2017长沙市数学中考模拟试卷试卷与答案(全8套)

合集下载

2017年湖南省长沙市中考数学试卷(含解析版)

2017年湖南省长沙市中考数学试卷(含解析版)

2017年湖南省长沙市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列实数中,为有理数的是()A.B.πC. D.12.(3分)下列计算正确的是()A.= B.a+2a=2a2C.x(1+y)=x+xy D.(mn2)3=mn63.(3分)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826×106B.8.26×107 C.82.6×106 D.8.26×1084.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形 B.正五边形C.正方形 D.平行四边形5.(3分)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形D.等腰直角三角形6.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4D.“367人中有2人同月同日出生”为必然事件7.(3分)某几何体的三视图如图所示,因此几何体是()A.长方形B.圆柱C.球D.正三棱柱8.(3分)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)9.(3分)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为()A.60°B.70°C.80°D.110°10.(3分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm11.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里 C.6里D.3里12.(3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H 不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A. B.C.D.随H点位置的变化而变化二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:2a2+4a+2= .14.(3分)方程组的解是.15.(3分)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.16.(3分)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是.17.(3分)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是S甲2=1.2,S乙2=0.5,则在本次测试中,同学的成绩更稳定(填“甲”或“乙”)18.(3分)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1.20.(6分)解不等式组,并把它的解集在数轴上表示出来.21.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<80 30 aC 80≤x<90 b 0.45D 90≤x<100 8 0.08请根据所给信息,解答以下问题:(1)表中a= ,b= ;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.22.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?23.(9分)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.24.(9分)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.25.(10分)若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数y=(k为常数,k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.26.(10分)如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0,y)总有n+≥﹣4my2﹣12y﹣50成立,求实数n的最小值.。

2017年长沙市初中毕业学业水平考试模拟试卷8套与答案_

2017年长沙市初中毕业学业水平考试模拟试卷8套与答案_

⎨x <3 2018 年长沙市初中毕业学业水平考试模拟试卷(一)数 学时量:120 分钟 满分:120 分一、选择题(本题共 12 个小题,每小题 3 分,共 36 分)1. −4 的绝对值是( )A .4B .−4C .1D . - 1442. 下列图形中,既是轴对称图形又是中心对称图形的是A B C D 3. 长沙市现在常住人口有 704 万多,数据 704 万用科学记数法表示为( )A .704×104B .70.4×105C .7.04×106D .0.704×106 4. 下列运算正确的是( )A . (a + b )(a - b ) = a 2 - b 2 C . x 6÷ x 2= x3B. (ab 2 )2 = ab 4 D . (a + b )2 = a 2 + b 25. 已知一个三角形的一边长为 4,另一边长为 8,则第三边长可能为()A .3B .4C .5D .126. 一个几何体的三视图如图,那么这个几何体是()7. 不等式组⎧-x ≤ 1的解集在数轴上可以表示为( )⎩A B CD8.如图,若∠1=∠2,则下列结论一定成立的是( ) A .AB∥CD B.∠3=∠4C. ∠B=∠DD .AD∥BC 9.某区 10 名学生参加市级汉字听写大赛,他们的得分情况如下表:那么这 10 名学生所得分数的平均数和众数分别是( )A .85 和 82.5B .85.5 和 85C .85 和 85D .85.5 和8010. 把抛物线 y = -x 2 向左平移 1 个单位,然后向上平移 3 个单位,则平移后抛物线的表达式为()A . y = -(x -1)2 + 3B . y = -(x +1)2 + 3C . y = -(x -1)2 - 3D . y = -(x +1)2 - 311. 下列关于 x 的一元二次方程中,有两个不相等的实数根的方程是( )A . x 2+ 4 = 0B . 4x 2 - 4x +1 = 0C . x 2 + x + 3 = 0D . x 2+ 2x -1 = 012. 如图,边长分别为 1 和 2 的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为 x ,两个三角形重叠面积为 y , 则 y 关于 x 的函数图象是( )A B C D二、填空题(本题共 6 个小题,每小题 3 分,共 18 分)13. 函数 y=1x -1自变量 x 的取值范围是 . 14. 已知 x -1 += 0 ,则 x - y = .15. 若一个正多边形的每一个外角都是 40°,则这个多边形的边数为 .16. 已知圆锥的底面直径为 4cm ,其母线长为 3cm ,则它的侧面积为cm 2 .17 . 二次函数 y = -x 2+ 2x + k 的部分图象如图所示, 关于 x 的一元二次方程-x 2 + 2x + k = 0 的一个解 x = 3 ,则另一个解 x = .1218.如图,在平行四边形 ABCD 中,对角线 AC 、BD 相交于点 O ,点 E 、F 分别是边 AD 、AB 的中点,EF 交 AC 于点 H ,则 AH的值为 .HCD CE H OF B三、解答题(本题共 8 个小题,第 19、20 小题每小题 6 分,第 21、22 小题每小题 8 分,第 23、24 小题每小题 9 分,第 25、26 小题每小题 10 分,共 66 分)y + 22 2x 1⎫ ⎛ 1 ⎫-119.计算: ⎪ ⎝⎭ - 2cos 30 + 27 + (3 - π ) 0320.先化简,再求值: x 2 -1 ÷ ⎛1 - - ⎪ ,其中 x = 2016 x ⎝x ⎭21. 某校一课外活动小组为了解学生最喜欢的球类运动情况,随机抽查本校九年级的 200名学生,调查的结果如下图所示.请根据该扇形统计图解答以下问题:(1) 求图中的 x 的值;(2) 求最喜欢乒乓球运动的学生人数;(3) 若由 3 名最喜欢篮球运动的学生,1 名最喜欢乒乓球运动的学生,1 名最喜欢足球运动的学生组队外出参加一次联谊活动.欲从中选出 2 人担任组长(不分正副),列出所有可能情况,并求 2 人均是最喜欢篮球运动的学生的概率.22. 如图,已知△ABC 是等边三角形,D 、E 分别是 AC 、BC 上的两点,AD =CE ,且 AE与 BD 交于点 P ,BF ⊥AE 于点 F . (1) 求证:△ABD ≌△CAE ; (2) 若 BP =6,求 PF 的长.23. 在军事上,常用时钟表示方位角(读数对应的时针方向),如正北为 12 点方向,北偏西 30°为 11 点方向.在一次反恐演习中,甲队员在A 处掩护,乙队员从A 处沿 12 点方向以 40 米/分的速度前进,2 分钟后到达B 处.这时,甲队员发现在自己的 1 点方向的C 处有恐怖分子,乙队员发现C 处位于自己的 2 点方向(如图).假设距恐怖分子 100 米以外为安全位置.(1) 乙队员是否处于安全位置?为什么?(2) 因情况不明,甲队员立即发出指令,要求乙队员沿原路后撤, 务必于 15 秒内到达安全位置.为此,乙队员至少应用多快的速度撤离? (结果精确到个位.参考数据: , .)(图形与题目不符,AB=BC )24. 如图,AB 为⊙O 的直径,弦 CD 与 AB 相交于 E ,DE =EC ,过点 B 的切线与 AD 的延长线交于 F ,过 E 作 EG ⊥BC 于 G ,延长 GE 交 AD 于 H .(1) 求证:AH =HD ;(2) 若 cos ∠C = 4,DF =9,求⊙O 的半径.525. 我市某外资企业生产的一批产品上市后 30 天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量 y 1 (万件)与时间t ( t 为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量 y 2 (万件)与天(1) 请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示 y 1 与t 的变化规律,写出 y 1 与t 的函数关系式及自变量t 的取值范围;(2) 分别探求该产品在国外市场上市前 20 天与 20 天后(含第 20 天)的日销售量 y 2 与时间t 所符合的函数关系式,并写出自变量t 的取值范围;(3) 设国内外市场的日销售总量为 y 万件,写出 y 与时间t 的函数关系式,并判断上市第几天国内外市场的日销售总量 y 最大,并求出此时的最大值.26. 如图,直线 y =x +2 与抛物线 y=x 2-2mx +m 2+m 交于 A 、B 两点(A 在 B 的左侧),与 y 轴交于点 C ,抛物线的顶点为 D ,抛物线的对称轴与直线 AB 交于点 M . (1) 若 P 为直线 OD 上一动点,求△APB 的面积; (2) 当四边形 CODM 是菱形时,求点 D 的坐标;(3) 作点 B 关于直线 MD 的对称点 B ′,以 M 为圆心,MD 为半径作⊙M ,点 Q 是⊙M 上一动点,求 QB ′的最小值.2018 年长沙市初中毕业学业水平考试模拟试卷(二)数学时量:120 分钟满分:120 分注意事项:1、答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对姓名、准考证号、考室和座位号;2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;3、答题时,请考生注意各大题题号后面的答题提示;4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共 26 个小题,考试时量 l20 分钟,满分 I20 分。

湖南长沙数学(含答案) 2017年中考数学真题试卷

湖南长沙数学(含答案)   2017年中考数学真题试卷

2017年长沙市初中毕业学业水平考试数学试卷一、选择题:1.下列实数中,为有理数的是( )A .3B .πC .32D .12.下列计算正确的是( )A .532=+B .222a a a =+C .xy x y x +=+)1(D .632)(mn mn = 3.据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( )A .610826.0⨯B .71026.8⨯C .6106.82⨯D .81026.8⨯4.在下列图形中,既是轴对称图形,又是中心对称图形的是( )5.一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是( )A .锐角三角形B .之直角三角形C .钝角三角形D .等腰直角三角形6.下列说法正确的是( )A .检测某批次灯泡的使用寿命,适宜用全面调查B .可能性是1%的事件在一次试验中一定不会发生C .数据3,5,4,1,2-的中位数是4D .“367人中有2人同月同日生”为必然事件7.某几何体的三视图如图所示,因此几何体是( )A .长方形B .圆柱C .球D .正三棱柱8.抛物线4)3(22+-=x y 的顶点坐标是( )A .)4,3(B .)4,3(-C .)4,3(-D .)4,2(9.如图,已知直线b a //,直线c 分别与b a ,相交,01101=∠,则2∠的度数为( )A .060B .070C .080D .011010.如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 2011.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( )A .24里B .12里C .6里D .3里12.如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则m n 的值为( )A .22B .21C .215- D .随H 点位置的变化而变化二、填空题13.分解因式:=++2422a a .14.方程组⎩⎨⎧=-=+331y x y x 的解是.15.如图,AB 为⊙O 的直径,弦AB CD ⊥于点E ,已知1,6==EB CD ,则⊙O 的半径为 .16.如图,ABO ∆三个顶点的坐标分别为)0,0(),0,6(),4,2(C B A ,以原点O 为位似中心,把这个三角形缩小为原来的21,可以得到O B A ''∆,已知点'B 的坐标是)0,3(,则点'A 的坐标是 .17.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是5.0,2.122==乙甲S S ,则在本次测试中, 同学的成绩更稳定(填“甲”或“乙”)18.如图,点M 是函数x y 3=与x ky =的图象在第一象限内的交点,4=OM ,则k 的值为 .三、解答题19.计算:100)31(30sin 2)2017(|3|-+--+-π20.解不等式组⎩⎨⎧+>---≥)1(31592x x xx ,并把它的解集在数轴上表示出来.21.为了传承中华优秀的传统文化,市教育局决定开展“经典诵读进校园”活动,某校园团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表:请根据所给信息,解答以下问题:(1)表中=a ;=b ;(2)请计算扇形统计图中B 组对应的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列举法或树状图法求甲、乙两名同学都被选中的概率.22.为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A 处测得灯塔P 在北偏东060方向上,继续航行1小时到达B 处,此时测得灯塔P 在北偏东030方向上.(1)求APB ∠的度数;(2)已知在灯塔P 的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?23.如图,AB 与⊙O 相切于C ,OB OA ,分别交⊙O 于点E D ,,CE CD =.(1)求证:OB OA =;(2)已知34=AB ,4=OA ,求阴影部分的面积.24.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多10元.(1)求一件B A ,型商品的进价分别为多少元?(2)若该欧洲客商购进B A ,型商品共250件进行试销,其中A 型商品的件数不大于B 型的件数,且不小于80件,已知A 型商品的售价为240元/件,B 型商品的售价为220元/件,且全部售出,设购进A 型商品m 件,求该客商销售这批商品的利润v 与m 之间的函数关系式,并写出m 的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A 型商品,就从一件A 型商品的利润中捐献慈善资金a 元,求该客商售完所有商品并捐献资金后获得的最大收益.25.若三个非零实数z y x ,,满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数z y x ,,构成“和谐三数组”.(1)实数1,2,3可以构成“和谐三数组”吗?请说明理由.(2)若),1(),,1(),,(321y t M y t N y t M +-三点均在函数x k (k 为常数,0≠k )的图象上,且这三点的纵坐标321,,y y y 构成“和谐三数组”,求实数t 的值;(3)若直线)0(22≠+=bc c bx y 与x 轴交于点)0,(1x A ,与抛物线)0(332≠++=a c bx ax y 交于),(),,(3322y x C y x B 两点.①若OAC ∆为等腰直角三角形,求m 的值;②若对任意0>m ,E C ,两点总关于原点对称,求点D 的坐标(用含m 的式子表示);(3)当点D 运动到某一位置时,恰好使得OAD ODB ∠=∠,且点D 为线段AE 的中点,此时对于该抛物线上任意一点),(00y x P 总有503123461020---≥+y my n 成立,求实数n 的最小值.随州市2017年初中毕业升学考试数学试题第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2-的绝对值是( )A .2B .2-C .12D .12-2.下列运算正确的是( )A .336a a a +=B .222()a b a b -=-C .326()a a -=D .1226a a a ÷=3.如图是某几何体的三视图,这个几何体是( )A .圆锥B .长方体C .圆柱D .三棱柱4.一组数据2,3,5,4,4的中位数和平均数分别是( )A .4和3.5B .4和3.6C .5和3.5D .5和3.65.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是( )A .两点之间线段最短B .两点确定一条直线C .垂线段最短D .经过直线外一点,有且只有一条直线与这条直线平行6.如图,用尺规作图作AOC AOB ∠=∠的第一步是以点O 为圆心,以任意长为半径画弧①,分别交OA 、OB 于点E 、F ,那么第二步的作图痕迹②的作法是( )A .以点F 为圆心,OE 长为半径画弧B .以点F 为圆心,EF 长为半径画弧C .以点E 为圆心,OE 长为半径画弧D .以点E 为圆心,EF 长为半径画弧7.小明到商店购买“五四青年节”活动奖品,购买20支铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( )A .203011010585x y x y +=⎧⎨+=⎩B .201011030585x y x y +=⎧⎨+=⎩C .205110301085x y x y +=⎧⎨+=⎩D .520110103085x y x y+=⎧⎨+=⎩8.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数()n 和芍药的数量规律,那么当11n =时,芍药的数量为( )A .84株B .88株C .92株D .121株9.对于二次函数223y x mx =--,下列结论错误的是( )A .它的图象与x 轴有两个交点B .方程223x mx -=的两根之积为3-C .它的图象的对称轴在y 轴的右侧D .x m <时,y 随x 的增大而减小10.如图,在矩形ABCD 中,AB BC <,E 为CD 边的中点.将ADE ∆绕点E 顺时针旋转180︒,点D 的对应点为C ,点A 的对应点为F ,过点E 作ME AF ⊥交BC 于点M ,连接AM 、BD 交于点N .现有下列结论:①AM AD MC =+;②AM DE BM =+;③2DE AD CM =⋅;④点N 为ABM ∆的外心. 其中正确结论的个数为( )A .1个B .2个C .3个D .4个第Ⅱ卷(共90分)二、填空题(每题3分,满分18分,将答案填在答题纸上)11.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为 .12.“抛掷一枚质地均匀的硬币,正面向上”是 事件(从“必然”、“随机”、“不可能”中选一个).13.如图,已知AB 是O 的弦,半径OC 垂直AB ,点D 是O 上一点,且点D 与点C 位于弦AB 两侧,连接AD 、CD 、OB ,若70BOC ∠=︒,则ADC ∠= 度.14.在ABC ∆中,6AB =,5AC =,点D 在边AB 上,且2AD =,点E 在边AC 上,当AE = 时,以A 、D 、E 为顶点的三角形与ABC ∆相似.15.如图,AOB ∠的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点(3,0)N 是OB 上的一定点,点M 是ON 的中点,30AOB ∠=︒,要使PM PN +最小,则点P 点的坐标为 .16.在一条笔直的公路上有A 、B 、C 三地,C 地位于A 、B 两地之间.甲车从A 地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地.在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y (km )与甲车行驶时间()t h 之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h 时,两车相距170km ;③乙车出发527h 时,两车相遇;④甲车到达C 地时,两车相距40km .其中正确的是 (填写所有正确结论的序号).三、解答题 (本大题共9题,共72.解答应写出文字说明、证明过程或演算步骤.)17.计算:2021()(2017)(3)|2|3π---+---.18.解分式方程:2311xx x x +=--.19.如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x =的图象于点B ,32AB =.(1)求反比例函数的解析式;(2)若11(,)P x y 、22(,)Q x y 是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.20.风电已成为我国继煤电、水电之后的第三大电源.风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A 处测得塔杆顶端C 的仰角是55︒,沿HA 方向水平前进43米到达山底G 处,在山顶B 处发现正好一叶片到达最高位置,此时测得叶片的顶端D (D 、C 、H 在同一直线上)的仰角是45︒.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG 为10米,BG HG ⊥,CH AH ⊥,求塔杆CH 的高.(参考数据:tan55 1.4︒≈,tan350.7︒≈,sin550.8︒≈,sin350.6︒≈)21.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x 表示成绩,单位:分).A 组:7580x ≤<;B 组:8085x ≤<;C 组:8590x ≤<;D 组:9095x ≤<;E 组:95100x ≤<,并绘制如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有 名,请补全频率分布直方图;(2)扇形统计图中,C 组对应的圆心角是多少度?E 组人数占参赛选手的百分比是多少?(3)学校准备组成8人的代表队参加市级决赛,E 组6名选手直接进入代表队,现要从D 组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.22.如图,在Rt ABC ∆中,90C ∠=︒,AC BC =,点O 在AB 上,经过点A 的O 与BC 相切于点D ,交AB 于点E .(1)求证:AD 评分BAC ∠;(2)若1CD =,求图中阴影部分的面积(结果保留π).23.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (115x ≤<)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?24.如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF 经过点C ,连接DE 交AF 于点M ,观察发现:点M 是DE 的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD 交AF 于点H .、……请参考上面的思路,证明点M 是DE 的中点(只需用一种方法证明);(2)如图2,在(1)的条件下,当135ABE ∠=︒时,延长AD 、EF 交于点N ,求AMNE 的值;(3)在(2)的条件下,若AF k AB =(k 为大于2的常数),直接用含k 的代数式表示AMMF 的值.25.在平面直角坐标系中,我们定义直线y ax a =-为抛物线2y ax bx c =++(a 、b 、c 为常数,0a ≠)的“梦想直线”;有一个顶点在抛物线上,另一个顶点在y 轴上的三角形为其“梦想三角形”. 已知抛物线223432333y x x =--+与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“梦想直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将ACM ∆以AM 所在直线为对称轴翻折,点C 的对称点为N ,若AMN ∆为该抛物线的“梦想三角形”,求点N 的坐标;。

2017年湖南省长沙市中考数学模拟试卷(一)

2017年湖南省长沙市中考数学模拟试卷(一)

2017年湖南省长沙市中考模拟试卷(一)数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共36分)注意事项:1、答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回。

2、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

答在试卷上无效。

一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、式子()22353-+-x x 的化简的结果是 ( )A.3532-+-x xB.3532+-x xC.3532+-x xD. 3532+--x x2、已知方程组⎩⎨⎧=+=+573554322222y x k y x ,其中3=x ,同时k 满足16122+-=kx x y , 该函数的图像大致如下图,则k 的值是多少 ( )A .22-或B .2C .2-D .无解3、如图,△ABC 中,∠B=∠C ,D 在BC 边上,∠BAD=500,其中在AC 取一点E ,使得∠ADE=∠AED ,则∠EDC 的度数为 ( ) A.150 B.250 C.300 D. 5004、如图,Rt △AB C 中,∠ACB=90°,∠C AB =30°,BC =2,O 、H 分别为边AB 、AC 的中点,将△ABC 绕点B 顺时针旋转120°到△A 1BC 1的位置,则整 个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( ) A .73 π-78 3B .43 π+78 3C .πD .43 π+ 35、现有一圆心角为150°,半径为12cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径 ( ) A .4cm B .5cm C .2cm D .3cm6、已知点A (-2,y 1)、B (-1,y 2)、C (3,y 3)都在反比例函数4y x=的图象上,则 ( )A. y 1<y 2<y 3B. y 3<y 2<y 1C. y 3<y 1<y 2D. y 2<y 1<y 37、据《某市2017年国民经济和社会发展统计公报》报告:某市2017年国内生产总值达1493亿元,比2016年增长11.8%.下列说法:① 2016年国内生产总值为1493(1-11.8%)亿元;②2016年国内生产总值为%8.1111493-亿元;③2016年 国内生产总值为%8.1111493+亿元;④若按11.8%的年增长率计算,2019年的国内生产总值预计为1493(1+11.8%)2亿元.其中正确的是( ) A.③④ B.②④ C.①④ D.①②③ 8.如图,点P 是△ABC 内一点,且PD =PE =PF ,则点P 是( )A .△ABC 三边垂直平分线的交点B .△ABC 三条角平分线的交点 C .△ABC 三条高所在直线的交点D .△ABC 三条中线的交点封线准考证号姓 名考 场班 级学 校此 处 不 答 题AH BOC1H1A1CxOA 1 A 2A 3P 1P 2P 3y第18题 D B E O A C9、若一元二次方程(m -1)x 2-4x -3=0有实数根,则m 的取值范围是( ) A .m >-31且m ≠1 B .m ≥-31 C .m ≤-31 D .m ≥-31且m ≠110、如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,3),则点C 的坐标为( )A .(-3,1)B .(-1,3)C .(3,1)D .(-3,-1)11、如图,AB 是⊙O 的直径,∠BAC =30°,CD 丄AB 于点E ,BE =2,则⊙O 的半径为( )A 、2B 、4C 、23D 、43 12、如图,直线y=﹣x +5与双曲线y=(x >0)相交于A ,B 两点,与x 轴相交于C 点,△BOC 的面积是.若将直线y=﹣x +5向下平移1个单位,则所得直线与双曲线y=(x >0)的交点有( )A .0个B .1个C .2个D .0个,或1个,或2个数 学 试 卷卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上) 13、如图,⊙O 的直径 AB =8cm ,C 为⊙O 上的一点,∠BAC =30°, 则 BC =___ cm .14、已知b a c a c b c b a +=+=+,则abc c a c b b a ))()((+++.______=15、 如图所示为农村一古老的捣碎器,已知支撑柱AB 的高为0.3米板DE 长为1.6米,支撑点A 到踏脚D 的距离为0.6米,现在踏脚着地,则捣头点E 上升了 米. 16、如图,两个同心圆中,大圆的半径OA =4cm ,∠AOB =∠BOC =60°,则图中阴影部分的面积是 cm 2.17、如图,△ABC 和△CDE 都是等边三角形,且∠EBD=66°,则∠AEB 的度数是________. 18、如图,△POA 1,△P 2A 1A 2,△P 3A 2A 3,……,△P n A n -1A n 都是等腰直角三角形,点P 1,P 2,P 3,……,P n 在函数xy 4=(x >0)的图象上,斜边OA 1,A 1A 2,A 2A 3,……,A n -1A n 都在x 轴上,点A 2017的坐标是_______.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题8分,第23、24题每小题9分,第25、26题每小题10分,共66分。

【中考模拟2017】湖南省长沙市 2017年九年级数学中考模拟试卷 一(含答案)

【中考模拟2017】湖南省长沙市 2017年九年级数学中考模拟试卷 一(含答案)

2017年九年级数学中考模拟试卷一、选择题(本大题共8小题,每小题3分,共24分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.将式子3-5-7写成和的形式,正确的是()A.3+5+7B.-3+(-5)+(-7)C.3-(+5)-(+7)D.3+(-5)+(-7)2.2015年我国大学生毕业人数将达到7 490 000人,这个数据用科学记数法表示为( )A.7.49×107B.7.49×106C.74.9×105D.0.749×1073.下列计算正确的是()A.a3+a2=a5 B.(3a﹣b)2=9a2﹣b2 C.(﹣ab3)2=a2b6 D.a6b÷a2=a3b4.下列图形中既是轴对称图形,又是中心对称图形的是()5.数据1,2,3,4,4,5的众数是()A.5B.3C.3.5D.46.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A. B. C D.7.如图,直线l经过二、三、四象限,l的解析式是y=(m﹣2)x﹣2,则m的取值范围在数轴上表示为()A. B. C. D.8.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()A.7B.8C.7D.7二、填空题:9.一个数的立方根是4,那么这个数的平方根是.10.分解因式:3m2﹣27= .11.使有意义的x的取值范围是______.12.如图,AD∥BC,BD平分∠ABC,∠A:∠ABC=2:1,则∠ADB= 度.13.小明第一次抛一枚质地均匀的硬币时反面向上,第二次抛此枚硬币时也是反面向上,则他第三次抛这枚硬币时,正面向上的概率是.14.如图,DE与BC不平行,当= 时,ΔABC与ΔADE相似.15.为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数是.16.观察下列单项式:﹣x,3x2,﹣5x3,7x4,…﹣37x19,39x20的特点,写出第n个单项式.为了解决这个问题,特提供下面的解题思路:请根据你的经验,猜想第n个单项式可表示为.(用含n的式子表示)三、计算题:17.计算:﹣14+(2016﹣π)0﹣(﹣)﹣1+|1-|﹣2sin60°.18.解下列不等式组,并在数轴上表示出该不等式组的解集。

2017年长沙市初中毕业学业水平考试模拟试卷 数学(8)

2017年长沙市初中毕业学业水平考试模拟试卷  数学(8)

2017年长沙市初中毕业学业水平考试模拟试卷数 学(八)注意事项:1.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对答题卡上的姓名、准考证号、考室和座位号;2.必须在答题卡上答题,在草稿纸、试题卷上答题无效;3.答题时,请考生注意各大题题号后面的答题提示;4.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5.答题卡上不得使用涂改液、涂改胶和贴纸;6.本学科试卷共26个小题,考试时量120分钟,满分120分.一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分)1.清明节是中国传统节日,它不仅是人们远足踏青的日子,更是祭奠祖先、缅怀先人 的节日.市民政局提供的数据显示,今年清明节当天全市213处祭扫点共接待群众 264000人,则数据264000用科学记数法表示为A .264⨯103B .2.64⨯104C .2.64⨯105D .0.264⨯106 2.下列运算正确的是A .23a a a +=B .(2)(3)6a a a ⋅= C.236a a a⋅= D .236()a a =3.下列手机软件图标中,是轴对称图形但不是中心对称图形的是A B C D4.一个袋子中只装有黑、白两种颜色的球,这些球的形状、质地等完全相同,其中白色球有2个,黑色球有n 个.在看不到球的条件下,随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.同学们进行了大量重复试验,发现摸出白球的频率稳定在0.4附近,则n 的值为A .2B .3C .4D .55.某篮球队12名队员的年龄统计如图所示,则该队队员年龄的众数和中位数分别是A .16,15B .15,15.5C .15,17D .15,166.如图,等腰直角三角板的顶点A 、C 分别在直线a 、b 上.若a ∥b ,∠1=35°,则 ∠2的大小为A .35°B .15°C .10°D .5°第7题图7.如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF 的半径是,则这个正六边形的周长是A .B .12 cmC .cmD .36 cm8.反比例函数2y x=-的图象上有两点111()P x y ,、222()P x y ,,若120x x <<,则下列结论正确的是A .120y y <<B .120y y <<C .120y y >>D .120y y >>9.现有A 、B 两种商品,买3件A 商品和2件B 商品用了160元,买2件A 商品和3件B 商品用了190元.如果准备购买A 、B 两种商品共10件,则下列方案中,费用最低的为A .A 商品7件和B 商品3件 B .A 商品6件和B 商品4件C .A 商品5件和B 商品5件D .A 商品4件和B 商品6件10.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为 A .富 B .强 C .文 D .民11.如图,△ABC 为等边三角形,点O 在过点A 且平行于BC 的直线上运动,以点O 为圆心,且以△ABC 的高为半径的⊙O 分别交线段AB 、AC 于点E 、F ,则EF 所对的 圆周角的度数A .从0°到30°变化B .从30°到60°变化C .总等于30°D .总等于60°12.如图,二次函数2y ax bx c =++(a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,且OA =OC .现有下列结论:①abc <0;②244b ac a->0;③ac -b +1=0;④ OA ⋅OB =c a-.其中正确结论的个数是 A .4 B .3 C .2 D .1二、填空题(本大题共6个小题,每小题3分,共18分)13x 的取值范围是 .14.分解因式:22a b ab b -+= .15.若关于x 的方程2230kx x -+=有两个不相等的实数根,则k 的取值范围是 .16.已知一个正多边形的内角和是外角和的4倍,则这个正多边形的边数是 .17.如图,在⊙O 中,AB 为⊙O 的弦,半径OC ⊥AB 于点D ,若OB 的长为10,4sin 5BOD ∠=, 则AB 的长为 .18.如图所示,点E 、F 分别是正方形纸片ABCD 的边BC 、CD 上的一点,将正方形纸片ABCD 分别沿AE 、AF 折叠,使得点B 、D 恰好都落在点G 处,且EG =2,FG =3,则正方形纸片ABCD 的边长为 .三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题8分,第23、24题每小题9分,第25、26题每小题10分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:10(2)1)4cos45---++︒.20.解不等式组3(1)612x x x x -⎧⎪⎨+⎪⎩<,≤并写出它的所有整数解. 21.为创建文明、和谐的社会,进一步提高我市市民的文明素质,某校对九年级各班文明行为劝导志愿者人数进行了统计,各班志愿者人数有6名,5名,4名,3名,2名,1名共计六种情况,并绘制成下面两个不完整的统计图:(1)该年级共有 个班级,并将条形统计图补充完整;(2)求志愿者人数是6名的班级所占的圆心角的度数; (3)为了了解志愿者在这次活动中的感受,校学生会准备从只有2名志愿者的班级中任选两名志愿者参加座谈会,请用列表或画树状图的方法,求所选志愿者来自同一个班级的概率.22.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过点B 作AC 的平行线交DC 的 延长线于点E .(1)求证:BD =BE ;(2)若BE =10,CE =6,连接OE ,求tan ∠OED 的值.23.今年3月12日植树节前夕,我校购进A 、B 两个品种的树苗,已知一株A 品种树苗 比一株B 品种树苗多20元,买一株A 品种树苗和2株B 品种树苗共需110元.(1)问A 、B 两种树苗每株分别是多少元?(2)4月,为美化校园,学校花费4000元再次购入A 、B 两种树苗,已知A 品种树 苗数量不少于B 品种树苗数量的一半,则此次至多购买B 品种树苗多少株?24.如图,在△ACE 中,CA =CE ,∠CAE =30°,⊙O 经过点C ,且圆的直径AB 在线段AE 上.(1)求证:CE 是⊙O 的切线;(2)若△ACE 中AE 边上的高为h ,试用含h 的代数式表示⊙O 直径AB 的长;(3)设点D 是线段AC 上任意一点(不含端点),连接OD ,当12CD +OD 的最小值为6时,求⊙O 直径AB 的长. 25.对于某一函数给出如下定义:若存在实数p ,当其自变量的值为p 时,其函数值等于p ,则称p 为这个函数的不变值....在函数存在不变值时,该函数的最大不变值与 最小不变值之差q 称为这个函数的不变长度.....特别地,当函数只有一个不变值时, 其不变长度q 为零.例如,下图中的函数有0,1两个不变值,其不变长度q 等于1.(1)分别判断函数y =x -1、y =1x、y =x 2有没有不变值? 如果有,直接写出其不变长度;(2)函数y =2x 2-bx .①若其不变长度为0,求b 的值;②若1≤b ≤3,求其不变长度q 的取值范围;(3)记函数y =x 2-2x (x ≥m )的图象为G 1,将G 1沿x=m 翻折后得到的函数图象记 为G 2.函数G 的图象由G 1和G 2两部分组成,若其不变长度q 满足0≤q ≤3, 求m 的取值范围. 26.如图,直线y =-x +1与x 轴、y 轴分别交于A 、B 两点,点P (a ,b )为双曲线12y x=(x >0)上的一动点,PM ⊥x 轴于点M ,交线段AB 于点F ,PN ⊥y 轴于点N ,交 线段AB 于点E .(1)求点E 、F 两点的坐标(用含有a ,b 的式子表示);(2)当a =34时,求△EOF 的面积; (3)当点P 运动且线段PM 、PN 均与线段AB 有交点时,探究:①BE 、EF 、F A 这三条线段是否能组成一个直角三角形?并说明理由;②∠EOF 的大小是否会改变?若不变,求出∠EOF 的度数;若改变,请说明 理由.数学(八)参考答案及评分标准二、填空题(本大题共6个小题,每小题3分,共18分)13.2x≥14.2(1)b a-15.13k<且0k≠16.10 17.16 18.6三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题8分,第23、24题每小题9分,第25、26题每小题10分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.解:原式=1142--+····················································(4分)=12.···········································································(6分)20.解:3(1)612x xxx-⎧⎪⎨+⎪⎩<①≤②.解不等式①,得:x>-1; ······················································(2分)解不等式②,得:x≤1. ························································(4分)∴不等式组的解集是1-<x≤1. ··············································(5分)∴原不等式组的所有整数解为0,1. ·········································(6分)21.解:(1)∵3名的占15%,∴该年级的班级数为:3÷15%=20(个).∴4名的班级数为:20-4-5-3-2-2=4(个).··················(2分)补全条形统计图如下(图1): ············································(4分)(2)志愿者人数是6名的班级所占的圆心角的度数为:420×360°=72°. ·(6分)(3)画树状图如上(图2)可得:∵共有12种等可能的结果,所选志愿者来自同一个班级的有4种情况,∴所选志愿者来自同一个班级的概率为:41123=. ······················· (8分) 22.(1)证明:∵四边形ABCD 为矩形,∴AC =BD ,AB ∥DC .∵AC ∥BE ,∴四边形ABEC 为平行四边形. ······················ (2分) ∴AC =BE ,∴BD =BE . ················································ (4分)(2)解:过点O 作OF ⊥CD 于点F .∵四边形ABCD 为矩形,∴∠BCD =90°.∵BE =BD =10,∴CD =CE =6. 同理可得:132CF DF CD ===. ∴9EF =. ······································································· (6分) 在Rt △BCE 中,由勾股定理可得:BC =8.∵OB =OD ,∴OF 为△BCD 的中位线.∴142OF BC ==. ∴在Rt △OEF 中,tan ∠OED 49OF EF ==. ······························· (8分) 23.解:(1)设至多A 品种树苗每株x 元,B 品种树苗每株y 元,依题意有:202110x y x y -=⎧⎨+=⎩,解得:5030x y =⎧⎨=⎩. 答:A 品种树苗每株50元,B 品种树苗每株30元. ··············· (4分)(2)设购买B 品种树苗z 株,依题意有:4000301502z z -≥,解得:z ≤87211. ∵z 为整数,∴至多购买B 品种树苗72株. ································ (9分)答:此次至多购买B 品种树苗72株. 24.解:(1)如图1,连接OC ,∵CA =CE ,∠CAE =30°,∴∠E =∠CAE =30°.∵OA =OC ,∴∠COE =2∠A =60°.∴∠OCE =90°.又∵点C 在⊙O 上,∴CE 是⊙O 的切线. ························· (3分) (2)如图2,过点C 作CH ⊥AB 于点H ,连接OC ,由题意可得:CH =h .在Rt △OHC 中,CH =OC ⋅sin ∠COH ,∴h =OC ⋅sin60°=OC .∴OC ==.∴AB =2OC =. ································ (6分) (3)如图3,作OF 平分∠AOC ,交⊙O 于点F ,连接AF 、CF 、DF , 则∠AOF =∠COF =12∠AOC =12(180°-60°)=60°. ∵OA =OF =OC ,∴△AOF 、△COF 都是等边三角形.∴AF =AO =OC =FC .∴四边形AOCF 是菱形.∴根据对称性可得:DF =DO .过点D 作DH ⊥OC 于点H ,∵OA =OC ,∴∠OCA =∠OAC =30°.∴DH =DC ⋅sin ∠DCH =DC ⋅sin30°=12DC . ∴12CD +OD =DH +FD . 根据两点之间线段最短可得: 当点F 、D 、H 三点共线时,DH +FD (即12CD +OD )最小,此时FH =OF ⋅sin ∠FOH =OF =6,则OF =AB =2OF =∴当12CD +OD 的最小值为6时,⊙O 直径AB 的长为 ········· (9分) 25.解:(1)∵函数y =x -1,令y =x ,则x -1=x ,无解,∴函数y =x -1没有不变值. ∵函数y =1x ,令y =x ,则x =1x ,解得:x =±1. ∴函数y =1x的不变值为±1,q =1-(-1)=2. ∵函数y =x 2,令y =x ,则x =x 2,解得:x 1=0,x 2=1.∴函数y =x 2的不变值为:0或1,q =1-0=1. ····················· (3分)(2)①函数y =2x 2-bx ,令y =x ,则x =2x 2-bx ,整理得:x (2x -b -1)=0. ∵q =0,∴x =0且2x -b -1=0,解得:b =-1. ························· (4分)②由①知:x (2x -b -1)=0,∴x =0或2x -b -1=0,解得:x 1=0,x 2=12b +. ∵1≤b ≤3,∴1≤x 2≤2.∴1-0≤q ≤2-0.∴1≤q ≤2. ········ (6分)(3)∵记函数y =x 2-2x (x ≥m )的图象为G 1,将G 1沿x =m 翻折后得到的函数图象 记为G 2,∴函数G 的图象关于x =m 对称. ∴G :y =222(2)2(2)x x x m m x m x x m ⎧-⎪⎨---⎪⎩(≥)(<). ∵当x 2-2x =x 时,x 3=0,x 4=3;当(2m -x )2-2(2m -x )=x 时,∆=1+8m ,当∆<0,即m <-18时,q =x 4-x 3=3;当∆≥0,即m ≥-18时,x 5=x 6= 结合函数G 的图象和直线y =x 的交点情况可得:①当-18≤m ≤0时,x 3=0,x 4=3, ∴x 6<0.∴q =x 4-x 6>3(不符合题意,舍去).②当x 5=x 4=3时,m =1;当x 6=x 4=3时,m =3;当0<m <1时,此时函 数G 有不变值x 4和x 6且x 6<0,∴q =x 4-x 6>3(不符合题意,舍去). 当1≤m ≤3时,此时函数G 有不变值x 4和x 6且x 6≥0,∴q =x 4-x 6≤3. 当m >3时,x 3=0(舍),x 4=3(舍),此时函数G 没有不变值. 综上所述:m 的取值范围为1≤m ≤3或m <18-. ····················· (10分) 26.解:(1)如图1,∵PM ⊥x 轴于点M ,交线段AB 于点F ,∴x F =x M =x P =a .∵PN ⊥y 轴于点N ,交线段AB 于点E ,∴y E =y N =y P =b .∵点E 、F 在直线AB 上,∴y E =-x E +1=b ,y F =-x F +1=-a +1.∴x E =1-b ,y F =1-a .∴点E 的坐标为(1-b ,b ),点F 的坐标为(a ,1-a ). ··············· (2分)(2)当a =34时,∵点P (a ,b )在双曲线y =12x (x >0)上,∴b =1223a =. ∴点P 的坐标为(34,23),点E 的坐标为(13,23),点F 的坐标为(34,14). ∴ON =23,NE =13,OM =34,FM =14. ∵直线y =-x +1与x 轴、y 轴分别交于A 、B 两点,∴当x =0时,y =1,则点B 的坐标为(0,1);当y =0时,x =1,则点A 的坐标为(1,0).∴OA =OB =1.∵PN ⊥OB ,PM ⊥OA ,OA ⊥OB ,∴∠PNO =∠NOM =∠OMP =90°. ∴四边形OMPN 是矩形.∴PM =ON =23,NP =OM =34. ∴BN =1-23=13,PE =34-13=512,PF =23-14=512. ∴S △OEF =S 矩形OMPN -S △ONE -S △OMF -S △PEF=OM ⋅ON -12ON ⋅NE -12OM ⋅FM -12PE ⋅PF=321211311554323324421212⨯-⨯⨯-⨯⨯-⨯⨯=113255293228824---=. ∴△EOF 的面积为524. ·························································· (4分) (3)当点P 运动且线段PM 、PN 均与线段AB 有交点时:①BE 、EF 、F A 这三条线段总能组成一个直角三角形.理由如下:如图1,∵PM ⊥x 轴,FM =1-a ,AM =1-a , ∴222222(1)(1)2(1)FA FM MA a a a =+=-+-=-.同理可得:BE 2=2(1-b )2,EF 2=[a -(1-b )]2+[b -(1-a )]2=2(a +b -1)2.∵点P (a ,b )在双曲线y =12x(x >0)上,∴2ab =1,a >0,b >0. ∴EF 2=2(a 2+b 2+1+2ab -2a -2b )=2(a 2+b 2+1+1-2a -2b )=2[(a 2-2a +1)+(b 2-2b +1)]=2(1-a )2+2(1-b )2=F A 2+BE 2.∴BE 、EF 、F A 这三条线段总能组成一个直角三角形. ·················· (7分) ②∠EOF 的大小不变.理由如下:如图2,过点E 作EH ⊥OM ,垂足为点H ,∵EN ⊥ON ,∴OE 2=ON 2+EN 2=b 2+(1-b )2=2b 2+1-2b .∵EH ⊥OM ,EH =b ,AH =1-(1-b )=b ,∴EA =.同理可得:F A =(1-a ).∴EF =EA -F A =--a )=b +a -1). ∵2ab =1,∴EF ⋅EA =b +a -1)⋅=2(b 2+ab -b )=2b 2+2ab -2b =2b 2+1-2b .∴OE 2=EF ⋅EA .∴OE EA EF OE=. ∵∠OEF =∠AEO ,∴△OEF ∽△AEO .∴∠EOF =∠EAO .∵OA =OB =1,∠AOB =90°,∴∠OAB =∠OBA =45°.∴∠EOF =45°.∴∠EOF 的大小不变,始终等于45°. ··············· (10分)。

2017年湖南省长沙市中考数学试卷(含答案解析)

2017年湖南省长沙市中考数学试卷(含答案解析)

2017年湖南省长沙市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列实数中,为有理数的是()A.B.πC.D.12.(3分)下列计算正确的是()A.=B.a+2a=2a2C.x(1+y)=x+xy D.(mn2)3=mn63.(3分)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826×106B.8.26×107C.82.6×106D.8.26×1084.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形 B.正五边形C.正方形D.平行四边形5.(3分)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形6.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4D.“367人中有2人同月同日出生”为必然事件7.(3分)某几何体的三视图如图所示,因此几何体是()A.长方形B.圆柱C.球D.正三棱柱8.(3分)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4) B.(﹣3,4)C.(3,﹣4)D.(2,4)9.(3分)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为()A.60°B.70°C.80°D.110°10.(3分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm11.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里 D.3里12.(3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H 不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC 交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B.C.D.随H点位置的变化而变化二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:2a2+4a+2=.14.(3分)方程组的解是.15.(3分)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.16.(3分)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是.17.(3分)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.62=1.2,S乙2=0.5,则在本次测试中,同学的成绩更稳米,方差分别是S甲定(填“甲”或“乙”)18.(3分)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1.20.(6分)解不等式组,并把它的解集在数轴上表示出来.21.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A60≤x<70170.17B70≤x<8030aC80≤x<90b0.45D90≤x<10080.08请根据所给信息,解答以下问题:(1)表中a=,b=;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.22.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?23.(9分)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.24.(9分)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.25.(10分)若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k ≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c (a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.26.(10分)如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0,y0)总有n+≥﹣4my02﹣12y0﹣50成立,求实数n的最小值.2017年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•长沙)下列实数中,为有理数的是()A.B.πC.D.1【分析】根据有理数是有限小数或无限循环小数,无理数是无限不循环小数,可得答案.【解答】解:,π,是无理数,1是有理数,故选:D.【点评】本题考查了实数,正确区分有理数与无理数是解题关键.2.(3分)(2017•长沙)下列计算正确的是()A.=B.a+2a=2a2C.x(1+y)=x+xy D.(mn2)3=mn6【分析】分别利用合并同类项法则以及单项式乘以多项式和积的乘方运算法则化简判断即可.【解答】解:A、+无法计算,故此选项错误;B、a+2a=3a,故此选项错误;C、x(1+y)=x+xy,正确;D、(mn2)3=m3n6,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及单项式乘以多项式和积的乘方运算等知识,正确掌握运算法则是解题关键.3.(3分)(2017•长沙)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826×106B.8.26×107C.82.6×106D.8.26×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将82600000用科学记数法表示为:8.26×107.故选B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•长沙)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形 B.正五边形C.正方形D.平行四边形【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,又是中心对称图形,故本选项正确;D、不是轴对称图形,是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)(2017•长沙)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【分析】根据三角形内角和等于180°计算即可.【解答】解:设三角形的三个内角的度数之比为x、2x、3x,则x+2x+3x=180°,解得,x=30°,则3x=90°,∴这个三角形一定是直角三角形,故选:B.【点评】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键.6.(3分)(2017•长沙)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4D.“367人中有2人同月同日出生”为必然事件【分析】根据可能性的大小、全面调查与抽样调查的定义及中位数概念、必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:A、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;B、可能性是1%的事件在一次试验中可能发生,此选项错误;C、数据3,5,4,1,﹣2的中位数是3,此选项错误;D、“367人中有2人同月同日出生”为必然事件,此选项正确;故选:D.【点评】本题主要考查可能性的大小、全面调查与抽样调查的定义及中位数概念、随机事件,熟练掌握基本定义是解题的关键.7.(3分)(2017•长沙)某几何体的三视图如图所示,因此几何体是()A.长方形B.圆柱C.球D.正三棱柱【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.【解答】解:从正面看,是一个矩形;从左面看,是一个矩形;从上面看,是圆,这样的几何体是圆柱,故选B.【点评】本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.8.(3分)(2017•长沙)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4) B.(﹣3,4)C.(3,﹣4)D.(2,4)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【解答】解:y=2(x﹣3)2+4是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,4).故选A.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.9.(3分)(2017•长沙)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为()A.60°B.70°C.80°D.110°【分析】直接根据平行线的性质即可得出结论.【解答】解:∵直线a∥b,∴∠3=∠1=110°,∴∠2=180°﹣110°=70°,故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.10.(3分)(2017•长沙)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm【分析】根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB===5cm,所以,这个菱形的周长=4×5=20cm.故选D.【点评】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.11.(3分)(2017•长沙)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里 D.3里【分析】设第一天走了x里,则第二天走了x里,第三天走了×x…第六天走了()5x里,根据路程为378里列出方程并解答.【解答】解:设第一天走了x里,依题意得:x+x+x+x+x+x=378,解得x=192.则()5x=()5×192=6(里).故选:C.【点评】本题考查了一元一次方程的应用.根据题意得到()5x里是解题的难点.12.(3分)(2017•长沙)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B.C.D.随H点位置的变化而变化【分析】设CH=x,DE=y,则DH=﹣x,EH=﹣y,然后利用正方形的性质和折叠可以证明△DEH∽△CHG,利用相似三角形的对应边成比例可以把CG,HG分别用x,y分别表示,△CHG的周长也用x,y表示,然后在Rt△DEH中根据勾股定理可以得到x﹣x2=y,进而求出△CHG的周长.【解答】解:设CH=x,DE=y,则DH=﹣x,EH=﹣y,∵∠EHG=90°,∴∠DHE+∠CHG=90°.∵∠DHE+∠DEH=90°,∴∠DEH=∠CHG,又∵∠D=∠C=90°,△DEH∽△CHG,∴==,即==,∴CG=,HG=,△CHG的周长为n=CH+CG+HG=,在Rt△DEH中,DH2+DE2=EH2即(﹣x)2+y2=(﹣y)2整理得﹣x2=,∴n=CH+HG+CG===.∴=.故选:B.【点评】本题考查翻折变换及正方形的性质,正方形的有些题目有时用代数的计算证明比用几何方法简单,甚至几何方法不能解决的用代数方法可以解决.本题综合考查了相似三角形的应用和正方形性质的应用.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•长沙)分解因式:2a2+4a+2=2(a+1)2.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2+2a+1)=2(a+1)2,故答案为:2(a+1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(3分)(2017•长沙)方程组的解是.【分析】根据加减消元法,可得答案.【解答】解:两式相加,得4x=4,解得x=1,把x=1代入x+y=1,解得y=0,方程组的解为,故答案为:.【点评】本题考查了解二元一次方程组,利用加减消元法是解题关键.15.(3分)(2017•长沙)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为5.【分析】连接OC,由垂径定理知,点E是CD的中点,AE=CD,在直角△OCE 中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.【点评】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.16.(3分)(2017•长沙)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是(1,2).【分析】根据位似变换的性质进行计算即可.【解答】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2),故答案为:(1,2).【点评】本题考查的是位似变换的性质,掌握平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k是解题的关键.17.(3分)(2017•长沙)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是S甲2=1.2,S乙2=0.5,则在本次测试中,乙同学的成绩更稳定(填“甲”或“乙”)【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=1.2,S乙2=0.5,∴S甲>S乙,∴甲、乙两名同学成绩更稳定的是乙;故答案为:乙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18.(3分)(2017•长沙)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为4.【分析】作MN⊥x轴于N,得出M(x,x),在Rt△OMN中,由勾股定理得出方程,解方程求出x=2,得出M(2,2),即可求出k的值.【解答】解:作MN⊥x轴于N,如图所示:设M(x,y),∵点M是函数y=x与y=的图象在第一象限内的交点,∴M(x,x),在Rt△OMN中,由勾股定理得:x2+(x)2=42,解得:x=2,∴M(2,2),代入y=得:k=2×2=4;故答案为:4.【点评】本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点M的坐标是解决问题的关键.三、解答题(本大题共8小题,共66分)19.(6分)(2017•长沙)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=3+1﹣1+3=6.【点评】此题考查了实数的运算,绝对值,以及零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.20.(6分)(2017•长沙)解不等式组,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x≥﹣9﹣x,得:x≥﹣3,解不等式5x﹣1>3(x+1),得:x>2,则不等式组的解集为x>2,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2017•长沙)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A60≤x<70170.17B70≤x<8030aC80≤x<90b0.45D90≤x<10080.08请根据所给信息,解答以下问题:(1)表中a=0.3,b=45;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.【分析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)列树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【解答】解:(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人),故答案为:0.3,45;(2)360°×0.3=108°,答:扇形统计图中B组对应扇形的圆心角为108°;(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,列树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)(2017•长沙)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【分析】(1)在△ABP中,求出∠PAB、∠PBA的度数即可解决问题;(2)作PH⊥AB于H.求出PH的值即可判定;【解答】解:(1)∵∠PAB=30°,∠ABP=120°,∴∠APB=180°﹣∠PAB﹣∠ABP=30°.(2)作PH⊥AB于H.∵∠BAP=∠BPA=30°,∴BA=BP=50,在Rt△PBH中,PH=PB•sin60°=50×=25,∵25>25,∴海监船继续向正东方向航行是安全的.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.23.(9分)(2017•长沙)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.【分析】(1)连接OC,由切线的性质可知∠ACO=90°,由于=,所以∠AOC=∠BOC,从而可证明∠A=∠B,从而可知OA=OB;(2)由(1)可知:△AOB是等腰三角形,所以AC=2,从可求出扇形OCE的面积以及△OCB的面积【解答】解:(1)连接OC,∵AB与⊙O相切于点C∴∠ACO=90°,由于=,∴∠AOC=∠BOC,∴∠A=∠B∴OA=OB,(2)由(1)可知:△OAB是等腰三角形,∴BC=AB=2,∴sin∠COB==,∴∠COB=60°,∴∠B=30°,∴OC=OB=2,∴扇形OCE的面积为:=,△OCB的面积为:×2×2=2∴S=2﹣π阴影【点评】本题考查切线的性质,解题的关键是求证OA=OB,然后利用等腰三角形的三线合一定理求出BC与OC的长度,从而可知扇形OCE与△OCB的面积,本题属于中等题型.24.(9分)(2017•长沙)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A 型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.【分析】(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.根据16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,列出方程即可解决问题;(2)根据总利润=两种商品的利润之和,列出式子即可解决问题;(3)设利润为w元.则w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500,分三种情形讨论即可解决问题.【解答】解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.由题意:=×2,解得x=150,经检验x=150是分式方程的解,答:一件B型商品的进价为150元,则一件A型商品的进价为160元.(2)因为客商购进A型商品m件,所以客商购进B型商品(250﹣m)件.由题意:v=80m+70(250﹣m)=10m+17500,∵80≤m≤250﹣m,∴80≤m≤125,(3)设利润为w元.则w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500,①当10﹣a>0时,w随m的增大而增大,所以m=125时,最大利润为(18750﹣125a)元.②当10﹣a=0时,最大利润为17500元.③当10﹣a<0时,w随m的增大而减小,所以m=80时,最大利润为(18300﹣80a)元.【点评】本题考查分式方程的应用、一次函数的应用等知识,解题的关键是理解题意,学会构建方程或一次函数解决问题,属于中考常考题型.25.(10分)(2017•长沙)若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k ≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c (a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.【分析】(1)由和谐三组数的定义进行验证即可;(2)把M、N、R三点的坐标分别代入反比例函数解析式,可用t和k分别表示出y1、y2、y3,再由和谐三组数的定义可得到关于t的方程,可求得t的值;(3)①由直线解析式可求得x1=﹣,联立直线和抛物线解析式消去y,利用一元二次方程根与系数的关系可求得x2+x3=﹣,x2x3=,再利用和谐三数组的定义证明即可;②由条件可得到a+b+c=0,可得c=﹣(a+b),由a>2b>3c可求得的取值范围,令m=,利用两点间距离公式可得到OP2关于m的二次函数,利用二次函数的性质可求得OP2的取值范围,从而可求得OP的取值范围.【解答】解:(1)不能,理由如下:∵1、2、3的倒数分别为1、、,∴+≠1,1+≠,1+≠∴实数1,2,3不可以构成“和谐三组数”;(2)∵M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k ≠0)的图象上,∴y1、y2、y3均不为0,且y1=,y2=,y3=,∴=,=,=,∵y1,y2,y3构成“和谐三组数”,∴有以下三种情况:当=+时,则=+,即t=t+1+t+3,解得t=﹣4;当=+时,则=+,即t+1=t+t+3,解得t=﹣2;当=+时,则=+,即t+3=t+t+1,解得t=2;∴t的值为﹣4、﹣2或2;(3)①∵a、b、c均不为0,∴x1,x2,x3都不为0,∵直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),∴0=2bx1+2c,解得x1=﹣,联立直线与抛物线解析式,消去y可得2bx+2c=ax2+3bx+3c,即ax2+bx+c=0,∵直线与抛物线交与B(x2,y2),C(x3,y3)两点,∴x2、x3是方程ax2+bx+c=0的两根,∴x2+x3=﹣,x2x3=,∴+===﹣=,∴x1,x2,x3构成“和谐三组数”;②∵x2=1,∴a+b+c=0,∴c=﹣a﹣b,∵a>2b>3c,∴a>2b>3(﹣a﹣b),且a>0,整理可得,解得﹣<<,∵P(,)∴OP2=()2+()2=()2+()2=2()2+2+1=2(+)2+,令m=,则﹣<m<且m≠0,且OP2=2(m+)2+,∵2>0,∴当﹣<m<﹣时,OP2随m的增大而减小,当m=﹣时,OP2有最大值,当m=﹣时,OP2有最小值,当﹣<m<时,OP2随m的增大而增大,当m=﹣时,OP2有最小值,当m=时,OP2有最大值,∴≤OP2<且OP2≠1,∵P到原点的距离为非负数,∴≤OP<且OP≠1.【点评】本题为二次函数的综合应用,涉及新定义、函数图象的交点、一元二次方程根与系数的关系、勾股定理、二次函数的性质、分类讨论思想及转化思想等知识.在(1)中注意利用和谐三数组的定义,在(2)中由和谐三数组得到关于t的方程是解题的关键,在(3)①中用a、b、c分别表示出x1,x2,x3是解题的关键,在(3)②中把OP2表示成二次函数的形式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.26.(10分)(2017•长沙)如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0,y0)总有n+≥﹣4my02﹣12y0﹣50成立,求实数n的最小值.。

2017年湖南省长沙市中考数学模拟试卷(一)(解析版)

2017年湖南省长沙市中考数学模拟试卷(一)(解析版)

2017年湖南省长沙市中考数学模拟试卷(一)一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共10个小题,每小题3分,共30分)1.3的相反数是()A.3 B.﹣3 C.D.﹣2.下列运算中,结果正确的是()A.4a﹣a=3a B.a10÷a2=a5C.a2+a3=a5 D.a3•a4=a123.福布斯中文网微博通报数据显示,天猫双11成交额已经在活动开始后的60分钟内突破122亿元人民币.则122亿用科学记数法来表示是()A.1.22×1010B.122×108C.12.2×109D.1.22×1094.如图是两个相同的正方体和一个圆锥形组成的立体图形,其主视图是()A.B.C.D.5.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°6.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A.48(1﹣x)2=36 B.48(1+x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=48 7.如图,正比例函数y1与反比例函数y2相交于点E(﹣1,2),若y1>y2>0,则x的取值范围在数轴上表示正确的是()A. B. C.D.8.如图,AB是⊙O的直径,∠AOC=110°,则∠D=()A.25°B.35°C.55°D.70°9.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210° D.270°10.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.8二、填空题(本题共7小题,每小题3分,共24分)11.如图所示:用一个半径为60cm,圆心角为150°的扇形围成一个圆锥,则这个圆锥的底面半径为cm.12.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.13.如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.14.在一只不透明的口袋中放入红球6个,黑球2个,黄球n个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n=.15.分解因式:x2y﹣4y=.16.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为.17.如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是.三、解答题本题共2小题,每小题6分,共12分)18.计算:|﹣3|+(﹣2)2﹣(+1)0.19.解不等式组并将其解集在数轴上表示出来.四、解答题(本大题共2小题,每小题8分,共16分)20.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2m,台阶AC的坡度为1:,且B,C,E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).21.第九届中国国际园林博览会(园博会)已于2013年5月18日在北京开幕,以下是根据近几届园博会的相关数据绘制的统计图的一部分.(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为0.04平方千米,牡丹园面积为平方千米;(2)第九届园博会会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八界园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据;(3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日均接待游客量和单日最多接待游客量中的某个量近似成正比例关系.根据小娜的发现,请估计,将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位).第七届至第十届园博会游客量和停车位数量统计表:五、解答题(本题共2小题,每小题9分,共18分)22.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若cos∠BAD=,BE=,求OE的长.23.阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式.(2)试说明的最小值为8.六、解答题(本大题共2小题,每小题10分,共20分)24.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y 轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.25.已知:如图,▱ABCD中,AD=3cm,CD=1cm,∠B=45°,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QP交BA的延长线于点M,过M作MN⊥BC,垂足是N,设运动时间为t(s)(0<t<1).(1)当t为何值时,四边形AQDM是平行四边形?(2)证明:在P、Q运动的过程中,总有CQ=AM;(3)是否存在某一时刻t,使四边形ANPM的面积是平行四边形ABCD的面积的一半?若存在,求出相应的t值;若不存在,说明理由.2017年湖南省长沙市中考数学模拟试卷(一)参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共10个小题,每小题3分,共30分)1.3的相反数是()A.3 B.﹣3 C.D.﹣【考点】14:相反数.【分析】根据相反数的意义,3的相反数即是在3的前面加负号.【解答】解:根据相反数的概念及意义可知:3的相反数是﹣3.故选:B.2.下列运算中,结果正确的是()A.4a﹣a=3a B.a10÷a2=a5C.a2+a3=a5 D.a3•a4=a12【考点】48:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方.【分析】根据合并同类项、同底数幂的除法法则:底数不变,指数相减,同底数幂的乘法法则:底数不变,指数相加,可判断各选项.【解答】解:A、4a﹣a=3a,故本选项正确;B、a10÷a2=a10﹣2=a8≠a5,故本选项错误;C、a2+a3≠a5,故本选项错误;D、根据a3•a4=a7,故a3•a4=a12本选项错误;故选A.3.福布斯中文网微博通报数据显示,天猫双11成交额已经在活动开始后的60分钟内突破122亿元人民币.则122亿用科学记数法来表示是()A.1.22×1010B.122×108C.12.2×109D.1.22×109【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将122亿用科学记数法表示为1.22×1010.故选A.4.如图是两个相同的正方体和一个圆锥形组成的立体图形,其主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层最左边有一个三角形.故选B.5.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°【考点】JA:平行线的性质.【分析】根据两直线平行,内错角相等求出∠3,再求解即可.【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.6.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A.48(1﹣x)2=36 B.48(1+x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=48【考点】AC:由实际问题抽象出一元二次方程.【分析】三月份的营业额=一月份的营业额×(1+增长率)2,把相关数值代入即可.【解答】解:二月份的营业额为36(1+x),三月份的营业额为36(1+x)×(1+x)=36(1+x)2,即所列的方程为36(1+x)2=48,故选D.7.如图,正比例函数y1与反比例函数y2相交于点E(﹣1,2),若y1>y2>0,则x的取值范围在数轴上表示正确的是()A. B. C.D.【考点】G8:反比例函数与一次函数的交点问题;C4:在数轴上表示不等式的解集.【分析】根据两函数的交点坐标,结合图象即可求出x的范围,再在数轴上表示出来,即可得出选项.【解答】解:∵正比例函数y1与反比例函数y2相交于点E(﹣1,2),∴根据图象可知当y1>y2>0时x的取值范围是x<﹣1,∴在数轴上表示为:,故选A.8.如图,AB是⊙O的直径,∠AOC=110°,则∠D=()A.25°B.35°C.55°D.70°【考点】M5:圆周角定理.【分析】由AB是⊙O的直径,∠AOC=110°,可求得∠BOC的度数,又由圆周角定理,可求得∠D的度数.【解答】解:∵AB是⊙O的直径,∠AOC=110°,∴∠BOC=180°﹣∠AOC=70°,∴∠D=∠BOC=35°.故选B.9.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210° D.270°【考点】JA:平行线的性质.【分析】根据两直线平行,同旁内角互补求出∠B+∠C=180°,从而得到以点B、点C为顶点的五边形的两个外角的度数之和等于180°,再根据多边形的外角和定理列式计算即可得解.【解答】解:∵AB∥CD,∴∠B+∠C=180°,∴∠4+∠5=180°,根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°﹣180°=180°.故选B.10.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.8【考点】L5:平行四边形的性质;KJ:等腰三角形的判定与性质;KO:含30度角的直角三角形;KQ:勾股定理.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF 为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF 与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B二、填空题(本题共7小题,每小题3分,共24分)11.如图所示:用一个半径为60cm,圆心角为150°的扇形围成一个圆锥,则这个圆锥的底面半径为25cm.【考点】MN:弧长的计算.【分析】根据弧长公式计算出弧长,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是50π,设圆锥的底面半径是r,列出方程求解.【解答】解:半径为60cm,圆心角为150°的扇形的弧长是=50π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是50π,设圆锥的底面半径是r,则得到2πr=50π,解得:r=25cm,这个圆锥的底面半径为25cm.12.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是20.【考点】KH:等腰三角形的性质;16:非负数的性质:绝对值;23:非负数的性质:算术平方根;K6:三角形三边关系.【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【解答】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.13.如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.【考点】M2:垂径定理;KQ:勾股定理.【分析】首先连接OC,由M是CD的中点,EM⊥CD,可得EM过⊙O的圆心点O,然后设半径为x,由勾股定理即可求得:(8﹣x)2+22=x2,解此方程即可求得答案.【解答】解:连接OC,∵M是CD的中点,EM⊥CD,∴EM过⊙O的圆心点O,设半径为x,∵CD=4,EM=8,∴CM=CD=2,OM=8﹣OE=8﹣x,在Rt△OCM中,OM2+CM2=OC2,即(8﹣x)2+22=x2,解得:x=.∴所在圆的半径为:.故答案为:.14.在一只不透明的口袋中放入红球6个,黑球2个,黄球n个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n=4.【考点】X4:概率公式.【分析】根据口袋中放入红球6个,黑球2个,黄球n个,故球的总个数为6+2+n,再根据黄球的概率公式列式解答即可.【解答】解:∵口袋中放入红球6个,黑球2个,黄球n个,∴球的总个数为6+2+n,∵搅匀后随机从中摸出一个恰好是黄球的概率为,=,解得,n=4.故答案为:4.15.分解因式:x2y﹣4y=y(x+2)(x﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式y,然后再利用平方差公式进行二次分解.【解答】解:x2y﹣4y,=y(x2﹣4),=y(x+2)(x﹣2).故答案为:y(x+2)(x﹣2).16.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为72cm.【考点】PB:翻折变换(折叠问题).【分析】如图,首先求出CE=3λ,则CF=4λ(λ为参数);进而求出BF=6λ,AB=8λ,此为解决该题的关键性结论;在直角△ADE中,运用勾股定理列出关于λ的方程,求出λ即可解决问题.【解答】解:如图,∵四边形ABCD为矩形,∴AB=CD,AD=BC;∠B=∠D=∠C=90°;∵tan∠EFC=,且tan∠EFC=,∴设CE=3λ,则CF=4λ;由勾股定理得:EF=5λ;由题意得:EF=ED=5λ,∠AFE=∠D=90°,∴AB=DC=8λ,∠BAF+∠AFB=∠AFB+∠EFC,∴∠BAF=∠EFC,∴tan∠BAF=,∴BF=6λ,AD=BC=10λ;在直角△ADE中,由勾股定理得:AD2+DE2=AE2,而AE=10,解得:λ=2,∴该矩形的周长=2(8λ+10λ)=72(cm).故答案为72cm.17.如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是5.【考点】PA:轴对称﹣最短路线问题.【分析】要求PM+PN的最小值,PM、PN不能直接求,可考虑通过作辅助线转化PN、PM的值,从而找出其最小值求解.【解答】解:如图:作ME⊥AC交AD于E,连接EN,则EN就是PM+PN的最小值,∵M、N分别是AB、BC的中点,∴BN=BM=AM,∵ME⊥AC交AD于E,∴AE=AM,∴AE=BN,AE∥BN,∴四边形ABNE是平行四边形,∴EN=AB,EN∥AB,而由题意可知,可得AB==5,∴EN=AB=5,∴PM+PN的最小值为5.故答案为:5.三、解答题本题共2小题,每小题6分,共12分)18.计算:|﹣3|+(﹣2)2﹣(+1)0.【考点】2C:实数的运算;6E:零指数幂.【分析】分别进行绝对值、平方及零指数幂的运算,然后合并即可得出答案.【解答】解:原式=3+4﹣1=6.19.解不等式组并将其解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:由①得,x≤1;由②得,x>﹣2,故此不等式组的解集为:﹣2<x≤1.在数轴上表示为:四、解答题(本大题共2小题,每小题8分,共16分)20.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2m,台阶AC的坡度为1:,且B,C,E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【分析】由于AF⊥AB,则四边形ABEF为矩形,设DE=x,在Rt△CDE中,CE═==x,在Rt△ABC中,得到=,求出BC,在Rt△AFD 中,求出AF,由AF=BC+CE即可求出x的长.【解答】解:∵AF⊥AB,AB⊥BE,DE⊥BE,∴四边形ABEF为矩形,∴AF=BE,EF=AB=2设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,∵=,AB=2,∴BC=2,在Rt△AFD中,DF=DE﹣EF=x﹣2,∴AF===(x﹣2),∵AF=BE=BC+CE.∴(x﹣2)=2+x,解得x=6.答:树DE的高度为6米.21.第九届中国国际园林博览会(园博会)已于2013年5月18日在北京开幕,以下是根据近几届园博会的相关数据绘制的统计图的一部分.(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为0.04平方千米,牡丹园面积为0.03平方千米;(2)第九届园博会会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八界园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据;(3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日均接待游客量和单日最多接待游客量中的某个量近似成正比例关系.根据小娜的发现,请估计,将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位).第七届至第十届园博会游客量和停车位数量统计表:【考点】VC:条形统计图;V5:用样本估计总体;VA:统计表;VB:扇形统计图.【分析】(1)根据月季园和牡丹园所占的比例求出牡丹园的面积即可;(2)先算出植物花园的总面积,然后可求出第九届园博会会园区陆地面积,根据图象求出第七、八界园博会的水面面积之和,补全条形统计图即可;(3)根据图表所给的信息,求出停车位数量与单日最多接待游客量成正比例关系,算出比值,求出大约需要设置的停车位数量.【解答】解:(1)∵月季园面积为0.04平方千米,月季园所占比例为20%,则牡丹园的面积为:15%×=0.03(平方千米);故答案为0.03;(2)植物花园的总面积为:0.04÷20%=0.2(平方千米),则第九届园博会会园区陆地面积为:0.2×18=3.6(平方千米),第七、八界园博会的水面面积之和为:1+0.5=1.5(平方千米),则第九届园博会水面面积为1.5平方千米,如图:(3)由图标可得,停车位数量与单日最多接待游客量成正比例关系,比值约为500,则第十届园博会大约需要设置的停车位数量约为:500×7.4≈3.7×103..故答案为:3.7×103.五、解答题(本题共2小题,每小题9分,共18分)22.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若cos∠BAD=,BE=,求OE的长.【考点】MD:切线的判定;S9:相似三角形的判定与性质.【分析】(1)连接OD,BD,由AB为圆O的直径,得到∠ADB为直角,可得出三角形BCD为直角三角形,E为斜边BC的中点,利用斜边上的中线等于斜边的一半,得到CE=DE,利用等边对等角得到一对角相等,再由OA=OD,利用等边对等角得到一对角相等,由直角三角形ABC中两锐角互余,利用等角的余角相等得到∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为圆O的切线;(2)证明OE是△ABC的中位线,则AC=2OE,然后证明△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE 的长即可求得.【解答】(1)证明:连接OD,BD,∵AB为圆O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,即∠C+∠A=90°,∴∠ADO+∠CDE=90°,即∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为圆O的切线;(2)证明:∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE;(3)解:∵cos∠BAD=,∴sin∠BAC==,又∵BE=,E是BC的中点,即BC=,∴AC=.又∵AC=2OE,∴OE=AC=.23.阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式.(2)试说明的最小值为8.【考点】6B:分式的加减法;C2:不等式的性质.【分析】(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;(2)原式分子变形后,利用不等式的性质求出最小值即可.【解答】解:(1)设﹣x4﹣6x+8=(﹣x2+1)(x2+a)+b=﹣x4+(1﹣a)x2+a+b,可得,解得:a=7,b=1,则原式=x2+7+;(2)由(1)可知,=x2+7+.∵x2≥0,∴x2+7≥7;当x=0时,取得最小值0,∴当x=0时,x2+7+最小值为8,即原式的最小值为8.六、解答题(本大题共2小题,每小题10分,共20分)24.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y 轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.【考点】HF:二次函数综合题.【分析】(1)根据与x轴的两个交点A、B的坐标,设出二次函数交点式解析式y=a(x+1)(x﹣2),然后把点C的坐标代入计算求出a的值,即可得到二次函数解析式;(2)设OP=x,然后表示出PC、PA的长度,在Rt△POC中,利用勾股定理列式,然后解方程即可;(3)①根据相似三角形对应角相等可得∠MCH=∠CAO,然后分(i)点H在点C 下方时,利用同位角相等,两直线平行判定CM∥x轴,从而得到点M的纵坐标与点C的纵坐标相同,是﹣2,代入抛物线解析式计算即可;(ii)点H在点C上方时,根据(2)的结论,点M为直线PC与抛物线的另一交点,求出直线PC的解析式,与抛物线的解析式联立求解即可得到点M的坐标;②在x轴上取一点D,过点D作DE⊥AC于点E,可以证明△AED和△AOC相似,根据相似三角形对应边成比例列式求解即可得到AD的长度,然后分点D在点A 的左边与右边两种情况求出OD的长度,从而得到点D的坐标,再作直线DM∥AC,然后求出直线DM的解析式,与抛物线解析式联立求解即可得到点M的坐标.【解答】解:(1)设该二次函数的解析式为:y=a(x+1)(x﹣2),将x=0,y=﹣2代入,得﹣2=a(0+1)(0﹣2),解得a=1,∴抛物线的解析式为y=(x+1)(x﹣2),即y=x2﹣x﹣2;(2)设OP=x,则PC=PA=x+1,在Rt△POC中,由勾股定理,得x2+22=(x+1)2,解得,x=,即OP=;(3)①∵△CHM∽△AOC,∴∠MCH=∠CAO,(i)如图1,当H在点C下方时,∵∠OAC+∠OCA=90°,∠MCH=∠OAC∴∠OCA+∠MCH=90°∴∠OCM=90°=∠AOC∴CM∥x轴∴y M=﹣2,∴x2﹣x﹣2=﹣2,解得x1=0(舍去),x2=1,∴M(1,﹣2),(ii)如图1,当H在点C上方时,∵∠MCH=∠CAO,∴PA=PC,由(2)得,M′为直线CP与抛物线的另一交点,设直线CM′的解析式为y=kx﹣2,把P(,0)的坐标代入,得k﹣2=0,解得k=,∴y=x﹣2,由x﹣2=x2﹣x﹣2,解得x1=0(舍去),x2=,此时y=×﹣2=,∴M′(,),②在x轴上取一点D,如图(备用图),过点D作DE⊥AC于点E,使DE=,在Rt△AOC中,AC===,∵∠COA=∠DEA=90°,∠OAC=∠EAD,∴△AED∽△AOC,∴=,即=,解得AD=2,∴D(1,0)或D(﹣3,0).过点D作DM∥AC,交抛物线于M,如图(备用图)则直线DM的解析式为:y=﹣2x+2或y=﹣2x﹣6,当﹣2x﹣6=x2﹣x﹣2时,即x2+x+4=0,方程无实数根,当﹣2x+2=x2﹣x﹣2时,即x2+x﹣4=0,解得x1=,x2=,∴点M的坐标为(,3+)或(,3﹣).25.已知:如图,▱ABCD中,AD=3cm,CD=1cm,∠B=45°,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QP交BA的延长线于点M,过M作MN⊥BC,垂足是N,设运动时间为t(s)(0<t<1).(1)当t为何值时,四边形AQDM是平行四边形?(2)证明:在P、Q运动的过程中,总有CQ=AM;(3)是否存在某一时刻t,使四边形ANPM的面积是平行四边形ABCD的面积的一半?若存在,求出相应的t值;若不存在,说明理由.【考点】SO:相似形综合题.【分析】(1)连结AQ、MD,根据平行四边形的对角线互相平分得出AP=DP,代入求出即可;(2)根据已知得出△AMP∽△DQP,再根据相似三角形的性质得出=,求出AM的值,从而得出在P、Q运动的过程中,总有CQ=AM;(3)根据已知条件得出BN=MN,再根据BM=AB+AM,由勾股定理得出BN=MN=(1+t),根据四边形ABCD是平行四边形,得出MN⊥AD,设四边形ANPM的面积为y,得出y=×AP×MN,假设存在某一时刻t,四边形ANPM的面积是平行四边形ABCD的面积的一半,得出t2+t=×3×,最后进行整理,即可求出t的值.【解答】解:(1)连结AQ、MD,∵当AP=PD时,四边形AQDM是平行四边形,∴3t=3﹣3t,解得:t=,∴t=s时,四边形AQDM是平行四边形.(2)∵四边形ABCD是平行四边形,∴AB∥CD,∴△AMP∽△DQP,∴=,∴=,∴AM=t,即在P、Q运动的过程中,总有CQ=AM;(3)∵MN⊥BC,∴∠MNB=90°,∵∠B=45°,∴∠BMN=45°=∠B,∴BN=MN,∵BM=AB+AM=1+t,在Rt△BMN中,由勾股定理得:BN=MN=(1+t),∵四边形ABCD是平行四边形,∴AD∥BC,∵MN⊥BC,∴MN⊥AD,设四边形ANPM的面积为y,∴y=×AP×MN=×3t×(1+t)=t2+t(0<t<1).假设存在某一时刻t,四边形ANPM的面积是平行四边形ABCD的面积的一半,∴t2+t=×3×,整理得:t2+t﹣1=0,解得:t1=,t2=(舍去),∴当t=s时,四边形ANPM的面积是平行四边形ABCD的面积的一半.2017年7月18日。

2017年长沙市中考数学试卷及解析

2017年长沙市中考数学试卷及解析

ymax 1250 125a 17500 18750 125a ; 当 a =10 时, y 17500 ,利润为 17500 ; 当 a 10 时, y 随 m 的增大而减小,当 m 80 时利润最大, ymax 800 80a 17500 18300 80a ;

1 x n 1 ∴ m 2 故答案选择 B.
∴n
1
2x 1 1 2x 1

1 2x 1 1 x
2
二、填空题 13. 【答案】 2( a 1) 【解析】先提取公因数 2,然后运用完全平方公式即可。
2
14. 【答案】
x 1 y 0
【解析】本题为解二元一次方程组,利用加减消元或代入消元即可求解. 15. 【答案】5 【解析】 连接 OC , ∵ CD 6 , 由垂径定理得 CE 3 , 设☉O 半径为 r ,EB 1 , ∴ OE r 1 , 2 2 2 由勾股定理得 r 1 3 r ,解得 r 5 16. 【答案】 1 , 2 【解析】由题意得, ABO ∽ ABO ,相似比为 1 : 2 由图可得 A 2 , 4 所以 A 1 , 2 【答案】乙 17. 【解析】甲、乙两名同学的平均成绩相同,乙同学的方差比甲同学的方差小,成绩更稳定.
1 1 1 m mx m 2 4 2 16 代入①式得: n 1 m 4 1 1 1 1 ∴ n m x m2 mx m2 16 4 16 2 1 1 1 ∴ n m x m m x 4 2 4 1 ∵ mx0 4 1 ∴n m 2 n 1 ∴ m 2 1 mx 4 1 1 mx m 2 2 16
axbxaxbx1648mxmx12ocoa4812设直线ae解析式为ykx联立12481648mxmx为ae中点a的横坐标分别为120故d点横坐标为6代入抛物线解析式d612modboaddobaodobdodaodoaob负值舍去代回抛物线解析式为对任意p点总成立

2017长沙市数学中考模拟试卷试卷与答案(全8套)(推荐文档)

2017长沙市数学中考模拟试卷试卷与答案(全8套)(推荐文档)

2017 年长沙市初中毕业学业水平考试模拟试卷 (六)数学时量: 120 分钟满分:120分注意事项:1、答题前,请考生先将自己的姓名、准考据号填写清楚,并仔细查对姓名、准考据号、考室和座位号;2、一定在答题卡上答题,在底稿纸、试题卷上答题无效;3、答题时,请考生注意各大题题号后边的答题提示;4、请勿折叠答题卡,保持字体工整、字迹清楚、卡面洁净;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共26 个小题,考试时量l20 分钟,满分I20 分。

一、选择题(此题共12 个小题,每题 3 分,满分 36 分)1.计算:(﹣ 3) +4 的结果是()A .﹣ 7B .﹣ 1C . 1D. 72.如图是一个正方体,则它的表面睁开图能够是()A .B .C. D .3.以下计算正确的选项是()224235C. 3x﹣2x=1222A . x +x=xB . x+x=2x D. x y﹣ 2x y=﹣ x y 4.在平面直角坐标系中,若点 A (a,﹣ b)在第一象限内,则点 B (a, b)所在的象限是()A .第一象限B .第二象限C.第三象限D.第四象限5.某校为睁开第二讲堂,组织检查了本校150 名学生各自最喜欢的一项体育活动,制成了以下扇形统计图,则在该被检查的学生中,跑步和打羽毛球的学生人数分别是()A .30, 40B . 45, 60C. 30, 60D. 45,406.在以下事件中,必定事件是()A .在足球赛中,弱队战胜强队B .随意画一个三角形,其内角和是360°C.投掷一枚硬币,落地后反面向上 D .往常温度降到0℃以下,纯净的水结冰7.如图,在半径为 5 的⊙ O 中,弦AB =6, OP⊥AB ,垂足为点 P,则 OP 的长为()A .3B.C.4D.8.分式方程34的解是()x x1A .x=﹣ 1B . x=1C.x=2D. x=3k和一次函数 y kx 2 的图象大概是()9.当 k> 0 时,反比率函数yxA .B .C. D .10.若一个正n 形的每个内角144°,个正n 形的所有角的条数是()A . 7B. 10C. 35D. 7011.如,在上剪下一个形和一个扇形的片,使之恰巧能成一个模型,若的半径r ,扇形的心角等于120°,成的模型的高()A .22r B.r C.10r D .3r12.如,分点P i( i,0)( i=1 、2、⋯、n)作 x 的垂,交y 1x2的象于点A i,2交直 y1x 于点B i.111的()2A1B1A2 B2A n B n2nB . 2C.22A .1n(n1)D .1n n 二.填空题(此题共 6 个小题,每题 3 分,满分 18 分)13.要使代数式x1存心, x 的取范是.x14.已知点 M ( 1, a)和点 N( 2, b)是一次函数y2x 1 象上的两点, a 与 b 的大小关系是.15.分解因式:2a(b c) 3(b c) =.3x21的解集.16.不等式84x17x22x k 0有两个不相等的数根,k的取范是..对于 x 的一元二次方程18.初三年某班有54 名学生,所在教室有 6 行 9 列座位,用( m, n)表示第 m 行第 n 列的座位,新学期准整座位,某个学生本来的座位(m,n),假如整后的座位(i , j),称生作了平移[ a, b] =[ m i, n j] ,并称 a+b 生的地点数.若某生的位置数 10,当 m+n 取最小, m?n 的最大.三.解答(本大共 2 个小,每小 6 分,共 12 分)19.算( 1)2 2 12sin 4520. 先化简,再求值:x ÷( 1+ 1),此中 x =2cos45 °﹣ 3 tan30 °.x 2 1 x1四.解答题(本大题共2 个小题,每题 8 分,共 16 分)21.“校园手机”现象愈来愈遇到社会的关注.某校小记者随机检查了某地域若干名学生和家长对学生带手机现象的见解,统计整理并制作了如图的统计图:( 1)求此次检查的家长人数,并补全图①; ( 2)求图②中表示家长“同意”的圆心角的度数;( 3)已知某地域共 6500 名家长,估计此中反对中学生带手机家长大概有多少名?22.如图,已知△ ABC ,以 AC 为直径的⊙O 交 AB 于点 D ,点 E 为 AD 的中点,连结 CE交 AB 于点 F ,且 BF BC .( 1)判断直线 BC 与⊙ O 的地点关系,并说明原因;( 2)若⊙ O 的半径为 2, sin B = 4,求 CE 的长.5五.解答题(本大题共 2 个小题,每题 9 分,共 18 分)23.某文具店昨年 8 月尾购进了一批文具 1160 件,估计在9 月份进行试销.购进价钱为每件 10 元.若售价为 12 元 /件,则可所有售出.若每涨价 元.销售量就减少2 件.(1)求该文具店在9 月份销售量不低于1100 件,则售价应不高于多少元?(2)因为销量好, 10 月份该文具进价比 8 月尾的进价每件增添20%,该店东增添了进货量,并增强了宣传力度,结果10 月份的销售量比 9 月份在( 1)的条件下的最低销售量增添了m % ,但售价比9 月份在( )的条件下的最高售价减少2.结果10月份收益达到33881m%15元,求 m 的值( m > 10).24.已知:如图,在矩形ABCD 中, AC 是对角线.点 P 为矩形外一点且知足 AP PC ,AP PC . PC 交 AD 于点 N ,连结 DP ,过点 P 作 PM PD 交 AD 于 M .(1)若 AP =5 , AB = 1BC ,求矩形 ABCD 的面积;3(2)若 CDPM ,求证: ACAP PN .六.解答题(本大题共 2 个小题,每题 10 分,共 20 分)25.在平面直角坐标系xoy 中,图形 W 在座标轴上的投影长度定义以下:设点P( x1, y1 ) ,Q( x2 , y2 ) 是图形W上的随意两点.若x1x2的最大值为 m ,则图形W在 x 轴上的投影长度l x M ;若y1y2的最大值为 n ,则图形W在y轴上的投影长度 l y n .如图1,图形 W 在x轴上的投影长度l x=|3﹣1|=2;在y轴上的投影长度l y=|4﹣0|=4.(1)已知点A( 3,3),B( 4,1).如图 2 所示,若图形W为△OAB,则l x =, l y=.(2)已知点C( 4, 0),点D在直线y 2x 6上,若图形W为△OCD.当l x l y时,求点 D 的坐标.(3)若图形W为函数y x2( a x b)的图象,此中0 a b.当该图形知足l x l y1时,请直接写出 a 的取值范围.26.设抛物线y ax2bx c与x 轴交于两不一样的点 A( 1,0) , B(m,0) ,(点A在点B 的左边),与 y 轴的交点为点 C (0,2) ,且 ACB90 .(1)求m的值和该抛物线的分析式;(2)若点D为该抛物线上的一点,且横坐标为1,点E为过A点的直线y x 1 与该抛物线的另一交点.在x 轴上能否存在点P,使得以P、B、D为极点的三角形与△AEB 相似?若存在,求出点P 的坐标;若不存在,请说明原因.(3)连结AC、BC,矩形FGHQ的一边FG在线段AB上,极点H、Q分别在线段AC、BC 上,若设 F 点坐标为( t , 0),矩形 FGHQ 的面积为S,当S取最大值时,连结FH 并延伸至点 M ,使 HM k FH,若点 M 不在该抛物线上,求 k 的取值范围.长沙市数学中考模拟试卷( 六 ) 答案一、选择题1-5、CBDDB6-10、D CDC C11-12、AA二、填空题13.x 1 ,且 x0;14.a b15.(b c)(2 a 3)16.x117.k118.36三、解答题19.2220.12 x12四、解答题21.( 1)此次检查的家长人数为80÷ 20%=400 人,反对人数是:400﹣ 40﹣ 80=280 人,( 2) 360°×=36°;( 3)反对中学生带手机的大概有6500×=4550(名).证明:连结 AE ,∵ AC 是⊙ O 的直径∴∠ E=90 °,∴∠ EAD +∠ AFE=90 °, ∵ B F=BC ,∴∠ BCE= ∠ BFC ,∵E 为弧 AD 中点,∴∠ EAD= ∠ ACE ,∴∠ BCE+∠ ACE=90 °,∴ AC ⊥BC , ∵AC 为直径,∴ BC 是⊙ O 的切线.(2)解:∵⊙ O 的半为 2∴ AC=4 ,∵ sinB== ,∴ AB=5 ,∴ BC= =3,∵ B F=BC ,∴ BF=3 , AF=5 ﹣3=2 ,∵∠ EAD= ∠ ACE ,∠ E= ∠ E ,∴△ AEF ∽△ CEA ,∴= = ,∴ EC=2EA ,设 EA=x , EC=2x ,由勾股定理得:2+4x 2, x=(负数舍去),即 CE=.x =16五、解答题23. 解:( 1)设售价应为 x 元,依题意有 1160﹣≥ 1100,解得 x ≤ 15.答:售价应不高于15 元.( 2) 10 月份的进价: 10( 1+20%) =12 (元),由题意得:1100( 1+m%) [ 15( 1﹣ m%)﹣ 12] =3388,设 m%=t ,化简得 50t 2﹣ 25t+2=0,解得: t 1= , t 2=,因此 m 1=40 , m 2=10 , 因为 m > 10,因此 m=40 .答: m 的值为 40.24. ( 1)解:∵ AP ⊥ CP 且 AP=CP ,∴△ APC 为等腰直角三角形,∵AP=,∴ AC= ,∵ AB= BC ,∴设 AB=x , BC=3x ,∴在 Rt △ ABC 中,x 2+( 3x ) 2=10, 10x 2=10, x=1 ,∴ S ABCD =AB ?BC=1 × 3=3;(2)解:延伸AP , CD 交于 Q,∵∠ 1+∠ CND= ∠2+∠ PNA=90 °,且∠ CND= ∠ ANP ,∴∠ 1=∠2,又∠ 3+∠ 5=∠ 4+∠ 5=90°,∴∠ 3=∠4,在△ APM 和△ CPD 中∵,∴△ APM≌△ CPD(ASA),∴ DP=PM,又∵ CD=PM ,∴ CD=PD ,∴∠ 1=∠ 4= ∠3,∵∠ 1+∠ Q=∠ 3+∠ 6=90°∴∠ Q=∠ 6∴ DQ=DP=CD ∴D 为 CQ 中点,又∵ AD ⊥ CQ∴AC=AQ=AP +PQ,在△ APN 和△ CPQ 中∵,∴△ APN ≌△ CPQ( ASA ),∴ PQ=PN∴AC=AP +PQ=AP+PN.六、解答题25. 解:( 1)∵ A ( 3, 3),∴点 A 在 y 轴上的正投影的坐标为(0,3).∴△ OAB 在 y 轴上的投影长度l y=3.∵B ( 4,1),∴点 B 在 x 轴上的正投影的坐标为(4, 0).∴△ OAB 在 x 轴上的投影长度l x=4.故答案为: 4; 3.(2)如图 1 所示;过点P 作 PD⊥ x 轴,垂足为P.设D ( x, 2x +6),则 PD=2x +6.∵ PD⊥ x 轴,∴ P( x, 0).∴ PC=3﹣ x.∵l x=l y,∴ 2x+6=3﹣ x,解得; x=﹣ 1.∴ D (﹣ 1,4).如图 2 所示:过点 D 作 DP⊥ x 轴,垂足为 P.设D ( x, 2x +6),则 PD=﹣ 2x﹣ 6.∵ PD ⊥x 轴,∴ P( x, 0).∴ PC=3﹣ x.∵l x=l y,∴﹣ 2x﹣ 6=3﹣ x,解得; x= ﹣ 9.∴ D(﹣ 9,﹣12).综上所述,点 D 的坐标为(﹣ 1, 4)或(﹣ 9,﹣ 12).(3)如图 3 所示:设 A ( a , a 2)、 B ( b , b 2).则 CE=b ﹣ a ,DF=b 2﹣ a 2=( b+a )( b ﹣ a ). ∵l x =l y ,∴( b+a )( b ﹣a ) =b ﹣ a ,即( b+a ﹣ 1)( b ﹣a ) =0.∵b ≠ a ,∴ b+a=1.又∵ 0≤ a < b ,∴ a+a < 1,∴ 0≤ a < .26. 解:( 1)令 x=0,得 y= ﹣ 2,∴ C ( 0,﹣ 2),∵∠ ACB=90 °, CO ⊥ AB ,∴△ AOC ∽△ COB ,∴ OA ?OB=OC 2,∴OB=,∴ m=4,将 A (﹣ 1, 0),B ( 4, 0)代入 y=ax 2+bx ﹣2,得,∴抛物线的分析式为y= x 2﹣ x ﹣ 2.(2)D ( 1,n )代入 y= x 2﹣ x ﹣2,得 n=﹣ 3,可得(不合题意舍去) , ,∴E ( 6,7).过 E 作 EH ⊥ x 轴于 H ,则 H ( 6,0),∴ A H=EH=7 ,∴∠ EAH=45 °.过 D 作 DF ⊥ x 轴于 F ,则 F (1, 0),∴ BF=DF=3 , ∴∠ DBF=45 °,∴∠ EAH= ∠ DBF=45 °,∴∠ DBH=135 °, 90°<∠ EBA < 135°.则点 P 只好在点 B 的左边,有以下两种状况:①若△ DBP 1∽△ EAB ,则,∴ BP 1== = ,∴OP 11( , 0).=4 ﹣ =,∴ P②若△ DBP 2∽△ BAE ,则,∴ BP 2= == ,∴OP 2=﹣ 4=,∴ P 2(﹣, 0).综合①、②,得点P 的坐标为: P 1( , 0)或 P 2(﹣, 0).(3)∵ HQ ∥ AB ∴△ CHQ ∽△ CAB ∴ HQ : AB=CR : CO ,即:设 HG=x ,则 =解得: HQ= ﹣ x+5∴矩形的面积 S=HG?HQ= ﹣x 2+5x当 x= ﹣=1 时,面积获得最大值.则 H ,R , Q 的纵坐标是﹣ 1.则 HQ= ﹣ × 1+5= 设直线 AC 的分析式是 y=kx +b依据题意得:,解得: 则 AC 的分析式是: y= ﹣2x ﹣ 2在分析式中,令 x= ﹣1,解得: y=0则 H 的坐标是(﹣,﹣ 1). F 的坐标是( 2, 0).则 HF= .设直线 FH 的分析式是 y=kx +b 依据题意得:解得: ,则直线 FH 的分析式是 y= x ﹣.解方程组: ,解得:x= .当直线与抛物线订交时,k= = = 或= .则 k 的范围是: k >0 且 k ≠ 且 k ≠ .。

湖南长沙市开福区2017年中考数学模拟试卷含答案

湖南长沙市开福区2017年中考数学模拟试卷含答案

2017年九年级数学中考模拟试卷一、选择题:1.若a、b、c都是有理数,那么2a﹣3b+c的相反数是()A.3b﹣2a﹣cB.﹣3b﹣2a+cC.3b﹣2a+cD.3b+2a﹣c2.我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过“存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率. 将812000000用科学记数法表示应为( )A.812×106B.81.2×107C.8.12×108D.8.12×1093.下列计算中正确的是()A.2x3﹣x3=2B.x3•x2=x6C.x2+x3=x5D.x3÷x=x24.观察下列图案,既是中心对称图形又是轴对称图形的是()5.某学校对七年级随机抽取若干名学生进行“创建文明城市”知识答题,成绩分为1分,2分,3分,4分共4个等级,将调查结果绘制成如右图所示的条形统计图和扇形统计图.根据图中信息,这些学生中得2分的有()人.A.8B.10C.6D.96.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是()7.将函数y=-3x图象沿y轴向上平移2个单位长度后,所得图象对应函数关系式为( )A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)8.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,AB′与CD 边交于点F,则B′F的长度为()A.1B.C.2-D.2﹣2二、填空题:9.4的平方根是.10.把多项式ax2+2a2x+a3分解因式的结果是.11.无论x取任何实数,代数式都有意义,则m的取值范围为 .12.如图,直线a∥b,∠A=38°,∠1=46°,则∠ACB的度数是°.13.现有四张完全相同的卡片,上面分别标有数字﹣1,﹣2,3,4.把卡片背面上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是.14.如图,线段AB的两个端点坐标分别为A(1,1),B(2,1),以原点O为位似中心,将线段AB放大后得到线段CD,若CD=2,则端点C的坐标为.15.某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32,对于这组数据,众数是,中位数是,极差是.16..观察下列算式,你发现了什么规律?12=;12+22=;12+22+32=;12+22+32+42=;…①根据你发现的规律,计算下面算式的值;12+22+32+42+52= ;②请用一个含n的算式表示这个规律:12+22+32…+n2= ;③根据你发现的规律,计算下面算式的值:512+522+…+992+1002= .三、计算题:17.计算:sin60°+|﹣5|﹣(4015﹣π)0+(﹣1)2017+()﹣1.18.解不等式组:四、解答题:19.已知反比例函数,当x=2时,y=3.①求m的值;②当3≤x≤6时,求函数值y的取值范围.20.为了解永康市某中学八年级学生的视力水平,从中抽查部分学生的视力情况,绘制了如图统计图:(1)本次调查的样本容量是;(2)请补全条形统计图,并求扇形统计图中“视力正常”的圆心角度数;(3)该校八年级共有200位学生,请估计该校八年级视力正常的学生人数.21.某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)22.如图,甲、乙两数学兴趣小组测量山CD 的高度.甲小组在地面A处测量,乙小组在上坡B处测量,AB=200m.甲小组测得山顶D的仰角为45°,山坡B处的仰角为30°;乙小组测得山顶D 的仰角为58°.求山CD的高度(结果保留一位小数).参考数据:,,供选用.23.如图,已知C是弧AB的中点,OC交弦AB于点D.∠AOB=120°,AD=8.求OA的长.24.李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.(1)求李老师步行的平均速度;(2)请你判断李老师能否按时上班,并说明理由.五、综合题:25.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC.抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式.(2)若点P是第二象限内抛物线上的动点,其横坐标为t.①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时点P的坐标.②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD面积的最大值;若不存在,请说明理由.26.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)求证:AD=BC;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC所在直线互相垂直,求AD:EF的值.参考答案1.A2.C3.D4.C5.A6.A7.A8.C9.答案为:±2.10.答案为:a(x+a)211.答案为:m≥912.答案为:96°13.答案为:.14.答案为:(2,1)15.答案为:29,29,4.16.答案为:(1);(2);(3)295425;17.解:原式=3.5.18.略19.解:(1)把x=2,y=3代入y=得到:5-m=6,∴m=-1.(2)当x=3时,由y=得,y=2;x=6时,由y=得,y=1;当3≤x≤6时,y随x的增大而减小,所以函数值的范围是1≤y≤2.20.【解答】解:(1)本次调查的样本容量是:10÷25%=40;(2)轻度近视的人数为:40×30%=12(人),补全条形图如图:视力正常的圆心角度数=360°×=108°;(3)200×=60(人),答:估计该校八年级视力正常的学生人数约为60人.故答案为:(1)40.21.解:(1)设=kx+b,将(180,100),(260,60)代入得:180k+b=100,260k+b=60,解得:k=-0.5,b=190,∴y与x之间的函数表达式为:y=-0.5x+190(180≤x≤300).(2) 设利润为w,∴w=y·x-100y-60(100-y)=x(-0.5x+190)-100(-0.5x+190)-60[100-(-0.5x+190)]=-0.5x2+210x-13600=-0.5(x-210)2+8450,∴当x=210时,w最大=8450,答:当房价为210元时,宾馆当日利润最大,最大利润为8450元.22.解:过B作BE⊥AC,BF⊥DC,E,F为垂足.根据题意,有∠DAC=45°,∠BAC=30°,∠DBF=58°,AB=200.∵ BE⊥AC,BF⊥DC,DC⊥AC,∴四边形BECF是矩形.∴,. 设BF=,则CE=BF=.在Rt△ABE中,,,∴,.在Rt△DBF中,,∴.在Rt△DAC中,∠DAC=45°,∴ AC=DC. 即∴. 解得,.∴.答:山高约为295.2 m.23.答案:.24.【解答】解:(1)设李老师步行的平均速度为xm/分钟,骑电瓶车的平均速度为5xm/分钟,由题意得,﹣=20,解得:x=76,经检验,x=76是原分式方程的解,且符合题意,则5x=76×5=380,答:李老师步行的平均速度为76m/分钟,骑电瓶车的平均速度为380m/分;24.略26.。

2017年湖南省长沙市中考数学试卷(含详细答案)

2017年湖南省长沙市中考数学试卷(含详细答案)

数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前湖南省长沙市2017年初中毕业生学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列实数中,为有理数的是( ) AB .πCD .1 2.下列计算正确的是( )A=B .222a a a +=C .(1)x y x xy +=+D .224()mn mn =3.据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次.数据82600000用科学记数法表示为( ) A .80.82610⨯ B .78.2610⨯ C .682.610⨯D .68.2610⨯4.在下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD5.一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰直角三角形6.下列说法正确的是( )A .检测某批次灯泡的使用寿命,适宜用全面调查B .可能性是1%的事件在一次试验中一定不会发生C .数据3,5,4,1,2-的中位数是4D .“367人中有2人是同月同日出生”为必然事件 7.某几何体的三视图如图所示,则此几何体是( )A .长方形B .圆柱C .球D .正三棱柱8.抛物线22(3)4y x =-+的顶点坐标是( )A .(3,4)B .(3,4)-C .(3,4)-D .(2,4)9.如图,已知直线a b ∥,直线c 分别与a ,b 相交,1110∠=,则2∠的度数为( )A .60 B .70 C .80D .11010.如图,菱形ABCD 的对角线,AC BD 的长分别为6cm ,8cm ,则这个菱形的周长为( )A .5cmB .10cmC .14cmD .20cm11.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第六天走的路程为( )A .24里B .12里C .6里D .3里12.如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H重合毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)(H 不与端点C ,D 重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G .设正方形ABCD 的周长为m ,CHG △的周长为n ,则nm的值为( ) AB .12CD .随H 点位置的变化而变化第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填写在题中的横线上) 13.分解因式:2242a a ++= .14.方程组1,33x y x y +=⎧⎨-=⎩的解是 .15.如图,AB 为O 的直径,弦CD AB ⊥于点E ,已知6,CD =1EB =,则O 的半径为 .16.如图,ABO △三个顶点的坐标分别为(2,4)A ,(6,0)B ,(0,0)O 以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到A B O ''△,已知点B '的坐标是(3,0),则点A '的坐标是 .17.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是21.2,S =甲20.5S =乙,则在本次测试中, 同学的成绩更稳定(填“甲”或“乙”). 18.如图,点M是函数y 与ky x=的图象在第一象限内的交点,4OM =,则k 的值为 .三、解答题(本大题共8小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分6分)计算:011|3|(π2017)2sin30()3--+--+.20.(本小题满分6分) 解不等式组29,513(1),x x x x --⎧⎨-+⎩≥>,并把它的解集在数轴上表示出来.21.(本小题满分8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动.某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整请根据所给信息,解答以下问题: (1)表中a = ,b = ;(2)请计算扇形统计图中B 组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学.学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.22.(本小题满分8分)为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A 处测得灯塔P 在北偏东60方向上,继续航行1小时到达B 处,此时测得灯塔P 在北偏东30方向上.(1)求APB ∠的度数;(2)已知在灯塔P 的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?数学试卷 第5页(共24页) 数学试卷 第6页(共24页)23.(本小题满分9分)如图,AB 与O 相切于点C ,,OA OB 分别交O 于点,D E ,CD CE =. (1)求证:OA OB =;(2)已知AB =4OA =,求阴影部分的面积.24.(本小题满分9分)连接湖南与欧洲的“湘欧快线”开通后,湖南省与欧洲各国经贸往来日益频繁.某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多10元.(1)求一件,A B 型商品的进价分别为多少元?(2)若该欧洲客商购进,A B 型商品共250件进行试销,其中A 型商品的件数不大于B 型的件数,且不小于80件.已知A 型商品的售价为240元/件,B 型商品的售价为220元/件,且全部售出.设购进A 型商品m 件,求该客商销售这批商品的利润y 与m 之间的函数关系式,并写出m 的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A 型商品,就从一件A 型商品的利润中捐献慈善资金a 元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.25.(本小题满分10分)若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”.(1)实数1,2,3可以构成“和谐三数组”吗?请说明理由;(2)若1(,)M t y ,2(1,)N t y +,3(3,)R t y +三点均在函数kx(k 为常数,0k ≠)的图象上,且这三点的纵坐标1y ,2y ,3y 构成“和谐三数组”,求实数t 的值;(3)若直线22(0y b xc b c =+≠与x 轴交于点1(,0)A x ,与抛物线233(0)y a x b x c a =++≠交于22(,)B x y ,33(,)C x y 两点. ①求证:A ,B ,C 三点的横坐标1x ,2x ,3x 构成“和谐三数组”; ②若23a b c >>,21x =,求点,()a P c b a与原点O 的距离OP 的取值范围.26.(本小题满分10分)如图,抛物线21648(0)y mx mx m m =-+>与x 轴交于A ,B 两点(点B 在点A 左侧),与y 轴交于点C ,点D 是抛物线上的一个动点,且位于第四象限,连接OD ,BD ,AC ,AD ,延长AD 交y 轴于点E .(1)若OAC △为等腰直角三角形,求m 的值;(2)若对任意0m >,C ,E 两点总关于原点对称,求点D 的坐标(用含m 的式子表示); (3)当点D 运动到某一位置时,恰好使得ODB OAD ∠=∠,且点D 为线段AE 的中点,此时对于该抛物线上任意一点00(,)P x y ,总有2001506n +---≥成立,求实数n 的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共24页) 数学试卷 第8页(共24页)【提示】科学记数法的表示形式为10n a ⨯的形式,其中1|10|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数【考点】科学计数法 4.【答案】C【解析】解:A.既不是轴对称图形,也不是中心对称图形,故本选项错误;B.是轴对称图形,不是中心对称图形,故本选项错误;C.既是轴对称图形,又是中心对称图形,故本选项正确;D.不是轴对称图形,是中心对称图形,故本选项错误.故选C. 【提示】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解. 【考点】中心对称图形,轴对称图形的判定 5.【答案】B【解析】解:设三角形的三个内角的度数之比为x 、2x 、3x ,则23180x x x ︒++=,解得,30x ︒=,则390x ︒=,∴这个三角形一定是直角三角形故选:B.【提示】根据三角形内角和等于180︒计算即可. 【考点】三角形的内角和定理 6.【答案】D【解析】解:A.检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;B.可能性是1%的事件在一次试验中可能发生,此选项错误;C.数据3,5,4,1,2-的中位数是3,此选项错误; D.“367人中有2人同月同日出生”为必然事件,此选项正确;故选:D.【提示】根据可能性的大小、全面调查与抽样调查的定义及中位数概念、必然事件、不可能事件、随机事件的概念进行判断即可. 【考点】调查方法的选择,事件的概率,中位数 7.【答案】B【解析】解:从正面看,是一个矩形;从左面看,是一个矩形;从上面看,是圆,这样的几何体是圆柱,故选B. 【提示】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图. 【考点】几何体的三视图数学试卷 第9页(共24页) 数学试卷 第10页(共24页)【解析】解:∵直线a b ∥,∴31110∠=∠=,∴218011070∠=-=故选B.数学试卷 第11页(共24页)数学试卷 第12页(共24页)为O 的直径,,设O 的半径为OCE △中,,∴O 的半径为,由垂径定理知,点x数学试卷 第13页(共24页) 数学试卷 第14页(共24页)的值.【考点】一次函数,反比例函数的图像和性质 三、解答题 19.【答案】6【解析】解:原式31136=+-+=.【提示】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果. 【考点】绝对值,零次幂,负指数幂,特殊角的正弦值20.【答案】2x>【解析】解:解不等式29x x ≥--,得:3x ≥-,解不等式513(1)x x ->+,得:2x >,则不等式组的解集为2x >,将解集表示在数轴上如下:【提示】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【考点】一元一次不等式组,不等式组解集在数轴上的表示 21.【答案】(1)0.3a = 45b =︒(3)列树形图得:1(3)将同一班级的甲、乙学生记为A 、B ,另外两学生记为C 、D ,列树形图得:2122.【答案】(1)30APB ︒∠= (2)安全数学试卷 第15页(共24页)数学试卷 第16页(共24页)sin6050PB ︒=∵25325>,∴海监船继续向正东方向航行是安全的23.【答案】(1)证明见解析 (2)2πS =阴影与O 相切于点AOC BOC ∠=∠3数学试卷 第17页(共24页) 数学试卷 第18页(共24页)由题意:8070(250)1017500v m m m =+-=+,∵80250m m ≤≤-,∴80125m ≤≤,(3)设利润为w元.则(80)70(250)(10)17500w a m m a m =-+-=-+,①当100a ->时,w 随m 的增大而增大,所以125m =时,最大利润为(18750125)a -元. ②当100a -=时,最大利润为17500元.③当100a -<时,w 随m 的增大而减小,所以80m =时,最大利润为(1830080)a -元.【提示】(1)设一件B 型商品的进价为x 元,则一件A 型商品的进价为(10)x +元.根据16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,列出方程即可解决问题;(2)根据总利润=两种商品的利润之和,列出式子即可解决问题;(3)设利润为w 元.则(80)70(250)(10)17500w a m m a m =-+-=-+,分三种情形讨论即可解决问题. 【考点】列分式方程解决实际问题,一次函数的性质 25.【答案】(1)不能,理由见解析 (2)t 的值为4-、2-或2 (3)①证明见解析OP <≤且1OP ≠数学试卷 第19页(共24页)数学试卷 第20页(共24页)26.【答案】(1)4m =(2)点D 的坐标为(8,16)m -数学试卷 第21页(共24页) 数学试卷 第22页(共24页)数学试卷第23页(共24页)数学试卷第24页(共24页)。

2017长沙市数学中考模拟试卷试卷与答案(全8套)(推荐文档)

2017长沙市数学中考模拟试卷试卷与答案(全8套)(推荐文档)

2017年长沙市初中毕业学业水平考试模拟试卷(六)数 学时量:120分钟满分:120分注意事项:1、答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对姓名、准考证号、考室和座位号;2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;3、答题时,请考生注意各大题题号后面的答题提示;4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共26个小题,考试时量l20分钟,满分I20分。

一、选择题(本题共12个小题,每小题3分,满分36分)1.计算:(﹣3)+4的结果是( )A .﹣7B .﹣1C .1D .7 2.如图是一个正方体,则它的表面展开图可以是( )A .B .C .D .3.下列计算正确的是( )A .x 2+x 2=x 4B .x 2+x 3=2x 5C .3x ﹣2x =1D .x 2y ﹣2x 2y =﹣x 2y4.在平面直角坐标系中,若点A (a ,﹣b )在第一象限内,则点B (a ,b )所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限5.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是( ) A .30,40 B .45,60 C .30,60 D .45,40 6.在下列事件中,必然事件是( )A .在足球赛中,弱队战胜强队B .任意画一个三角形,其内角和是360°C .抛掷一枚硬币,落地后反面朝上D .通常温度降到0℃以下,纯净的水结冰 7.如图,在半径为5的⊙O 中,弦AB =6,OP ⊥AB ,垂足为点P ,则OP 的长为( )A .3B .2.5C .4D .3.5 8.分式方程341x x =+的解是( ) A .x =﹣1 B .x =1 C .x =2 D .x =3 9.当k >0时,反比例函数ky x=和一次函数2y kx =+的图象大致是( )A .B .C .D .10.若一个正n 边形的每个内角为144°,则这个正n 边形的所有对角线的条数是( )A .7B .10C .35D .7011.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r ,扇形的圆心角等于120°,则围成的圆锥模型的高为( )A. B .r CD .3r12.如图,分别过点P i (i ,0)(i=1、2、…、n )作x 轴的垂线,交212y x =的图象于点A i ,交直线12y x =-于点B i .则1122111n nA B A B A B +++的值为( ) A .21nn + B .2C .2(1)n n +D .21n + 二.填空题(本题共6个小题,每小题3分,满分18分)13x 的取值范围是 . 14.已知点M (1,a )和点N (2,b )是一次函数21y x =-+图象上的两点,则a 与b 的大小关系是 .15.分解因式:2()3()a b c b c +-+= .16.不等式组32148x x -<⎧⎨<⎩的解集为 .17.关于x 的一元二次方程220x x k +-=有两个不相等的实数根,则k 的取值范围是 .18.初三年级某班有54名学生,所在教室有6行9列座位,用(m ,n )表示第m 行第n 列的座位,新学期准备调整座位,设某个学生原来的座位为(m ,n ),如果调整后的座位为(i ,j ),则称该生作了平移[a ,b ]=[m ﹣i ,n ﹣j ],并称a +b 为该生的位置数.若某生的位置数为10,则当m +n 取最小值时,m •n 的最大值为 .三.解答题(本大题共2个小题,每小题6分,共12分) 19.计算2(1)12sin 45-++20.先化简,再求值:21x x -÷(1+11x -),其中x =2cos45tan30°.四.解答题(本大题共2个小题,每小题8分,共16分) 21.“校园手机”现象越来越受到社会的关注.某校小记者随机调查了某地区若干名学生和家长对学生带手机现象的看法,统计整理并制作了如图的统计图:(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机家长大约有多少名?22.如图,已知△ABC ,以AC 为直径的⊙O 交AB 于点D ,点E 为AD 的中点,连结CE 交AB 于点F ,且BF BC =.(1)判断直线BC 与⊙O 的位置关系,并说明理由; (2)若⊙O 的半径为2,sin B =45,求CE 的长.五.解答题(本大题共2个小题,每小题9分,共18分)23.某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件. (1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元? (2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m %,但售价比9月份在(1)的条件下的最高售价减少2%15m .结果10月份利润达到3388元,求m 的值(m >10).24.已知:如图,在矩形ABCD 中,AC 是对角线.点P 为矩形外一点且满足AP PC =,AP PC ⊥.PC 交AD 于点N ,连接DP ,过点P 作PM PD ⊥交AD 于M .(1)若AP AB =13BC ,求矩形ABCD 的面积; (2)若CD PM =,求证:AC AP PN =+.六.解答题(本大题共2个小题,每小题10分,共20分)25.在平面直角坐标系xoy 中,图形W 在坐标轴上的投影长度定义如下:设点11(,)P x y ,22(,)Q x y 是图形W 上的任意两点.若12x x -的最大值为m ,则图形W 在x 轴上的投影长度x l M =;若12y y -的最大值为n ,则图形W 在y 轴上的投影长度y l n =.如图1,图形W 在x 轴上的投影长度x l =|3﹣1|=2;在y 轴上的投影长度y l =|4﹣0|=4.(1)已知点A (3,3),B (4,1).如图2所示,若图形W 为△OAB ,则x l = ,y l = . (2)已知点C (4,0),点D 在直线26y x =+上,若图形W 为△OCD .当x y l l =时,求点D 的坐标.(3)若图形W 为函数2()y x a x b =≤≤的图象,其中0a b ≤<.当该图形满足1x y l l =≤时,请直接写出a 的取值范围.26.设抛物线2y ax bx c =++与x 轴交于两不同的点(1,0)A -,(,0)B m ,(点A 在点B 的左边),与y 轴的交点为点(0,2)C -,且90ACB ∠=. (1)求m 的值和该抛物线的解析式;(2)若点D 为该抛物线上的一点,且横坐标为1,点E 为过A 点的直线1y x =+与该抛物线的另一交点.在x 轴上是否存在点P ,使得以P 、B 、D 为顶点的三角形与△AEB 相似?若存在,求出点P 的坐标;若不存在,请说明理由.(3)连接AC 、BC ,矩形FGHQ 的一边FG 在线段AB 上,顶点H 、Q 分别在线段AC 、BC 上,若设F 点坐标为(t ,0),矩形FGHQ 的面积为S ,当S 取最大值时,连接FH 并延长至点M ,使HM k FH =,若点M 不在该抛物线上,求k 的取值范围.长沙市数学中考模拟试卷(六)答案一、选择题1-5、 CBDDB 6-10、D CDC C 11-12、 AA二、填空题13. 1x ≥-,且0x ≠; 14. a b > 15. ()(23)b c a +- 16. 1x < 17. 1k >- 18. 36 三、解答题19. 20.11x +四、解答题21.(1)这次调查的家长人数为80÷20%=400人,反对人数是:400﹣40﹣80=280人, (2)360°×=36°; (3)反对中学生带手机的大约有6500×=4550(名).22. (1)BC 与⊙O 相切证明:连接AE,∵AC是⊙O的直径∴∠E=90°,∴∠EAD+∠AFE=90°,∵BF=BC,∴∠BCE=∠BFC,∵E为弧AD中点,∴∠EAD=∠ACE,∴∠BCE+∠ACE=90°,∴AC⊥BC,∵AC为直径,∴BC是⊙O的切线.(2)解:∵⊙O的半为2∴AC=4,∵sinB==,∴AB=5,∴BC==3,∵BF=BC,∴BF=3,AF=5﹣3=2,∵∠EAD=∠ACE,∠E=∠E,∴△AEF∽△CEA,∴==,∴EC=2EA,设EA=x,EC=2x,由勾股定理得:x2+4x2=16,x=(负数舍去),即CE=.五、解答题23.解:(1)设售价应为x元,依题意有1160﹣≥1100,解得x≤15.答:售价应不高于15元.(2)10月份的进价:10(1+20%)=12(元),由题意得:1100(1+m%)[15(1﹣m%)﹣12]=3388,设m%=t,化简得50t2﹣25t+2=0,解得:t1=,t2=,所以m1=40,m2=10,因为m>10,所以m=40.答:m的值为40.24.(1)解:∵AP⊥CP且AP=CP,∴△APC为等腰直角三角形,∵AP=,∴AC=,∵AB=BC,∴设AB=x,BC=3x,∴在Rt△ABC中,x2+(3x)2=10,10x2=10,x=1,∴S ABCD=AB•BC=1×3=3;(2)解:延长AP,CD交于Q,∵∠1+∠CND=∠2+∠PNA=90°,且∠CND=∠ANP,∴∠1=∠2,又∠3+∠5=∠4+∠5=90°,∴∠3=∠4,在△APM和△CPD中∵,∴△APM≌△CPD(ASA),∴DP=PM,又∵CD=PM,∴CD=PD,∴∠1=∠4=∠3,∵∠1+∠Q=∠3+∠6=90°∴∠Q=∠6∴DQ=DP=CD∴D为CQ中点,又∵AD⊥CQ∴AC=AQ=AP+PQ,在△APN和△CPQ中∵,∴△APN≌△CPQ(ASA),∴PQ=PN∴AC=AP+PQ=AP+PN.六、解答题25.解:(1)∵A(3,3),∴点A在y轴上的正投影的坐标为(0,3).∴△OAB在y轴上的投影长度l y=3.∵B(4,1),∴点B在x轴上的正投影的坐标为(4,0).∴△OAB在x轴上的投影长度l x=4.故答案为:4;3.(2)如图1所示;过点P作PD⊥x轴,垂足为P.设D(x,2x+6),则PD=2x+6.∵PD⊥x轴,∴P(x,0).∴PC=3﹣x.∵l x=l y,∴2x+6=3﹣x,解得;x=﹣1.∴D(﹣1,4).如图2所示:过点D作DP⊥x轴,垂足为P.设D(x,2x+6),则PD=﹣2x﹣6.∵PD⊥x轴,∴P(x,0).∴PC=3﹣x.∵l x=l y,∴﹣2x﹣6=3﹣x,解得;x=﹣9.∴D(﹣9,﹣12).综上所述,点D的坐标为(﹣1,4)或(﹣9,﹣12).(3)如图3所示:设A(a,a2)、B(b,b2).则CE=b﹣a,DF=b2﹣a2=(b+a)(b﹣a).∵l x=l y,∴(b+a)(b﹣a)=b﹣a,即(b+a﹣1)(b﹣a)=0.∵b≠a,∴b+a=1.又∵0≤a<b,∴a+a<1,∴0≤a<.26.解:(1)令x=0,得y=﹣2,∴C(0,﹣2),∵∠ACB=90°,CO⊥AB,∴△AOC∽△COB,∴OA•OB=OC2,∴OB=,∴m=4,将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2,得,∴抛物线的解析式为y=x2﹣x﹣2.(2)D(1,n)代入y=x2﹣x﹣2,得n=﹣3,可得(不合题意舍去),,∴E(6,7).过E作EH⊥x轴于H,则H(6,0),∴AH=EH=7,∴∠EAH=45°.过D作DF⊥x轴于F,则F(1,0),∴BF=DF=3,∴∠DBF=45°,∴∠EAH=∠DBF=45°,∴∠DBH=135°,90°<∠EBA<135°.则点P只能在点B的左侧,有以下两种情况:①若△DBP1∽△EAB,则,∴BP1===,∴OP1=4﹣=,∴P1(,0).②若△DBP2∽△BAE,则,∴BP2===,∴OP2=﹣4=,∴P2(﹣,0).综合①、②,得点P的坐标为:P1(,0)或P2(﹣,0).(3)∵HQ∥AB∴△CHQ∽△CAB∴HQ:AB=CR:CO,即:设HG=x,则=解得:HQ=﹣x+5∴矩形的面积S=HG•HQ=﹣x2+5x当x=﹣=1时,面积取得最大值.则H,R,Q的纵坐标是﹣1.则HQ=﹣×1+5=设直线AC的解析式是y=kx+b根据题意得:,解得:则AC的解析式是:y=﹣2x﹣2在解析式中,令x=﹣1,解得:y=0则H的坐标是(﹣,﹣1).F的坐标是(2,0).则HF=.设直线FH的解析式是y=kx+b根据题意得:解得:,则直线FH的解析式是y=x﹣.解方程组:,解得:x=.当直线与抛物线相交时,k===或=.则k的范围是:k>0且k≠且k≠.。

2017年湖南省长沙市中考数学试卷及解析

2017年湖南省长沙市中考数学试卷及解析

2017年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列实数中,为有理数的是()A.B.πC.D.12.(3分)下列计算正确的是()A.=B.a+2a=2a2C.x(1+y)=x+xy D.(mn2)3=mn63.(3分)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826×106B.8.26×107 C.82.6×106 D.8.26×1084.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B. C. D.直角三角形正五边形正方形平行四边形5.(3分)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形6.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4D.“367人中有2人同月同日出生”为必然事件7.(3分)某几何体的三视图如图所示,因此几何体是()A.长方形B.圆柱C.球D.正三棱柱8.(3分)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)9.(3分)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为()A.60° B.70° C.80° D.110°10.(3分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm11.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里 B.12里 C.6里D.3里12.(3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A. B. C. D.随H点位置的变化而变化二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:2a2+4a+2=________ .14.(3分)方程组的解是_____ .15.(3分)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.16.(3分)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是.17.(3分)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是S甲2=1.2,S乙2=0.5,则在本次测试中,同学的成绩更稳定(填“甲”或“乙”)18.(3分)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1.20.(6分)解不等式组,并把它的解集在数轴上表示出来.21.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<80 30 aC 80≤x<90 b 0.45D 90≤x<100 8 0.08请根据所给信息,解答以下问题:(1)表中a=,b=;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.22.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?23.(9分)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.24.(9分)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.25.(10分)若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数y=(k为常数,k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.26.(10分)如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A 左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0,y0)总有n+≥﹣4my02﹣12y0﹣50成立,求实数n的最小值.2017年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列实数中,为有理数的是()A.B.πC.D.1【解答】解:,π,是无理数,1是有理数,故选:D.2.(3分)下列计算正确的是()A.=B.a+2a=2a2C.x(1+y)=x+xy D.(mn2)3=mn6【解答】解:A、+无法计算,故此选项错误;B、a+2a=3a,故此选项错误;C、x(1+y)=x+xy,正确;D、(mn2)3=m3n6,故此选项错误;故选:C.3.(3分)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826×106B.8.26×107 C.82.6×106 D.8.26×108【解答】解:将82600000用科学记数法表示为:8.26×107.故选B.4.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B. C. D.直角三角形正五边形正方形平行四边形【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,又是中心对称图形,故本选项正确;D、不是轴对称图形,是中心对称图形,故本选项错误.故选C.5.(3分)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【解答】解:设三角形的三个内角的度数之比为x、2x、3x,则x+2x+3x=180°,解得,x=30°,则3x=90°,∴这个三角形一定是直角三角形,故选:B.6.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4D.“367人中有2人同月同日出生”为必然事件【解答】解:A、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;B、可能性是1%的事件在一次试验中可能发生,此选项错误;C、数据3,5,4,1,﹣2的中位数是3,此选项错误;D、“367人中有2人同月同日出生”为必然事件,此选项正确;故选:D.7.(3分)某几何体的三视图如图所示,因此几何体是()A.长方形B.圆柱C.球D.正三棱柱【解答】解:从正面看,是一个矩形;从左面看,是一个矩形;从上面看,是圆,这样的几何体是圆柱,故选B.8.(3分)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)【解答】解:y=2(x﹣3)2+4是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,4).故选A.9.(3分)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为()A.60° B.70° C.80° D.110°【解答】解:∵直线a∥b,∴∠3=∠1=110°,∴∠2=180°﹣110°=70°,故选B.10.(3分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB===5cm,所以,这个菱形的周长=4×5=20cm.故选D.11.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里 B.12里 C.6里D.3里【解答】解:设第一天走了x里,依题意得:x+x+x+x+x+x=378,解得x=192.则()5x=()5×192=6(里).故选:C.12.(3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B.C.D.随H点位置的变化而变化【解答】解:设CH=x,DE=y,则DH=﹣x,EH=﹣y,∵∠EHG=90°,∴∠DHE+∠CHG=90°.∵∠DHE+∠DEH=90°,∴∠DEH=∠CHG,又∵∠D=∠C=90°,△DEH∽△CHG,∴==,即==,∴CG=,HG=,△CHG的周长为n=CH+CG+HG=,在Rt△DEH中,DH2+DE2=EH2即(﹣x)2+y2=(﹣y)2整理得﹣x2=,∴n=CH+HG+CG===.∴=.故选:B.解法二:连接AH、AG,作AM⊥HG于M.∵EA=EH,∴∠1=∠2,∵∠EAB=∠AHG=90°,∴∠HAB=∠AHG,∵AH∥AB,∴∠DHA=∠HAB=∠AHM,∵AH=AH,∠D=∠AMH=90°,∴△AHD≌△AHM,∴DH=HM,AD=AM,∵AM=AB,AG=AG,∴Rt△AGM≌Rt△AGB,∴GM=GB,∴△GCH的周长=n=CH+HM+MG+CG=CH+DH+CG+GB=2BC,∵四边形ABCD的周长=m=4BC,∴=二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:2a2+4a+2=2(a+1)2.【解答】解:原式=2(a2+2a+1)=2(a+1)2,故答案为:2(a+1)2.14.(3分)方程组的解是.【解答】解:两式相加,得4x=4,解得x=1,把x=1代入x+y=1,解得y=0,方程组的解为,故答案为:.15.(3分)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为5.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.16.(3分)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是(1,2).【解答】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2),故答案为:(1,2).17.(3分)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是S甲2=1.2,S乙2=0.5,则在本次测试中,乙同学的成绩更稳定(填“甲”或“乙”)【解答】解:∵S甲2=1.2,S乙2=0.5,∴S甲>S乙,∴甲、乙两名同学成绩更稳定的是乙;故答案为:乙.18.(3分)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为4.【解答】解:作MN⊥x轴于N,如图所示:设M(x,y),∵点M是函数y=x与y=的图象在第一象限内的交点,∴M(x,x),在Rt△OMN中,由勾股定理得:x2+(x)2=42,解得:x=2,∴M(2,2),代入y=得:k=2×2=4;故答案为:4.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1.【解答】解:原式=3+1﹣1+3=6.20.(6分)解不等式组,并把它的解集在数轴上表示出来.【解答】解:解不等式2x≥﹣9﹣x,得:x≥﹣3,解不等式5x﹣1>3(x+1),得:x>2,则不等式组的解集为x>2,将解集表示在数轴上如下:21.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<80 30 aC 80≤x<90 b 0.45D 90≤x<100 8 0.08请根据所给信息,解答以下问题:(1)表中a=0.3,b=45;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.【解答】解:(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人),故答案为:0.3,45;(2)360°×0.3=108°,答:扇形统计图中B组对应扇形的圆心角为108°;(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,列树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.22.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【解答】解:(1)∵∠PAB=30°,∠ABP=120°,∴∠APB=180°﹣∠PAB﹣∠ABP=30°.(2)作PH⊥AB于H.∵∠BAP=∠BPA=30°,∴BA=BP=50,在Rt△PBH中,PH=PB•sin60°=50×=25,∵25>25,∴海监船继续向正东方向航行是安全的.23.(9分)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.【解答】解:(1)连接OC,∵AB与⊙O相切于点C∴∠ACO=90°,由于=,∴∠AOC=∠BOC,∴∠A=∠B∴OA=OB,(2)由(1)可知:△OAB是等腰三角形,∴BC=AB=2,∴sin∠COB==,∴∠COB=60°,∴∠B=30°,∴OC=OB=2,∴扇形OCE的面积为:=,△OCB的面积为:×2×2=2∴S阴影=2﹣π24.(9分)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.【解答】解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.由题意:=×2,解得x=150,经检验x=150是分式方程的解,答:一件B型商品的进价为150元,则一件A型商品的进价为160元.(2)因为客商购进A型商品m件,所以客商购进B型商品(250﹣m)件.由题意:v=80m+70(250﹣m)=10m+17500,∵80≤m≤250﹣m,∴80≤m≤125,(3)设利润为w元.则w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500,①当10﹣a>0时,w随m的增大而增大,所以m=125时,最大利润为(18750﹣125a)元.②当10﹣a=0时,最大利润为17500元.③当10﹣a<0时,w随m的增大而减小,所以m=80时,最大利润为(18300﹣80a)元.25.(10分)若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数y=(k为常数,k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.【解答】解:(1)不能,理由如下:∵1、2、3的倒数分别为1、、,∴+≠1,1+≠,1+≠∴实数1,2,3不可以构成“和谐三组数”;(2)∵M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k≠0)的图象上,∴y1、y2、y3均不为0,且y1=,y2=,y3=,∴=,=,=,∵y1,y2,y3构成“和谐三组数”,∴有以下三种情况:当=+时,则=+,即t=t+1+t+3,解得t=﹣4;当=+时,则=+,即t+1=t+t+3,解得t=﹣2;当=+时,则=+,即t+3=t+t+1,解得t=2;∴t的值为﹣4、﹣2或2;(3)①∵a、b、c均不为0,∴x1,x2,x3都不为0,∵直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),∴0=2bx1+2c,解得x1=﹣,联立直线与抛物线解析式,消去y可得2bx+2c=ax2+3bx+3c,即ax2+bx+c=0,∵直线与抛物线交与B(x2,y2),C(x3,y3)两点,∴x2、x3是方程ax2+bx+c=0的两根,∴x2+x3=﹣,x2x3=,∴+===﹣=,∴x1,x2,x3构成“和谐三组数”;②∵x2=1,∴a+b+c=0,∴c=﹣a﹣b,∵a>2b>3c,∴a>2b>3(﹣a﹣b),且a>0,整理可得,解得﹣<<,∵P(,)∴OP2=()2+()2=()2+()2=2()2+2+1=2(+)2+,令m=,则﹣<m<且m≠0,且OP2=2(m+)2+,∵2>0,∴当﹣<m<﹣时,OP2随m的增大而减小,当m=﹣时,OP2有最大临界值,当m=﹣时,OP2有最小临界值,当﹣<m<时,OP2随m的增大而增大,当m=﹣时,OP2有最小临界值,当m=时,OP2有最大临界值,∴≤OP2<且OP2≠1,∵P到原点的距离为非负数,∴≤OP<且OP≠1.26.(10分)如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A 左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0,y0)总有n+≥﹣4my02﹣12y0﹣50成立,求实数n的最小值.【解答】解:(1)令y=mx2﹣16mx+48m=m(x﹣4)(x﹣12)=0,则x1=12,x2=4,∴A(12,0),即OA=12,又∵C(0,48m),∴当△OAC为等腰直角三角形时,OA=OC,即12=48m,∴m=;(2)由(1)可知点C(0,48m),∵对任意m>0,C、E两点总关于原点对称,∴必有E(0,﹣48m),设直线AE的解析式为y=kx+b,将E(0,﹣48m),A(12,0)代入,可得,解得,∴直线AE的解析式为y=4mx﹣48m,∵点D为直线AE与抛物线的交点,∴解方程组,可得或(点A舍去),即点D的坐标为(8,﹣16m);(3)当∠ODB=∠OAD,∠DOB=∠AOD时,△ODB∽△OAD,∴OD2=OA×OB=4×12=48,∴OD=4,又∵点D为线段AE的中点,∴AE=2OD=8,又∵OA=12,∴OE==4,∴D(6,﹣2),把D(6,﹣2)代入抛物线y=mx2﹣16mx+48m,可得﹣2=36m﹣96m+48m,解得m=,∴抛物线的解析式为y=(x﹣4)(x﹣12),即y=(x﹣8)2﹣,∵点P(x0,y0)为抛物线上任意一点,∴y0≥﹣,令t=﹣4my02﹣12y0﹣50=﹣2y02﹣12y0﹣50=﹣2(y0+3)2+4,则当y0≥﹣时,t最大值=﹣2(﹣+3)2+4=,若要使n+≥﹣4my02﹣12y0﹣50成立,则n+≥,∴n≥3,∴实数n的最小值为.。

长沙市2017届中考数学试卷及答案解析1

长沙市2017届中考数学试卷及答案解析1

2017届中考数学模拟试卷一、选择题1.的相反数是()A.﹣B.C.﹣2 D.22.如图,已知∠1=60°,如果CD∥BE,那么∠B的度数为()A.70° B.100° C.110° D.120°3.下列实数中,属于有理数的是()A.B.C.π D.4.一个几何体的三视图如图所示,则这个几何体是()A.三棱锥B.三棱柱C.圆柱D.长方体5.从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是()A.B.C.D.6.下列运算正确的是()A.(a5)2=a10B.x16÷x4=x4C.2a2+3a2=5a4D.b3•b3=2b37.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20 8.若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠49.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(2,5)B.(5,2)C.(2,﹣5)D.(5,﹣2)10.抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A.B.C.D.11.已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为()A.2 B.4 C.6 D.812.n是整数,式子[1﹣(﹣1)n](n2﹣1)计算的结果()A.是0 B.总是奇数C.总是偶数D.可能是奇数也可能是偶数二、填空题13.要使代数式有意义,则x的取值范围是.14.有一组数据:2,a,4,6,7,它们的平均数是5,则这组数据的中位数是.15.据教育部统计,参加2016年全国统一高考的考生有940万人,940万人用科学记数法表示为人.16.如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为.17.将m3(x﹣2)+m(2﹣x)分解因式的结果是.18.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=.(结果保留根号)三、解答题:19.计算:﹣(π﹣2016)0+|﹣2|+2sin60°.20.解方程:.21.为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“国际象棋”、“音乐舞蹈”和“书法”等多个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了本校部分学生选择社团的意向.并将调查结果绘制成如下统计图表(不完整):选择意向文学鉴赏国际象棋音乐舞蹈书法其他所占百分比 a 20% b 10% 5%根据统计图表的信息,解答下列问题:(1)求本次抽样调查的学生总人数及a、b的值;(2)将条形统计图补充完整;(3)若该校共有1300名学生,试估计全校选择“音乐舞蹈”社团的学生人数.22.如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:=1.414,=1.732)23.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)24.某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元,如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.(参考数据:=1.1,=1.2,=1.3,=1.4)25.如图,在△ABC中,E是AC边上的一点,且AE=A B,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.(1)求证:BC是⊙O的切线;(2)若AB=8,BC=6,求DE的长.26.如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.2016年广西贺州市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,给出的四个选项中,只有一项是符合题目要求的,在试卷上作答无效.1.A.2D.3.D.4.B.5.D.6.A.7.C.8.C.9.B.10.B.11.D.12.C.二、填空题:本大题共6小题,每小题3分,共18分,请把答案填在答题卡对应的位置上,在试卷上作答无效.13.x≥﹣1且x≠0.14.6.15.9.4×106.16.120°.17.m(x﹣2)(m﹣1)(m+1).18..三、解答题:本大题共8题,满分66分,解答应写出文字说明、证明过程或演算步骤,在试卷上作答无效.19.计算:﹣(π﹣2016)0+|﹣2|+2sin60°=3.20.解方程:.解得:x=30.21.【解答】解:(1)本次抽样调查的学生总人数是:20÷10%=200,a=×100%=30%,b=×100%=35%,(2)国际象棋的人数是:200×20%=40,条形统计图补充如下:(3)若该校共有1300名学生,则全校选择“音乐舞蹈”社团的学生人数是1300×35%=455(人),答:全校选择“音乐舞蹈”社团的学生人数是1300×35%=455人.22.【解答】解:由题意得,AH=10米,BC=10米,在Rt△ABC中,∠CAB=45°,∴AB=BC=10,在Rt△DBC中,∠CDB=30°,∴DB==10,∴DH=AH﹣AD=AH﹣(DB﹣AB)=10﹣10+10=20﹣10≈2.7(米),∵2.7米<3米,∴该建筑物需要拆除.23.【解答】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2.24.【解答】解:(1)设增长率为x,根据题意2015年为2900(1+x)万元,2016年为2900(1+x)2万元.则2900(1+x)2=3509,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)2018年该地区投入的教育经费是3509×(1+10%)2=4245.89(万元).4245.89<4250,答:按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费不能达到4250万元.25.【解答】(1)证明:∵AE=AB,∴△ABE是等腰三角形,∴∠ABE=(180°﹣∠BAC=)=90°﹣∠BAC,∵∠BAC=2∠CBE,∴∠CBE=∠BAC,∴∠ABC=∠ABE+∠CBE=(90°﹣∠BAC)+∠BAC=90°,即AB⊥BC,∴BC是⊙O的切线;(2)解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABC=90°,∴∠ADB=∠ABC,∵∠A=∠A,∴△ABD∽△ACB,∴=,∵在Rt△ABC中,AB=8,BC=6,∴AC==10,∴,解得:AD=6.4,∵AE=AB=8,∴DE=AE﹣AD=8﹣6.4=1.6.26.【解答】解:(1)∵四边形ABCD是矩形,B(10,8),∴A(10,0),又抛物线经过A、E、O三点,把点的坐标代入抛物线解析式可得,解得,∴抛物线的解析式为y=﹣x2+x;(2)由题意可知:AD=DE,BE=10﹣6=4,AB=8,设AD=x,则ED=x,BD=AB﹣AD=8﹣x,在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8﹣x)2,解得x=5,∴AD=5;(3)∵y=﹣x2+x,∴其对称轴为x=5,∵A、O两点关于对称轴对称,∴PA=PO,当P、O、D三点在一条直线上时,PA+PD=PO+PD=OD,此时△PAD的周长最小,如图,连接OD交对称轴于点P,则该点即为满足条件的点P,由(2)可知D点的坐标为(10,5),设直线OD解析式为y=kx,把D点坐标代入可得5=10k,解得k=,∴直线OD解析式为y=x,令x=5,可得y=,∴P点坐标为(5,).。

2017年湖南省长沙市中考数学试卷(含解析)

2017年湖南省长沙市中考数学试卷(含解析)

2017年湖南省长沙市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列实数中,为有理数的是()A.B.πC.D.12.(3分)下列计算正确的是()A.= B.a+2a=2a2C.x(1+y)=x+xyD.(mn2)3=mn63.(3分)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826×106B.8.26×107C.82.6×106 D.8.26×1084.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形B.正五边形C.正方形D.平行四边形5.(3分)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰直角三角形6.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4 D.“367人中有2人同月同日出生”为必然事件7.(3分)某几何体的三视图如图所示,因此几何体是()A.长方形 B.圆柱C.球 D.正三棱柱8.(3分)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)9.(3分)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为()A.60°B.70°C.80°D.110°10.(3分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm 11.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里 B.12里 C.6里D.3里12.(3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B.C.D.随H点位置的变化而变化二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:2a2+4a+2= .14.(3分)方程组的解是.15.(3分)如图,AB为⊙O的直径,弦CD ⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.16.(3分)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是.17.(3分)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是S甲2=1.2,S乙2=0.5,则在本次测试中,同学的成绩更稳定(填“甲”或“乙”)18.(3分)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1.20.(6分)解不等式组,并把它的解集在数轴上表示出来.21.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.(1)表中a= ,b= ;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.22.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P 在北偏东60°方向上,继续航行1小时到达B 处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?23.(9分)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.24.(9分)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B 型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.25.(10分)若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y 3)三点均在函数y=(k为常数,k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x 2=1,求点P(,)与原点O的距离OP的取值范围.26.(10分)如图,抛物线y=mx2﹣16mx+48m (m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0,y0)总有n+≥﹣4my 02﹣12y0﹣50成立,求实数n的最小值.2017年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列实数中,为有理数的是()A.B.πC.D.1【分析】根据有理数是有限小数或无限循环小数,无理数是无限不循环小数,可得答案.【解答】解:,π,是无理数,1是有理数,故选:D.【点评】本题考查了实数,正确区分有理数与无理数是解题关键.2.(3分)下列计算正确的是()A.= B.a+2a=2a2C.x(1+y)=x+xyD.(mn2)3=mn6【分析】分别利用合并同类项法则以及单项式乘以多项式和积的乘方运算法则化简判断即可.【解答】解:A、+无法计算,故此选项错误;B、a+2a=3a,故此选项错误;C、x(1+y)=x+xy,正确;D、(mn2)3=m3n6,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及单项式乘以多项式和积的乘方运算等知识,正确掌握运算法则是解题关键.3.(3分)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826×106B.8.26×107C.82.6×106 D.8.26×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将82600000用科学记数法表示为:8.26×107.故选B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形B.正五边形C.正方形D.平行四边形【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,又是中心对称图形,故本选项正确;D、不是轴对称图形,是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰直角三角形【分析】根据三角形内角和等于180°计算即可.【解答】解:设三角形的三个内角的度数之比为x、2x、3x,则x+2x+3x=180°,解得,x=30°,则3x=90°,∴这个三角形一定是直角三角形,故选:B.【点评】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键.6.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4 D.“367人中有2人同月同日出生”为必然事件【分析】根据可能性的大小、全面调查与抽样调查的定义及中位数概念、必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:A、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;B、可能性是1%的事件在一次试验中可能发生,此选项错误;C、数据3,5,4,1,﹣2的中位数是3,此选项错误;D、“367人中有2人同月同日出生”为必然事件,此选项正确;故选:D.【点评】本题主要考查可能性的大小、全面调查与抽样调查的定义及中位数概念、随机事件,熟练掌握基本定义是解题的关键.7.(3分)某几何体的三视图如图所示,因此几何体是()A.长方形 B.圆柱C.球 D.正三棱柱【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.【解答】解:从正面看,是一个矩形;从左面看,是一个矩形;从上面看,是圆,这样的几何体是圆柱,故选B.【点评】本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.8.(3分)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【解答】解:y=2(x﹣3)2+4是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,4).故选A.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.9.(3分)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为()A.60°B.70°C.80°D.110°【分析】直接根据平行线的性质即可得出结论.【解答】解:∵直线a∥b,∴∠3=∠1=110°,∴∠2=180°﹣110°=70°,故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.10.(3分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm【分析】根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB===5cm,所以,这个菱形的周长=4×5=20cm.故选D.【点评】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.11.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里 B.12里 C.6里D.3里【分析】设第一天走了x里,则第二天走了x 里,第三天走了×x…第六天走了()5x里,根据路程为378里列出方程并解答.【解答】解:设第一天走了x里,依题意得:x+x+x+x+x+x=378,解得x=192.则()5x=()5×192=6(里).故选:C.【点评】本题考查了一元一次方程的应用.根据题意得到()5x里是解题的难点.12.(3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B.C.D.随H点位置的变化而变化【分析】设CH=x,DE=y,则DH=﹣x,EH=﹣y,然后利用正方形的性质和折叠可以证明△DEH∽△CHG,利用相似三角形的对应边成比例可以把CG,HG分别用x,y分别表示,△CHG的周长也用x,y表示,然后在Rt△DEH 中根据勾股定理可以得到x﹣x2=y,进而求出△CHG的周长.【解答】解:设CH=x,DE=y,则DH=﹣x,EH=﹣y,∵∠EHG=90°,∴∠DHE+∠CHG=90°.∵∠DHE+∠DEH=90°,∴∠DEH=∠CHG,又∵∠D=∠C=90°,△DEH∽△CHG,∴==,即==,∴CG=,HG=,△CHG的周长为n=CH+CG+HG=,在Rt△DEH中,DH2+DE2=EH2即(﹣x)2+y2=(﹣y)2整理得﹣x2=,∴n=CH+HG+CG===.∴=.故选:B.【点评】本题考查翻折变换及正方形的性质,正方形的有些题目有时用代数的计算证明比用几何方法简单,甚至几何方法不能解决的用代数方法可以解决.本题综合考查了相似三角形的应用和正方形性质的应用.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:2a2+4a+2= 2(a+1)2.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2+2a+1)=2(a+1)2,故答案为:2(a+1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(3分)方程组的解是.【分析】根据加减消元法,可得答案.【解答】解:两式相加,得4x=4,解得x=1,把x=1代入x+y=1,解得y=0,方程组的解为,故答案为:.【点评】本题考查了解二元一次方程组,利用加减消元法是解题关键.15.(3分)如图,AB为⊙O的直径,弦CD ⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为 5 .【分析】连接OC,由垂径定理知,点E是CD 的中点,AE=CD,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.【点评】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.16.(3分)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是(1,2).【分析】根据位似变换的性质进行计算即可.【解答】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2),故答案为:(1,2).【点评】本题考查的是位似变换的性质,掌握平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k是解题的关键.17.(3分)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是S甲2=1.2,S乙2=0.5,则在本次测试中,乙同学的成绩更稳定(填“甲”或“乙”)【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=1.2,S乙2=0.5,∴S甲>S乙,∴甲、乙两名同学成绩更稳定的是乙;故答案为:乙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18.(3分)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为4.【分析】作MN⊥x轴于N,得出M(x,x),在Rt△OMN中,由勾股定理得出方程,解方程求出x=2,得出M(2,2),即可求出k的值.【解答】解:作MN⊥x轴于N,如图所示:设M(x,y),∵点M是函数y=x与y=的图象在第一象限内的交点,∴M(x,x),在Rt△OMN中,由勾股定理得:x2+(x)2=42,解得:x=2,∴M(2,2),代入y=得:k=2×2=4;故答案为:4.【点评】本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点M的坐标是解决问题的关键.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=3+1﹣1+3=6.【点评】此题考查了实数的运算,绝对值,以及零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.20.(6分)解不等式组,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x≥﹣9﹣x,得:x≥﹣3,解不等式5x﹣1>3(x+1),得:x>2,则不等式组的解集为x>2,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.(1)表中a= 0.3 ,b= 45 ;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.【分析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)列树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【解答】解:(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人),故答案为:0.3,45;(2)360°×0.3=108°,答:扇形统计图中B组对应扇形的圆心角为108°;(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,列树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P 在北偏东60°方向上,继续航行1小时到达B 处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【分析】(1)在△ABP中,求出∠PAB、∠PBA 的度数即可解决问题;(2)作PH⊥AB于H.求出PH的值即可判定;【解答】解:(1)∵∠PAB=30°,∠ABP=120°,∴∠APB=180°﹣∠PAB﹣∠ABP=30°.(2)作PH⊥AB于H.∵∠BAP=∠BPA=30°,∴BA=BP=50,在Rt△PBH中,PH=PB•sin60°=50×=25,∵25>25,∴海监船继续向正东方向航行是安全的.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.23.(9分)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.【分析】(1)连接OC,由切线的性质可知∠ACO=90°,由于=,所以∠AOC=∠BOC,从而可证明∠A=∠B,从而可知OA=OB;(2)由(1)可知:△AOB是等腰三角形,所以AC=2,从可求出扇形OCE的面积以及△OCB的面积【解答】解:(1)连接OC,∵AB与⊙O相切于点C∴∠ACO=90°,由于=,∴∠AOC=∠BOC,∴∠A=∠B∴OA=OB,(2)由(1)可知:△OAB是等腰三角形,∴BC=AB=2,∴sin∠COB==,∴∠COB=60°,∴∠B=30°,∴OC=OB=2,∴扇形OCE的面积为:=,△OCB的面积为:×2×2=2∴S 阴影=2﹣π【点评】本题考查切线的性质,解题的关键是求证OA=OB,然后利用等腰三角形的三线合一定理求出BC与OC的长度,从而可知扇形OCE与△OCB的面积,本题属于中等题型.24.(9分)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B 型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年长沙市初中毕业学业水平考试模拟试卷(六)数学时量:120分钟满分:120分注意事项:1、答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对姓名、准考证号、考室和座位号;2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;3、答题时,请考生注意各大题题号后面的答题提示;4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共26个小题,考试时量l20分钟,满分I20分。

一、选择题(本题共12个小题,每小题3分,满分36分)1.计算:(﹣3)+4的结果是()A.﹣7 B.﹣1 C.1 D.72.如图是一个正方体,则它的表面展开图可以是()A.B.C.D.3.下列计算正确的是()A.x2+x2=x4B.x2+x3=2x5C.3x﹣2x=1 D.x2y﹣2x2y=﹣x2y4.在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,406.在下列事件中,必然事件是()A.在足球赛中,弱队战胜强队B.任意画一个三角形,其内角和是360°C.抛掷一枚硬币,落地后反面朝上D.通常温度降到0℃以下,纯净的水结冰7.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.58.分式方程341x x=+的解是()A.x=﹣1 B.x=1 C.x=2 D.x=39.当k>0时,反比例函数kyx=和一次函数2y kx=+的图象大致是()A .B .C .D .10.若一个正n 边形的每个内角为144°,则这个正n 边形的所有对角线的条数是( )A .7B .10C .35D .7011.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r ,扇形的圆心角等于120°,则围成的圆锥模型的高为( )A .22rB .rC .10rD .3r12.如图,分别过点P i (i ,0)(i=1、2、…、n )作x 轴的垂线,交212y x =的图象于点A i ,交直线12y x =-于点B i .则1122111n nA B A B A B +++的值为( ) A .21nn + B .2C .2(1)n n +D .21n + 二.填空题(本题共6个小题,每小题3分,满分18分)13.要使代数式1x x+有意义,则x 的取值范围是 . 14.已知点M (1,a )和点N (2,b )是一次函数21y x =-+图象上的两点,则a 与b 的大小关系是 .15.分解因式:2()3()a b c b c +-+= .16.不等式组32148x x -<⎧⎨<⎩的解集为 .17.关于x 的一元二次方程220x x k +-=有两个不相等的实数根,则k 的取值范围是 .18.初三年级某班有54名学生,所在教室有6行9列座位,用(m ,n )表示第m 行第n 列的座位,新学期准备调整座位,设某个学生原来的座位为(m ,n ),如果调整后的座位为(i ,j ),则称该生作了平移[a ,b ]=[m ﹣i ,n ﹣j ],并称a +b 为该生的位置数.若某生的位置数为10,则当m +n 取最小值时,m •n 的最大值为 .三.解答题(本大题共2个小题,每小题6分,共12分) 19.计算 2(1)212sin 45-+-+20.先化简,再求值:21x x -÷(1+11x -),其中x =2cos45°﹣3tan30°.四.解答题(本大题共2个小题,每小题8分,共16分) 21.“校园手机”现象越来越受到社会的关注.某校小记者随机调查了某地区若干名学生和家长对学生带手机现象的看法,统计整理并制作了如图的统计图:(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机家长大约有多少名?22.如图,已知△ABC ,以AC 为直径的⊙O 交AB 于点D ,点E 为AD 的中点,连结CE 交AB 于点F ,且BF BC =.(1)判断直线BC 与⊙O 的位置关系,并说明理由; (2)若⊙O 的半径为2,sin B =45,求CE 的长.五.解答题(本大题共2个小题,每小题9分,共18分)23.某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件. (1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元? (2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m %,但售价比9月份在(1)的条件下的最高售价减少2%15m .结果10月份利润达到3388元,求m 的值(m >10).24.已知:如图,在矩形ABCD 中,AC 是对角线.点P 为矩形外一点且满足AP PC =,AP PC ⊥.PC 交AD 于点N ,连接DP ,过点P 作PM PD ⊥交AD 于M .(1)若AP =5,AB =13BC ,求矩形ABCD 的面积; (2)若CD PM =,求证:AC AP PN =+.六.解答题(本大题共2个小题,每小题10分,共20分)25.在平面直角坐标系xoy 中,图形W 在坐标轴上的投影长度定义如下:设点11(,)P x y ,22(,)Q x y 是图形W 上的任意两点.若12x x -的最大值为m ,则图形W 在x 轴上的投影长度x l M =;若12y y -的最大值为n ,则图形W 在y 轴上的投影长度y l n =.如图1,图形W 在x 轴上的投影长度x l =|3﹣1|=2;在y 轴上的投影长度y l =|4﹣0|=4.(1)已知点A (3,3),B (4,1).如图2所示,若图形W 为△OAB ,则x l = ,y l = . (2)已知点C (4,0),点D 在直线26y x =+上,若图形W 为△OCD .当x y l l =时,求点D 的坐标.(3)若图形W 为函数2()y x a x b =≤≤的图象,其中0a b ≤<.当该图形满足1x y l l =≤时,请直接写出a 的取值范围.26.设抛物线2y ax bx c =++与x 轴交于两不同的点(1,0)A -,(,0)B m ,(点A 在点B 的左边),与y 轴的交点为点(0,2)C -,且90ACB ∠=. (1)求m 的值和该抛物线的解析式;(2)若点D 为该抛物线上的一点,且横坐标为1,点E 为过A 点的直线1y x =+与该抛物线的另一交点.在x 轴上是否存在点P ,使得以P 、B 、D 为顶点的三角形与△AEB 相似?若存在,求出点P 的坐标;若不存在,请说明理由.(3)连接AC 、BC ,矩形FGHQ 的一边FG 在线段AB 上,顶点H 、Q 分别在线段AC 、BC 上,若设F 点坐标为(t ,0),矩形FGHQ 的面积为S ,当S 取最大值时,连接FH 并延长至点M ,使HM k FH =,若点M 不在该抛物线上,求k 的取值范围.长沙市数学中考模拟试卷(六)答案一、选择题1-5、 CBDDB 6-10、D CDC C 11-12、 AA二、填空题13. 1x ≥-,且0x ≠; 14. a b > 15. ()(23)b c a +- 16. 1x < 17. 1k >- 18. 36 三、解答题19. 22 20.11x + 22四、解答题21.(1)这次调查的家长人数为80÷20%=400人,反对人数是:400﹣40﹣80=280人, (2)360°×=36°; (3)反对中学生带手机的大约有6500×=4550(名).22. (1)BC 与⊙O 相切证明:连接AE,∵AC是⊙O的直径∴∠E=90°,∴∠EAD+∠AFE=90°,∵BF=BC,∴∠BCE=∠BFC,∵E为弧AD中点,∴∠EAD=∠ACE,∴∠BCE+∠ACE=90°,∴AC⊥BC,∵AC为直径,∴BC是⊙O的切线.(2)解:∵⊙O的半为2∴AC=4,∵sinB==,∴AB=5,∴BC==3,∵BF=BC,∴BF=3,AF=5﹣3=2,∵∠EAD=∠ACE,∠E=∠E,∴△AEF∽△CEA,∴==,∴EC=2EA,设EA=x,EC=2x,由勾股定理得:x2+4x2=16,x=(负数舍去),即CE=.五、解答题23.解:(1)设售价应为x元,依题意有1160﹣≥1100,解得x≤15.答:售价应不高于15元.(2)10月份的进价:10(1+20%)=12(元),由题意得:1100(1+m%)[15(1﹣m%)﹣12]=3388,设m%=t,化简得50t2﹣25t+2=0,解得:t1=,t2=,所以m1=40,m2=10,因为m>10,所以m=40.答:m的值为40.24.(1)解:∵AP⊥CP且AP=CP,∴△APC为等腰直角三角形,∵AP=,∴AC=,∵AB=BC,∴设AB=x,BC=3x,∴在Rt△ABC中,x2+(3x)2=10,10x2=10,x=1,∴S ABCD=AB•BC=1×3=3;(2)解:延长AP,CD交于Q,∵∠1+∠CND=∠2+∠PNA=90°,且∠CND=∠ANP,∴∠1=∠2,又∠3+∠5=∠4+∠5=90°,∴∠3=∠4,在△APM和△CPD中∵,∴△APM≌△CPD(ASA),∴DP=PM,又∵CD=PM,∴CD=PD,∴∠1=∠4=∠3,∵∠1+∠Q=∠3+∠6=90°∴∠Q=∠6∴DQ=DP=CD∴D为CQ中点,又∵AD⊥CQ∴AC=AQ=AP+PQ,在△APN和△CPQ中∵,∴△APN≌△CPQ(ASA),∴PQ=PN∴AC=AP+PQ=AP+PN.六、解答题25.解:(1)∵A(3,3),∴点A在y轴上的正投影的坐标为(0,3).∴△OAB在y轴上的投影长度l y=3.∵B(4,1),∴点B在x轴上的正投影的坐标为(4,0).∴△OAB在x轴上的投影长度l x=4.故答案为:4;3.(2)如图1所示;过点P作PD⊥x轴,垂足为P.设D(x,2x+6),则PD=2x+6.∵PD⊥x轴,∴P(x,0).∴PC=3﹣x.∵l x=l y,∴2x+6=3﹣x,解得;x=﹣1.∴D(﹣1,4).如图2所示:过点D作DP⊥x轴,垂足为P.设D(x,2x+6),则PD=﹣2x﹣6.∵PD⊥x轴,∴P(x,0).∴PC=3﹣x.∵l x=l y,∴﹣2x﹣6=3﹣x,解得;x=﹣9.∴D(﹣9,﹣12).综上所述,点D的坐标为(﹣1,4)或(﹣9,﹣12).(3)如图3所示:设A(a,a2)、B(b,b2).则CE=b﹣a,DF=b2﹣a2=(b+a)(b﹣a).∵l x=l y,∴(b+a)(b﹣a)=b﹣a,即(b+a﹣1)(b﹣a)=0.∵b≠a,∴b+a=1.又∵0≤a<b,∴a+a<1,∴0≤a<.26.解:(1)令x=0,得y=﹣2,∴C(0,﹣2),∵∠ACB=90°,CO⊥AB,∴△AOC∽△COB,∴OA•OB=OC2,∴OB=,∴m=4,将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2,得,∴抛物线的解析式为y=x2﹣x﹣2.(2)D(1,n)代入y=x2﹣x﹣2,得n=﹣3,可得(不合题意舍去),,∴E(6,7).过E作EH⊥x轴于H,则H(6,0),∴AH=EH=7,∴∠EAH=45°.过D作DF⊥x轴于F,则F(1,0),∴BF=DF=3,∴∠DBF=45°,∴∠EAH=∠DBF=45°,∴∠DBH=135°,90°<∠EBA<135°.则点P只能在点B的左侧,有以下两种情况:①若△DBP1∽△EAB,则,∴BP1===,∴OP1=4﹣=,∴P1(,0).②若△DBP2∽△BAE,则,∴BP2===,∴OP2=﹣4=,∴P2(﹣,0).综合①、②,得点P的坐标为:P1(,0)或P2(﹣,0).(3)∵HQ∥AB∴△CHQ∽△CAB∴HQ:AB=CR:CO,即:设HG=x,则=解得:HQ=﹣x+5∴矩形的面积S=HG•HQ=﹣x2+5x当x=﹣=1时,面积取得最大值.则H,R,Q的纵坐标是﹣1.则HQ=﹣×1+5=设直线AC的解析式是y=kx+b根据题意得:,解得:则AC的解析式是:y=﹣2x﹣2在解析式中,令x=﹣1,解得:y=0则H的坐标是(﹣,﹣1).F的坐标是(2,0).则HF=.设直线FH的解析式是y=kx+b根据题意得:解得:,则直线FH的解析式是y=x﹣.解方程组:,解得:x=.当直线与抛物线相交时,k===或=.则k的范围是:k>0且k≠且k≠.。

相关文档
最新文档