控制系统仿真实验报告1

合集下载

控制系统仿真综合实验报告

控制系统仿真综合实验报告

图 2-1
校正前系统阶跃响应曲线
可以看出原系统的响应速度非常慢, 所以要通过校正来改善系统的动态性能, 可以采用串联超前校正。 原系统为Ⅰ型系统,容易求出系统的速度误差系数为
K lim
s 0
s 400 2 s ( s 30 s 200)
2
根据实验要求速度误差系数为 10 ,那么 KV 10 / 2 5 ,此时系统的开环 传函为: G s
5 400 ,用 MATLAB 计算得相角裕量为 32.6°,由于采 s s 30 s 200

2

用串联超前校正能够增大系统的相角裕量,所以综合考虑,采用串联超前校正。 2. 经过第一步的分析,采用串联校正,可以计算出串联校正装置传递函数为 5 (1 0.12 s ) ,因此校正后的开环传递函数为: 1 0.048s
K Ess Overshoot(%) Ts(s) 5 0.2857 34.6099 4.7766
表1
8 0.20000 43.5125 5.6730
9 0.1818 45.7812 5.5325
12 0.1429 51.6704 5.7655
不同 K 值下系统响应的参数
(四)实验结果与分析 从理论上分析,系统的传递函数为 G s
ulxxlgxx?????????????????????????????????????????????????????????????????4301004300100000000010????uxxxy????????????????????????????????????0001000001???实际系统摆杆转动轴心到杆质心的长度为l025m则系统的状态方程为
(二)实验要求 1. 使用 Matlab 进行仿真; 2. 分析不同 K 值的情况下,系统的单位阶跃响应曲线,并绘图进行比较; 3. 列表对系统响应各性能进行比较,并确定你认为合适的参数值。 (三)实验内容及步骤 1.运行 MATLAB,进行仿真实验。

MATLAB与控制系统仿真实验报告

MATLAB与控制系统仿真实验报告

MATLAB与控制系统仿真实验报告第一篇:MATLAB与控制系统仿真实验报告《MATLAB与控制系统仿真》实验报告2013-2014学年第 1 学期专业:班级:学号:姓名:实验三 MATLAB图形系统一、实验目的:1.掌握绘制二维图形的常用函数。

2.掌握绘制三维图形的常用函数。

3.熟悉利用图形对象进行绘图操作的方法。

4.掌握绘制图形的辅助操作。

二、实验原理:1,二维数据曲线图(1)绘制单根二维曲线plot(x,y);(2)绘制多根二维曲线plot(x,y)当x是向量,y是有一维与x同维的矩阵时,则绘制多根不同颜色的曲线。

当x,y是同维矩阵时,则以x,y对应列元素为横、纵坐标分别绘制曲线,曲线条数等于矩阵的列数。

(3)含有多个输入参数的plot函数plot(x1,y1,x2,y2,…,xn,yn)(4)具有两个纵坐标标度的图形plotyy(x1,y1,x2,y2)2,图形标注与坐标控制1)title(图形名称);2)xlabel(x轴说明)3)ylabel(y轴说明)4)text(x,y图形说明)5)legend(图例1,图例2,…)6)axis([xmin xmax ymin ymax zmin zmax])3, 图形窗口的分割 subplot(m,n,p)4,三维曲线plot3(x1,y1,z1,选项1,x2,y2,选项2,…,xn,yn,zn,选项n)5,三维曲面mesh(x,y,z,c)与surf(x,y,z,c)。

一般情况下,x,y,z是维数相同的矩阵。

X,y是网格坐标矩阵,z是网格点上的高度矩阵,c用于指定在不同高度下的颜色范围。

6,图像处理1)imread和imwrite函数这两个函数分别用于将图象文件读入matlab工作空间,以及将图象数据和色图数据一起写入一定格式的图象文件。

2)image和imagesc函数这两个函数用于图象显示。

为了保证图象的显示效果,一般还应使用colormap函数设置图象色图。

控制系统数字仿真实验报告

控制系统数字仿真实验报告
1.脚本m文件vdp.m
function dy = vdp(t,y)
dy=[y-2*t/y];
end
2.脚本m文件ode.m
[t,y]=ode45('vdp',[0 1],1);
plot(t,y);
xlabel('t');
ylabel('y');
3.运行
(二)试用四阶RK法编程求解下列微分方程初值问题。仿真时间2s,取步长h=0.1。
type=i;
[sysc,Kp,Ti,Td]=pidmargin(sys,type);
sysopen=sysc*sys;
sysclose=feedback(sysopen,1);
sysgroup=append(sysgroup,sysclose);
end
clf
for i=1:4
subplot(2,2,i)
Ti=0.5*Tcr
Td=0.12*Tcr
sysc=Kp*(1+tf(1,[Ti,0])+tf([Td 0],1));
end
end
编写脚本m文件:
clf
sys=tf([500 5000],[1 33 337 1775 4950 5000]);
sysgroup=feedback(sys,1);
for i=1:3
实验三PID控制器设计
一、实验目的
1.了解PID控制原理,掌握相应PID控制器设计仿真程序的应用;
2.掌握计算机辅助系统瞬态性能指标的计算;
3.掌握计算机辅助系统频率性能分析;
二、实验环境
网络计算机系统,MATLAB语言环境
三、实验内容
1.已知如图所示单位反馈系统

自控仿真实验报告

自控仿真实验报告

一、实验目的1. 熟悉MATLAB/Simulink仿真软件的基本操作。

2. 学习控制系统模型的建立与仿真方法。

3. 通过仿真分析,验证理论知识,加深对自动控制原理的理解。

4. 掌握控制系统性能指标的计算方法。

二、实验内容本次实验主要分为两个部分:线性连续控制系统仿真和非线性环节控制系统仿真。

1. 线性连续控制系统仿真(1)系统模型建立根据题目要求,我们建立了两个线性连续控制系统的模型。

第一个系统为典型的二阶系统,其开环传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)} \]第二个系统为具有迟滞环节的系统,其开环传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)(s+3)} \](2)仿真与分析(a)阶跃响应仿真我们对两个系统分别进行了阶跃响应仿真,并记录了仿真结果。

(b)频率响应仿真我们对两个系统分别进行了频率响应仿真,并记录了仿真结果。

(3)性能指标计算根据仿真结果,我们计算了两个系统的性能指标,包括上升时间、超调量、调节时间等。

2. 非线性环节控制系统仿真(1)系统模型建立根据题目要求,我们建立了一个具有饱和死区特性的非线性环节控制系统模型。

其传递函数为:\[ W_k(s) = \begin{cases}1 & |s| < 1 \\0 & |s| \geq 1\end{cases} \](2)仿真与分析(a)阶跃响应仿真我们对非线性环节控制系统进行了阶跃响应仿真,并记录了仿真结果。

(b)相轨迹曲线绘制根据仿真结果,我们绘制了四条相轨迹曲线,以分析非线性环节对系统性能的影响。

三、实验结果与分析1. 线性连续控制系统仿真(a)阶跃响应仿真结果表明,两个系统的性能指标均满足设计要求。

(b)频率响应仿真结果表明,两个系统的幅频特性和相频特性均符合预期。

2. 非线性环节控制系统仿真(a)阶跃响应仿真结果表明,非线性环节对系统的性能产生了一定的影响,导致系统响应时间延长。

控制系统仿真实验报告一

控制系统仿真实验报告一
实验一实验一实验一实验一经典的连续系统仿真建模方法经典的连续系统仿真建模方法经典的连续系统仿真建模方法经典的连续系统仿真建模方法一非线性模型仿真一非线性模型仿真一非线性模型仿真一非线性模型仿真编写四阶编写四阶编写四阶rungekuttarungekuttarungekutta公式的计算程序对非线性模型公式的计算程序对非线性模型公式的计算程序对非线性模型33式进行仿真
end
figure(1)
plot([0:hStep:nCounter*hStep]',Hlevel)
Grid
2、函数文件
functionNewX=my_wsh(h,t0,x0,u0)
K1=l_2(t0,x0,u0);
K2=l_2(t0+h/2,x0+h*K1/2,u0);
K3=l_2(t0+h/2,x0+h*K2/2,u0);
U=0.55,h=30 U=0.55,h=40
U=0.55,h=41 U=0.55,h=42
U=0.55,h=45 U=0.55,h=48
结论:由图可知,当h大于41时RK4变得不稳定
(3)ode45脚本文件
clc
clear
close
[t,H]=ode45('ode4_5',[1 200],[1.2 1.1]);
function[dh]=l_2(t,x,u)
A=2;
ku=0.1/0.5;
alpha12 = 0.25/sqrt(1.5);
alpha2 = 0.25/sqrt(1.4);
dh(1)=(ku*(u(1))-x(1,1)/(2*sqrt(1.5)/alpha12)+u(2))/A;
dh(2)=(x(1,1)/(2*sqrt(1.5)/alpha12)-x(1,2)/(2*sqrt(1.4)/alpha2))/A;

控制系统仿真实验报告1

控制系统仿真实验报告1

昆明理工大学电力工程学院学生实验报告实验课程名称:控制系统仿真实验开课实验室:年月日实验一 电路的建模与仿真一、实验目的1、了解KCL 、KVL 原理;2、掌握建立矩阵并编写M 文件;3、调试M 文件,验证KCL 、KVL ;4、掌握用simulink 模块搭建电路并且进行仿真。

二、实验内容电路如图1所示,该电路是一个分压电路,已知13R =Ω,27R =Ω,20S V V =。

试求恒压源的电流I 和电压1V 、2V 。

IVSV 1V 2图1三、列写电路方程(1)用欧姆定律求出电流和电压 (2)通过KCL 和KVL 求解电流和电压四、编写M文件进行电路求解(1)M文件源程序(2)M文件求解结果五、用simulink进行仿真建模(1)给出simulink下的电路建模图(2)给出simulink仿真的波形和数值六、结果比较与分析实验二数值算法编程实现一、实验目的掌握各种计算方法的基本原理,在计算机上利用MATLAB完成算法程序的编写拉格朗日插值算法程序,利用编写的算法程序进行实例的运算。

二、实验说明1.给出拉格朗日插值法计算数据表;2.利用拉格朗日插值公式,编写编程算法流程,画出程序框图,作为下述编程的依据;3.根据MATLAB软件特点和算法流程框图,利用MATLAB软件进行上机编程;4.调试和完善MATLAB程序;5.由编写的程序根据实验要求得到实验计算的结果。

三、实验原始数据上机编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,在整个插值区间上采用拉格朗日插值法计算(0.6)f,写出程序源代码,输出计算结果:四、拉格朗日插值算法公式及流程框图五、程序代码六、计算结果f=(0.6)实验三 动态电路的建模及仿真一、实验目的1.了解动态电路的理论,掌握动态电路建模的基本原理; 2.熟悉MATLAB 的Simulink 模块,并掌握使用模块搭建过程。

二、实验说明电力系统是一个大规模、时变的复杂系统,主要由发电、变电、输电、配电和用电等环节组成,在国民经济中占有非常重要的作用。

《MATLAB与控制系统仿真》实验报告

《MATLAB与控制系统仿真》实验报告

《MATLAB与控制系统仿真》实验报告一、实验目的本实验旨在通过MATLAB软件进行控制系统的仿真,并通过仿真结果分析控制系统的性能。

二、实验器材1.计算机2.MATLAB软件三、实验内容1.搭建控制系统模型在MATLAB软件中,通过使用控制系统工具箱,我们可以搭建不同类型的控制系统模型。

本实验中我们选择了一个简单的比例控制系统模型。

2.设定输入信号我们需要为控制系统提供输入信号进行仿真。

在MATLAB中,我们可以使用信号工具箱来产生不同类型的信号。

本实验中,我们选择了一个阶跃信号作为输入信号。

3.运行仿真通过设置模型参数、输入信号以及仿真时间等相关参数后,我们可以运行仿真。

MATLAB会根据系统模型和输入信号产生输出信号,并显示在仿真界面上。

4.分析控制系统性能根据仿真结果,我们可以对控制系统的性能进行分析。

常见的性能指标包括系统的稳态误差、超调量、响应时间等。

四、实验步骤1. 打开MATLAB软件,并在命令窗口中输入“controlSystemDesigner”命令,打开控制系统工具箱。

2.在控制系统工具箱中选择比例控制器模型,并设置相应的增益参数。

3.在信号工具箱中选择阶跃信号,并设置相应的幅值和起始时间。

4.在仿真界面中设置仿真时间,并点击运行按钮,开始仿真。

5.根据仿真结果,分析控制系统的性能指标,并记录下相应的数值,并根据数值进行分析和讨论。

五、实验结果与分析根据运行仿真获得的结果,我们可以得到控制系统的输出信号曲线。

通过观察输出信号的稳态值、超调量、响应时间等性能指标,我们可以对控制系统的性能进行分析和评价。

六、实验总结通过本次实验,我们学习了如何使用MATLAB软件进行控制系统仿真,并提取控制系统的性能指标。

通过实验,我们可以更加直观地理解控制系统的工作原理,为控制系统设计和分析提供了重要的工具和思路。

七、实验心得通过本次实验,我深刻理解了控制系统仿真的重要性和必要性。

MATLAB软件提供了强大的仿真工具和功能,能够帮助我们更好地理解和分析控制系统的性能。

控制系统仿真实验报告书

控制系统仿真实验报告书

一、实验目的1. 掌握控制系统仿真的基本原理和方法;2. 熟练运用MATLAB/Simulink软件进行控制系统建模与仿真;3. 分析控制系统性能,优化控制策略。

二、实验内容1. 建立控制系统模型2. 进行仿真实验3. 分析仿真结果4. 优化控制策略三、实验环境1. 操作系统:Windows 102. 软件环境:MATLAB R2020a、Simulink3. 硬件环境:个人电脑一台四、实验过程1. 建立控制系统模型以一个典型的PID控制系统为例,建立其Simulink模型。

首先,创建一个新的Simulink模型,然后添加以下模块:(1)输入模块:添加一个阶跃信号源,表示系统的输入信号;(2)被控对象:添加一个传递函数模块,表示系统的被控对象;(3)控制器:添加一个PID控制器模块,表示系统的控制器;(4)输出模块:添加一个示波器模块,用于观察系统的输出信号。

2. 进行仿真实验(1)设置仿真参数:在仿真参数设置对话框中,设置仿真时间、步长等参数;(2)运行仿真:点击“开始仿真”按钮,运行仿真实验;(3)观察仿真结果:在示波器模块中,观察系统的输出信号,分析系统性能。

3. 分析仿真结果根据仿真结果,分析以下内容:(1)系统稳定性:通过观察系统的输出信号,判断系统是否稳定;(2)响应速度:分析系统对输入信号的响应速度,评估系统的快速性;(3)超调量:分析系统超调量,评估系统的平稳性;(4)调节时间:分析系统调节时间,评估系统的动态性能。

4. 优化控制策略根据仿真结果,对PID控制器的参数进行调整,以优化系统性能。

调整方法如下:(1)调整比例系数Kp:增大Kp,提高系统的快速性,但可能导致超调量增大;(2)调整积分系数Ki:增大Ki,提高系统的平稳性,但可能导致调节时间延长;(3)调整微分系数Kd:增大Kd,提高系统的快速性,但可能导致系统稳定性下降。

五、实验结果与分析1. 系统稳定性:经过仿真实验,发现该PID控制系统在调整参数后,具有良好的稳定性。

控制系统仿真实验报告(20200717013819)

控制系统仿真实验报告(20200717013819)

控制系统仿真实验报告班级:测控 1402 班姓名:王玮学号: 14050402072018 年 01 月实验一经典的连续系统仿真建模方法一实验目的 :1了解和掌握利用仿真技术对控制系统进行分析的原理和步骤。

2掌握机理分析建模方法。

3深入理解阶常微分方程组数值积分解法的原理和程序结构,学习用Matlab 编写数值积分法仿真程序。

4掌握和理解四阶 Runge-Kutta法,加深理解仿真步长与算法稳定性的关系。

二实验内容 :1.编写四阶 Runge_Kutta 公式的计算程序,对非线性模型(3)式进行仿真。

(1)将阀位u增大 10%和减小 10%,观察响应曲线的形状;(2)研究仿真步长对稳定性的影响,仿真步长取多大时RK4 算法变得不稳定?(3)利用 MATLAB 中的 ode45() 函数进行求解,比较与(1)中的仿真结果有何区别。

2.编写四阶 Runge_Kutta 公式的计算程序,对线性状态方程(18)式进行仿真(1)将阀位增大 10%和减小 10%,观察响应曲线的形状;(2)研究仿真步长对稳定性的影响,仿真步长取多大时RK4 算法变得不稳定?(4)阀位增大 10%和减小 10%,利用 MATLAB中的 ode45() 函数进行求解阶跃响应,比较与( 1)中的仿真结果有何区别。

三程序代码 :龙格库塔 :%RK4文件clccloseH=[1.2,1.4]';u=0.55; h=1;TT=[];XX=[];for i=1:h:200k1=f(H,u);k2=f(H+h*k1/2,u);k3=f(H+h*k2/2,u);k4=f(H+h*k3,u);H=H+h*(k1+2*k2+2*k3+k4)/6;TT=[TT i];XX=[XX H];end;hold onplot(TT,XX(1,:),'--',TT,XX(2,:));xlabel('time')ylabel('H')gtext('H1')gtext('H2')hold on水箱模型 :function dH=f(H,u)k=0.2;u=0.5;Qd=0.15;A=2;a1=0.20412;a2=0.21129;dH=zeros(2,1);dH(1)=1/A*(k*u+Qd-a1*sqrt(H(1)));dH(2)=1/A*(a1*sqrt(H(1))-a2*sqrt(H(2)));2 编写四阶Runge_Kutta公式的计算程序,对线性状态方程(18)式进行仿真:1阀值 u 对仿真结果的影响U=0.45;h=1;U=0.5;h=1;U=0.55;h=1;2 步长 h 对仿真结果的影响:U=0.5;h=5;U=0.5;h=20;U=0.5;h=39U=0.5;h=50由以上结果知 , 仿真步长越大 , 仿真结果越不稳定。

控制系统仿真实验报告

控制系统仿真实验报告

控制系统仿真实验报告——一、实验目的:进一步掌握数值积分法;进一步掌握MA TLAB 软件的使用方法。

二、实验设备:数字计算机,MA TLAB 软件三、实验预备:(1)将传递函数化为一阶微分方程组(即状态方程);令1y y = ,2y y = ,则11222140.6()102722.06y y y y y x t y y y=⎧⎪=⎨⎪=---⎩ 写作矩阵形式:11220100001022.06271040.6y y y y y y ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦ (2)分别写出四种方法的计算公式;令12y Y y y ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 01000122.062710A ⎡⎤⎢⎥=⎢⎥⎢⎥---⎣⎦ ,0040.6C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ , 则可化为Y AY C =+① 欧拉法:Y(i+1)=Y(i)+(A*Y(i)+C)*h; ② 改进欧拉法:Yp=Y(i)+(A*Y(i)+C)*hY(i+1)=Y(i)+(A*Y(i)+C+A*Yp+C)*h/2;③ 四阶经典龙格库塔法:k1=A*Y(i)+C;k2=A*(Y(i)+k1*h/5)+C; k3=A*(Y(i)+2*k1*h/5)+C;k4=A*(Y(i)-2*k1*h/5+k2*h)+C;k5=A*(Y(i)+0.3*k1*h+0.5*k4*h)+C;Y(i+1)=Y(i)+(-k1+15*k2-5*k3+5*k4+10*k5)*h/24;④ 四阶亚当姆斯预估校正法:Yp=Y(i)+(55*(A*Y(i)+C)-59*(A*Y(i-1)+C)+37*(A*Y(i-2)+C)-9*(A*Y(i-3)+C))*h/24;Y(i+1)=Y(i)+(9*(A*Yp+C)+19*(A*Y(i)+C)-5*(A*Y(i-1)+C)+(A*Y(i-2)+C))*h/24;(3)理论分析:计算系统特征值。

控制系统仿真实验报告

控制系统仿真实验报告

控制系统仿真实验报告班级:测控1402班姓名:王玮学号:072018年01月实验一经典的连续系统仿真建模方法一实验目的:1 了解和掌握利用仿真技术对控制系统进行分析的原理和步骤。

2 掌握机理分析建模方法。

3 深入理解阶常微分方程组数值积分解法的原理和程序结构,学习用Matlab编写数值积分法仿真程序。

4 掌握和理解四阶Runge-Kutta法,加深理解仿真步长与算法稳定性的关系。

二实验内容:1. 编写四阶 Runge_Kutta 公式的计算程序,对非线性模型(3)式进行仿真。

(1)将阀位u 增大10%和减小10%,观察响应曲线的形状;(2)研究仿真步长对稳定性的影响,仿真步长取多大时RK4 算法变得不稳定(3)利用 MATLAB 中的ode45()函数进行求解,比较与(1)中的仿真结果有何区别。

2. 编写四阶 Runge_Kutta 公式的计算程序,对线性状态方程(18)式进行仿真(1)将阀位增大10%和减小10%,观察响应曲线的形状;(2)研究仿真步长对稳定性的影响,仿真步长取多大时RK4 算法变得不稳定(4)阀位增大10%和减小10%,利用MATLAB 中的ode45()函数进行求解阶跃响应,比较与(1)中的仿真结果有何区别。

三程序代码:龙格库塔:%RK4文件clccloseH=[,]';u=; h=1;TT=[];XX=[];for i=1:h:200k1=f(H,u);k2=f(H+h*k1/2,u);k3=f(H+h*k2/2,u);k4=f(H+h*k3,u);H=H+h*(k1+2*k2+2*k3+k4)/6;TT=[TT i];XX=[XX H];end;hold onplot(TT,XX(1,:),'--',TT,XX(2,:)); xlabel('time')ylabel('H')gtext('H1')gtext('H2')hold on水箱模型:function dH=f(H,u)k=;u=;Qd=;A=2;a1=;a2=;dH=zeros(2,1);dH(1)=1/A*(k*u+Qd-a1*sqrt(H(1)));dH(2)=1/A*(a1*sqrt(H(1))-a2*sqrt(H(2)));2编写四阶 Runge_Kutta 公式的计算程序,对线性状态方程(18)式进行仿真:1 阀值u对仿真结果的影响U=;h=1; U=;h=1;U=;h=1;2 步长h对仿真结果的影响:U=;h=5; U=;h=20;U=;h=39 U=;h=50由以上结果知,仿真步长越大,仿真结果越不稳定。

实验一控制系统典型环节的模拟

实验一控制系统典型环节的模拟

实验一 控制系统典型环节的模拟1.实验目的1) 掌握常用控制系统典型环节的电子电路实现方法。

2) 测试典型环节的阶跃响应曲线。

3) 了解典型环节中参数变化对输出动态性能的影响。

2.实验仪器1) TKKL —1实验箱一台 2) 超低频示波器一台,万用表 3) MATLAB 软件,计算机。

3.实验原理控制系统的典型环节数学模型如表1-1所示。

表1-1:典型环节的方块图及传递函数 典型环节名称 方 块 图传递函数 比例 (P )K )s (U )s (Uo i = 积分 (I )TS1)s (U )s (Uo i =比例积分 (PI )TS1K )s (U )s (Uo i += 比例微分 (PD ))TS 1(K )s (U )s (Uo i += 惯性环节 (T )1TS K)s (U )s (Uo i +=比例积分 微分(PID )S T ST 1Kp )s (U )s (Uo d i i ++=以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图1-1所示。

图中Z1和Z2为复数阻抗,它们都是由R 、C 构成。

基于图中A 点的电位为虚地,略去流入运放的电流,则由图1-1得:图1-1 运放的反馈连接121)(Z Zu u s G o -=-=(1) 由上式可求得由下列模拟电路组成典型环节的传递函数及单位阶跃响应。

以下省略反相放大中的“-”号。

(1) 比例环节21/)(R R s G =图1-2 比例环节记录实验所用元件参数、绘制单位阶跃响应曲线(至少记录两组),并进行分析。

(a) .,21Ω=Ω=R R(b) .,21Ω=Ω=R R (2) 惯性环节 1111//)(2121212+=+⋅===Ts K Cs R R R R Cs R Z Z s G (2) 式中 122/,R R K C R T ==。

图1-3 惯性环节记录实验所用元件参数、绘制阶跃响应曲线(至少记录两组),并进行分析。

控制系统仿真实验报告

控制系统仿真实验报告

控制系统仿真实验报告姓名:王天雷班级:231142学号:20131004363学院:自动化专业:自动化指导老师:刘峰2017 年 1 月目录7.2.2 (1)7.2.3 (7)7.2.4 (12)7.2.5 (17)7.2.6 (21)7.3.1 (24)总结 (25)7.2.2 控制系统的阶跃响应实验目的:观察学习控制系统的单位阶跃响应 记录单位阶跃响应曲线掌握时间响应分析的一般方法实验内容: 1. 二阶系统1)键入程序,观察并记录单位阶跃响应曲线 First.m close all; clear all; clc;num=[10];den=[1 2 10]; step(num,den); title(‘阶跃响应曲线’);2)键入damp(den) 计算系统的闭环根、阻尼比、无阻尼振荡频率,并记录结果:Eigenvalue (闭环根) Damping (阻尼比) Freq. (rad/s)(无阻尼振荡频率)()102102++=s s sG-1.00e+000 + 3.00e+000i 3.16e-001 3.16e+000 -1.00e+000 - 3.00e+000i 3.16e-001 3.16e+0003)记录实际测取的峰值大小、峰值时间及过渡过程时间,并填表:由理论知识知编写代码x.m%返回峰值时间,超调量,调节时间5%,2% function [tr b ts1 ts2]=x(a,wn) wd=wn*(1-a^2)^0.5;%求解wd tp=3.14/wd;%峰值时间b=exp((-3.14*a/(1-a^2)^0.5));%超调量 ts1=3.5/(wn*a),ts2=4.5/(wn*a);%调节时间 计算得到理论值,填入表中3//πωπ==d p t 4.52%(00.9)3.55%n s n t ζωζζω⎧∆=⎪⎪=<<⎨⎪∆=⎪⎩2 1)修改参数,分别实现和的响应曲线,并记录 程序:second.m clear all; close all; clc;n0=10;d0=[1 2 10];step(n0,d0);%原系统,kesai=0.36 hold on;%保持原曲线n1=n0;d1=[1 6.32 10];step(n1,d1);%kesai=1; n2=n0;d2=[1 12.64 10];step(n2,d2);%kesai=2;如图,kesai 分别为0.36,1,2,曲线幅度递减2)修改参数,分别写出程序实现和的响应曲线,并记录程序:third.m clear all; close all; clc;n0=10;d0=[1 2 10];step(n0,d0);%原系统,wn0=10^0.5 hold on;%保持原曲线n1=0.25*n0;d1=[1 1 n1];step(n1,d1);%wn1=0.5*wn0; n2=4*n0;d2=[1 4 n2];step(n2,d2);%wn2=4*wn0=2;1=ζ2=ζ0121w w n =022w w n =如图,wn=2*wn0,wn0,0.5*wn0,上升时间逐渐增长,超调量不变3. 作出以下系统的阶跃响应,并与原系统响应曲线进行比较,作出相应的实验分析结果(1),有系统零点的情况(2),分子、分母多项式阶数相等(3),分子多项式零次项为零(4),原响应的微分,微分系数为1/10程序:%各系统阶跃响应曲线比较G0=tf([10],[1 2 10]);G1=tf([2 10],[1 2 10]);G2=tf([1 0.5 10],[1 2 10]); G3=tf([1 0.5 0],[1 2 10]);G4=tf([1 0 ],[1 2 10]); step(G0,G1,G2,G3,G4); grid on;title(' Step Response 曲线比较');()10210221+++=s s s s G ()102105.0222++++=s s s s s G ()1025.0222+++=s s s s s G ()10222++=s s s s G4.试做一个三阶系统和四阶系统的阶跃响应,并分析实验结果 假设一个三阶和一个四阶系统,如下sys1=tf([1],[1 1 1 1]);sys2=tf([1],[1 1 1 1 1]);step(sys1,sys2);如图,分别为sys1,sys2系统阶跃响应曲线分析1:系统阻尼比和无阻尼振荡频率对系统阶跃相应的影响11123+++=s s s sys 112234++++=s s s ssys解:在欠阻尼响应曲线中,阻尼比越小,超调量越大,上升时间越短,通常取kesai在0.4到0.8之间,此时超调量适度,调节时间较短;若二阶系统的阻尼比不变,振荡频率不同,其阶跃响应的振荡特性相同但响应速度不同,wn越大,响应速度越快。

PID实验报告(实验一)

PID实验报告(实验一)

实验一: 使用simulink对给定对象进行控制仿真一:原理说明:一般说, 增加控制系统比例增益, 可以提高系统的响应速度, 同时也会降低稳态误差。

尽管如此, 如果比例增益太大, 系统超调就会增大, 如果Kp再进一步增加, 震荡就会加大, 系统就会变得不稳定。

图a实验原理图如下图(a)所示, 其中原理图中给定的黄色的输入信号的理想的输入稳定值是1(如图(b)中的箭头所示), 而根据误差中值定理算得它的实际的稳定值是0.6。

通过尝试使用不同的Kp值, 观察Kp的设定对系统动态过程的影响如下图(b)、 (c) 、(d) 、(e)所示。

当: A.要求系统的静差为给定值的40%时, 计算为: (1 -0.6)/1*100%=40%), 系统的静差为给定值的40%的图像如左图(d)所示;B.系统要求它的超调量小于或者等于40%的条件下, 使得系统的上升时间尽量减少, 计算过程为: (1.4-1)/1*100%=40%),系统要求超调量小于或者40%的条件下, 使得系统的上升时间尽量减少的图像如左图(e)所示。

一: 当给定KP 分别为 0.8、2.4、3.5 :Kp 的设定对系统动态过程的影响图像如左图(b )所示:1_1: 当调节KP 分别为1.3.5:Kp 的设定对系统动态过程的影响图像如左图(c )所示:1_2: 当调节KP 分别为 1.5.3.5 : 图(b )图(c )系统的静差为给定值40%(注: (1-0.6)/1*100%=40%)的图像如左图(d)所示:图(d)对于单位负反馈, 静差E(S)=R(S)-C(S), 其中输入信号为1(t)根据终值定理可知当KP取1.5时, 系统的静差刚好为给定值的40%。

1_3: 当调节KP分别为7、3.5:➢系统要超调量小于或40%((1.4-1)/1*100%=40%)条件下, 使系统上升时间尽量减少如图(e)所示:➢总结: 联系上图(b)、(c)、(d)、(e)可知, KP由0.8一直增大到7可以看出, 增大比例系数KP可以加快系统的响应, 在有静差的时候有助于减小静差。

控制系统仿真实验报告

控制系统仿真实验报告

控制系统仿真实验报告一、实验目的本次控制系统仿真实验的主要目的是通过使用仿真软件对控制系统进行建模、分析和设计,深入理解控制系统的工作原理和性能特点,掌握控制系统的分析和设计方法,提高解决实际控制问题的能力。

二、实验设备与软件1、计算机一台2、 MATLAB 仿真软件三、实验原理控制系统是由控制对象、控制器和反馈环节组成的一个闭环系统。

其工作原理是通过传感器测量控制对象的输出,将其与期望的输出进行比较,得到误差信号,控制器根据误差信号产生控制信号,驱动控制对象,使系统的输出逐渐接近期望的输出。

在仿真实验中,我们使用数学模型来描述控制对象和控制器的动态特性。

常见的数学模型包括传递函数、状态空间方程等。

通过对这些数学模型进行数值求解,可以得到系统的输出响应,从而对系统的性能进行分析和评估。

四、实验内容1、一阶系统的仿真建立一阶系统的数学模型,如一阶惯性环节。

使用 MATLAB 绘制系统的单位阶跃响应曲线,分析系统的响应时间和稳态误差。

2、二阶系统的仿真建立二阶系统的数学模型,如典型的二阶振荡环节。

改变系统的阻尼比和自然频率,观察系统的阶跃响应曲线,分析系统的稳定性、超调量和调节时间。

3、控制器的设计与仿真设计比例控制器(P 控制器)、比例积分控制器(PI 控制器)和比例积分微分控制器(PID 控制器)。

对给定的控制系统,分别使用不同的控制器进行仿真,比较系统的性能指标,如稳态误差、响应速度等。

4、复杂控制系统的仿真建立包含多个环节的复杂控制系统模型,如串级控制系统、前馈控制系统等。

分析系统在不同输入信号下的响应,评估系统的控制效果。

五、实验步骤1、打开 MATLAB 软件,新建脚本文件。

2、根据实验内容,定义系统的数学模型和参数。

3、使用 MATLAB 中的函数,如 step()函数绘制系统的阶跃响应曲线。

4、对响应曲线进行分析,计算系统的性能指标,如超调量、调节时间、稳态误差等。

5、设计控制器,修改系统模型,重新进行仿真,比较系统性能的改善情况。

控制系统仿真实验报告

控制系统仿真实验报告

控制系统仿真实验报告控制系统仿真实验报告引言控制系统是现代科学技术中的重要组成部分,广泛应用于工业生产、交通运输、航空航天等领域。

为了验证和优化控制系统的设计方案,仿真实验成为一种重要的手段。

本篇文章将对控制系统仿真实验进行详细的报告和分析。

一、实验目的本次控制系统仿真实验旨在通过模拟真实的控制系统运行环境,验证控制系统的性能和稳定性。

具体目标包括:1. 验证控制系统的闭环性能,包括稳定性、响应速度和误差补偿能力。

2. 评估不同控制策略在系统性能上的差异,比较PID控制、模糊控制等算法的效果。

3. 优化控制系统的设计方案,提高系统的控制精度和鲁棒性。

二、实验装置和方法本次实验采用MATLAB/Simulink软件进行仿真。

通过搭建控制系统的数学模型,并设置不同的控制参数和输入信号,模拟真实的控制环境。

具体步骤如下:1. 建立控制系统的数学模型,包括被控对象、传感器、执行器等部分。

2. 设计不同的控制策略,如PID控制器、模糊控制器等,并设置相应的参数。

3. 设置输入信号,模拟系统的工作条件和外部干扰。

4. 运行仿真实验,记录系统的输出响应、误差曲线和稳定性指标。

5. 分析实验结果,对比不同控制策略的性能差异,优化控制系统的设计方案。

三、实验结果与分析通过多次仿真实验,我们得到了一系列实验结果,并进行了详细的分析。

以下是其中的一些重要发现:1. PID控制器在大部分情况下表现出良好的控制性能,能够实现较快的响应速度和较小的稳态误差。

然而,在某些复杂系统中,PID控制器可能存在过调和震荡的问题。

2. 模糊控制器在处理非线性系统时表现出较好的鲁棒性,能够适应不同工况下的控制要求。

但是,模糊控制器的设计和参数调整相对复杂,需要较多的经验和专业知识。

3. 对于一些特殊的控制系统,如高阶系统和时变系统,需要采用更为复杂的控制策略,如自适应控制、鲁棒控制等。

这些策略能够提高系统的鲁棒性和适应性,但也增加了控制系统的设计和调试难度。

控制系统仿真实验报告

控制系统仿真实验报告

哈我滨理工大教之阳早格格创做真验报告统造系统仿真博业:自动化12-1教号: 1230130101姓名:一.分解系统本能一.真验手段及真量:1. 认识MATLAB硬件的支配历程;2. 认识关环系统宁静性的推断要领;3. 认识关环系统阶跃赞同本能指目标供与.二.真验用设备仪器及资料:PC, Matlab 硬件仄台三、真验步调1. 编写MATLAB步调代码;2. 正在MATLAT中输进步调代码,运止步调;3.分解截止.四.真验截止分解:得到阶跃赞同直线得到赞同指标截图如下得到整极面分散图根据宁静的充分需要条件判别线性系统的宁静性最简朴的要领是供出系统所有极面,并瞅察是可含有真部大于0的极面,如果有系统没有宁静.有整极面分散图可知系统宁静.二.单容历程的阶跃赞同一、真验手段1. 认识MATLAB 硬件的支配历程2. 相识自衡单容历程的阶跃赞同历程3. 得出自衡单容历程的单位阶跃赞同直线 二、真验真量已知二个单容历程的模型分别为1()0.5G s s =战51()51s G s e s -=+,试正在Simulink 中修坐模型,并供单位阶跃赞同直线. 三、真验步调1. 正在Simulink 中修坐模型,得出真验本理图.2. 运止模型后,单打Scope ,得到的单位阶跃赞同直线. 四、真验截止1.修坐系统Simulink 仿真模型图,其仿真模型为 2.历程阶跃赞同直线为三.单容历程的阶跃赞同一、真验手段1. 相识比率积分安排的效率;2. 相识积分安排强强对于系统本能的效率.二、真验真量已知统造系统如下图所示,其中01()(1)(21)(51)G s s s s =+++,H(s)为单位反馈,且正在第二个战第三个关节(即1(21)s +战1(51)s +)之间有乏加的扰动输进(正在5秒时幅值为0.2的阶跃扰动).对于系统采与比率积分统造,比率系数为2p K =,积分时间常数分别与3,6,12i T =,试利用Simulink 供各参数下系统的单位阶跃赞同直线战扰动赞同直线. 三、真验步调1. 正在Simulink 中修坐仿真模型,其模型为2. 运止模型后,单打Scope ,得到的单位阶跃赞同直线为3.置阶跃输进为0,正在5秒时,加进幅值为0.2的阶跃扰动,得到扰动赞同直线为四.PID 统造器参数整定一、真验手段1. 通过真验进一步认识历程统造系统的结构组成;2. 掌握简朴统造系统的投运战参数整定的要领;3. 定性天分解P 、PI 、PID 统造顺序对于系统本能的效率. 二、真验真量已知统造系统如下图所示,其中01()(1)(5)G s s s s =++,试采与临界比率度法估计系统P、PI、PID统造器的参数,并画造整定后系统的单位阶跃赞同直线.三、真验步调1. 正在Simulink中修坐仿真模型2. 正在Simulink中把反馈连线、微分器的输出连线、积分器的输出连线皆断启,Kp的值从大到小举止考查,直到输出等幅振荡直线为止,记下此时的Kp战Tk.通过考查得到Kp为30时输出等幅震荡直线3.根据临界振荡体味公式估计P统造时的比率搁大系数Kp,并将模型中Kp置为该值,仿真运止.运止完成后单打Scope,得到P统造时系统的单位阶跃赞同直线.4. 根据临界振荡体味公式估计PI统造时的比率搁大系数Kp 战积分时间常数Ti,并将模型中比率战积分器参数置为估计所得值,将积分器的输出连线连上,仿真运止,运止完成后单打Scope,得到PI统造时系统的单位阶跃赞同直线.表4-1临界比率度法整定体味公式5. 根据临界振荡体味公式估计PID统造时的比率搁大系数Kp,积分时间常数Ti,微分时间常数Td,并将模型中比率系数,积分器及微分器参数置为相映估计所得值,将微分器的输出连线连上,仿真运止,运止完成后单打Scope,得到PID统造时系统的单位阶跃赞同直线.四、真验截止1.参数整定截止为表4-2各统造顺序下参数整定截止赞同直线为五.串级统造系统一、真验手段1. 通过真验进一步认识串级统造系统的结构组成;2. 相识串级统造系统的效率效验. 二、真验真量串级与单回路统造对于比仿真,分别获与系统的阶跃赞同输出,一次扰动效率下的系统输出赞同,二次扰动效率下的系统输出赞同.系统输进及一次扰动战二次扰动均与阶跃旗号.对于比仿真截止分解系统串级统造的效率效验. 三、真验步调1. 正在Simulink 中修坐单回路统造时系统的模型:q1为一次扰动,q2为二次扰动,012190331G s s =++为主对于象,023211021171G s s s =+++为副对于象,r为系统输进,q1、q2、r均为单位阶跃函数,正在示波器上瞅测输出.(1) PID参数树坐中,与输进比率系数为3.7,积分系数为38,微分系数为0时运止系统,得到系统阶跃赞同输出.正在Simulink中修坐仿真模型,如下运止截止,得到的图形如下(2)采与共样的PID参数时,使二次扰动q2效率,运止系统,得到二次扰动效率下的系统输出赞同.(3)采与共样的PID参数时,使一次扰动q1效率,运止系统,得到一次扰动效率下的系统输出赞同.2. 正在Simulink中修坐串级统造时系统的模型:PID C1为主统造器,采与PI统造;PID C2为副统造器,采与P统造;其余共单回路统造系统.正在Simulink中修坐仿真模型,如下(1)主统造器PID C1输进参数与比率系数为8.4,积分系数为12.8,微分系数为0;副统造器PID C2与比率系数10,积分系数0,微分系数0,运止系统,得到系统阶跃赞同输出.(2)采与共样的PID参数时,正在二次扰动q2效率下,运止系统,得到系统的输出赞同.(3)采与共样的PID参数时,正在二次扰动q1效率下,运止系统,得到系统的输出赞同.四、真验截止表5-1 单回路统造与串级统造对于比六.串级统造的参数整定一、真验手段1. 通过真验进一步认识串级统造系统的结构组成;2. 掌握串级统造系统参数整定的要领; 二、真验真量已知某隧讲窑系统,烧成戴温度为主变量、焚烧室温度为副变量形成的串级统造系统中,主副对于象的传播函数分别为:011()(301)(31)G s s s =++,0221()(101)(1)G s s s =++ 试整定PID 统造器的参数,并画造整定后系统的单位阶跃赞同直线. 三、真验步调1.正在Simulink 中修坐仿真模型. 其仿真模型 运止步调得到2. 使用任性一种串级统造系统参数整定要领整定主副统造器参数. 采用PI 整定 仿真模型3.画造系统单位阶跃赞同直线.四、真验截止1.主副安排器参数整定截止.表6-1 主副安排器整定参数七.统造系统数教模型一、真验手段函数模型与状态空间模型的变换; 2. 掌握模型连交的MATLAB 真止要领; 二、真验真量已知某单位背反馈系统启环传播函数为21()52s G s s s +=++,试利用Simulink 修坐系统正在单位阶跃输进效率下的模型,利用MATLAB 修坐传播函数模型并得出状态空间模型,获与系统的单位阶跃赞同直线. 三、真验步调1.正在Simulink 中修坐仿真模型. 其运止截止2. 用[numc,denc]=cloop(num,den,-1)下令获与传播函数模型 截止如下3.用[A,B,C,D]=tf2ss(num,den)下令将传播函数模型变换为状态空间.其仿真模型运止截止八.系统可控性可瞅性分解一、真验手段系统可控性、可瞅性的分解;2. 掌握MATLAB正在可控可瞅尺度型中的应用;二、真验真量给定系统的状态圆程:利用MATLAB举止以下分解:(1)修坐统造系统的数教模型;(2)分解系统的可控性、可瞅性;(3)画造系统的阶跃赞同直线.三、真验步调1.挨启MATLAB处事窗心用ss()下令修坐系统的状态空间模型运止截止2. 考验系统的可控性、可瞅性运止截止3.画造系统单位阶跃赞同直线.运止截止4.推断系统的宁静性.步调运止截止论断:系统是宁静的.。

控制仿真实验报告

控制仿真实验报告

实验名称:基于MATLAB/Simulink的PID控制器参数优化仿真实验日期:2023年11月10日实验人员:[姓名]实验指导教师:[指导教师姓名]一、实验目的1. 理解PID控制器的原理及其在控制系统中的应用。

2. 学习如何使用MATLAB/Simulink进行控制系统仿真。

3. 掌握PID控制器参数优化方法,提高控制系统的性能。

4. 分析不同参数设置对系统性能的影响。

二、实验原理PID控制器是一种广泛应用于控制领域的线性控制器,它通过将比例(P)、积分(I)和微分(D)三种控制作用相结合,实现对系统输出的调节。

PID控制器参数优化是提高控制系统性能的关键。

三、实验内容1. 建立控制系统模型。

2. 设置PID控制器参数。

3. 进行仿真实验,分析系统性能。

4. 优化PID控制器参数,提高系统性能。

四、实验步骤1. 建立控制系统模型使用MATLAB/Simulink建立被控对象的传递函数模型,例如:```G(s) = 1 / (s^2 + 2s + 5)```2. 设置PID控制器参数在Simulink中添加PID控制器模块,并设置初始参数,例如:```Kp = 1Ki = 0Kd = 0```3. 进行仿真实验设置仿真时间、初始条件等参数,运行仿真实验,观察系统输出曲线。

4. 分析系统性能分析系统在给定参数下的响应性能,包括超调量、调节时间、稳态误差等指标。

5. 优化PID控制器参数根据分析结果,调整PID控制器参数,优化系统性能。

可以使用以下方法:- 试凑法:根据经验调整参数,观察系统性能变化。

- Ziegler-Nichols方法:根据系统阶跃响应,确定参数初始值。

- 遗传算法:使用遗传算法优化PID控制器参数。

6. 重复步骤3-5,直至系统性能满足要求五、实验结果与分析1. 初始参数设置初始参数设置如下:```Kp = 1Ki = 0Kd = 0```仿真结果如图1所示:![图1 初始参数设置下的系统输出曲线](https:///5Q8w6zQ.png)从图1可以看出,系统存在较大的超调量和较长的调节时间,稳态误差较大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昆明理工大学电力工程学院学生实验报告
实验课程名称:控制系统仿真实验
开课实验室:年月日
实验一 电路的建模与仿真
一、实验目的
1、了解KCL 、KVL 原理;
2、掌握建立矩阵并编写M 文件;
3、调试M 文件,验证KCL 、KVL ;
4、掌握用simulink 模块搭建电路并且进行仿真。

二、实验内容
电路如图1所示,该电路是一个分压电路,已知13R =Ω,27R =Ω,20S V V =。

试求恒压源的电流I 和电压1V 、2V 。

I
V
S
V 1
V 2
图1
三、列写电路方程
(1)用欧姆定律求出电流和电压 (2)通过KCL 和KVL 求解电流和电压
四、编写M文件进行电路求解(1)M文件源程序
(2)M文件求解结果
五、用simulink进行仿真建模(1)给出simulink下的电路建模图(2)给出simulink仿真的波形和数值
六、结果比较与分析
实验二数值算法编程实现
一、实验目的
掌握各种计算方法的基本原理,在计算机上利用MATLAB完成算法程序的编写拉格朗日插值算法程序,利用编写的算法程序进行实例的运算。

二、实验说明
1.给出拉格朗日插值法计算数据表;
2.利用拉格朗日插值公式,编写编程算法流程,画出程序框图,作为下述编程的依据;
3.根据MATLAB软件特点和算法流程框图,利用MATLAB软件进行上机编程;
4.调试和完善MATLAB程序;
5.由编写的程序根据实验要求得到实验计算的结果。

三、实验原始数据
上机编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,在整个插值区间上采用拉格朗日插值法计算(0.6)
f,写出程序源代码,输出计算结果:
四、拉格朗日插值算法公式及流程框图
五、程序代码
六、计算结果f=
(0.6)
实验三 动态电路的建模及仿真
一、实验目的
1.了解动态电路的理论,掌握动态电路建模的基本原理; 2.熟悉MATLAB 的Simulink 模块,并掌握使用模块搭建过程。

二、实验说明
电力系统是一个大规模、时变的复杂系统,主要由发电、变电、输电、配电和用电等环节组成,在国民经济中占有非常重要的作用。

动态过程是电力系统中的存在的常态结构形式,为了更好的理解动态过程的理论,掌握动态过程的物理本质,本实验利用MATLAB 搭建一个包含RLC 元件的简单动态系统,采用编程和数值模型仿真的方法分别进行分析计算,得出计算结果。

三、实验内容
电路如图2所示,该电路是一个RLC 电路,已知200S V V =,6410()L H -=⨯,
6410()C F -=⨯, 1.5R =Ω。

试求电感的电流L I 和电容的电压C U 。

V S
图2
四、编写M 文件进行电路求解
(1)M 文件源程序 (2)M 文件求解结果
五、用simulink进行仿真建模(1)给出simulink下的电路建模图(2)给出simulink仿真的波形和数值
六、结果比较与分析
实验四 正弦稳态电路的设计及仿真
一、实验目的
1、掌握正弦稳态电路分析的方法;
2、并掌握使用模块搭建过程。

二、实验说明
电力系统在正弦稳态电源的激励下会在整个系统中产生正弦稳态的响应,一般在对正弦稳态电路进行分析的时候采用相量法进行分析。

在使用MATLAB 解决正弦稳态电路的时候一般可以采用欧拉公式法和相量法两种思路进行理论分析计算。

掌握SIMULINK 建模的方法,使用SIMULINK 对正弦稳态电路进行建模分析。

三、实验内容
电路如图2所示,该电路是一个正弦稳态电路,已知1235R R R ===Ω,
2L X =Ω,3C X =Ω,1150()US V ∙
=∠,250()US V ∙
=∠,30()IS A ∙
=∠。

试求各支路电流,并且绘制各支路电流的时间曲线。

US1
图3
四、编写M 文件进行电路求解
(1)M 文件源程序 (2)M 文件求解结果
五、用simulink进行仿真建模(1)给出simulink下的电路建模图(2)给出simulink仿真的波形和数值
六、结果比较与分析。

相关文档
最新文档