R,y∈R}:坐标轴上的点集.②{(某,y)|某y<0,某∈R,y∈R:二、四象限的点集.第1页共73页③{(某,y)|某y>0,某∈R,y∈R}:一、三象限的点集.[注]:①对方程组解的集合应是点集.例:某y3解的集合{(2,1)}.2某3y12②点集与数集的交集是.(例:A={(某,y)|y=某+1}B={y|y=某+1}则A∩B=)4.①n个元素的子集有2个.②n个元素的真子集有2-1个.③n个元素的非空真子n集有2-2个.5.⑴①一个命题的否命题为真,它的逆命题一定为真.否命题逆命题.②一个命题为真,则它的逆否命题一定为真.原命题逆否命题.例:①若ab5,则a2或b3应是真命题.解:逆否:a=2且b=3,则a+b=5,成立,所以此命题为真.②某1且y2,某y3.解:逆否:某+y=3某1且y2nn某=1或y=2.某y3,故某y3是某1且y2的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若某5,某5或某2.4.集合运算:交、并、补.交:AB{某|某A,且某B}并:AB{某|某A或某B}补:CUA{某U,且某A}5.主要性质和运算律(1)包含关系:AA,A,AU,CUAU,AB,BCAC;ABA,ABB;ABA,ABB.(2)等价关系:ABA(3)集合的运算律:交换律:ABBA;ABBA.BAABBCBUUA结合律:(AB)CA(BC);(AB)CA(BC)分配律:.A(BC)(AB)(AC);A(BC)(AB)(AC)0-1律:A,AA,UAA,UAU等幂律:AAA,AAA.求补律:A∩CUA=φA∪CUA=UCUU=φCUφ=U反演律:CU(A∩B)=(CUA)∪(CUB)CU(A∪B)=(CUA)∩(CUB)6.有限集的元素个数第2页共73页定义:有限集A的元素的个数叫做集合A的基数,记为card(A)规定card(φ)=0.基本公式:(1)card(AB)card(A)card(B)card(AB)(2)card(ABC)card(A)card(B)c ard(C)card(AB)card(BC)card(Ccard(ABC)A)(3)card(UA)=card(U)-card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(某-某1)(某-某2)…(某-某m)>0(<0)形式,并将各因式某的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(某的系数化“+”后)是“>0”,则找“线”在某轴上方的区间;若不等式是“<0”,则找“线”在某轴下方的区间.某1某2某3某m-3-某m-2某m-1+-某m+某(自右向左正负相间)则不等式a0某a1某nn1a2某n2an0(0)(a00)的解可以根据各区间的符号确定.2特例①一元一次不等式a某>b解的讨论;②一元二次不等式a某+b 某+c>0(a>0)解的讨论.000二次函数ya某2b某c(a0)的图象一元二次方程有两相异实根有两相等实根无实根a某2b某c0a0的根a某2b某c0(a0)的解集a某2b某c0(a0)的解集某1,某2(某1某2)b某1某22a某某某或某某12b某某2aR某某1某某2第3页共73页2.分式不等式的解法(1)标准化:移项通分化为f(某)f(某)f(某)f(某)>0(或<0);≥0(或≤0)的形式,g(某)g(某)g(某)g(某)(2)转化为整式不等式(组)3.含绝对值不等式的解法f(某)f(某)f(某)g(某)00f(某)g(某)0;0g(某)0g(某)g(某)(1)公式法:a某bc,与a某bc(c0)型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布2一元二次方程a某+b某+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
核按钮(新课标)高考数学一轮复习第一章集合与常用逻辑用语1.1集合及其运算习题理
核按钮(新课标)高考数学一轮复习第一章集合与常用逻辑用语1.1集合及其运算习题理1.集合(1)集合的含义与表示①了解集合的含义,体会元素与集合的属于关系.②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集.②在具体情境中,了解全集与空集的含义.(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.③能使用Venn图表达集合间的基本关系及集合的基本运算.2.常用逻辑用语(1)理解命题的概念.(2)了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.(3)理解必要条件、充分条件与充要条件的含义.(4)了解逻辑联结词“或”“且”“非”的含义.(5)理解全称量词和存在量词的意义.(6)能正确地对含一个量词的命题进行否定.§1.1 集合及其运算1.集合的基本概念(1)我们把研究对象统称为________,把一些元素组成的总体叫做________.(2)集合中元素的三个特性:________,________, ________.(3)集合常用的表示方法:________和________.2.常用数集的符号数集自然数集正整数集整数集有理数集实数集复数集符号3.元素与集合、集合与集合之间的关系(1)元素与集合之间存在两种关系:如果a是集合A中的元素,就说a________集合A,记作________;如果a不是集合A中的元素,就说a________集合A,记作________.(2)集合与集合之间的关系:表示关系文字语言符号语言相等集合A与集合B中的所有元素都相同__________⇔A=B子集A中任意一个元素均为B中的元素________或________真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素________或________空集空集是任何集合的子集,是任何______的真子集∅⊆A,∅B(B≠∅)结论:集合{a1,a2,…,a n}的子集有______个,非空子集有________个,非空真子集有________个.集合的并集集合的交集集合的补集符号表示若全集为U,则集合A 的补集记为________Venn图表示(阴影部分)意义5.集合运算中常用的结论(1)①A∩B________A;②A∩B________B;③A∩A=________;④A∩∅=________;⑤A∩B________B∩A.(2)①A∪B________A; ②A∪B________B;③A∪A=________;④A∪∅=________;⑤A∪B________B∪A.(3)①∁U(∁U A)=________;②∁U U=________;③∁U∅=________;④A∩(∁U A)=____________;⑤A∪(∁U A)=____________.(4)①A∩B=A⇔________⇔A∪B=B;②A∩B=A∪B⇔____________.(5)记有限集合A,B的元素个数为card(A),card(B),则:card(A∪B)=____________________________;card[∁U(A∪B)]=________________________.自查自纠1.(1)元素集合(2)确定性互异性无序性(3)列举法描述法2.N N*(N+) Z Q R C3.(1)属于a∈A不属于a∉A(2)A⊆B且B⊆A A⊆B B⊇A A B B A非空集合2n2n-1 2n-24.A∪B A∩B∁U A{x|x∈A或x∈B}{x|x∈A且x∈B} {x|x∈U且x∉A}5.(1)①⊆②⊆③A④∅⑤=(2)①⊇ ②⊇ ③A ④A ⑤= (3)①A ②∅ ③U ④∅ ⑤U (4)①A ⊆B ②A =B(5)card(A )+card(B )-card(A ∩B ) card(U )-card(A )-card(B )+card(A ∩B )(2015·安徽)设全集U ={1,2,3,4,5,6},A ={1,2},B ={2,3,4},则A ∩(∁UB )=( )A .{1,2,5,6}B .{1}C .{2}D .{1,2,3,4}解:∵∁U B ={1,5,6},∴A ∩(∁U B )={1}.故选B .(2015·陕西)设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( ) A .[0,1] B .(0,1] C .[0,1)D .(-∞,1]解:∵M ={x |x 2=x }={0,1},N ={x |lg x ≤0}={x |0<x ≤1},∴M ∪N =[0,1].故选A .(2015·全国Ⅱ)已知集合A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}解:由已知得B ={x |-2<x <1},∴A ∩B ={-1,0}.故选A .已知集合A ={1,2,3},B ={(x ,y )|x ∈A ,y ∈A ,x +y ∈A },则B 中所含元素的个数为________.解:根据x ∈A ,y ∈A ,x +y ∈A ,知集合B ={(1,1),(1,2),(2,1)},有3个元素.故填3.设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,则实数a 的取值范围是________.解:A ={x |x 2+2x -3>0}={x |x >1或x <-3},设函数f (x )=x 2-2ax -1,则其对称轴x =a >0,由对称性知,若A ∩B 中恰含有一个整数,则这个整数为2,∴f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0, 得34≤a <43.故填⎣⎢⎡⎭⎪⎫34,43.类型一 集合的概念(1)若集合A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则a =( )A .4B .2C .0D .0或4解:由ax 2+ax +1=0只有一个实数解,可得当a =0时,方程无实数解; 当a ≠0时,Δ=a 2-4a =0,解得a =4.故选A .(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.解:由题意得m +2=3或2m 2+m =3,则m =1或m =-32,当m =1时,m +2=3,2m 2+m=3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,2m 2+m =3,综上知,m =-32.故填-32.【点拨】(1)用描述法表示集合,首先要弄清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合.(2)含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.(1)(2015·苏州一模)集合⎩⎨⎧⎭⎬⎫x ∈N *|12x∈Z 中含有的元素个数为( )A .4B .6C .8D .12解:令x =1,2,3,4,5,6,7,8,9,10,11,12,代入验证,得x =1,2,3,4,6,12时,12x∈Z ,即集合中有6个元素.故选B .(2)已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b ,0},则a 2 017+b 2 017=________.解:由已知得b a=0及a ≠0,∴b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =-1,∴a2 017+b2 017=-1.故填-1.类型二 集合间的关系已知集合A ={x |x 2-3x -10≤0}.(1)若B ={x |m +1≤x ≤2m -1},B ⊆A ,求实数m 的取值范围; (2)若B ={x |m -6≤x ≤2m -1},A =B ,求实数m 的取值范围; (3)若B ={x |m -6≤x ≤2m -1},A ⊆B ,求实数m 的取值范围. 解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5}, (1)若B ⊆A ,则①当B =∅,有m +1>2m -1,即m <2,此时满足B ⊆A ;②当B ≠∅,有⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,解得2≤m ≤3.由①②得,m 的取值范围是(-∞,3].(2)若A =B ,则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5, 解得m ∈∅,即不存在实数m 使得A =B .(3)若A ⊆B ,则⎩⎪⎨⎪⎧2m -1>m -6,m -6≤-2,2m -1≥5,解得3≤m ≤4.∴m 的取值范围为[3,4].【点拨】本例主要考查了集合间的关系,“当B ⊆A 时,B 可能为空集”很容易被忽视,要注意这一“陷阱”.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若B ⊆A ,求实数m 的取值范围; (2)当x ∈Z 时,求A 的非空真子集的个数; (3)当x ∈R 时,若A ∩B =∅,求实数m 的取值范围.解:(1)①当m +1>2m -1,即m <2时,B =∅,满足B ⊆A .②当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立,则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5, 可得2≤m ≤3.综上,m 的取值范围是(-∞,3].(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5}, ∴A 的非空真子集个数为28-2=254. (3)∵x ∈R ,且A ∩B =∅,∴当B =∅时,即m +1>2m -1,得m <2,满足条件; 当B ≠∅时,有⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5,或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2, 解得m >4.综上,m 的取值范围是(-∞,2)∪(4,+∞).类型三 集合的运算(1)已知全集U =R ,集合A ={x |lg x ≤0},B ={x |2x ≤32},则A ∪B =( )A .∅ B.⎝ ⎛⎦⎥⎤0,13 C.⎣⎢⎡⎦⎥⎤13,1 D .(-∞,1] 解:由题意知,A =(0,1],B =⎝ ⎛⎦⎥⎤-∞,13, ∴A ∪B =(-∞,1].故选D .(2)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩(∁U B )=________.解:∵U ={1,2,3,4},∁U (A ∪B )={4},∴A ∪B ={1,2,3}.又∵B ={1,2},∴{3}⊆A ⊆{1,2,3}.又∁U B ={3,4},∴A ∩(∁U B )={3}.故填{3}.(3)已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.解:A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1},由A ∩B =(-1,n ),可知m <1,由B ={x |m <x <2},画出数轴,可得m =-1,n =1.故填-1,1.【点拨】(1)在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时需注意端点值的取舍.(2)在解决有关A ∩B =∅的问题时,往往忽略空集的情况,一定要先考虑A (或B )=∅是否成立,以防漏解.另外要注意分类讨论和数形结合思想的应用.(1)已知集合A ={x |y =x },B ={x|12<2x<4},则(∁R A )∩B 等于( )A .{x |-1<x <2}B .{x |-1<x <0}C .{x |x <1}D .{x |-2<x <0}解:∵A ={x |y =x }={x |x ≥0},∴∁R A ={x |x <0}.又B =⎩⎨⎧⎭⎬⎫x|12<2x <4={x |-1<x <2},∴(∁R A )∩B ={x |-1<x <0}.故选B .(2)(2015·唐山模拟)集合M ={2,log 3a },N ={a ,b },若M ∩N ={1},则M ∪N =( ) A .{0,1,2} B .{0,1,3} C .{0,2,3}D .{1,2,3}解:∵M ∩N ={1},∴log 3a =1,即a =3,∴b =1.∴M ={2,1},N ={3,1},M ∪N ={1,2,3}.故选D .(3)设集合A ={x ||x -a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A ∩B =∅,则实数a 的取值范围是( )A .{a |0≤a ≤6}B .{a |a ≤2或a ≥4}C .{a |a ≤0或a ≥6}D .{a |2≤a ≤4}解:|x -a |<1⇔-1<x -a <1⇔a -1<x <a +1,由A ∩B =∅知,a +1≤1或a -1≥5,解得a ≤0或a ≥6.故选C .类型四 Venn 图及其应用设M ,P 是两个非空集合,定义M 与P 的差集为:M -P ={x |x ∈M ,且x ∉P },则M -(M -P )等于( )A.P B.M∩P C.M∪P D.M解:作出Venn图.当M∩P≠∅时,由图知,M-P为图中的阴影部分,则M-(M-P)显然是M∩P.当M∩P=∅时,M-(M-P)=M-M={x|x∈M,且x∉M}=∅=M∩P.故选B.【点拨】这是一道信息迁移题,属于应用性开放问题.“M-P”是我们不曾学过的集合运算关系,根据其元素的属性,借助Venn图将问题简单化.已知集合A={-1,0,4},集合B={x|x2-2x-3≤0,x∈N},全集为U,则图中阴影部分表示的集合是________.解:B={x|x2-2x-3≤0,x∈N}={x|-1≤x≤3,x∈N}={0,1,2,3},图中阴影部分表示的为属于A且不属于B的元素构成的集合,该集合为{-1,4}.故填{-1,4}.类型五和集合有关的创新试题在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2 017∈[2];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中正确命题的个数是( )A.1 B.2 C.3 D.4解:∵2 017=403×5+2,∴2 017∈[2],结论①正确;-3=-1×5+2,∴-3∈[2],-3∉[3],结论②不正确;整数可以分为五“类”,这五“类”的并集就是整数集,即Z=[0]∪[1]∪[2]∪[3]∪[4],结论③正确;若整数a,b属于同一“类”,则a=5n+k,b=5m+k,a-b=5(n-m)+0∈[0],反之,若a-b∈[0],则a,b被5除有相同的余数,故a,b属于同一“类”,结论④正确,综上知,①③④正确.故选C.【点拨】(1)以集合语言为背景的新信息题,常见的类型有定义新概念型、定义新运算型及开放型,解决此类信息迁移题的关键是在理解新信息并把它纳入已有的知识体系中,用原来的知识和方法来解决新情境下的问题.(2)正确理解创新定义,分析新定义的表述意义,把新定义所表达的数学本质弄清楚,转化成熟知的数学情境,并能够应用到具体的解题之中,这是解决问题的基础.设S为复数集C的非空子集,若对任意x,y∈S,都有x+y,x-y,xy∈S,则称S为封闭集,下列命题:①集合S={a+b i|a,b为整数,i为虚数单位}为封闭集;②若S 为封闭集,则一定有0∈S ; ③封闭集一定是无限集;④若S 为封闭集,则满足S ⊆T ⊆C 的任意集合T 也是封闭集. 其中的真命题是________.(写出所有真命题的序号)解:①对,当a ,b 为整数时,对任意x ,y ∈S ,x +y ,x -y ,xy 的实部与虚部均为整数;②对,当x =y 时,0∈S ;③错,当S ={0}时,是封闭集,但不是无限集;④错,设S ={0}⊆T ,T ={0,1},显然T 不是封闭集.因此,真命题为①②.故填①②.1. 首先要弄清构成集合的元素是什么,如是数集还是点集,要明了集合{x |y =f (x )}、{y |y =f (x )}、{(x ,y )|y =f (x )}三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施;对连续的数集间的运算,常利用数轴进行;对点集间的运算,则往往通过坐标平面内的图形求解.这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.5.五个关系式A ⊆B ,A ∩B =A ,A ∪B =B ,∁U B ⊆∁U A 以及A ∩(∁U B )=∅是两两等价的.对这五个式子的等价转换,常使较复杂的集合运算变得简单.6.正难则反原则对于一些比较复杂、比较抽象、条件和结论不明确、难以从正面入手的涉及集合的数学问题,在解题时要调整思路,考虑问题的反面,探求已知与未知的关系,化难为易、化隐为显,从而解决问题.例如:已知A ={x |x 2+x +a ≤0},B ={x |x 2-x +2a -1<0},C ={x |a ≤x ≤4a -9},且A ,B ,C 中至少有一个不是空集,求a 的取值范围.这个问题的反面即是三个集合全为空集,即⎩⎪⎨⎪⎧1-4a <0,1-4(2a -1)≤0,a >4a -9,解得58≤a <3,从而所求a 的取值范围为⎩⎨⎧⎭⎬⎫a|a <58或a ≥3.1.(2015·全国Ⅰ)已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为( )A .5B .4C .3D .2解:A ∩B ={x |x =3n +2,n ∈N }∩{6,8,10,12,14}={8,14}.故选D .2.设集合M ={-1,0,1},N ={x |x 2≤x },则M ∩N =( )A .{0}B .{0,1}C .{-1,1}D .{-1,0,1} 解:∵N ={x |0≤x ≤1},M ={-1,0,1},∴M ∩N ={0,1}.故选B .3.(2013·辽宁)已知集合A ={x |0<log 4x <1},B ={x |x ≤2},则A ∩B =( )A.()0,1B.(]0,2C.()1,2D.(]1,2解:易知A ={}x |1<x <4,∴A ∩B =(]1,2.故选D .4.(2013·山东)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .5D .9解:由题意知,x -y =0,-1,-2,1,2.故B 中元素个数为5,故选C . 5.设全集U 为整数集,集合A ={x ∈N |y =7x -x 2-6},B ={x ∈Z |-1<x ≤3},则图中阴影部分表示的集合的真子集的个数为( )A .3B .4C .7D .8 解:A ={x ∈N |y =7x -x 2-6}={x ∈N |7x -x 2-6≥0}={x ∈N |1≤x ≤6},由题意知,图中阴影部分表示的集合为A ∩B ={1,2,3},其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},共7个.故选C .6.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合;②集合A ={n |n =3k ,k ∈Z }为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合.其中正确结论的个数是( )A .0B .1C .2D .3解:①(-4)+(-2)=-6∉A ,不正确;②设n 1,n 2∈A ,n 1=3k 1,n 2=3k 2,k 1,k 2∈Z ,则n 1+n 2∈A ,n 1-n 2∈A ,正确;③令A 1={n |n =5k ,k ∈Z },A 2={n |n =2k ,k ∈Z },则A 1,A 2为闭集合,但A 1∪A 2不是闭集合,不正确.故选B .7.(2014·重庆)设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.解:∵U ={1,2,3,…,9,10},A ={1,2,3,5,8},∴∁U A ={4,6,7,9,10}.∴(∁U A )∩B ={7,9}.故填{7,9}.8.已知集合S ={0,1,2,3,4,5},A 是S 的一个子集,当x ∈A 时,若有x -1∉A ,且x +1∉A ,则称x 为A 的一个“孤立元素”,那么S 中无“孤立元素”的4个元素的子集共有________个.解:由成对的相邻元素组成的四元子集都没有“孤立元素”,如{0,1,2,3},{0,1,3,4},{0,1,4,5},{1,2,3,4},{1,2,4,5},{2,3,4,5}这样的集合,共有6个.故填6.9.(2014·天津)已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n qn -1,x i ∈M ,i =1,2,…,n },当q =2,n =3时,用列举法表示集合A .解:当q =2,n =3时,M ={0,1},A ={x |x =x 1+2x 2+4x 3,x i ∈M ,i =1,2,3}={0,1,2,3,4,5,6,7}.10.设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}.(1)当a =-4时,求A ∩B 和A ∪B ;(2)若(∁R A )∩B =B ,求实数a 的取值范围.解:(1)A =⎩⎨⎧⎭⎬⎫x|12≤x ≤3, 当a =-4时,B ={x |-2<x <2},A ∩B =⎩⎨⎧⎭⎬⎫x|12≤x <2,A ∪B ={x |-2<x ≤3}. (2)∁R A =⎩⎨⎧⎭⎬⎫x|x <12或x >3, 当(∁R A )∩B =B 时,B ⊆∁R A ,即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ;②当B ≠∅,即a <0时,B ={x |--a <x <-a },要使B ⊆∁R A ,只须-a ≤12,解得-14≤a <0. 综上可得,实数a 的取值范围是⎩⎨⎧⎭⎬⎫a|a ≥-14. 11.设集合A ={x |x 2+4x =0,x ∈R },B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R ,x ∈R },若B ⊆A ,求实数a 的取值范围.解:易知A ={0,-4},若B ⊆A ,则可分以下三种情况:①当B =∅时,Δ=4(a +1)2-4(a 2-1)<0,解得a <-1;②当∅≠B A 时,B ={0}或B ={-4},并且Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足题意;③当B =A 时,B ={0,-4},由此知0和-4是方程 x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关系, 得⎩⎪⎨⎪⎧Δ=4(a +1)2-4(a 2-1)>0,-2(a +1)=-4,a 2-1=0,解得a =1.综上所述,a 的取值范围为{}a |a ≤-1或a =1.(2015·杭州模拟)已知集合A ={x |x 2-3(a +1)x +2(3a +1)<0},B =⎩⎨⎧⎭⎬⎫x|x -2a x -(a 2+1)<0.(1)当a =2时,求A ∩B ;(2)求使B ⊆A 时实数a 的取值范围.解:(1)当a =2时,A ={x |x 2-9x +14<0}=(2,7), B =⎩⎨⎧⎭⎬⎫x|x -4x -5<0=(4,5),∴A ∩B =(4,5).(2)当a ≠1时,B =(2a ,a 2+1);当a =1时,B =∅. 又A ={x |(x -2)[x -(3a +1)]<0},①当3a +1<2,即a <13时,A =(3a +1,2),要使B ⊆A 成立,只须满足⎩⎪⎨⎪⎧2a ≥3a+1,a 2+1≤2,解得a =-1;②当a =13时,A =∅,B =⎝ ⎛⎭⎪⎫23,109,B ⊆A 不成立;③当3a +1>2,即a >13时,A =(2,3a +1),要使B ⊆A 成立,只须满足⎩⎪⎨⎪⎧2a≥2,a 2+1≤3a +1,或a =1,a ≠1,解得1≤a ≤3.综上可知,使B ⊆A 的实数a 的取值范围为[1,3]∪{-1}.。
高三数学一轮复习基础导航 1.1集合
高三数学一轮复习基础导航 1.1集合【考纲要求】1、集合的含义与表示① 了解集合的含义、元素与集合的属于关系。
② 能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。
2、集合间的基本关系① 理解集合之间包含与相等的含义,能识别给定集合的子集。
② 在具体情境中,了解全集与空集的含义。
3、集合的基本运算① 理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
② 理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
③ 能使用韦恩(Venn )图表达集合的关系及运算。
【基础知识】一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个总体,这个总体就叫集合,其中每一个对象叫元素。
2、集合中元素的三个特性: 确定性、互异性、无序性。
(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素,这叫集合元素的确定性。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,这叫集合元素的互异性。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样,这叫集合元素的无序性。
3、元素与集合之间只能用“∈”或“∉”符号连接。
4、集合的表示:常见的有四种方法。
(1)自然语言描述法:用自然的文字语言描述。
如:英才中学的所有团员组成一个集合。
(2)列举法:把集合中的元素一一列举出来,元素之间用逗号隔开,然后用一个花括号全部括上。
如:{0,1,2,3}(3)描述法:将集合中的元素的公共属性描述出来,写在花括号内表示集合的方法。
它的一般格式为)}(|{x P x ,“|”前是集合元素的一般形式,“|”后是集合元素的公共属性。
如2{|230}x x x --=、 2{|23}x y x x =--、2{|23}y y x x =--、2{(,)|23}x y y x x =--。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析
解析
第一章:集合与常用逻辑用语
第1节: 集合
解析
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
ቤተ መጻሕፍቲ ባይዱ
解析
第一章:集合与常用逻辑用语
第1节: 集合
解析
第一章:集合与常用逻辑用语
第1节: 集合
解析
第一章:集合与常用逻辑用语
第1节: 集合
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
解析
第一章:集合与常用逻辑用语
第1节: 集合
解析
第一章:集合与常用逻辑用语
第1节: 集合
解析
解析
第一章:集合与常用逻辑用语
第1节: 集合
解析
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语
第1节: 集合
第一章:集合与常用逻辑用语