双抛物线型中考压轴题解法赏析

合集下载

中考数学专题抛物线中的角度问题(初三数学压轴题讲解)

中考数学专题抛物线中的角度问题(初三数学压轴题讲解)

中考数学压轴题专题一:利用抛物线中的角度求点的坐标(原创)二次函数中的角度问题通常要构造直角、相似、全等三角形把角度问题转化为边的问题,求抛物线中的点坐标方法一般采用两种方法,第一种是求线与线的交点,这时需要联立方程;第二种是几何法,过点做坐标轴的垂线,再利用三角函数或者是相似三角形去求解!例1.抛物线y=﹣x2+x+4与坐标轴分别交于A,B,C三点,P是第一象限内抛物线上的一点且横坐标为m.连接CP,是否存在点P,使得∠BCO+2∠PCB=90°,若存在,求m 的值,若不存在,请说明理由.解题思路:1.利用∠BCO+2∠PCB=90°和∠BCO+∠CBO=90°推出∠CBO=2∠PCB2.得出∠CMB=∠MCB得到BC=BM3.求出M的坐标,进而求出直线CM的直线解析式4.联立直线CM方程和抛物线方程,求交点坐标例2.已知抛物线y=x2+x﹣3与x轴交于点A(1,0)和点B两点,与y轴交于点C,点P是抛物线点第三象限上一动点(不与点A,B,C重合),作PD⊥x轴,垂足为D,连接PC.且∠CPD=45°,求点P的坐标;解题思路:45度可以联想到等腰直角三角形1.延长PC交x轴于点E,得出等腰直角三角形2.求出E点坐标,进而求出直线CE的解析式3.联立直线CE方程和抛物线方程,求交点坐标例3.抛物线y=x2﹣4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.连接OD,P为x轴上的动点,当tan∠PDO=时,求点P的坐标;解题思路1.分情况讨论,分P在原点的左右侧进行讨论2.P在原点右侧比较简单3.P在原点左侧要结合P在原点右侧的情况,可以得出等腰△OGD,求出G点坐标4.利用GD的直线直线方程或相似三角形求出P点坐标例4.已知抛物线y=﹣x2﹣6x﹣5与x轴交于点A(﹣1,0)和B(﹣5,0),与y轴交于点C,顶点为P,点N在抛物线对称轴上且位于x轴下方,连AN交抛物线于M,连AC、CM.tan ∠ACM=2时,求M点的横坐标;解题思路:1.构造一线三垂直利用相似求出点F坐标2.求出直线CF的解析式3.联立直线CF方程和抛物线方程,求交点坐标(求交点可以利用韦达定理)例5.在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于点A(﹣1,0)和点B,与y轴交于点C,顶点D的坐标为(1,﹣4).点P在抛物线上且满足∠PCB=∠CBD,求点P 的坐标;解题思路:1.分情况讨论,P在直线BC的上方和下方2.P在直线BC上方,利用∠PCB=∠CBD得出PC平行BD,利用斜率相等求出直线PC解析式联立PC方程和抛物线方程,求交点坐标3.P在直线BC的下方,∠PCB=∠CBD得出等腰三角形CFB,4.可以得出△BCD为直角三角形,,推出F为BD的中点5.求出直线CF的方程,再联立抛物线方程求出交点坐标例6.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线经过A,B两点且与x轴的负半轴交于点C.点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;解题思路:1.过点B做OA平行线2.∠ABD=2∠BAC得出∠ABD=2∠EBA,得出∠FBD=∠BAC3.利用tan∠FBD=tan∠BAC求出D点做坐标例7.已知抛物线y=(x﹣1)2,D为抛物线的顶点,直线y=kx+4﹣k与抛物线交于P、Q两点.求证:∠PDQ=90°;解题思路思路1.构造一线三垂直思路2.证明直线PD和直线DQ斜率之积为-1思路3.利用勾股定理逆定理证明例8.如图,抛物线y=x2﹣2x﹣6与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.连接BD,F为抛物线上一动点,当∠F AB =∠EDB时,求点F的坐标;解题思路:1.分点F在x轴下方时和上方时进行分类讨论2.AB在x轴上,利用tan∠FAB=tan∠EDB去求最简便例9.如图,已知抛物线C1:交x轴于点A,B,交y轴于点C.在抛物线上存在点D,使,求点D的坐标.解题思路:1.分D在BC上方和下方讨论2.找到特殊点发现tan∠OBC=3.利用角平分线的性质去求F坐标4.求联立直线BF和抛物线方程求D点坐标例10,平面直角坐标系中,已知抛物线y=﹣x2+5x﹣4与x轴交于点A,B两点(点A在点B左边),与y轴交于点C.D为抛物线x轴上方一点,连接BD,若∠DBA+∠ACB=90°,求点D的坐标;解题思路:利用tan∠ACB=tan∠FDB去求解例11.已知抛物线y=﹣x2﹣x+2,BC平分∠PCO时,求点P的横坐标.解题思路:1.角平分线联想到角平分线+平行线得到等腰三角形2.利用PE=PC去求解(两点之间的距离公式)例12.抛物线y=x2﹣1,M(﹣4,3),N是抛物线上两点,N在对称轴右侧,且tan∠OMN =,求N点坐标;解题思路:构造一线三垂直课后练习1.在平面直角坐标系中,已知抛物线y=ax2+4ax+4a﹣6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.直线DC交x轴于点E,tan∠AED=,求a的值和CE的长;2.已知抛物线y=(x+1)2+1,点A(﹣1,2)在抛物线的对称轴上。

(已整理)中考数学必刷压轴题专题:抛物线之角度关系处理(含解析)

(已整理)中考数学必刷压轴题专题:抛物线之角度关系处理(含解析)

中考数学抛物线压轴题之角度关系处理(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.2.如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y=c分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.(1)直接写出点P的坐标和抛物线的解析式;(2)当m为何值时,△MAB面积S取得最小值和最大值?请说明理由;(3)求满足∠MPO=∠POA的点M的坐标.3.如图,已知抛物线y=ax2+bx+c的顶点D的坐标为(1,﹣),且与x轴交于A、B两点,与y轴交于C 点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m.(l)求抛物线所对应的二次函数的表达式;(2)若动点P满足∠PAO不大于45°,求P点的横坐标m的取值范围;(3)当P点的横坐标m<0时,过P点作y轴的垂线PQ,垂足为Q.问:是否存在P点,使∠QPO=∠BCO?若存在,请求出P点的坐标;若不存在,请说明理由.4.如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.5.如图,抛物线y=ax2+bx﹣3a经过A(﹣1,0)、C(0,﹣3)两点,与x轴交于另一点B.(1)求此抛物线的解析式;(2)已知点D(m,﹣m﹣1)在第四象限的抛物线上,求点D关于直线BC对称的点D'的坐标.(3)在(2)的条件下,连接BD,问在x轴上是否存在点P,使∠PCB=∠CBD?若存在,请求出P点的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(A点在B点左侧),顶点为D.(1)求抛物线的解析式及点A、B的坐标;(2)将△ABC沿直线BC对折,点A的对称点为A′,试求A′的坐标;(3)抛物线的对称轴上是否存在点P,使∠BPC=∠BAC?若存在,求出点P的坐标;若不存在,请说明理由.7.如图,已知抛物线y=ax2+bx+c与x轴交于点A、B,与直线AC:y=﹣x﹣6交y轴于点C,点D是抛物线的顶点,且横坐标为﹣2.(1)求出抛物线的解析式.(2)判断△ACD的形状,并说明理由.(3)直线AD交y轴于点F,在线段AD上是否存在一点P,使∠ADC=∠PCF?若存在,直接写出点P的坐标;若不存在,说明理由.8.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(,0)和点B(1,),与x轴的另一个交点为C.(1)求抛物线的函数表达式;(2)点D在对称轴的右侧,x轴上方的抛物线上,且∠BDA=∠DAC,求点D的坐标;(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE.①判断四边形OAEB的形状,并说明理由;②点F是OB的中点,点M是直线BD的一个动点,且点M与点B不重合,当∠BMF=∠MFO时,请直接写出线段BM的长.9.如图,在平面直角坐标系中,抛物线y=ax2+bx与x轴交于点A,顶点B的坐标为(﹣2,﹣2).(1)求a,b的值;(2)在y轴正半轴上取点C(0,4),在点A左侧抛物线上有一点P,连接PB交x轴于点D,连接CB交x 轴于点F,当CB平分∠DCO时,求点P的坐标;(3)在(2)的条件下,连接PC,在PB上有一点E,连接EC,若∠ECB=∠PDC,求点E的坐标.10.如图,在平面直角坐标系中,一次函数y=x﹣2的图象分别交x、y轴于点A、B,抛物线y=x2+bx+c 经过点A、B,点P为第四象限内抛物线上的一个动点.(1)求此抛物线对应的函数表达式;(2)如图1所示,过点P作PM∥y轴,分别交直线AB、x轴于点C、D,若以点P、B、C为顶点的三角形与以点A、C、D为顶点的三角形相似,求点P的坐标;(3)如图2所示,过点P作PQ⊥AB于点Q,连接PB,当△PBQ中有某个角的度数等于∠OAB度数的2倍时,请直接写出点P的横坐标.11.如图,直线y=x+c与x轴交于点B(4,0),与y轴交于点C,抛物线y=x2+bx+c经过点B,C,与x轴的另一个交点为点A.(1)求抛物线的解析式;(2)点P是直线BC下方的抛物线上一动点,求四边形ACPB的面积最大时点P的坐标;(3)若点M是抛物线上一点,请直接写出使∠MBC=∠ABC的点M的坐标.12.如图,二次函数y=ax2﹣3ax+c的图象与x轴交于点A、B,与y轴交于点C直线y=﹣x+4经过点B、C.(1)求抛物线的表达式;(2)过点A的直线交抛物线于点M,交直线BC于点N.①点N位于x轴上方时,是否存在这样的点M,使得AM:NM=5:3?若存在,求出点M的坐标;若不存在,请说明理由.②连接AC,当直线AM与直线BC的夹角∠ANB等于∠ACB的2倍时,请求出点M的横坐标.13.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;(3)在直线x=﹣2上是否存在点M,使得∠MAC=2∠MCA,若存在,求出M点坐标.若不存在,说明理由.14.在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD的面积为S,求S的最大值;(3)如图2,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,直接写出点D的横坐标;若不存在,请说明理由.15.如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式.(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD.OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),点P是抛物线上的点,连接EB,PB,PE形成的△PBE中,是否存在点P,使∠PBE或∠PEB等于2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.16.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c 经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点,①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.17.二次函数y=ax2+bx+2的图象交x轴于点(﹣1,0),B(4,0)两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)连接BD,当t=时,求△DNB的面积;(3)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标;(4)当t=时,在直线MN上存在一点Q,使得∠AQC+∠OAC=90°,求点Q的坐标.18.如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.19.如图1,抛物线y=x2﹣(m﹣1)x﹣m(m>0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=3OA.(1)求该抛物线的函数表达式;(2)动点D在线段BC下方的抛物线上.①连接AC、BC,过点D作x轴的垂线,垂足为E,交BC于点F.过点F作FG⊥AC,垂足为G.设点D的横坐标为t,线段FG的长为d,用含t的代数式表示d;②过点D作DH⊥BC,垂足为H,连接CD.是否存在点D,使得△CDH中的一个角恰好等于∠ABC的2倍?如果存在,求出点D的横坐标;如果不存在,请说明理由.1.如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.【分析】(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入求得a的值即可;(2)过点P作PD⊥x,交BC与点D,先求得直线BC的解析式为y=﹣x+1,设点P(x,﹣x2+x+1),则D(x,﹣x+1),然后可得到PD与x之间的关系式,接下来,依据△PBC的面积为1列方程求解即可;(3)首先依据点A和点C的坐标可得到∠BQC=∠BAC=45°,设△ABC外接圆圆心为M,则∠CMB=90°,设⊙M的半径为x,则Rt△CMB中,依据勾股定理可求得⊙M的半径,然后依据外心的性质可得到点M为直线y=﹣x与x=1的交点,从而可求得点M的坐标,然后由点M的坐标以及⊙M的半径可得到点Q的坐标.【解答】解:(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入得﹣3a=1,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+1.(2)过点P作PD⊥x,交BC与点D.设直线BC的解析式为y=kx+b,则,解得:k=﹣,∴直线BC的解析式为y=﹣x+1.设点P(x,﹣x2+x+1),则D(x,﹣x+1)∴PD=(﹣x2+x+1)﹣(﹣x+1)=﹣x2+x,∴S△PBC=OB•DP=×3×(﹣x2+x)=﹣x2+x.又∵S△PBC=1,∴﹣x2+x=1,整理得:x2﹣3x+2=0,解得:x=1或x=2,∴点P的坐标为(1,)或(2,1).(3)存在.∵A(﹣1,0),C(0,1),∴OC=OA=1∴∠BAC=45°.∵∠BQC=∠BAC=45°,∴点Q为△ABC外接圆与抛物线对称轴在x轴下方的交点.设△ABC外接圆圆心为M,则∠CMB=90°.设⊙M的半径为x,则Rt△CMB中,由勾股定理可知CM2+BM2=BC2,即2x2=10,解得:x=(负值已舍去),∵AC的垂直平分线的为直线y=﹣x,AB的垂直平分线为直线x=1,∴点M为直线y=﹣x与x=1的交点,即M(1,﹣1),∴Q的坐标为(1,﹣1﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、三角形的外心的性质,求得点M的坐标以及⊙M的半径的长度是解题的关键.2.如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y=c分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.(1)直接写出点P的坐标和抛物线的解析式;(2)当m为何值时,△MAB面积S取得最小值和最大值?请说明理由;(3)求满足∠MPO=∠POA的点M的坐标.【分析】(1)代入y=c可求出点C、P的坐标,利用一次函数图象上点的坐标特征可求出点A、B的坐标,再由△PCB≌△BOA即可得出b、c的值,进而可得出点P的坐标及抛物线的解析式;(2)利用二次函数图象上点的坐标特征求出点F的坐标,过点M作ME∥y轴,交直线AB于点E,由点M的横坐标可得出点M、E的坐标,进而可得出ME的长度,再利用三角形的面积公式可找出S=﹣(m﹣3)2+5,由m的取值范围结合二次函数的性质即可求出S的最大值及最小值;(3)分两种情况考虑:①当点M在线段OP上方时,由CP∥x轴利用平行线的性质可得出:当点C、M重合时,∠MPO=∠POA,由此可找出点M的坐标;②当点M在线段OP下方时,在x正半轴取点D,连接DP,使得DO=DP,此时∠DPO=∠POA,设点D的坐标为(n,0),则DO=n,DP=,由DO=DP 可求出n的值,进而可得出点D的坐标,由点P、D的坐标利用待定系数法即可求出直线PD的解析式,再联立直线PD及抛物线的解析式成方程组,通过解方程组求出点M的坐标.综上此题得解.【解答】解:(1)当y=c时,有c=﹣x2+bx+c,解得:x1=0,x2=b,∴点C的坐标为(0,c),点P的坐标为(b,c).∵直线y=﹣3x+3与x轴、y轴分别交于A、B两点,∴点A的坐标为(1,0),点B的坐标为(0,3),∴OB=3,OA=1,BC=c﹣3,CP=b.∵△PCB≌△BOA,∴BC=OA,CP=OB,∴b=3,c=4,∴点P的坐标为(3,4),抛物线的解析式为y=﹣x2+3x+4.(2)当y=0时,有﹣x2+3x+4=0,解得:x1=﹣1,x2=4,∴点F的坐标为(4,0).过点M作ME∥y轴,交直线AB于点E,如图1所示.∵点M的横坐标为m(0≤m≤4),∴点M的坐标为(m,﹣m2+3m+4),点E的坐标为(m,﹣3m+3),∴ME=﹣m2+3m+4﹣(﹣3m+3)=﹣m2+6m+1,∴S=S梯形OEMB﹣S△OEB﹣S△AEM=OA•ME=﹣m2+3m+=﹣(m﹣3)2+5.∵﹣<0,0≤m≤4,∴当m=0时,S取最小值,最小值为;当m=3时,S取最大值,最大值为5.(3)①当点M在线段OP上方时,∵CP∥x轴,∴当点C、M重合时,∠MPO=∠POA,∴点M的坐标为(0,4);②当点M在线段OP下方时,在x正半轴取点D,连接DP,使得DO=DP,此时∠DPO=∠POA.设点D的坐标为(n,0),则DO=n,DP=,∴n2=(n﹣3)2+16,解得:n=,∴点D的坐标为(,0).设直线PD的解析式为y=kx+a(k≠0),将P(3,4)、D(,0)代入y=kx+a,,解得:,∴直线PD的解析式为y=﹣x+.联立直线PD及抛物线的解析式成方程组,得:,解得:,.∴点M的坐标为(,).综上所述:满足∠MPO=∠POA的点M的坐标为(0,4)或(,).【点评】本题考查了待定系数法求一次函数解析式、一次(二次)函数图象上点的坐标特征、全等三角形的性质、二次函数的性质、三角形的面积以及等腰三角形的性质,解题的关键是:(1)利用全等三角形的性质求出b、c的值;(2)利用三角形的面积公式找出S=﹣(m﹣3)2+5;(3)分点M在线段OP上方和点M在线段OP下方两种情况求出点M的坐标.3.如图,已知抛物线y=ax2+bx+c的顶点D的坐标为(1,﹣),且与x轴交于A、B两点,与y轴交于C 点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m.(l)求抛物线所对应的二次函数的表达式;(2)若动点P满足∠PAO不大于45°,求P点的横坐标m的取值范围;(3)当P点的横坐标m<0时,过P点作y轴的垂线PQ,垂足为Q.问:是否存在P点,使∠QPO=∠BCO?若存在,请求出P点的坐标;若不存在,请说明理由.【分析】(1)根据函数值相等的点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;。

中考数学与抛物线有关的中考压轴题

中考数学与抛物线有关的中考压轴题

与抛物线有关的中考压轴题一、(2009江津市)如图,抛物线c bx x y ++-=2与x 轴交与A(1,0),B(- 3,0)两点, (1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴与C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由. (3)在(1)中的抛物线上的第二象限上是否存在一点P ,使△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值.若没有,请说明理由.解析:(1)将A(1,0),B(-3,0)代2y x bx c =-++中得10930b c b c -++⎧⎨--+=⎩=……………………(2分) ∴23b c =-⎧⎨=⎩……………………(3分)∴抛物线解析式为:223y x x =--+…………………… (4分)(2)存在…………………………………………………………………………(5分) 理由如下:由题知A 、B 两点关于抛物线的对称轴1x =-对称 ∴直线BC 与1x =-的交点即为Q 点, 此时△AQC 周长最小 ∵223y x x =--+ ∴C 的坐标为:(0,3)直线BC 解析式为:3y x =+……………………………………(6分)Q 点坐标即为13x y x =-⎧⎨=+⎩的解∴12x y =-⎧⎨=⎩ABC∴Q(-1,2)…………………………………………………………………(7分)(3)答:存在。

…………………………………………………………………(8分)理由如下:设P 点2(23) (30)x x x x --+-<<,∵92BPC BOC BPCO BPCO S S S S ∆∆=-=-四边形四边形若BPCO S 四边形有最大值,则BPC S ∆就最大,∴BPE BPCO PEOC S S S ∆+Rt 四边形直角梯形=……………………………………………(9分)11()22BE PE OE PE OC =⋅++ =2211(3)(23)()(233)22x x x x x x +--++---++=233927()2228x -+++当32x =-时,BPCO S 四边形最大值=92728+∴BPC S ∆最大=9279272828+-=………………………………………(10分) 当32x =-时,215234x x --+=∴点P 坐标为315( )24-,………………………………………(11分)二、(2009某某)如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.解析:(1)B (1(2)设抛物线的解析式为y =ax (x+a ),代入点B (,得a =,因此2y =+ (3)如图,抛物线的对称轴是直线x =—1,当点C 位于对称轴与线段AB 的交点时,△BOC 的周长最小.设直线AB 为y =kx +b .所以20.k k b k b b ⎧⎪⎧+=⎪⎪⎨⎨-+=⎪⎩⎪=⎪⎩解得因此直线AB 为y x =, 当x =-1时,y =, 因此点C 的坐标为(-1.(4)如图,过P 作y 轴的平行线交AB 于D . 2221()()213212PAB PAD PBD D P B A S S S y y x x x x x ∆∆∆=+=--⎡⎤⎫=+-⨯⎢⎥⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦=⎫=+⎪⎝⎭当x =-12时,△PAB ,此时1,2P ⎛- ⎝⎭. 三 、(2007某某某某).已知抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2. (1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;(3)连接AC 、BC ,若点E 是线段AB 上的一个动点 (与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值X 围;(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由. 解析(1)点B (2,0),点C (0,8),点A (-6,0),(2)抛物线的表达式为y =-23x 2-83x +8 ,(3)由EF AC =BE AB ,因为AC=2268+=10,BE=8-m ,AB=8.所以EF =40-5m4.作FG ⊥AB ,垂足为G ,则sin ∠FEG=sin ∠CAB=54108=.所以在Rt △EGF 中, FG =EF ·sin ∠FEG=45·40-5m4=8-m ,所以S =BFE BCE S S ∆∆-=()8821⨯-m -()()m m --8821=-12m 2+4m , m 的取值X 围是0<m <8 (4)存在.因为S =-12m 2+4m ,又a=21-<0,当m=ab2-=⎪⎭⎫ ⎝⎛-⨯-2124=4时,a4b ac 42-=最大S =8.因为m=4,所以点E 的坐标为(-2,0),△BCE 为等腰三角形.四(2006·某某市)施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM 为12米.现以O 点为原点,OM 所在直线为X 轴建立直角坐标系(如图所示). (1)直接写出点M 及抛物线顶点P 的坐标; (2)求出这条抛物线的函数解析式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB ,使A 、D 点在抛物线上,B 、C 点在地面OM 上.为了筹备材料,需求出“脚手架”三根木杆AB 、AD 、DC 的长度之和....的最大值是多少?请你帮施工队计算一下.解:⑴()()12,0,6,6M P⑵(法1)设这条抛物线的函数解析式 为:()266y a x =-+ ∵抛物线过O(0,0) ∴06)60(2=+-a 解得16a =-∴这条抛物线的函数解析式为:()21666y x =--+ 即2126y x x =-+. (法2)设这条抛物线的函数解析式 为:c bx ax y ++=2∵抛物线过O(0,0),()()12,0,6,6M P 三点,∴⎪⎩⎪⎨⎧=+⋅+⋅=+⋅+⋅=01212666022c b a c b a c 解得:⎪⎪⎩⎪⎪⎨⎧==-=0261c b a ∴这条抛物线的函数解析式为:2126y x x =-+.⑶设点A 的坐标为21,26m m m ⎛⎫-+ ⎪⎝⎭∴OB=m ,AB=DC=m m 2612+-根据抛物线的轴对称,可得:OB CM m == ∴122BC m =- 即AD=12-2m ∴l =AB+AD+DC=m m m m m 26121226122+--++-=122312++-m m =15)3(312+--m∴当m=3,即OB=3米时,三根木杆长度之和l的最大值为15米.。

双抛物线型中考压轴题解法赏析

双抛物线型中考压轴题解法赏析

佳题赏析双抛物线型中考压轴题解法近几年各地中考试题中出现了一类以双抛物线为背景立意的综合性压轴题,它集知识、方法、能力于一体,重在考查考生综合应用数学知识解决问题的能力,具有较强的探索性。

这类试题是中考数学试题的精华部分,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的创新意识和创造能力等特点。

本文选取三道比较典型的中考压轴题予以解析。

一、以横轴为对称轴的双抛物线型压轴题例1、(2006烟台市)如图,已知抛物线L1: y=x2-4的图像与x有交于A、C两点,(1)若抛物线l2与l1关于x轴对称,求l2的解析式;(2)若点B是抛物线l1上的一动点(B不与A、C重合),以AC为对角线,A、B、C三点为顶点的平行四边形的第四个顶点定为D,求证:点D在l2上;(3)探索:当点B分别位于l1在x轴上、下两部分的图像上时,平行四边形ABCD的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它的面积;若不存在,请说明理由。

解:设l2的解析式为y=a(x-h)2+k∵l2与x轴的交点A(-2,0),C(2,0),顶点坐标是(0,-4),l1与l2关于x轴对称,∴l2过A(-2,0),C(2,0),顶点坐标是(0,4)∴y=ax2+4∴0=4a+4 得 a=-1∴l2的解析式为y=-x2+4(2)设B(x1 ,y1)∵点B在l1上∴B(x1 ,x12-4)∵四边形ABCD是平行四边形,A、C关于O对称∴B、D关于O对称∴D(-x1 ,-x12+4).将D(-x1 ,-x12+4)的坐标代入l2:y=-x2+4∴左边=右边∴点D在l2上.(3)设平行四边形ABCD 的面积为S,则S=2*S △ABC =AC*|y 1|=4|y 1|a.当点B 在x 轴上方时,y 1>0∴S=4y 1 ,它是关于y 1的正比例函数且S 随y 1的增大而增大, ∴S 既无最大值也无最小值b.当点B 在x 轴下方时,-4≤y 1<0∴S=-4y 1 ,它是关于y 1的正比例函数且S 随y 1的增大而减小, ∴当y 1 =-4时,S 由最大值16,但他没有最小值 此时B(0,-4)在y 轴上,它的对称点D 也在y 轴上. ∴AC ⊥BD∴平行四边形ABCD 是菱形 此时S 最大=16评析:本题条件简明,有较强的探索性。

初中数学抛物线压轴题技巧

初中数学抛物线压轴题技巧

初中数学抛物线压轴题技巧抛物线是初中数学中的重要内容之一,掌握抛物线的压轴题技巧对于提高数学解题能力和应对考试非常重要。

在本文中,我将为大家分享一些初中数学抛物线压轴题的解题技巧。

首先,我们需要了解抛物线的基本特点和方程形式。

抛物线的方程通常是二次方程,一般形式为y=ax^2+bx+c。

其中,a决定抛物线的开口方向和形状,b决定抛物线的位置,c决定抛物线的纵轴截距。

在解题过程中,我们需要注意以下几个方面的技巧。

第一,抛物线的顶点问题。

抛物线的顶点是抛物线的最高或最低点,通常在解题中要求计算抛物线的最值。

我们可以通过求解方程y=ax^2+bx+c的顶点来获得抛物线的最值。

顶点的横坐标可以通过公式x=-b/2a得到,然后将横坐标代入方程求解纵坐标即可。

第二,抛物线的对称性问题。

抛物线具有关于纵轴的对称性,即抛物线的左右两侧关于纵轴完全对称。

在解题过程中,我们可以利用这个对称性来简化计算。

例如,如果我们已经计算出了抛物线上某一点的坐标,那么我们可以根据对称性得出另一对称点的坐标,从而避免重复计算。

第三,抛物线的焦点和准线问题。

抛物线的焦点是抛物线上所有点到直线准线的距离之和的最小点,而准线则是与抛物线平行且与焦点的距离相等的一条直线。

在解题中,我们可以利用焦点和准线的性质来求解抛物线的相关问题。

例如,已知抛物线的焦点坐标和准线的方程,我们可以求解抛物线的方程。

第四,抛物线的切线问题。

抛物线的切线是与抛物线相切且与切点的切线垂直的一条直线。

在解题中,我们可以通过求解抛物线的切线方程来得到切线的斜率和方程。

求解抛物线的切线方程通常需要用到导数的知识,可以利用导数的定义来进行求解。

最后,我们还需要进行大量的练习来巩固这些抛物线的解题技巧。

通过不断的练习和思考,我们可以更加熟练地掌握抛物线的相关知识和技巧,从而在考试中取得更好的成绩。

总结起来,初中数学抛物线压轴题的解题技巧包括求解抛物线的顶点、利用抛物线的对称性简化计算、求解抛物线的焦点和准线、求解抛物线的切线等。

中考压轴题专项训练1——抛物线专题(带答案解析)

中考压轴题专项训练1——抛物线专题(带答案解析)

中考压轴题专项训练1——抛物线专题考点分析:命题预测:函数是数形结合的重要体现,是每年中考的必考内容,函数的概念主要用选择、填空的形式考查自变量的取值范围,及自变量与因变量的变化图像、平面直角坐标系等,一般占2%左右.一次函数与一次方程有紧密地联系,是中考必考内容,一般以填空、选择、解答题及综合题的形式考查,占5%左右.反比例函数的图像和性质的考查常以客观题形式出现,要关注反比例函数与实际问题的联系,突出应用价值,3—6分;二次函数是初中数学的一个十分重要的内容,是中考的热点,多以压轴题出现在试卷中.要求:能通过对实际问题情景分析确定二次函数的表达式,并体会二次函数的意义;会用描点法画二次函数图像,能丛图像上分析二次函数的性质;会根据公式确定图像的顶点、开口方向和对称轴,并能解决复杂的图形综合问题。

二次函数常考点汇总:1. 两点间的距离公式:22)()(AB B A B A x x y y -+-=2. 中点坐标公式:已知A ),(A A y x ,B ),(B B y x ,则线段AB 的中点C 的坐标为⎪⎭⎫⎝⎛++2,2B A B A y y x x 。

3. 在平面直角坐标系中求面积的方法:公式法、割补法(做铅垂高或水平宽) 4. 几何分析法:特别是构造“平行四边形”、“梯形”、“相似三角形”、“直角三角形”、“等腰三角形”等图形时,利用几何分析法能给解题带来方便。

例题精讲:1.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2.如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠P AQ=∠AQB,求点Q的坐标.3.已知,在平面直角坐标系xoy 中,点A 的坐标为(0,2),点P (m ,n )是抛物线2114y x =+上的一个动点.(1)①如图1,过动点P 作PB ⊥x 轴,垂足为B ,连接PA ,求证:PA=PB ; ②如图2,设C 的坐标为(2,5),连接PC ,AP+PC 是否存在最小值?如果存在,求点P 的坐标;如果不存在,请说明理由;(2)如图3,过动点P 和原点O 作直线交抛物线于另一点D ,若AP=2AD ,求直线OP 的解析式.4.【变式】在平面直角坐标系xOy 中,抛物线21124y x =+的顶点为M ,直线2y x =,点()0P n ,为x 轴上的一个动点,过点P 作x 轴的垂线分别交抛物线21124y x =+和直线2y x =于点A ,点B.(1)直接写出A ,B 两点的坐标(用含n 的代数式表示);⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系;(3) 已知二次函数2y ax bx c =++(a ,b ,c 为整数且0a ≠),对一切实数x 恒有x ≤y ≤2124x +,求a ,b ,c 的值.5.如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.6.(本题满分10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,C OB =O .点D 在函数图像上,CD//x 轴,且CD 2=,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段C O 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标; (3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与C B 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得Q ∆P N 与∆APM 的面积相等,且线段Q N 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.7.(8分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C 为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.答案解析1.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴=,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.2.【解答】解:(1)∵y=﹣x2+(a+1)x﹣a令y=0,即﹣x2+(a+1)x﹣a=0解得x1=a,x2=1由图象知:a<0∴A(a,0),B(1,0)∵s△ABC=6∴解得:a=﹣3,(a=4舍去)(2)设直线AC:y=kx+b,由A(﹣3,0),C(0,3),可得﹣3k+b=0,且b=3∴k=1即直线AC:y=x+3,A、C的中点D坐标为(﹣,)∴线段AC的垂直平分线解析式为:y=﹣x,线段AB的垂直平分线为x=﹣1代入y=﹣x,解得:y=1∴△ABC外接圆圆心的坐标(﹣1,1)(3)作PM⊥x轴,则=∵∴A、Q到PB的距离相等,∴AQ∥PB设直线PB解析式为:y=x+b∵直线经过点B(1,0)所以:直线PB的解析式为y=x﹣1联立解得:∴点P坐标为(﹣4,﹣5)又∵∠P AQ=∠AQB可得:△PBQ≌△ABP(AAS)∴PQ=AB=4设Q(m,m+3)由PQ=4得:解得:m=﹣4,m=﹣8(当m=﹣8时,∠P AQ≠∠AQB,故应舍去)∴Q坐标为(﹣4,﹣1)3.【解答】解:(1)①设P(m,n)∴n=m2+1,∵PB⊥x 轴,∴PB=m2+1,∵A(0,2)∴AP==m2+1,∴PB=PA;②过点P作PB⊥x轴于B,由(1)得PA=PB,所以要使AP+CP最小,只需当BP+CP最小,因此当C,P,B共线时取得,此时点P的横坐标等于点C(2,5)的横坐标,所以点P的坐标为(2,2),(2)如图,作DE⊥x轴于E,作PF⊥x轴于F,由(1)得:DA=DE,PA=PF∵PA=2DA,∴PF=2DE,∵△ODE∽△OPF,∴==,设P(m,m2+1),则D(m,m2+)∵点D在抛物线y=x2+1上,∴m2+=(m)2+1,解得m=±2,∴P 1(,3),直线OP 的解析式为y=x , P 2(﹣,3)直线OP 的解析式为y=﹣x , 综上所求,所求直线OP 的解析式为y=x 或y=﹣x .4.【解答】解:(1)21(2)4A n n +,,()B n n ,. (2) d =AB=A B y y -=2124n n -+.∴ d =2112()48n -+=2112()48n -+.∴ 当14n =时,d 取得最小值18. 当d 取最小值时,线段OB 与线段PM 的位置 关系和数量关系是OB ⊥PM 且OB=PM. (如图)(3) ∵对一切实数x 恒有 x ≤y ≤2124x +, ∴对一切实数x ,x ≤2ax bx c ++≤2124x +都成立. (0a ≠) ①当0x =时,①式化为 0≤c ≤14.xy111APBMO∴整数c 的值为0.此时,对一切实数x ,x ≤2ax bx +≤2124x +都成立.(0a ≠) 即 222,12.4x ax bx ax bx x ⎧≤+⎪⎨+≤+⎪⎩ 对一切实数x 均成立. 由②得 ()21ax b x +-≥0 (0a ≠) 对一切实数x 均成立.∴()210,10.a b >⎧⎪⎨∆=-≤⎪⎩ 由⑤得整数b 的值为1.此时由③式得,2ax x +≤2124x +对一切实数x 均成立. (0a ≠) 即21(2)4a x x --+≥0对一切实数x 均成立. (0a ≠) 当a=2时,此不等式化为14x -+≥0,不满足对一切实数x 均成立.当a≠2时,∵ 21(2)4a x x --+≥0对一切实数x 均成立,(0a ≠)∴2220,1(1)4(2)0.4a a ->⎧⎪⎨∆=--⨯-⨯≤⎪⎩∴由④,⑥,⑦得 0 <a ≤1.∴整数a 的值为1.∴整数a ,b ,c 的值分别为1a =,1b =,0c =.5.【解答】解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =. ∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. ④⑤② ③ ⑥ ⑦图①图②(3)存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.6. 【解答】解:(1).3)(03,20.0,c -),,0(,.2,12.1x 2CD x //2-=∴=-=++=∴∴=-==-∴=∴=c c c c c c B c C OC OB b bl CD ,舍去或解得)点坐标为(:抛物线对称轴为直线,轴,(2)设点F 坐标为(0,m ).∵对称轴是直线,1:=x l ∴点F 关于直线l 的对称点’F 的坐标为(2,m ). ∵直线BE 经过点B (3,0),E (1,-4),∴利用待定系数法可得直线BE 的表达式为y=2x-6. ∵点’F 在BE 上,∴m=2⨯2-6=-2,即点F 的坐标为(0,-2). (3)存在点Q 满足题意。

新课标下中考压轴题——双抛物线型解法例析

新课标下中考压轴题——双抛物线型解法例析
新课标下中考压轴题——双抛物线型解法例析
发表时间:2010-04-17T05:43:01.857Z 来源:《试题与研究(教学论坛)》 作者: 程强 [导读] 解题中的数形结合,就是对题目的条件和结论既分析其代数含义又分析其几何意义,力图在代数和几何的结合上找出解题思路。
近年在各地中考试题中出现了一类以双抛线为背景立意的综合性压轴题,它集知识、方法、能力于一体,重在考查考生综合应用数学知 识解决问题的能力,具有较强的探索性。这类试题是中考数学试题的精华部分,具有知识容量大、解题方法多、能力要求高、突显数学思 想方法的运用以及要求考生具有一定的创新意识和创造能力等特点。本文选取了其中的两道典型的中考试题予以解释。
∴ L 2过A(-2,0),C(2,0),顶点坐标是(0,4), 〖JB({〗4a-2b+c=0, 4a+2b+c=0, c=4,〖JB)〗 ∴a=-1,b=0, c=4, 即L 2的解析式为y=-x 2+4。 (还可利用顶点式、对称性关系等知识解答) (2)设点B(m,n)为L 1:y=x 2 4上任意一点,则n=m 2 4。〖JY〗(*) ∵四边形ABCD是平行四边形,点A、C关于原点O对称,∴B、D关于原点O对称, ∴点D的坐标为D(-m,-n)。 由(*)式可知, -n=-(m 2 4)= -(-m) 2+4, 即点D的坐标满足y= -x 2+4, ∴点D在L 2上。 (3)ABCD是矩形。如图2,过点B做BH⊥x轴于H,由点B在L 1 : y=x 2-4上,可设点B的坐标为(x 0 ,x 2 0-4),则 OH=x 0,BH=x 2 0-4。 易知,当且仅当BO=AO=2时, ABCD为矩形, 在〖WT〗Rt〖WTBX〗△OBH中,由勾股定理得|x 0| 2+|x 2 0-4| 2=2 2,(x 2 0-4)(x 2 0-3)=0,∴x 0=±2(舍)、 x 0=±〖KF(S〗〖〗3〖KF)〗。所以,当点B坐标为B(〖KF(S〗〖〗3〖KF)〗,-1)或B′(-〖KF(S〗〖〗3〖KF)〗,-1)时, ABCD为矩 形,此时,点D的坐标分别是D(-〖KF(S〗〖〗3〖KF)〗,1)、D′(〖KF(S〗〖〗3〖KF)〗,1)。因此,符合条件的矩形有且只有2个,即矩 形ABCD和矩形AB′CD′。 设直线AB与y轴交于E,显然△AOE〖JX-*4〗∽〖JX*4〗△AHB。∴〖SX(〗EO〖〗AO〖SX)〗=〖SX(〗BH〖〗AH〖SX)〗,∴〖SX(〗EO 〖〗2〖SX)〗=〖SX(〗1〖〗2+〖KF(S〗〖〗3〖KF)〗〖SX)〗, ∴EO=4-2〖KF(S〗〖〗3〖KF)〗。 由该图形的对称性知,矩形ABCD和矩形AB′CD′重合部分是菱形,其面积为S=2S △ACE =2×〖SX(〗1〖〗2〖SX)〗×AC×EO=2× 〖SX(〗1〖〗2〖SX)〗×(4-2〖KF(S〗〖〗3〖KF)〗)=16-18〖KF(S〗〖〗3〖KF)〗。 点评:本题是一道函数型综合题,涉及二次函数、相似形、四边形等知识,三个小题的坡度设计很恰当,能较好地体现出试题的区分度, 对第(2)问的证明过程要仔细领悟。 二、以纵轴为对称轴的双抛物线型压轴题 例2如图3,抛物线E:y=x 2+4x+3交x轴于A、B两点,交y轴于M点。抛物线E关于y轴对称的抛物线F交x轴于C、D两点。 (1)求F的解析式。 (2)在x轴上方的抛物线F或E上是否存在一点N,使以A、C、N、M为顶点的四边形是平行四边形。若存在,求点N的坐标;若不存在,请说明 理由。 解析:当y=0时,x 2+4x+3=0,解之,得x 1=-3,x 2=-1, A、B点坐标分别为(-3,0),(-1,0)。当x=0时,y=3,∴M点坐标为(0, 3),A、B、M三点关于y轴的对称点分别是D、C、M,∴D、C坐标为(3,0),(1,0)。 设F的解析式为y=ax 2+bx+3,则有 〖JB({〗0=9a+3b+3, 0=a+b+3,〖JB)〗∴ a=1,b=-4。 ∴F的解析式为y=x 2-4x+3。 (2)存在。假设MN∥AC,∴N点的纵坐标为3。若在抛物线F上,当y=3时,3=x 2-4x+3,则x 1=0,x 2=4,∴N点坐标为(4,3),∴MN=4。 由(1)可求AC=4,∴MN=AC,∴四边形ACNM为平行四边形。根据抛物线F和E关于y轴对称,故N点坐标为(4,3)或(-4,3)。

中考数学抛物线动点题秒杀技巧

中考数学抛物线动点题秒杀技巧

中考数学抛物线动点题秒杀技巧全文共四篇示例,供读者参考第一篇示例:抛物线是数学中一个非常重要的概念,也是中考数学考试中常常会出现的题型之一。

抛物线的性质不仅仅是个别的知识点,更是一个整体的系统性知识。

在解题过程中,我们需要灵活运用抛物线的相关知识,抓住关键点,掌握一些技巧,才能在考试中取得更好的成绩。

本文将为大家介绍一些中考数学抛物线动点题的秒杀技巧,希望能够帮助大家顺利解答相关题目。

我们需要了解抛物线的基本性质。

抛物线是一种特殊的二次曲线,其一般方程为y=ax^2+bx+c,其中a、b、c为常数,a≠0。

抛物线开口的方向取决于a的正负性:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

在抛物线上,我们常常遇到顶点、焦点、准线等概念,这些都是解题过程中需要重点关注的内容。

在解决抛物线动点题时,我们首先要确定动点的位置。

动点通常是抛物线上的一个点,在运动过程中其坐标会发生变化。

设抛物线的方程为y=ax^2+bx+c,动点的坐标为(x,y),我们需要根据题目中的条件,确定动点的位置。

我们需要利用抛物线的性质,建立动点坐标变化的关系式。

在解题过程中,我们常常需要根据已知条件列方程,利用抛物线的性质建立动点坐标变化的关系式,从而求解动点的轨迹、移动方向等。

如果动点在抛物线上以匀速运动,我们可以利用速度的定义建立关于动点坐标的变化式。

我们需要灵活运用数学知识,解题过程中要注意化繁为简。

在解决抛物线动点题时,我们可能会遇到复杂的条件和问题,这时我们需要善于化繁为简,抓住关键点,简化问题。

可以通过几何、代数等不同的方法,灵活运用数学知识,解题过程中要注意逻辑性,不要陷入死胡同。

中考数学抛物线动点题并不是难题,关键在于掌握抛物线的基本性质,灵活运用数学知识,化繁为简,善于建立关系式,抓住关键点。

通过不断练习,积累经验,相信大家能够在考试中轻松应对抛物线动点题,取得好成绩。

希望以上的技巧能够帮助大家更好地掌握抛物线动点题的解题方法,祝大家在中考数学考试中取得优异成绩!第二篇示例:中考数学中,抛物线动点题是考生普遍认为比较难的题型之一。

中考数学压轴题分析

中考数学压轴题分析

中考数学压轴题分析 合肥市第五十中学 史晓辉中考数学压轴题是对学生所学知识的灵活运用及分析问题解决问题能力的全面考查,它具有很强的导向作用;由于压轴题的知识覆盖面广,综合性强,难度系数大,既考查基础知识和基本技能,又考查数学思想方法和数学能力,特别是注重发展学生的创造能力方面,有较大的区分度,因此,它是中考选拔功能的集中体现.压轴题具有以下一般特点:整合了丰富的数学知识,渗透了重要的数学思想方法,如配方法、换元法、待定系数法,方程与函数思想、转化与化归思想、数形结合思想、分类讨论思想等,体现了较高的思维能力,如抽象概括、归纳类比,联想转化、分析综合等。

一、安徽省近三年中考压轴题分析:例1、(2011年)如图,正方形ABCD 的四个顶点分别在四条平行线1l 、2l 、3l 、4l 上,这四条直线中相邻两条之间的距离依次为1h 、2h 、3h 123(000)h h h >>>,,. (1)求证:12h h =;(2)设正方形ABCD 的面积为S ,求证:22121()S h h h =++;(3)若12312h h +=,当1h 变化时,说明正方形ABCD 的面积S 随1h 的变化情况.解:(1)证:设2AD l 与交于点E ,BC 与3l 交于点F , 由已知BF ED BE FD ∥,∥,∴四边形BEDF 是平行四边形,BE DF ∴=. 又12Rt Rt AB CD ABE CDF h h =∴∴=,△≌△,. (2)证:作44BG l DH l ⊥⊥,,垂足分别为G H 、, 在Rt Rt BGC CHD △和△中,1809090BCG DCH BCD CDH DCH ∠+∠=︒-∠=︒∠+∠=︒,.BCG CDH ∴∠=∠.又90BGC CHD BC CD ∠=∠=︒=,,2Rt Rt BGC CHD CG DH h ∴==△≌△,.l 1l 2 l 3 l 431第23题图ll l l 31又22222223232121()()BG h h BC BG CG h h h h h h =+∴=+=++=+,,222121()S BC h h h ∴==++.(3)解:1221331122h h h h +=∴=- ,, 2222121111355241124455S h h h h h h ⎛⎫⎛⎫∴=+-+=-+=-+ ⎪ ⎪⎝⎭⎝⎭,1211320010023h h h h >>∴->∴<< ,,,.∴当1205h <<时,S 随1h 的增大而减小;当12253h <<时,S 随1h 的增大而增大.例2、(2010年)如图,已知111ABC A B C △∽△,相似比为k (k >1),且ABC △的三边长分别为a 、b 、c (a>b>c ),111A B C △的三边长分别为1a 、1b 、1c .(1)若c=a 1,求证:a=kc ;(2)若c=a 1,试给出符合条件的一对111ABC A B C △和△,使得a 、b 、c 和1a 、1b 、1c 都是正整数,并加以说明;(3)若b=a 1,c=b 1,是否存在111ABC A B C △和△使得k =2?请说明理由.解:(1)证:111ABC A B C △∽△,且相似比为11(1).ak k k a ka a >∴=∴=,, 又1.c a a kc =∴= ,(2)解:取11186443 2.a b c a b c ======,,,同时取,, 此时1111112a b cABC A B C a b c ===∴,△∽△且1.c a = 注:本题也是开放型的,只要给出的ABC △和111A B C △符合要求就相应赋分.A 1B 1C 1C ABabcc 1b 11 第23题图(3)解:不存在这样的ABC △和111A B C △.理由如下: 若2k =,则111222.a a b b c c ===,, 又1b a = ,1c b =, 112244a a b b c ∴====,2.b c ∴=24b c c c c a ∴+=+<=,而b c a +>,故不存在这样的ABC △和111A B C △,使得 2.k =注:本题不要求学生严格按反证法的证明格式推理,只要能说明在题设要求下2k =的情况不可能即可.例3、(2009年)已知某种水果的批发单价与批发量的函数关系如图(1)所示. (1)请说明图中①、②两段函数图象的实际意义;(2)写出批发该种水果的资金金额w (元)与批发量n (kg )之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.kg )解:(1)图①表示批发量不少于20kg 且不多于60kg 的该种水果,可按5元/kg 批发;图②表示批发量高于60kg 的该种水果,可按4元/kg 批发.(2)解:由题意得:5(2060)4(60)n n w n n ⎧=⎨>⎩≤≤图象如图所示.由图可知,资金金额满足240300w <≤时,以同样的资金可批发到较多数量的该种水果. ·············· 8分(3)解法一:设当日零售价为x 元,由图可得日最高销量32040n x =-当n >60时,x <6.5. 由题意,销售利润为2(4)(32040)40(4)(8)40[(6)4]y x x x x x =--=--=--+ 从而x =6时,160y =最大值.此时n =80.即经销商应批发80kg 该种水果,日零售价定为6元/kg , 当日可得最大利润160元.二、安徽省中考压轴题的特点:1、 近几年压轴题一般有3个小问,3个小问按从易到难的顺序设置,第一和第二个小问大部分学生都可以完成。

【中考数学压轴题专题突破08】二次函数中的双抛物线问题

【中考数学压轴题专题突破08】二次函数中的双抛物线问题

【中考压轴题专题突破】二次函数中的双抛物线问题1.如图1,若抛物线l1的顶点A在抛物线l2上,抛物线l2的顶点B也在抛物线l1上(点A 与点B不重合).我们称抛物线l1,l2互为“友好”抛物线,一条抛物线的“友好”抛物线可以有多条.(1)如图2,抛物线l3:y=(x﹣2)2﹣1与y轴交于点C,点D与点C关于抛物线的对称轴对称,则点D的坐标为;(2)求以点D为顶点的l3的“友好”抛物线l4的表达式,并指出l3与l4中y同时随x 增大而增大的自变量的取值范围;(3)若抛物线y=a1(x﹣m)2+n的任意一条“友好”抛物线的表达式为y=a2(x﹣h)2+k,写出a1与a2的关式,并说明理由.2.某班“数学兴趣小组”对函数y=x2﹣2﹣3的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣3﹣﹣2﹣101234…y 0﹣m﹣4﹣3﹣4﹣3﹣0…其中,m=.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该图象的另一部分;(3)观察函数图象,写出两条函数的性质;(4)进一步探究函数图象发现:①方程x2﹣2﹣3=0有个实数根;②函数图象与直线y=﹣3有个交点,所以对应方程x2﹣2﹣3=﹣3有个实数根;③关于x的方程x2﹣2﹣3=a有4个实数根,a的取值范围是.3.如图,Rt△FHG中,∠H=90°,FH∥x轴,=0.6,则称Rt△FHG为准黄金直角三角形(G在F的右上方).已知二次函数y1=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点E(0,﹣3),顶点为C(1,﹣4),点D为二次函数y2=a(x﹣1﹣m)2+0.6m ﹣4(m>0)图象的顶点.(1)求二次函数y1的函数关系式;(2)若准黄金直角三角形的顶点F与点A重合、G落在二次函数y1的图象上,求点G 的坐标及△FHG的面积;(3)设一次函数y=mx+m与函数y1、y2的图象对称轴右侧曲线分别交于点P、Q.且P、Q两点分别与准黄金直角三角形的顶点F、G重合,求m的值,并判断以C、D、Q、P 为顶点的四边形形状,请说明理由.4.定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”.如图,抛物线C1与抛物线C2组成一个开口向上的“月牙线”,抛物线C1与抛物线C2与x轴有相同的交点M,N(点M在点N的左侧),与y轴的交点分别为A,B且点A的坐标为(0,﹣3),抛物线C2的解析式为y=mx2+4mx﹣12m,(m>0).(1)请你根据“月牙线”的定义,设计一个开口向下.“月牙线”,直接写出两条抛物线的解析式;(2)求M,N两点的坐标;(3)在第三象限内的抛物线C1上是否存在一点P,使得△P AM的面积最大?若存在,求出△P AM的面积的最大值;若不存在,说明理由.5.如图1,抛物线M1:y=﹣x2+4x交x正半轴于点A,将抛物线M1先向右平移3个单位,再向上平移3个单位得到抛物线M2,M1与M2交于点B,直线OB交M2于点C.(1)求抛物线M2的解析式;(2)点P是抛物线M1上AB间的一点,作PQ⊥x轴交抛物线M2于点Q,连接CP,CQ.设点P的横坐标为m,当m为何值时,使△CPQ的面积最大,并求出最大值;(3)如图2,将直线OB向下平移,交抛物线M1于点E,F,交抛物线M2于点G,H,则的值是否为定值,证明你的结论.6.如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左侧),将该抛物线位于x轴上方的曲线记作M,将该抛物线位于x轴下方的部分沿x轴翻折,翻折后所得曲线记作N,曲线N交y轴于点C,连接AC,BC.(1)求曲线N所在抛物线的函数表达式;(2)求△ABC外接圆的面积;(3)点P为曲线M或曲线N上的动点,点Q为x轴上的一个动点,若以点B,C,P,Q为顶点的四边形是平行四边形,请直接写出点Q的坐标;(4)在直线BC上方的曲线M上确定两个点D 1,D2,使得==S△ABC.并求出点D1,D2的坐标;在曲线M或N上是否存在五个点T1,T2,T3,T4,T5,使得这五个点分别与点B,C围成的三角形的面积为?若存在,直接写出这五个点T1,T2,T3,T4,T5的坐标;若不存在,请说明理由.【中考压轴题专题突破】二次函数中的双抛物线问题参考答案与试题解析一.解答题(共6小题)1.解:(1)y=(x﹣2)2﹣1,当x=0时,y=×(0﹣2)2﹣1=1,即C点的坐标是(0,1),∵抛物线y=(x﹣2)2﹣1的对称轴是直线x=2,∴点C关于直线x=2的对称点D的坐标是(4,1),即D点的坐标是(4,1),故答案为:(4,1);(2)y=(x﹣2)2﹣1的顶点坐标是(2,﹣1),设l4的函数解析式是y=a(x﹣4)2+1,∵由“友好”抛物线的定义,l4过点(2,﹣1),∴﹣1=a(2﹣4)2+1,解得:a=﹣,∴l4的函数解析式是y=a(x﹣4)2+1,∴l3与l4中y同时随x增大而增大的自变量的取值范围是2≤x≤4;(3)a1+a2=0,理由是:∵抛物线y=a1(x﹣m)2+n与抛物线y=a2(x﹣h)2+k互为“友好”抛物线,∴,方程的两边相加得:k+n=(a1+a2)(m﹣h)2+n+k,即(a1+a2)(m﹣h)2=0,∵m≠h,∴a1+a2=0.2.解:(1)根据函数的对称性可得m=﹣3,故答案为:﹣3(2)画出的函数图象如图所示;(3)由函数图象知:①函数的图象关于y轴对称;②当x>1时,y随x的增大而增大;(4)①函数图象与x轴有2个交点,所以对应的方程有2个实数根;②由函数图象知:的图象与直线y=﹣3有3个交点,∴方程有3个实数根;③由函数图象知:∵关于x的方程x2﹣2﹣3=a有4个实数根,∴a的取值范围是﹣4<a<﹣3,故答案为:2,3,3,﹣4<a<﹣3.3.解:(1)设二次函数y1的函数关系式为y1=a(x﹣1)2﹣4,将E(0,﹣3)代入得a﹣4=﹣3,解得a=1,∴y1=(x﹣1)2﹣4=x2﹣2x﹣3;(2)设G[p,0.6(p+1)],代入函数关系式,得,(p﹣1)2﹣4=0.6(p+1),解得p1=3.6,p2=﹣1(舍去),所以点G坐标为(3.6,2.76).由x2﹣2x﹣3=0知x1=﹣1,x2=3,∴A(﹣1,0)、B(3,0),则AH=4.6,GH=2.76,∴S△FHG=×4.6×2.76=6.348;(3)∵y=mx+m=m(x+1),∴当x=﹣1时,y=0,∴直线y=mx+m过点A,延长QH,交x轴于点R,由平行线的性质得,QR⊥x轴.∵FH∥x轴,∴∠QPH=∠QAR,∴∠PHQ=∠ARQ=90°,∴△AQR∽△PHQ,∴==0.6,设Q[n,0.6(n+1)],代入y=mx+m中,得mn+m=0.6(n+1),整理,得:m(n+1)=0.6(n+1),∵n+1≠0,∴m=0.6.四边形CDPQ为平行四边形,理由如下:连接CD,并延长交x轴于点S,过点D作DK⊥x轴于点K,延长KD,过点C作CT垂直KD延长线,垂足为T,∵y2=(x﹣1﹣m)2+0.6m﹣4,∴点D由点C向右平移m个单位,再向上平移0.6m个单位所得,∴==0.6,∴tan∠KSD=tan∠QAR,∴∠KSD=∠QAR,∴AQ∥CS,即CD∥PQ.∵AQ∥CS,由抛物线平移的性质可得,CT=PH,DT=QH,∴PQ=CD,∴四边形CDPQ为平行四边形.4.解:(1)如图1,抛物线y=﹣x2+2x+3与抛物线y=﹣x2+x+1所围成的封闭曲线即为开口向下的“月牙线”;(2)在抛物线C2的解析式y=mx2+4mx﹣12m中,当y=0时,mx2+4mx﹣12m=0,∵m≠0,∴x2+4x﹣12=0,解得,x1=﹣6,x2=2,∵点M在点N的左边,∴M(﹣6,0),N(2,0);(3)存在,理由如下:如图2,连接AM,PO,PM,P A,∵抛物线C1和抛物线C2与x轴有着相同的交点,并且开口方向相同,∴可设抛物线C1的解析式y=nx2+4nx﹣12n(n>0),∵抛物线C1与y轴的交点为A(0,﹣3),∴﹣12n=﹣3,∴n=,∴抛物线C1的解析式为y=x2+x﹣3,∴可设点P的坐标为(t,t2+t﹣3),∴S△P AM=S△PMO+S△P AO﹣S△AOM=×6×(﹣t2﹣t+3)+×3×(﹣t)﹣×6×3=﹣t2﹣t,=﹣(t+3)2+,∵﹣<0,﹣6<t<0,∴根据二次函数的图象和性质知,当m=﹣3时,即点P的坐标为(﹣3,﹣)时,△P AM的面积有最大值,最大值为.5.解:(1)∵y=﹣x2+4x=﹣(x﹣2)2+4,∴将其先向右平移3个单位,再向上平移3个单位的解析式为:y=﹣(x﹣5)2+7=﹣x2+10x﹣18;(2)∵抛物线M1与M2交于点B,∴﹣x2+4x=﹣x2+10x﹣18,解得,x=3,∴B(3,3),将点B(3,3)代入y=kx,得,k=1,∴y OB=x,∵抛物线M2与直线OB交于点C,∴x=﹣x2+10x﹣18,解得,x1=3,x2=6,∴C(6,6),∵点P的横坐标为m,∴点P(m,﹣m2+4m),则Q(m,﹣m2+10m﹣18),∴QP=﹣m2+10m﹣18﹣(﹣m2+4m)=6m﹣18,∴S△PQC=(6m﹣18)(6﹣m)=﹣3m2+27m﹣54,=﹣3(m﹣)2+,在y=﹣m2+4m中,当y=0时,x1=0,x2=4,∴A(4,0),∵B(3,3),∴3≤m≤4,∴在S=﹣3(m﹣)2+中,根据二次函数的图象及性质可知,当m=4时,△PCQ有最大值,最大值为6;(3)的值是定值1,理由如下:设将直线OB向下平移k个单位长度得到直线EH,则y EH=x﹣k,∴令x﹣k=﹣x2+4x,解得,x1=,x2=,∴x F=,x E=,令x﹣k=﹣x2+10x﹣18,解得,x1=,x2=,∴x H=,x G=,∴ME=x G﹣x E=﹣=3,FN=x H﹣x F=﹣=3,分别过G,H作y轴的平行线,过E,F作x轴的平行线,交点分别为M,N,Q,则∠HFN=∠GEM,∠HNF=∠GME=90°,∴△GEM∽△HFN,∴=,∴===1,∴的值是定值1.6.解:(1)∵N与M图象下方的部分关于x轴对称,∴N所在函数解析式为y=﹣x2+2x+3;(2)令x2﹣2x﹣3=0,解得x=﹣1或x=3,∴A(﹣1,0),B(3,0),∵曲线N交y轴于点C,∴C(0,3),分别作BC与AB的垂直平分线交于点O',则O'为△ABC的外接圆,∵Rt△BOC为等腰直角三角形,∴OO'=OH=O'H=1,∵HB=2,∴O'B=,∵O'B是△ABC外接圆的半径,∴△ABC外接圆的面积=5π;(3)当P点在M上时,设P(m,m2﹣2m﹣3),Q(n,0),∴m≥3或m≤﹣1;①当BQ∥PC,BQ=PC时,B、C的中点为(,),P、Q的中点为(,),∴=,解得m=1+或m=1﹣,=,解得n=2﹣或n=2+,∴Q(2﹣,0)或Q(2+,0);②当BP∥CQ,BP=CQ时,B、Q的中点为(,0),P、C的中点为(,),∴=0,解得m=0或m=2(都不符合);当P点在N上时,设P(m,﹣m2+2m+3),Q(n,0),∴﹣1≤m≤3,③当BQ∥PC,BQ=PC时,B、C的中点为(,),P、Q的中点为(,),∴=,解得m=0或m=2,=,解得n=3或n=1,∴Q(1,0)或Q(3,0),∵Q(3,0)与B(3,0)重合,∴Q(1,0);④当BP∥CQ,BP=CQ时,B、Q的中点为(,0),P、C的中点为(,),∴=0,解得m=1+或m=1﹣(都不符合);综上所述:Q(1,0)或Q(2﹣,0)或Q(2+,0)时以点B,C,P,Q为顶点的四边形是平行四边形;(4)∵==S△ABC,∴D1D2所在直线与直线BC平行,∵BC=3,设A点到BC的距离为h,∵△ABC的面积=×3h=×4×3,∴h=2,∴D1D2所在直线与直线BC间的距离为2,设D1D2的直线解析式为y=﹣x+b,∴b﹣3=4,∴b=7,∴y=﹣x+7,联立,解得x=或x=,∴D1(,),D2(,);联立,解得x无解;综上所述:D1(,),D2(,);∵T1,T2,T3,T4,T5与点B,C围成的三角形的面积为,∴T1,T2,T3,T4,T5到直线BC的距离为,设与BC平行的直线为y=﹣x+t,∴|t﹣3|=,∴t=或t=,∴y=﹣x+或y=﹣x+,当点在M上时,x≥3或x≤﹣1,联立,解得x=或x=﹣,∴x=﹣,∴T1(﹣,);联立,解得x=或x=,∴T2(,)或T3(,);当点在N上时,﹣1≤x≤3,联立,解得x=(舍)或x=,∴T4(,);联立,解得x=,∴T5(,);综上所述:存在五个点符合条件,分别是T1(﹣,)或T2(,)或T3(,)或T4(,)或T5(,).。

巧借图,智破双抛物线问题

巧借图,智破双抛物线问题

巧借图,智破双抛物线问题作者:***来源:《初中生世界·九年级》2021年第12期以双抛物线为立意的综合性压轴题,集函数知识、代数推理于一体,重在考查综合应用数学知识解决问题的创新能力。

本文现以2021年湖北省宜昌市中考压轴题为例进行展示。

在平面直角坐标系中,抛物线y1=-(x+4)·(x-n)与x轴交于点A和点B(n,0)(n≥-4),顶点坐标记为(h1,k1)。

抛物线y2=-(x+2n)2-n2+2n+9的顶点坐标记为(h2,k2)。

(1)写出A点坐标;(2)求k1,k2的值(用含n的代数式表示);(3)当-4≤n≤4时,探究k1与k2的大小关系;(4)经过点M(2n+9,-5n2)和点N(2n,9-5n2)的直线与抛物线y1=-(x+4)(x-n),y2=-(x+2n)2-n2+2n+9的公共點恰好为3个不同点时,求n的值。

【解析】(1)求抛物线y1=-(x+4)(x-n)与x轴交点坐标,基本方法是令y1=0,得-(x+4)(x-n)=0,解之x1=-4,x2=n,结合条件有A(-4,0)。

(2)k1,k2是两抛物线顶点的纵坐标,对抛物线表达式进行配方或直接运用二次函数顶点坐标公式可得顶点的纵坐标。

抛物线y2=-(x+2n)2-n2+2n+9就是顶点式,可以直接写出k2=-n2+2n+9,对抛物线y1进行配方,y1=-(x+4)(x-n)=-x2+(n-4)x+4n=-(x[+4-n2])2+[14]n2+2n+4,所以k1=[14]n2+2n+4。

(3)探究k1与k2的大小关系,基本方法是作差,然后与0比较大小。

k1-k2=([14]n2+2n+4)-(-n2+2n+9)=[54]n2-5。

①当[54]n2-5>0时,可得n>2或nk2;②当[54]n2-5③当[54]n2-5=0时,可得n=2或n=-2,即当n=2或n=-2时,k1=k2。

综上所述:当-4≤nk2;当-2(4)抛物线y1、y2和直线MN都含有参数n,随着n的变化,三线的位置也在变化。

双抛物线型中考压轴题解法赏析

双抛物线型中考压轴题解法赏析

r I I





●华成斌

(北 县 验 学45) 湖 郧 实 中 4o  ̄o
所 以点 D在 z 2上.

■寿与中考 ・。 高考与中昔 ・・ 高考与中_ ‘’ 青 高考与‘考 ‘‘ f J 高考与中考 考与 中考 . 高 考与 中希 .. 高考 与 中考 . . 考与 中考 . 矗 矗 鸯与 考 ・・
维普资讯

2 8・
中学教研 ( 数学)
20 06年第 l 2期
高考与中考 ・・ 高考与中考 ・・ 离考与中考 ・・ 高考与中考 ・ 高等与中考 高尊与中考 ・・ 矗考与中考 ・・ 膏考与中考 ・・ 高考与中考 ・ 高考与中考 ・-

囊 双抛物线型 中 考 压 轴 题 解 法 赏 析

() 3抛物线 c 上是否存在点 P, 。 使得四边形 A - B C P为菱形?如果存在, 请求出 I 的值 ; n , 如果不存在 ,
请 说 明理 由.
(0 6年 湖北 十堰 市中考题 ) 20 解 ( ) 物线 C : =一 +2 + 的顶点 坐 1抛 l, , ,
在 20 年 各地 中考试 题 中 出现 了一 类 以双抛 06 物线为背景立意 的综 合 性压 轴题 , 它集 知识 、 法 、 方
() 3 设平行 四边 形 A C B D的面积 为 s则 ,
S=2 ^c;A ・I I ;4l l , S△ C y I y l
能力于一体 , 重在考查考生综合应用数学知识解决 问题的能力。 具有较强的探索性, 这类试题是中考数 学试题的精华部分, 具有知识容量大、 解题方法多、
注 抛物线 y + + ( ≠O 的顶点 坐标 = ca )

2021年中考数学必刷压轴题专题:抛物线之最值问题(含解析)-个人用心整理

2021年中考数学必刷压轴题专题:抛物线之最值问题(含解析)-个人用心整理

中考数学抛物线压轴题之最值问题1.如图,在平面直角坐标系xOy中,抛物线y=ax2+x+c与x轴交于A,B两点(点A在点B的左侧),交y轴于点C,经过B,C两点的直线为y=.(1)求抛物线的函数表达式;(2)点P为抛物线上的动点,过点P作x轴的垂线,交直线BC于点M,连接PC,若△PCM为直角三角形,求点P的坐标;(3)当P满足(2)的条件,且点P在直线BC上方的抛物线上时,如图2,将抛物线沿射线BC方向平移,平移后B,P两点的对应点分别为B′,P′,取AB的中点E,连接EB′,EP′,试探究EB'+EP'是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.2.如图,抛物线y=ax2+bx+c与x轴相交于A(3,0)、B两点,与y轴交于点C(0,3),点B在x轴的负半轴上,且OA=3OB.(1)求抛物线的函数关系式;(2)若P是抛物线上且位于直线AC上方的一动点,求△ACP的面积的最大值及此时点P的坐标;(3)在线段OC上是否存在一点M,使BM+CM的值最小?若存在,请求出这个最小值及对应的M点的坐标;若不存在,请说明理由.3.在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B,C,已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一动点,过点P作y轴的平行线,交抛物线于点D,是否存在这样的P点,使线段PD的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是直线EF上一动点,M(m,0)是x轴一个动点,请直接写出CN+MN+MB的最小值以及此时点M、N的坐标,直接写出结果不必说明理由.4.如图1,点A在x轴上,OA=4,将OA绕点O逆时针旋转120°至OB的位置.(1)求经过A、O、B三点的抛物线的函数解析式;(2)在此抛物线的对称轴上是否存在点P使得以P、O、B三点为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3 )如图2,OC=4,⊙A的半径为2,点M是⊙A上的一个动点,求MC+OM的最小值.5.如图,二次函数y=﹣x2+x+2的图象与x轴交于点A,B,与y轴交于点C.点P是该函数图象上的动点,且位于第一象限,设点P的横坐标为x.(1)写出线段AC,BC的长度:AC=,BC=;(2)记△BCP的面积为S,求S关于x的函数表达式;(3)过点P作PH⊥BC,垂足为H,连结AH,AP,设AP与BC交于点K,探究:是否存在四边形ACPH为平行四边形?若存在,请求出的值;若不存在,请说明理由,并求出的最大值.6.如图,直线y=x+2与抛物线y=x2﹣2mx+m2+m交于A、B两点(A在B的左侧),与y轴交于点C,抛物线的顶点为D,抛物线的对称轴与直线AB交于点M.(1)当四边形CODM是菱形时,求点D的坐标;(2)若点P为直线OD上一动点,求△APB的面积;′(3)作点B关于直线MD的对称点B',以点M为圆心,MD为半径作⊙M,点Q是⊙M上一动点,求QB'+ QB的最小值.7.如图,对称轴x=﹣1的抛物线y=ax2+bx+c与x轴交于A(2,0),B两点,与y轴交于点C(0,﹣2),(1)求抛物线的函数表达式;(2)若点P是直线BC下方的抛物线上的动点,求△BPC的面积的最大值;(3)若点P在抛物线对称轴的左侧运动,过点P作PD⊥x轴于点D,交直线BC于点E,且PE=OD,求点P的坐标;(4)在对称轴上是否存在一点M,使△AMC的周长最小.若存在,请求出M点的坐标和△AMC周长的最小值;若不存在,请说明理由.8.已知抛物线y=ax2+bx﹣4经过点M(﹣4,6)和点N(2,﹣6).(1)试确定该抛物线的函数表达式;(2)若该抛物线与x轴交于点A,B(点A在点B的左侧),与y轴交于点C①试判断△ABC的形状,并说明理由;②在该抛物线的对称轴上是否存在点P,使PM+PC的值最小?若存在,求出它的最小值;若不存在,请说明理由.9.如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B 两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,y)是y轴上一动点,当y为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF 是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.10.在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△CDP为等腰三角形时,求点P的坐标;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是直线EF上一动点,M(m,0)是x轴一个动点,请直接写出CN+MN+MB的最小值以及此时点M、N的坐标.11.如图,抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(9,0)两点,与y轴交于点C,连接AC,BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B 向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ,过点Q作QD⊥x轴,与抛物线交于点D,连接PD与BC交于点E.设点P的运动时间为t秒(t>0)(1)求抛物线的表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简).②在点P,Q运动的过程中,当PQ=PD时,求t的值;(3)点M为线段BC上一点,在点P,Q运动的过程中,当点E为PD中点时,是否存在点M使得PM+BM 的值最小?若存在,请求出PM+BM的最小值;若不存在,请说明理由.12.已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM⊥BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;(4)若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.13.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与直线AB相交,与x轴、y轴交于A(2,0)、B.(1)求点O关于AB的对称点P的坐标;(2)若点P在二次函数y=ax2+bx+c(a≠0)的图象上,求二次函数y=ax2+bx+c(a≠0)的关系式.(3)在(2)的条件下,在△ABP内存在点M,使得MA+MB+MP的值最小,则相应点M的坐标为.14.如图(1),二次函数y=ax2﹣bx(a≠0)的图象与x轴、直线y=x的交点分别为点A(4,0)、B(5,5).(1)a=,b=,∠AOB=°;(2)连接AB,点P是抛物线上一点(异于点A),且∠PBO=∠OBA,求点P的坐标;(3)如图(2),点C、D是线段OB上的动点,且CD=2.设点C的横坐标为m.①过点C、D分别作x轴的垂线,与抛物线相交于点F、E,连接EF.当CF+DE取得最大值时,求m的值并判断四边形CDEF的形状;②连接AC、AD,求m为何值时,AC+AD取得最小值,并求出这个最小值.15.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做“半高三角形”.如图1,对于△ABC,BC边上的高AD等于BC的一半,△ABC就是半高三角形,此时,称△ABC是BC类半高三角形;如图2,对于△EFG,EF边上的高GH等于EF的一半,△EFG就是半高三角形,此时,称△EFG是EF类半高三角形.(1)直接写出下列3个小题的答案.①若一个三角形既是等腰三角形又是半高三角形,则其底角度数的所有可能值为.②若一个三角形既是直角三角形又是半高三角形,则其最小角的正切值为.③如图3,正方形网格中,L,M是已知的两个格点,若格点N使得△LMN为半高三角形,且△LMN为等腰三角形或直角三角形,则这样的格点N共有个.(2)如图,平面直角坐标系内,直线y=x+2与抛物线y=x2交于R,S两点,点T坐标为(0,5),点P是抛物线y=x2上的一个动点,点Q是坐标系内一点,且使得△RSQ为RS类半高三角形.①当点P介于点R与点S之间(包括点R,S),且PQ取得最小值时,求点P的坐标.②当点P介于点R与点O之间(包括点R,O)时,求PQ+QT的最小值.16.如图1,抛物线y=ax2+(a+2)x+2(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.(1)求a的值;(2)若PN:MN=1:3,求m的值;(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+BP2的最小值.17.如图1,抛物线y=ax2+bx+c经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点.若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.(4)如图2,E为OB的中点,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′B、E′C,求E′B+E′C的最小值,请直接写出答案.18.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.19.在平面直角坐标系中,已知y=﹣x2+bx+c(b、c为常数)的顶点为P,等腰直角三角形ABC的顶点A 的坐标为(0,﹣1),点C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若抛物线经过A、B两点,求抛物线的解析式.(2)平移(1)中的抛物线,使顶点P在直线AC上并沿AC方向滑动距离为时,试证明:平移后的抛物线与直线AC交于x轴上的同一点.(3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.20.如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是﹣2.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?21.如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;(2)若两个三角形面积满足S△POQ=S△PAQ,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.22.如图,已知一次函数y1=x+b的图象l与二次函数y2=﹣x2+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣,0).(1)求二次函数的最大值;(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程=0的根,求a的值;(3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.23.如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,﹣3);(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上是否存在一点P,使得|PB﹣PC|的值最大?若存在,求出点P的坐标;(3)如果点M是抛物线在第三象限的一动点;当M点运动到何处时,M点到AC的距离最大?求出此时的最大距离及M的坐标.24.如图(1)抛物线y=ax2+bx+c(a≠o)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0)(1)求抛物线的函数解析式;(2)如图(2)T是抛物线上的一点,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,若△DNM∽△BMD,求点T的坐标;(3)如图(3),过点A的直线与抛物线相交于E,且E点的横坐标为2,与y轴交于点F;直线PQ是抛物线的对称轴,G是直线PQ上的一动点,试探究在x轴上是否存在一点H,使D、G、H、F四点围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由.25.如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B 左侧),与y轴交于点C.(1)求抛物线的解析式及点A、B、C的坐标;(2)直线AN交y轴于点F,P是抛物线的对称轴x=1上动点,H是X轴上一动点,请探索:是否存在这样的P、H,使四边形CFHP的周长最短?若存在,请求出四边形CFHP的最短周长和点P、H的坐标;若不存在,请说明理由;(3)若点Q是∠MDB的角平分线上动点,点R是线段DB上的动点,Q、R在何位置时,BQ+QR的值最小.请直接写出BQ+QR的最小值和Q、R的坐标.26.在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.27.如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.28.已知如图,二次函数y=ax2+2ax﹣3a(a≠0)图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线l:对称.(1)求A、B两点坐标,并证明点A在直线l上;(2)求二次函数解析式;(3)设点s是三角形ABH上的一动点,从点A沿着AHB方向以每秒1个单位长度移动,运动时间为t秒,到达点B时停止运动.当t为何值时,以点s为圆心的圆与两坐标轴都相切.(4)过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值.1.【解答】解:(1)y=,过点B,C,则点B、C的坐标分别为:(3,0)、(0,),则c=,将点B的坐标代入抛物线表达式并解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+;(2)①当∠PCM=90°时,由点A、B、C的坐标知,△ABC为直角三角形,故AC⊥BC,当△PCM为直角三角形时,点P与点A重合,∴点P(﹣1,0);②当∠CPM=90°时,则点C、P关于函数对称轴对称,此时点P(2,),故点P的坐标为(﹣1,0)或(2,);(3)存在,理由:点P(2,),设图象沿BC方向向左平移3m个单位,则向上平移m个单位,则平移后点B′、P′的坐标分别为:(3﹣3m,m)、(2﹣3m,m+),点E(1,0),分别过点A、E作直线BC的平行线n、m,过点B′作直线m的对称点B″,则EB′=EB″,当B″、E、P′三点共线时,EB'+EP'=EB″+EP′=B″P′最小;点E是AB的中点,则直线m与直线n、直线m与直线AC等距离,则点B″在直线n上,直线BC的倾斜角为30°,则直线B′B″的倾斜角为60°,则设直线B′B″的表达式为:y=x+b,将点B′的坐标代入上式并解得:直线B′B″表达式为:y=x+(4m﹣3)…①,设过点A的直线n的表达式为:y=﹣x+b′,将点A的坐标代入上式并解得:直线n的表达式为:y=﹣(x+1)…②,联立①②并解得:x=2﹣3m,故点B″(2﹣3m,m﹣),而P′(2﹣3m,m+),故EB'+EP'的最小值B″P′=2.2.【解答】解:(1)OA=3OB=3,则点B(﹣1,0),抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3;(2)过点P作y轴的平行线交CA于点H,由点A、C的坐标得,直线AC的表达式为:y=﹣x+3△ACP的面积=PH×OA=3×(x2﹣2x+3+x﹣3)=(﹣x2+3x),当x=时,△ACP的面积的最大,最大值为:,此时点P(,);(3)过点M作MN⊥AC,则MN=CM,故当B、M、N三点共线时,BM+CM=BN最小,直线CA的倾斜角为45°,BN⊥AC,则∠NBA=45°,即BN=AB=2=AN,则点N(1,2),由点B、N的坐标得,直线BN的表达式为:y=x+1,故点M(0,1).3.【解答】解:(1)y=﹣x2+bx+c经过点C,则c=3,将点A的坐标代入抛物线表达式:y=﹣x2+bx+3并解得:b=2,抛物线的表达式为:y=﹣x2+2x+3;(2)存在,理由:令y=0,则x=﹣1或3,故点B(3,0),将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x+3,设点D(x,﹣x2+2x+3),则点P(x,﹣x+3),则PD=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x,当x=时,PD最大值为:;(3)过点B作倾斜角为30°的直线BH,过点C作CH⊥BH交于点H,CH交对称轴于点N,交x轴于点M,则点M、N为所求,直线BH表达式中的k值为,则直线CH的表达式为:y=﹣x+3,当x=1时,y=3﹣,当y=0时,x=,故点N、M的坐标分别为:(1,3﹣)、(,0),CN+MN+MB的最小值=CH=CM+FH=.4.【解答】解:(1)如图1,过点B作BD⊥x轴于点D,∴∠BDO=90°,∵OA绕点O逆时针旋转120°至OB,∴OB=OA=4,∠AOB=120°,B在第二象限,∴∠BOD=60°,∴sin∠BOD=,cos∠BOD=,∴BD=OB=2,OD=OB=2,∴B(﹣2,2),设过点A(4,0),B(﹣2,2),O(0,0)的抛物线解析式为y=ax2+bx+c,∴,解得:,∴抛物线的函数解析式为y=x2﹣x;(2)存在△POB为等腰三角形,∵抛物线与x轴交点为A(4,0),O(0,0),∴对称轴为直线x=2,设点P坐标为(2,p),则OP2=22+p2=4+p2,BP2=(2+2)2+(p﹣2)2=p2﹣4p+28,①若OP=OB=4,则4+p2=42解得:p1=2,p2=﹣2,当p=﹣2时,∠POA=60°,即点P、O、B在同一直线上,∴p≠﹣2,∴P(2,2),②若BP=OB=4,则p2﹣4p+28=42解得:p1=p2=2,∴P(2,2);③若OP=BP,则4+p2=p2﹣4p+28,解得:p=2,∴P(2,2);综上所述,符合条件的点P只有一个,坐标为(2,2);(3)在OA上取点K,使AK=1,连接CK交圆与点M,连接OM、CM,此时,MC+OM=MC+KM=CK为最小值,理由:∵AK=1,MA=2,OA=4,∴AM2=AK•OA,而∠MAO=∠OAM,∴△AKM∽△AMO,∴=,即:MC+OM=MC+KM=CK,CK==5,即:MC+OM的最小值为CK=5.5.【解答】解:(1)二次函数y=﹣x2+x+2,当x=0时,y=2,∴C(0,2),∴OC=2,当y=0时,﹣x2+x+2=0,解得:x1=4,x2=﹣1,∴A(﹣1,0),B(4,0),∴OA=1,OB=4,由勾股定理得:AC==,BC==2;故答案为:,2;(4分)(2)∵B(4,0),C(0,2),∴直线BC的解析式为:y=﹣x+2,如图1,过P作PD∥y轴,交直线BC于D,设P(x,﹣x2+x+2),则D(x,﹣x+2),∴PD=(﹣x2+x+2)﹣(﹣x+2)=﹣x2+2x,有S=PD•OB=×4(﹣+2x)=﹣x2+4x(0<x<4);(6分)(3)不存在,如图2,∵AC2+BC2==25=AB2,∴△ABC为直角三角形,即AC⊥BC,∵PH⊥BC,∴AC∥PH,要使四边形ACPH为平行四边形,只需满足PH=AC=,(10分)∴S=BC•PH=×2×=5,∵而S=﹣x2﹣4x=﹣(x﹣2)2+4≤4,所以不存在四边形ACPH为平行四边形,∵AC∥PH,∴△AKC∽△PHK,∴===S≤;∴的最大值是.(12分)(说明:写出不存在给1分,其他说明过程酌情给分)6.【解答】解:(1)∵D(m,m),OD=m,四边形CODM为菱形,∴OD=OC=2=m,∴m=,∴D();(2)∵y=x+2与抛物线y=x2﹣2mx+m2+m交于A、B两点,∴联立,解得,,∵点A在点B的左侧,∴A(m﹣1,m+1),B(m+2,m+4),∴AB==3,∵直线OC的解析式为y=x,直线AB的解析式为y=x+2,∴AB∥OC,两直线AB、OC之间距离h=2×=,∴S△APB=AB•h=×3×=3;(3)∵A(m﹣1,m+1),B(m+2,m+4),∴AM=1×=,BM=2×=2,由M点坐标(m,m+2),D点坐标(m,m)可知以MC为半径的圆的半径为(m+2)﹣m=2,取MB的中点N,连接QB、QN、QB′,∴MN=BM=,∵,∠QMN=∠BMQ,∴△MNQ∽△MQB,∴,∴,由三角形三边关系,当Q、N、B′三点共线时QB′+QB最小,∵直线AB的解析式为y=x+2,∴直线AB与对称轴夹角为45°,∵点B、B′关于对称轴对称,∴∠BMB′=90°,由勾股定理得,QB′+QB最小值为B'N===.即QB'+QB的最小值是.7.【解答】解:(1)∵对称轴x=﹣1的抛物线y=ax2+bx+c与x轴交于A(2,0),B两点,∴B(﹣4,0).设抛物线解析式是:y=a(x+4)(x﹣2)(a≠0).把C(0,﹣2)代入,得a(0+4)(0﹣2)=﹣2.解得a=.故该抛物线解析式是:y=(x+4)(x﹣2)或y=x2+x﹣2;(2)设直线BC的解析式为y=mx+n,把B(﹣4,0),C(0,﹣2)代入得,解得,∴直线BC的解析式为y=﹣x﹣2;作PQ∥y轴交BC于Q,如图,设P(t,t2+t﹣2),则Q(t,﹣t﹣2),则PQ=﹣t﹣2﹣(t2+t﹣2)=﹣t2﹣t,S△PBC=S△PBQ+S△PCQ=•PQ•4=﹣t2﹣2t=﹣(t+2)2+2,当t=﹣2时,△PBC面积有最大值,最大值为2,此时P点坐标为(﹣2,﹣2);(3)设D(m,0),∵DP∥y轴,∴E(m,﹣m﹣2),P(m,m2+m﹣2),∵PE=OD,∴|﹣m|=4|﹣m﹣2﹣m2﹣m+2|,∴m2+3m=0或m2+5m=0,∴m=﹣3,m=0(舍去)或m=﹣5,m=0(舍去)∴P(﹣3,﹣)或P(﹣5,);(4)∵点A、B关于对称轴对称,∴点M为BC与对称轴的交点时,MA+MC的值最小,此时△AMC的周长最小.∵直线BC的解析式为y=﹣x﹣2.抛物线的对称轴为直线x=﹣1.∴当x=﹣1时,y=﹣.∴抛物线对称轴上存在点M(﹣1,﹣)符合题意,此时△AMC周长的最小值为AC+BC=2+2.8.【解答】解:(1)将点M、N的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=x2﹣x﹣4;(2)①y=x2﹣x﹣4,令y=0,则x=﹣2或8,x=0,则y=﹣4,故点A、B、C的坐标分别为:(﹣2,0)、(8,0)、(0,﹣4),则函数的对称轴为:x=3,则AB=10,BC=,AC=,则AB2=BC2+AC2,故△ABC为直角三角形;②作点M关于函数对称轴的对称点D(10,6),连接CD交函数对称轴于点P,则点P为所求,将点CD的坐标代入一次函数表达式:y=kx+b并解得:直线CD的表达式为:y=x﹣4,当x=3时,y=﹣1,故点P(3,﹣1),此时PM+PC的值最小为CD=10.9.【解答】解:(1)由题可列方程组:,解得:∴抛物线解析式为:y=x2﹣x﹣2;(2)如图1,∠AOC=90°,AC=,AB=4,设直线AC的解析式为:y=kx+b,则,解得:,∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时=()2=()2=,∵S△AOC=1,∴S△AEB=,∴AB×|y E|=,AB=4,则y E=﹣,则点E(﹣,﹣);由△AOC∽△AEB得:∴;(3)如图2,连接BF,过点F作FG⊥AC于G,则FG=CFsin∠FCG=CF,∴CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO∴BE=ABcos∠ABE=ABcos∠ACO=4×=,|y|=OBtan∠ABE=OBtan∠ACO=3×=,∴当y=﹣时,即点F(0,﹣),CF+BF有最小值为;(4)①当点Q为直角顶点时(如图3):由(3)易得F(0,﹣),∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m+),解得:m=,则点Q(1,)或(1,)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣);综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).10.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点A、B、C,把A(﹣1,0),C(0,3)代入解析式得,∴,解得b=2,c=3.故该抛物线解析式为:y=﹣x2+2x+3.(2)令﹣x2+2x+3=0,解得x1=﹣1,x2=3,即B(3,0),设直线BC的解析式为y=kx+b′,则,解得:,故直线BC的解析式为y=﹣x+3;∴设P(t,3﹣t),∴D(t,﹣t2+2t+3),∴PD=(﹣t2+2t+3)﹣(3﹣t)=﹣t2+3t,∵OB=OC=3,∴△BOC是等腰直角三角形,∴∠OCB=45°,当CD=PC时,则∠CPD=∠CDP,∵PD∥y轴,∴∠CPD=∠OCB=45°,∴∠CDP=45°,∴∠PCD=90°,∴直线CD的解析式为y=x+3,解得或,∴D(1,4),此时P(1,2);当CD=PD时,则∠DCP=∠CPD=45°,∴∠CDP=90°,∴CD∥x轴,∴D点的纵坐标为3,代入y=﹣x2+2x+3得,3=﹣x2+2x+3,解得x=0或x=2,此时P(2,1);当PC=PD时,∵PC=t,∴t=﹣t2+3t,解得t=0或t=3﹣,此时P(3﹣,);综上,当△CDP为等腰三角形时,点P的坐标为(1,2)或(2,1)或(3﹣,).(3)CN+MN+MB的最小值为,N坐标为(1,3﹣),M坐标为(,0).理由如下:如图,取G点坐标为(0,﹣),连接BG,∵B(3,0),∴直线BG解析式为:y=,∴tan∠GBO=,∴∠GBO=30°,过M点作MB′⊥BG,∴,∴CN+MN+MB=CN+MN+B′M,∴CN+MN+MB取最小值时,C、M、N、B′在同一条直线上,即CB′⊥BG,设直线CB′解析式为,∵C(0,3)故直线CB′解析式为为,∵抛物线的顶点为E坐标为(1,4),EF⊥x轴,N在EF、CB′上,∴N坐标为(1,3﹣),M(m,0)是x轴一个动点,也是CB′与x轴交点,∴M(,0).∵CG=3+,∠CGB=60°,∴CB′=CGsin∠CGB=(3+)×=,综上所述:CN+MN+MB的最小值为,N坐标为(1,3﹣),M坐标为(,0).11.【解答】解:(1)将A(﹣3,0),B(9,0)代入y=ax2+bx+3,得:,解得:,∴抛物线的表达式为y=﹣x2+x+3…①;(2)由题意得:∠ACO=∠OBC=30°,∠ACB=90°,将点B、C(0,3)的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x+3…②;①点P的坐标为(﹣3+t,t),点Q(9﹣2t,0),将点Q的坐标代入①式并整理得:点D[9﹣2t,(6t﹣t2)];②当PQ=PD时,则DQ中点的纵坐标=点P的纵坐标,即:[(6t﹣t2)]=t,解得:t=;(3)点P的坐标为(﹣3+t,t)、点D[9﹣2t,(6t﹣t2)],点E是PQ的中点,则点E[3﹣t,t+(6t﹣t2)],将点E的坐标代入②式并整理得:t2﹣6t+9=0,解得:t=3,即点P(﹣,)即点P是AC的中点,作点P关于直线BC的对称点P′,过点P′作P′H⊥x轴、BC于点H、M,过点P作PN⊥y轴于点N,则MH=MB,则此时,PM+BM=PM+MH=P′H为最小值,∵∠ACB=90°,PC=P′C,∠P′CM=∠NCP,∠P′MC=∠PNC=90°,∴△P′MC≌△PNC(AAS),∴MC=NC=OC,OM=OC==P′H,故PM+BM的最小值为.12.【解答】解:(1)函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3,则顶点D(2,﹣1);(2)∵OB=OC=3,∴∠OBC=∠OCB=45°,AM=MB=ABsin45°==AD=BD,则四边形ADBM为菱形,而∠AMB=90°,∴四边形ADBM为正方形;(3)将点B、C的坐标代入一次函数表达式:y=mx+n并解得:直线BC的表达式为:y=﹣x+3,过点P作y轴的平行线交BC于点H,设点P(x,x2﹣4x+3),则点H(x,﹣x+3),则S△PBC=PH×OB=(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),∵﹣<0,故S△PBC有最大值,此时x=,故点P(,﹣);(4)存在,理由:如上图,过点C作与y轴夹角为30°的直线CH,作QH⊥CH,垂足为H,则HQ=CQ,AQ+QC最小值=AQ+HQ=AH,直线HC所在表达式中的k值为,直线HC的表达式为:y=x+3…①则直线AH所在表达式中的k值为﹣,则直线AH的表达式为:y=﹣x+s,将点A的坐标代入上式并解得:则直线AH的表达式为:y=﹣x+…②,联立①②并解得:x=,故点H(,),而点A(1,0),则AH=,即:AQ+QC的最小值为.13.【解答】解:(1)连接AB,过点O作OP⊥AB交AB于点G,过点P作PH⊥x轴于点H,∵点O关于AB的对称点P,∴OG=PG,tan∠BAO==,则∠BAO=60°,则∠GOA=∠GPA=30°,∠GAO=∠GAP=∠PAH=60°,则GA=OA=1,∵∠GAP=∠PAH,∴AH=AG=1,则PH=AHtan60°=,故点P(3,);(2)将点A,B,P的坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2﹣x+2;(3)连接PB,由题意得:AB=4,AP=AO=2,BP=BO==2,则△ABP为直角三角形,△ABO、△ABP是两个全等的,均有一个角为30°的直角三角形,即AB=OB=2,AB=4,AP=OA=2,∠PBA=∠BAO=30°,∠BAO=∠BAP=60°,当∠BMA=∠BMC=∠AMC=120°时,MA+MB+MP的值最小(证明见备注),以BP边向上作等边三角形APA′,以AP边为基础向右作等边三角形APB′,连接AA′、BB′交于点M,则点M为所求点,BP=2,则∠A′BO=∠OBA+∠PBA+∠PBA′=30°+30°+60°=120°,则直线A′B的长度为2,倾斜角为30°,则x A′=A′Bcos30°=3,同理y A′=3,故点A′(3,3),由点AA′的坐标可得,直线AA′的表达式为:y=3(x﹣2)…①;同理可得:直线BB′的表达式为:y=x+2…②,联立①②并解得:x=,故点M(,),故答案为:(,).备注:已知三角形ABC,在其内部找一点P,使得PA+PB+PC为最小.如图,将三角形ABP逆时针旋转60度至三角形A'BP',连接PP',CA'.根据旋转变换,三角形P'BP为等边三角形,所以有PA+PB+PC=P'A'+PP'+PC.利用两点之间线段最短,当点P,P'在直线CA'上时,所求为最短,于是,转化为下图:则∠BPC=180°﹣∠BPP′=180°﹣60°=120°,∠BPA=∠BP′A′=180°﹣∠BP′P=120°,故∠APC=120°,故满足P的点,必须使∠APB=∠BPC=∠APB=120°.14.【解答】解:(1)将点A、B的坐标代入二次函数表达式得:,解得:,故二次函数表达式为:y=x2﹣4x,故:答案为:1,4,45°;(2)设直线BP交y轴于点H,∵∠HOB=∠AOB=45°,∠PBO=∠OBA,BO=BO,∴△HOB≌△AOB(AAS),∴OA=OH=4,即点H(0,4),则直线PB的表达式为:y=kx+4,将点B坐标代入上式并解得:直线PB的表达式为:y=x+4,将上式与二次函数表达式联立并解得:x=5或﹣(舍去正值),则点P(﹣,);(3)①由题意得:直线OB的表达式为:y=x,设点C(m,m),CD=2,直线OB的倾斜角为45度,则点D(m+2,m+2),则点F(m,m2﹣4m),点E[(m+2),(m+2)2﹣4(m+2)],则CF+DE=m﹣m2+4m+(m+2)﹣[(m+2)2﹣4(m+2)]=﹣2m2+6m+6,∵﹣2<0,故CF+DE有最大值,此时,m=,则点C、F、D、E的坐标分别为(,)、(,﹣)、(,)、(,﹣),则CF=DE=,CF∥ED,故四边形CDEF为平行四边形;②如图所示,过点A作CD的平行线,过点D作AC的平行线,交于点G,则四边形ACDG是平行四边形,。

一道中考函数压轴题的一题多解赏析

一道中考函数压轴题的一题多解赏析
问题:如 图 1 ,在 平 面 直 角 坐 标 系 中 ,直 线 " = ~ 1 $ + 2 与
$ 轴 交 于 点 A ,与 " 轴 交 于 点 ' ,抛 物 线 ~ 2 $ 2- ~ 2 $ + 2 经
过 A 、' 两 点 ,与 $ 0 的 另 一 交 点 为 点 B .点 D 为 直 线 A ' 上 方 抛 物 线 上 一 点 ,连 接 C D ,使 " D C A # 2 " B A C .若 存 在 这 样 的 点 D ,求 点 D 的 坐 标 ; 若 不 存 在 ,请 说 明 理 由 .
"=- $+2, &&2பைடு நூலகம்由
求 得 D (-2,3).
" / - 了 $ 2-了 $ + 2 ,
图3 求 得 D (-2,3).
方法 4 ! 如 图 5 . 在 " 轴 的 负 半 轴 上 取 一 点 . ,使 0 . /
0 C ,则 .(0 ,-2).连 接 A . ,过 C作 C D //A . 交 抛 物 线 于 D ,则 " CAf/ 2 " ' AB= " D'A .
+2"2+5a ,解得 %"0(舍 ),〇2"~&'求得& ( - 2 ,3 ).
点 评 :在 抛 物 线 上 求 一 个 点 的 方 法 往 往 是 由 题 意 先 求 出 过 该 点 所 在 直 线 的 解 析 式 ,再 和 抛 物 线 方 程 联 立 ,
得 到 该 点 的 坐 标 .以 上 8种 方 法 中 ,方 法 1至 5都 是 这 一 思 想 ,不 同 之 处 是 直 线 C& 的 构 造 方 法 不 同 ,或 者 说 直 线 C& 上 的 “特 征 点 ”的 选 择 不 同 而 产 生 了 5 种 不 同 的 求 特 征 直 线 的 方 法 .方 法 6 至 8则 是 由 边 角 关 系 得 到 点 & 的 坐 标 ,再 代 入 抛 物 线 的 解 析 式 中 ,从 而 求 得 & 点 的 坐 标 .三 角 形 相

新课标下中考压轴题——双抛物线型解法例析

新课标下中考压轴题——双抛物线型解法例析

能力要求 高 、 突显数 学 思 想 方法 的运 用 以及 要 求 考 一
生具有一 定 的创 新 意识 和创 造能 力等特 点 .本文 选
取 了 四道典型 的 中考试 题 予 以解 释 . 1 以横轴 为对称 轴 的双抛物 线型压 轴题
n =一( 一4 m )= 一( 一m) +4 ,
线 为背 景立意 的综合 性 压 轴题 , 它集 知 识 、 方法 、 能
( ) 点 B m,) L : 一 上 任意一 点 , 2设 ( n 为 。Y= 4
贝 =m 0 n 一4 ) ( . 因为 四边 形 A C B D是 平行 四边 形 , A、 于 点 C关
原 点 0对 称 , 以 、 所 D关 于原点 0对称 ,
易知 , 当且仅 当 B =A =2时 , BC O O  ̄A D为矩 形 , R AO H 中, 在 t B 由勾股定 理得 ,
( )求 厶 的解 析式 ; 1 ( )求证 : D一定 在 上 ; 2 点 ( )2 BC 3 tA D能否 为矩 形 ? 7 如果 能 为矩 形 , 这 求

然后再努力去证明自己的猜想, 一般都能成功 .
2 以纵 轴 为对称 轴 的双 抛物 线型 压轴题
例 3 如 图 4 抛物 线 ,
Y- F F
B 设点 A的横 坐标 为 m, m >0 C, 且 .
( )当 m = 1 , 点 A、 1 时 求

( B不与 A、 c重合 )抛 物线 。 , 与 关 于 轴对称 ,
以A C为对角线 的平 行 四边 形 A C 的第 四个 顶 点 BD
为 D .
4上 , 设 点 B 的坐 标 为 ( 。 一4 , O = 可 , )则 H

抛物线压轴题考点及解决技巧

抛物线压轴题考点及解决技巧

抛物线压轴题考点及解决技巧摘要:1.抛物线压轴题概述2.抛物线压轴题的考点a.抛物线的性质b.抛物线与直线的关系c.抛物线与坐标轴的关系d.抛物线的顶点3.解决抛物线压轴题的技巧a.利用抛物线的性质b.利用抛物线与直线的关系c.利用抛物线与坐标轴的关系d.利用抛物线的顶点4.例题解析5.总结与建议正文:抛物线是中学数学中的重要内容,其在压轴题中的出现频率相当高。

对于许多学生来说,抛物线压轴题往往显得难度较大,因此掌握一定的解决技巧显得尤为重要。

本文将为大家介绍抛物线压轴题的考点及解决技巧,希望能为大家带来帮助。

首先,我们来了解一下抛物线压轴题的概述。

抛物线压轴题通常涉及抛物线的性质、抛物线与直线的关系、抛物线与坐标轴的关系以及抛物线的顶点等多个方面。

要解决这类问题,关键是熟练掌握抛物线的各种性质和公式。

接下来,我们来详细了解一下抛物线压轴题的考点。

1.抛物线的性质:包括抛物线的开口方向、对称轴、焦距等。

这些性质在解决抛物线与直线的关系时尤为重要。

2.抛物线与直线的关系:掌握抛物线与直线的交点、切线等知识点,能够帮助我们解决抛物线与直线相交、相切等问题。

3.抛物线与坐标轴的关系:了解抛物线与坐标轴的交点、对称性等知识点,能够帮助我们解决抛物线与坐标轴的位置关系问题。

4.抛物线的顶点:掌握顶点的求法及顶点坐标,能够帮助我们快速找到抛物线的最值、对称轴等信息。

在了解了抛物线压轴题的考点后,我们来看看解决抛物线压轴题的技巧。

1.利用抛物线的性质:在解决抛物线问题时,可以充分利用抛物线的性质,例如对称性、单调性等,简化问题。

2.利用抛物线与直线的关系:当抛物线与直线相交时,可以利用解析几何知识求解交点坐标;当抛物线与直线相切时,可以利用导数求解切线方程。

3.利用抛物线与坐标轴的关系:解决抛物线与坐标轴的位置关系问题时,可以利用对称性快速求解。

4.利用抛物线的顶点:在解决抛物线问题时,可以尝试寻找顶点,从而找到最值、对称轴等信息。

新课标下中考压轴题--双抛物线型解法例析

新课标下中考压轴题--双抛物线型解法例析

. .
以 A、 N、 为 顶点 的 四边形 是平 行 四边形 。若 C、 M 存 在 , 点 Ⅳ 的坐 标 ; 不 存 在 , 说 明 理 由 。 求 若 请 解析 : Y: 当 0时, +4 0 +3 , 之 , =0 解 得 l = 3 = 一1 .A、 , , ,. B点 坐 标 分 别 为 ( , ) (一1 . 一3 0 , , 0 。当 =0 , ) 时 Y=3 . 点坐标为( , )A、 g M 0 3 , B、 三 点关 于 Y轴 的 对 称 点 分 别 是 D、 '. C坐 C、 .D、 . 标 为 ( ,) ( ,) 30 , 10 。 设 F的解 析 式 为 Y= +h +3 则 有 ,
易知 , 当且仅当 B O=A O=2 ,A C 时 B D为矩形 , 在 R/ O H 中, t, B ' 由勾股定理得 } 1 ; n +I ~41







即点 D的坐标满足 y 一 +4 : ,
‘ . .
点 D在 上 。
() 口 D是矩形 。如图 2 过点 做 B 3A C , H上 轴 于 , 由点 在 . 0 上 , : = —4 可设 点 B的坐标为
(0 3 4 ,0 H: ,H= 3 4 , — )贝 oB — 。 O
难点 剖析
3 6

新 标 中 压 题 — 抛 线 解 例 课 下 考 轴 — 双 物 型 法 析
■ 程
近 年 在 各 地 中考 试题 中 出 现 了 一类 以双 抛 线 为 背 景 立 意 的 综合 性 压 轴 题 , 集 知 识 、 法 、 力 于 它 方 能 体 , 在 考 查 考 生 综 合 应 用 数 学 知 识 解 决 问 题 的 重 能 力 , 有 较 强 的探 索 性 。 这 类 试 题 是 中 考 数 学 试 具 题的精华部分 , 具有知识 容量 大 、 题方法 多 、 解 能力 要求高 、 突显数学思想方 法的运用 以及要 求考 生具 有一定 的创新意识和创造能力等特点。本文选 取了 其 中的两道典型 的中考试题予以解释。 以横轴为对称轴 的双抛物线型压轴题 例 l 如 图 1 已知抛 物 线 L 为 y= —4 其 图 , , 象 与 轴 相交 于 A、 C两 点 , 曰是 抛 物 线 £ 上 的 动点 , ( 日与 A、 G不 重合 ) 抛 物线 与 L 关 于 轴对 , 1 称, A 以 C为对角线的平行 四边形 A C B D的第 四个顶 点 为 D。 ( ) 厶 的解 析 式 。 1求 () 2 求证 : 点 一 定在 上 。 2 ( ) 曰 D能否 为矩形?如果 能为矩 形 , 3 口A C 求这

初中数学抛物线压轴题技巧

初中数学抛物线压轴题技巧

初中数学抛物线压轴题技巧初中数学抛物线压轴题涉及的知识点主要有二次函数、二次方程、二次不等式等,同时也考察了转化思想和方程思想等。

下面将结合具体题目,给出一些解题技巧和注意事项。

一、审题技巧审题是解题的第一步,也是最关键的一步。

在抛物线压轴题中,审题需要关注以下几个方面:明确题目所给的条件和问题,包括已知抛物线的方程、开口方向、顶点坐标、对称轴等,以及需要解决的问题,如求某一点的坐标、求某个量的值等。

理解抛物线的几何性质,如对称性、开口大小和方向等,这些性质有助于将问题转化为数学表达式。

寻找已知条件和问题之间的联系,通过转化思想和方程思想等,将问题转化为数学表达式,建立数学模型。

二、解题技巧在抛物线压轴题的解题过程中,需要注意以下几点:利用已知条件列方程:根据题目给出的条件,列出关于未知数的方程。

如果涉及到点的坐标,需要将几何问题转化为代数问题。

解方程求出未知数:通过解方程求出未知数的值。

在解方程时,需要注意方程的解的合理性,避免出现不符合实际情况的解。

检验解的正确性:在求出未知数的值之后,需要进行检验,确保所得解是正确的。

可以通过将解代回原方程或利用其他方法检验。

总结答案:在得出解之后,需要将解进行整理和总结,形成完整的答案。

同时需要注意答案的表述方式,尽量使用数学语言进行表述。

三、举例说明例如,已知抛物线y=x 2上有三个点(x 1 ,y 1),(x 2 ,y 2 ),(x 3 ,y 3),且x 1<x 2 <x 3。

若这三个点到直线y=kx+b 的距离分别为d1,d2和d3,则下列关系式一定成立的是( )A.d 1<d 2<d3B.d3<d2<d1C.d1<d3<d2D.d2<d3<d1首先观察题目所给的抛物线方程y=x2,这是一个开口向上的抛物线,其顶点为原点。

接下来我们根据抛物线的性质来分析题目中的选项。

对于选项A:由于抛物线开口向上,当x的值增大时,y 的值也会增大。

中考抛物线题型和解题技巧

中考抛物线题型和解题技巧

中考抛物线题型和解题技巧中考抛物线题型和解题技巧抛物线是数学中常见的一种函数类型,中考中也有不少涉及抛物线的题型,具体有:求轴心,求对称线,求最低点或最高点,求两点连线与抛物线相交等。

下面我们重点来介绍一下中考抛物线题型及相应的解题技巧。

一、求抛物线的轴心题型:已知抛物线C: y2 = 2px (p > 0),求该抛物线的轴心。

解题思路:1、首先根据抛物线的方程,得出x和y的二次项系数都为2p,可以知道抛物线是以直线y = x为对称轴的,即为轴心。

2、也可将抛物线的方程转化为一般式的标准形: y2 = 4px的形式。

令y2 - 4px = 0,可得x = y/2,即可求出轴心为(0, 0)。

二、求抛物线的最低点题型:已知抛物线C: y2 = 4px (p > 0),求该抛物线的最低点。

解题思路:1、首先求出抛物线的轴心,则有x = 0, y = 0;2、根据最低点的性质,抛物线的最低点处,曲线的切线垂直于x轴,则有y2 = 4px,求得y2 = 4p × 0 时,y = 0;3、综上可知,抛物线的最低点为(0, 0)。

三、抛物线两点连线和抛物线的交点题型:已知抛物线C: y2 = 4px (p > 0),若M(2, -2)、N(4, 4)是抛物线的两点,求两点连线与抛物线的交点。

解题思路:1、先求出两点M、N连线的斜率,即斜率k = (4 + 2) / (4 - 2) = 3;2、将两点M、N连线的斜率代入抛物线的一般式中,即 y2 = 4px ,可得 p = 4/3。

3、代入抛物线的一般式: y2 = 4 × 4/3 × x,抛物线的交点就可以求出,即交点为(4/3, 0)。

以上就是中考抛物线题型和解题技巧的详细介绍,希望对大家的学习有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

佳题赏析双抛物线型中考压轴题解法近几年各地中考试题中出现了一类以双抛物线为背景立意的综合性压轴题,它集知识、方法、能力于一体,重在考查考生综合应用数学知识解决问题的能力,具有较强的探索性。

这类试题是中考数学试题的精华部分,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的创新意识和创造能力等特点。

本文选取三道比较典型的中考压轴题予以解析。

一、以横轴为对称轴的双抛物线型压轴题例1、(2006烟台市)如图,已知抛物线L1: y=x2-4的图像与x有交于A、C两点,(1)若抛物线l2与l1关于x轴对称,求l2的解析式;(2)若点B是抛物线l1上的一动点(B不与A、C重合),以AC为对角线,A、B、C三点为顶点的平行四边形的第四个顶点定为D,求证:点D在l2上;(3)探索:当点B分别位于l1在x轴上、下两部分的图像上时,平行四边形ABCD的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它的面积;若不存在,请说明理由。

解:设l2的解析式为y=a(x-h)2+k∵l2与x轴的交点A(-2,0),C(2,0),顶点坐标是(0,-4),l1与l2关于x轴对称,∴l2过A(-2,0),C(2,0),顶点坐标是(0,4)∴y=ax2+4∴0=4a+4 得 a=-1∴l2的解析式为y=-x2+4(2)设B(x1 ,y1)∵点B在l1上∴B(x1 ,x12-4)∵四边形ABCD是平行四边形,A、C关于O对称∴B、D关于O对称∴D(-x1 ,-x12+4).将D(-x1 ,-x12+4)的坐标代入l2:y=-x2+4∴左边=右边∴点D在l2上.(3)设平行四边形ABCD 的面积为S,则S=2*S △ABC =AC*|y 1|=4|y 1|a.当点B 在x 轴上方时,y 1>0∴S=4y 1 ,它是关于y 1的正比例函数且S 随y 1的增大而增大, ∴S 既无最大值也无最小值b.当点B 在x 轴下方时,-4≤y 1<0∴S=-4y 1 ,它是关于y 1的正比例函数且S 随y 1的增大而减小, ∴当y 1 =-4时,S 由最大值16,但他没有最小值 此时B(0,-4)在y 轴上,它的对称点D 也在y 轴上. ∴AC ⊥BD∴平行四边形ABCD 是菱形 此时S 最大=16评析:本题条件简明,有较强的探索性。

第(3)问溶四边形、函数知识于一体,体现了数形结合与分类讨论的思想。

二、以纵轴为对称轴的双抛物线型压轴题例2、(2006十堰市)已知抛物线1C :22y x mx n =-++(m ,n 为常数,且0m ≠,0n >)的顶点为A ,与y 轴交于点C ;抛物线2C 与抛物线1C 关于y 轴对称,其顶点为B ,连接AC ,BC ,AB .注:抛物线()20y ax bx c a =++≠的顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.(1)请在横线上直接写出抛物线2C 的解析式:________________________; (2)当1m =时,判定ABC △的形状,并说明理由;(3)抛物线1C 上是否存在点P ,使得四边形ABCP 为菱形?如果存在,请求出m 的值;如果不存在,请说明理由.26.(1)22y x mx n =--+.(2)当1m =时,ABC △为等腰直角三角形. 理由如下: 如图:点A 与点B 关于y 轴对称,点C 又在y 轴上,AC BC ∴=.过点A 作抛物线1C 的对称轴交x 轴于D ,过点C 作CE AD ⊥于E .∴当1m =时,顶点A 的坐标为()11A n +,,1CE ∴=.又点C 的坐标为()0n ,,11AE n n ∴=+-=.AE CE ∴=.从而45ECA =∠,45ACy ∴=∠.由对称性知45BCy ACy ==∠∠,90ACB ∴=∠.ABC ∴△为等腰直角三角形.(3)假设抛物线1C 上存在点P ,使得四边形ABCP 为菱形,则PC AB BC ==. 由(2)知,AC BC =,AB BC AC ∴==. 从而ABC △为等边三角形30ACy BCy ∴==∠∠.四边形ABCP 为菱形,且点P 在1C 上,∴点P 与点C 关于AD 对称.PC ∴与AD 的交点也为点E ,因此903060ACE =-=∠.点A C ,的坐标分别为()()20A m m n C n +,,,,22AE m n n m CE m ∴=+-==,. 在Rt ACE △中,2tan 60AE m CE m===m ∴=m ∴=.故抛物线1C 上存在点P ,使得四边形ABCP为菱形,此时m =y评析:本题立意新,集计算、推理于一体,体现了对称的思想、方程的思想与数形结合的思想。

三、以原点对称点的双抛物线型压轴题例3、(2006山西省)如图,已知抛物线C 1与坐标轴的交点依次是A (-4,0)、B (-2,0)、E (0,8)。

(1)求抛物线C 1关于原点对称的抛物线C 2的解析式;(2)设抛物线C 1的顶点为M ,抛物线C 2与x 轴分别交于C 、D 两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S 。

若点A 、点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M 、点N 同时以每秒2个单位的速度沿竖直方向分别向下、向上运动,直到点A 与点D 重合为止。

求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由。

解:(1)点A (-4,0),点B (-2,0),点E (0,8)关于原点的对称点分别为D (4,0),C (2,0),F (0,-8)设抛物线C 2的解析式是)0(2≠++=a c bx ax y则⎪⎩⎪⎨⎧-==++=++80240416c c b a c b a 解得⎪⎩⎪⎨⎧-==-=861c b a所以所求抛物线的解析式是862-+-=x x y(2)由(1)可计算得点M (-3,-1),N (3,1)过点N 作NH ⊥AD ,垂足为H 。

当运动到时刻t 地,AD=2OD=8-2t ,NH=1+2t根据中心对称的性质OA=OD ,OM=ON ,所以四边形MDNA 是平行四边形 所以ADN S S ∆=2所以,四边形MDNA 的面积8144)21)(28(2++-=+-=t tt t S因为运动至点A 与点D 重合为止,据题意可知40<≤t 。

所以,所求关系式是81442++-=t t S ,t 的取值范围是40<≤t(3)481474+⎪⎭⎫ ⎝⎛--=t S ,(40<≤t ) 所以47=t 时,S 有最大值481提示:也可用顶点坐标公式来求。

(4)在运动过程中四边形MDNA 能形成矩形。

由(1)知四边形MDNA 是平行四边形,对角线是AD 、MN ,所以当AD=MN 时四边形MDNA 是矩形。

所以OD=ON 。

所以2222NH OH ON OD +==所以0242=-+t t 。

解之得262621--=-=t t ,(舍)。

所以在运动过程中四边形MDNA 可以形成矩形,此时26-=t评析:本题把双抛物线中运动变化的几何图形放到直角坐标中,来解决相关问题,充分体现了函数的思想、方程的思想以及数形结合的思想,颇具探索性。

在以上三道中考压轴题中,数形结合、分类讨论、方程函数的数学思想得到了充分体现,成为支撑综合性试题的核心。

每道试题又都具有很强的探索性,这种探索过程是固本,是求新,是中考数学压轴题的生命力的体现。

解好这类综合题必须具备三种能力:一是语言转换能力:每个数学综合题都是由一些特定的文字语言、符号语言、图形语言所组成。

解综合题往往需要较强的语言转换能力,还需要有把普通语言转换成数学语言的能力。

二是概念转换能力:综合题的转译常常需要较强的数学概念的转换能力。

三是数形转换能力:解题中的数形结合,就是对题目的条件和结论既分析其代数含义又分析其几何意义,力图在代数和几何的结合上找出解题思路。

练习:1.(2008年南昌) 如图,抛物线y 1=-ax 2-ax+1经过点P 19,28⎛⎫- ⎪⎝⎭,且与抛物线y 2=ax 2-ax-1相交于A B ,两点. (1)求a 值;(2)设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点(0)Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C ,D 两点,试问当x为何值时,线段CD 有最大值?其最大值为多少? 解:(1)点1928P ⎛⎫- ⎪⎝⎭,在抛物线211y ax ax =--+上,1191428a a ∴-++=, 解得12a =.(2)由(1)知12a =,∴抛物线2111122y x x =--+,2211122y x x =--.当2111022x x --+=时,解得12x =-,21x =. 点M 在点N 的左边,2M x ∴=-,1N x =. 当2111022x x --=时,解得31x =-,42x =. 点E 在点F 的左边,1E x ∴=-,2F x =.0M F x x +=,0N E x x +=,∴点M 与点F 对称,点N 与点E 对称.(3)102a =>.∴抛物线1y 开口向下,抛物线2y 开口向上.根据题意,得12CD y y =-22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭.A B x x x ≤≤,∴当0x =时,CD 有最大值2.2.(2008年烟台) 如图,抛物线21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点. (1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.佳题赏析 双抛物线型中考压轴题解法一、以横轴为对称轴的双抛物线型压轴题例1、(2006烟台市)如图,已知抛物线L 1: y=x 2-4的图像与x 有交于A 、C 两点, (1)若抛物线l 2与l 1关于x 轴对称,求l 2的解析式; (2)若点B 是抛物线l 1上的一动点(B 不与A 、C 重合),以AC 为对角线,A 、B 、C 三点为顶点的平行四边形的第四个顶点定为D ,求证:点D 在l 2上;(3)探索:当点B 分别位于l 1在x 轴上、下两部分的图像上时,平行四边形ABCD 的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它的面积;若不存在,请说明理由。

相关文档
最新文档