运筹学复习题
运筹学复习题
运筹学复习题复习题⼀、选择题1.线性规划具有⽆界解是指A.可⾏解集合⽆界B.有相同的最⼩⽐值C.存在某个检验数D.最优表中所有⾮基变量的检验数⾮零2.线性规划具有唯⼀最优解是指A.最优表中⾮基变量检验数全部⾮零B.不加⼊⼈⼯变量就可进⾏单纯形法计算C.最优表中存在⾮基变量的检验数为零D.可⾏解集合有界3.线性规划具有多重最优解是指A.⽬标函数系数与某约束系数对应成⽐例B.最优表中存在⾮基变量的检验数为零C.可⾏解集合⽆界D.基变量全部⼤于零4.线性规划⽆可⾏解是指A.第⼀阶段最优⽬标函数值等于零B.进基列系数⾮正C.⽤⼤M法求解时,最优解中还有⾮零的⼈⼯变量D.有两个相同的最⼩⽐值5.线性规划可⾏域的顶点⼀定是A.可⾏解B.⾮基本解C.⾮可⾏D.是最优解6. X是线性规划的基本可⾏解则有A.X中的基变量⾮负,⾮基变量为零B.X中的基变量⾮零,⾮基变量为零C. X不是基本解 D.X不⼀定满⾜约束条件7.X 是线性规划的可⾏解,则错误的结论是A.X 可能是基本解B.X 可能是基本可⾏解C.X 满⾜所有约束条件D. X是基本可⾏解 8.下例错误的说法是A.标准型的⽬标函数是求最⼤值 B.标准型的⽬标函数是求最⼩值C.标准型的常数项⾮正D.标准型的变量⼀定要⾮负9.如果决策变量数相等的两个线性规划的最优解相同,则两个线性规划A. 约束条件相同 B.模型相同C.最优⽬标函数值相等D.以10.互为对偶的两个线性规划问题的解存在关系A.⼀个问题具有⽆界解,另⼀问题⽆可⾏解B 原问题⽆可⾏解,对偶问题也⽆可⾏解C.若最优解存在,则最优解相同D.⼀个问题⽆可⾏解,则另⼀个问题具有⽆界解11.原问题与对偶问题都有可⾏解,则A. 原问题有最优解,对偶问题可能没有最优解B. 原问题与对偶问题可能都没有最优解C.可能⼀个问题有最优解,另⼀个问题具有⽆界解D.原问题与对偶问题都有最优解12.互为对偶的两个线性规划问题的解存在关系A.原问题有可⾏解,对偶问题也有可⾏解B.⼀个有最优解,另⼀个也有最优解C.⼀个⽆最优解,另⼀个可能有最优解D.⼀个问题⽆可⾏解,则另⼀个问题具有⽆界解13. ,最优解是 A.(0, 0) B.(0,D.(1,1)14.线性规划的退化基可⾏解是指 A.基可⾏解中存在为零的⾮基变量B.基可⾏解中存在为零的基变量C.⾮基变量的检验数为零 D.所有基变量不等于零15.下列正确的⽬标规划的⽬标函数是A. max Z =d -+d +B. max Z =d --d +C. min Z =d -+d + D. min Z =d --d +16. ⽬标函数的含义是A.⾸先第⼀和第⼆⽬标同时不超过⽬标值,然后第三⽬标不超过⽬标值B.第⼀、第⼆和第三⽬标同时不超过⽬标值C.第⼀和第⼆⽬标恰好达到⽬标值,第三⽬标不超过⽬标值D.⾸先第⼀和第⼆⽬标同时不低于⽬标值,然后第三⽬标不低于⽬标值17.要求不超过第⼀⽬标值、恰好完成第⼆⽬标值,⽬标函数是A.)(m in 22211+--++=d d p d p ZB.)(m in 22211+-+++=d d p d p ZC.11222min ()Z p d p d d +-+=+-D.11222min ()Z p d p d d --+=+-18.有6个产地7个销地的平衡运输问题模型的对偶模型具有特征A 有12个变量B 有42个约束11223min ()Z p d d p d ---=++12121212max 3,437,24,,01Z x x x x x x x x =++≤+≤=或C. 有13个约束 D.有13个基变量19.运输问题A.是线性规划问题B.不是线性规划问题C.可能存在⽆可⾏解D.可能⽆最优解20.下列错误的结论是A.将指派(分配)问题的效率矩阵每⾏分别乘以⼀个⾮零数后最优解不变B.将指派问题的效率矩阵每⾏分别加上⼀个数后最优解不变C.将指派问题的效率矩阵每个元素同时乘以⼀个⾮零数后最优解不变D.指派问题的数学模型是整数规划模型21.设线性规划的约束条件为则⾮可⾏解是A.(2,0,0,0) B.(0,1,1,2)C.(1,0,1,0)D.(1,1,0,0)22.线性规划⽆可⾏解是指A.第⼀阶段最优⽬标函数值等于零B.进基列系数⾮正C.⽤⼤M法求解时,最优解中还有⾮零的⼈⼯变量D.有两个相同的最⼩⽐值23.若线性规划不加⼊⼈⼯变量就可以进⾏单纯形法计算A.⼀定有最优解B.⼀定有可⾏解C.可能⽆可⾏解D.全部约束是⼩于等于的形式 24.A.⽆可⾏解B.有唯⼀最优解C.有多重最优解D.有⽆界解 25.对偶单纯形法的最⼩⽐值规划则是为了保证A.使原问题保持可⾏B.使对偶问题保持可⾏C.逐步消除原问题不可⾏性D.逐步消除对偶问题不可⾏性26.已知对称形式原问题(MAX )的最优表中的检验数为(λ1,λ2,...,λn ),松弛变量的检验数为(λn+1,λn+2,...,λn+m),则对偶问题的最优解为A.-(λ1,λ2,...,λn ) B.(λ1,λ2,...,λn )C. -(λn+1,λn+2,...,λn+m) D.(λn+1,λn+2,...,λn+m)27.某个常数b i 波动时,最优表中引起变化的有A.检验数B.C B B-1C.C B B -1bD.系数矩阵28.当基变量x i 的系数c i 波动时,最优表中引起变化的有A. 最优基BB.所有⾮基变量的检验数 C.第i 列的系数D.基变量X B 29.12121212max 32,2314,0.5 4.5,,0Z x x x x x x x x =++≤+≤≥且为整数对应线性规划的最优解是(3.25,2.5),它的整数规划的最优解是A. (4,1)B.(4,3)C.(3,2) D.(2,4)30 下列线性规划与⽬标规划之间错误的关系是A.线性规划的⽬标函数由决策变量构成,⽬标规划的⽬标函数由偏差变量构成 B.线性规划模型不包含⽬标约束,⽬标规划模型不包含绝对约束 C.线性规划求最优解,⽬标规划求满意解D.线性规划模型只有绝对约束,⽬标规划模型可以有绝对约束和⽬标约束E.线性规划求最⼤值或最⼩值,⽬标规划只求最⼩值31.⽬标规划的满意解是A.(50,20)B.(40,0)C.(0,60)D.(50,10)32.有5个产地4个销地的平衡运输问题A.有9个变量B.有9个基变量C. 有20个约束 D .有8个基变量33. 下列变量组是⼀个闭回路A.{x 11,x 12,x 23,x 34,x 41,x 13}B.{x 21,x 13,x 34,x 41,x 12}C.{x 12,x 32,x 33,x 23,x 21,x 11}D.{x 12,x 22,x 32,x 33,x 23,x 21}⼆、判断题1.若线性规划存在最优解则⼀定存在基本最优解 √2.若线性规划⽆界解则其可⾏域⽆界 √=≥=-+=-+=-++=-+++++=+-+-+-+-+---+)4,,1(0,,,20506040)(min 21442331222111214332211 i d d x x d d x d d x d d x x d d x x d P d P d d p z i i -3.可⾏解⼀定是基本解×4.基本解可能是可⾏解√5.线性规划的可⾏域⽆界则具有⽆界解×6.最优解不⼀定是基本最优解√7.若线性规划有三个最优解X(1)、X(2)、X(3),则X=αX(1)+(1-α)X(3)及X=α1X(1)+α2X(2)+α3X(3)均为最优解,其中√8.当最优解中存在为零的基变量时,则线性规划具有多重最优解×9.当最优解中存在为零的⾮基变量时,则线性规划具唯⼀最优解×10.可⾏解集不⼀定是凸集×11.若线性规划存在基本解则也⼀定存在基本解可⾏解×12.线性规划的基本可⾏解只有有限多个√13.在基本可⾏解中基变量⼀定不为零×14.任何线性规划都存在⼀个对应的对偶线性规划√15.原问题(极⼤值)第i个约束是“≥”约束,则对偶变量y i≥0 ×16.互为对偶问题,或者同时都有最优解,或者同时都⽆最优解√17.对偶问题有可⾏解,则原问题也有可⾏解×18.原问题有多重解,对偶问题也有多重解×在以下19~23中,设X*、Y*分别是的可⾏解19.则有CX*≤Y*b ×20.CX*是w的下界×21.当X*、Y*为最优解时,CX*=Y*b;√22.当CX*=Y*b时,有Y*Xs +YsX*=0成⽴√23.X*为最优解且B是最优基时,则Y*=CBB-1是最优解√24.对偶问题有可⾏解,原问题⽆可⾏解,则对偶问题具有⽆界解√25.原问题⽆最优解,则对偶问题⽆可⾏解×26.对偶问题不可⾏,原问题⽆界解×27.原问题与对偶问题都可⾏,则都有最优解√28.原问题具有⽆界解,则对偶问题不可⾏√29.整数规划的最优解是先求相应的线性规划的最优解然后取整得到×30.部分变量要求是整数的规划问题称为纯整数规划×31.变量取0或1的规划是整数规划√32.要求⾄少到达⽬标值的⽬标函数是max Z=d++×33.要求不超过⽬标值的⽬标函数是 min Z=d-- ×34.正偏差变量⼤于等于零,负偏差变量⼩于等于零×35.⽬标规划问题⼀定有最优解√36.运输问题是⼀种特殊的线性规划模型,因⽽也可能⽆可⾏解×37.5个产地6个销地的平衡运输问题有11个变量×38.5个产地6个销地的销⼤于产的运输问题有11个基变量√39.产地数为3销地数为4的平衡运输中,变量组{x 11,x 13,x 22,x 33,x 34}可作为⼀组基变量 ×40.运输问题中⽤位势法求得的检验数不唯⼀ × 41.平衡运输问题⼀定有最优解 √ 42.不平衡运输问题不⼀定有最优解 × 43.正偏差变量⼤于等于零,负偏差变量⼩于等于零 × 44.绝对约束中没有正负偏差变量 √ 45.⽬标约束含有正负偏差变量 √ 46.⼀对正负偏差变量⾄少⼀个⼤于零 × 47.⼀对正负偏差变量⾄少⼀个等于零 √48.超出⽬标值的差值称为正偏差 √ 49.未到达⽬标的差值称为负偏差 √50.求最⼤值问题的⽬标函数值是各分枝函数值的上界 √51. 求解⽬标规划问题时,某⾮基变量的检验系数为:123123102(,,P P P P P P -+为优先因⼦),则该变量可以作为进基变量。
《运筹学》试题及答案大全
《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。
2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。
4、在图论中,称无圈的连通图为树。
5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。
2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。
⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。
(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。
运筹学复习题
D.指派问题的数学模型是整数规划模型 六、网络模型(每小题 10 分,共 100 分)
1. μ 是关于可行流 f 的一条增广链,则在 μ 上有 "D"
A.对一切
B.对一切
C.对一切
D.对一切
2.下列说法正确的是 "C"
A.割集是子图
B.割量等于割集中弧的流量之和
C.割量大于等于最大流量
D.割量小于等于最大流量
C.若最优解存在,则最优解相同 D.一个问题无可行解,则另一个问题具有无界解
4.原问题与对偶问题都有可行解,则 "D"
A. 原问题有最优解,对偶问题可能没有最优解 B. 原问题与对偶问题可能都没有最优解
C.可能一个问题有最优解,另一个问题具有无界解 D.原问题与对偶问题都有最优解
5.已知对称形式原问题(MAX)的最优表中的检验数为(λ1,λ2,...,λn),松弛变量的检验数为(λn+1, λn+2,...,λn+m),则对偶问题的最优解为 "C"
A. 约束条件相同
B.模型相同 C.最优目标函数值相等
D.以上结论都不对
2.对偶单纯形法的最小比值规划则是为了保证 "B"
A.使原问题保持可行
B.使对偶问题保持可行
C.逐步消除原问题不可行性 D.逐步消除对偶问题不可行性
2
3.互为对偶的两个线性规划问题的解存在关系 "A"
A.一个问题具有无界解,另一问题无可行解 B 原问题无可行解,对偶问题也无可行解
A.最大流量等于最大割量 B.最大流量等于最小割量
C.任意流量不小于最小割量 D.最大流量不小于任意割量
运筹学复习题及参考答案
《运筹学》一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。
1. T2. F3. T4.T5.T6.T7. F8. T9. F10.T 11. F 12. F 13.T 14. T 15. F1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。
( T )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。
( F )3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。
( T )4. 满足线性规划问题所有约束条件的解称为可行解。
( T )5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。
( T )6. 对偶问题的对偶是原问题。
( T )7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。
( F )8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。
( T )9. 指派问题的解中基变量的个数为m+n。
( F )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。
( T )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。
( F)12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。
( F )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
(T )14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。
( T )15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。
( F )二、单项选择题1.A2.B3.D4.B5.A6.C7.B8.C9. D 10.B11.A 12.D 13.C 14.C 15.B1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为( A )。
运筹学复习题目加答案
一、单选题1.目标函数取极小(minZ )的线性规划问题可以转化为目标函数取极大的线性规划问题求解,原问题的目标函数值等于( )。
A. maxZB. max(-Z)C. –max(-Z)D.-maxZ2. 下列说法中正确的是( )。
A .基本解一定是可行解B .基本可行解的每个分量一定非负C .若B 是基,则B 一定是可逆D .非基变量的系数列向量一定是线性相关的3.在线性规划模型中,没有非负约束的变量称为 ( )A.多余变量 B .松弛变量 C .人工变量 D .自由变量4. 当满足最优解,且检验数为零的变量的个数大于基变量的个数时,可求得( )。
A .多重解B .无解C .正则解D .退化解 5.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足 ( )。
A .等式约束B .“≤”型约束C .“≥”约束D .非负约束6. 原问题的第i个约束方程是“=”型,则对偶问题的变量i y 是( )。
A .多余变量B .自由变量C .松弛变量D .非负变量7.在运输方案中出现退化现象,是指数字格的数目( )。
A.等于m+nB.大于m+n-1C.小于m+n-1D.等于m+n-1二、判断题1.线性规划问题的一般模型中不能有等式约束。
2.对偶问题的对偶一定是原问题。
3.产地数与销地数相等的运输问题是产销平衡运输问题。
4.对于一个动态规划问题,应用顺推或逆解法可能会得出不同的最优解。
5.线性规划问题的每一个基本可行解对应可行域上的一个顶点。
6.线性规划问题的基本解就是基本可行解。
三、填空题1.如果某一整数规划:MaxZ=X 1+X 2 X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 和 。
2.如希望I 的2 倍产量21x 恰好等于II 的产量2x ,用目标规划约束可表为:3. 线性规划解的情形有4. 求解指派问题的方法是 。
最全的运筹学复习题及答案
四、把下列线性规划问题化成标准形式:2、minZ=2x1-x2+2x3五、按各题要求。
建立线性规划数学模型1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。
月销售分别为250,280和120件。
问如何安排生产计划,使总利润最大。
2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省?1. 某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示: 起运时间 服务员数 2—6 6—10 10一14 14—18 18—22 22—2 4 8 10 7 12 4每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当于图解法可行域中的哪一个顶点。
六、用单纯形法求解下列线性规划问题:七、用大M法求解下列线性规划问题。
并指出问题的解属于哪一类。
八、下表为用单纯形法计算时某一步的表格。
已知该线性规划的目标函数为maxZ=5x 1+3x 2,约束形式为“≤”,X 3,X 4为松驰变量.表中解代入目标函数后得Z=10X l X 2 X 3 X 4 —10 b -1 f g X 3 2 C O 1 1/5 X lade1(1)求表中a ~g 的值 (2)表中给出的解是否为最优解?(1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2) 表中给出的解为最优解第四章 线性规划的对偶理论五、写出下列线性规划问题的对偶问题1.minZ=2x 1+2x 2+4x 3六、已知线性规划问题应用对偶理论证明该问题最优解的目标函数值不大于25七、已知线性规划问题maxZ=2x1+x2+5x3+6x4其对偶问题的最优解为Y l﹡=4,Y2﹡=1,试应用对偶问题的性质求原问题的最优解。
运筹学复习题——考试题
《运筹学》复习题一、填空题( 1 分× 10=10 分)1.运筹学的主要研究对象是(组织系统的管理问题)。
2.运筹学的核心主要是运用(数学)方法研究各种系统的优化。
3.模型是一件实际事物或现实情况的代表或抽象。
4.通常对问题中变量值的限制称为(约束条件),它可以表示成一个等式或不等式的集合。
5.运筹学研究和解决问题的基础是(最优化技术),并强调系统整体优化功能。
6.运筹学用(系统)的观点研究(功能)之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势是进一步依赖于计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境。
10.用运筹学分析与解决问题,是一个科学决策的过程。
11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。
12.运筹学中所使用的模型是数学模型。
用运筹学解决问题的核心是(建立数学模型),并对模型求解。
13.用运筹学解决问题时,要分析,定义待决策的问题。
14.运筹学的系统特征之一是用系统的观点研究功能关系。
15.数学模型中,“ . ”表示约束。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。
18. 1940 年 8 月,英国管理部门成立了一个跨学科的11 人的运筹学小组,该小组简称为OR。
19.线性规划问题是求一个( 线性目标函数), 在一组 ( 线性约束 ) 条件下的极值问题。
20.图解法适用于含有两个变量的线性规划问题。
21.线性规划问题的可行解是指满足所有约束条件的解。
22.在线性规划问题的基本解中,所有的( 非基变量 ) 等于零。
23.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关24.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
25.线性规划问题有可行解,则必有基可行解。
运筹学复习题
运筹学复习题运筹学复习题⼀、填空题1、线性规划的解有唯⼀最优解、⽆穷多最优解、⽆界解和⽆可⾏解四种。
2、在求运费最少的调度运输问题中,如果某⼀⾮基变量的检验数为4,则说明如果在该空格中增加⼀个运量运费将增加4 。
3、“如果线性规划的原问题存在可⾏解,则其对偶问题⼀定存在可⾏解”,这句话对还是错?错4、如果某⼀整数规划:MaxZ=X1+X2X1+9/14X2≤51/14-2X1+X2≤1/3X1,X2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X1=3/2,X2=10/3,MaxZ=6/29,我们现在要对X1进⾏分枝,应该分为X1≤1和X1≥2 。
5.线性规划的⽬标函数的系数是其对偶问题的右端常数6.为求解需求量⼤于供应量的运输问题,可虚设⼀个供应点7.线性规划的解有唯⼀最优解、⽆穷多最优解、⽆界解和⽆可⾏解四种。
8.在求运费最少的调度运输问题中,如果某⼀⾮基变量的检验数4,则说明如果在该空格中增加⼀个运量,运费将增加 4 9.考虑下列线性规划:Max Z(x) = -5x1 + 5x2+ 13x3S.t. - x1 + x2+ 3x3≤2012x1 + 4x2+ 10x3≤90x1 , x2, x3≥0最优单纯形表为:写出此线性规划的最优基B和B -110.上⼀题中的线性规划的对偶问题的最优解是 Y =(2,5,0,0,0,0)T11. 线性规划问题如果有⽆穷多最优解,则单纯形计算表的终表中必然有某⼀个⾮基变量的检验数为__0__;11、在⽤逆向解法求动态规划时,f k (s k )的含义是:从第k 个阶段到第n 个阶段的最优解。
12. 假设某线性规划的可⾏解的集合为D ,⽽其所对应的整数规划的可⾏解集合为B ,那么D 和B 的关系为 D 包含 B ;13. 线性规划问题如果有⽆穷多最优解,则单纯形计算表的终表中必然有某⼀个⾮基变量的检验数为 0 ;14. 知下表是制订⽣产计划问题的⼀张LP 最优单纯形表(极⼤化问题,问:(1)对偶问题的最优解: Y =(4,0,9,0,0,0)T .(2)写出B -1=611401102 .15 、使⽤⼈⼯变量法求解极⼤化线性规划问题时,当所有的检验数0j σ≤,在基变量中仍含有⾮零的⼈⼯变量,表明该线性规划问题()A. 有唯⼀的最优解;B. 有⽆穷多个最优解;C. ⽆可⾏解;D. 为⽆界解16、对偶单纯形法解最⼤化线性规划问题时,每次迭代要求单纯形表中()A .b 列元素不⼩于零B .检验数都⼤于零C .检验数都不⼩于零D .检验数都不⼤于零17、在产销平衡运输问题中,设产地为m 个,销地为n 个,那么基可⾏解中⾮零变量的个数() A. 不能⼤于(m+n-1); B. 不能⼩于(m+n-1); C. 等于(m+n-1); D. 不确定。
《 运筹学》复习题
《运筹学》复习题一、单项选择题1、()运筹学的主要内容包括: [单选题] *A.线性规划B.非线性规划C.存贮论D.以上都是(正确答案)2、()下面是运筹学的实践案例的是: [单选题] *A.丁谓修宫B.田忌赛马C.二战间,英国雷达站与防空系统的协调配合D.以上都是(正确答案)5、()运筹学模型: [单选题] *A.在任何条件下均有效B.只有符合模型的简化条件时才有效(正确答案)C.可以解答管理部门提出的任何问题D.是定性决策的主要工具8、()图解法通常用于求解有()个变量的线性规划问题。
[单选题] *A.1B.2(正确答案)C.4D.510、 (D)将线性规划问题转化为标准形式时,下列说法不正确的是: [单选题] *A.如为求z的最小值,需转化为求-z的最大值(正确答案)B.如约束条件为≤,则要增加一个松驰变量C.如约束条件为≥,则要减去一个剩余变量D.如约束条件为=,则要增加一个人工变量12、()关于主元的说法不正确的是: [单选题] *A.主元所在行称为主元行B.主元所在列称为主元列C.主元列所对应非基变量为进基变量D.主元素可以为零(正确答案)13、()求解线性规划的单纯形表法中所用到的变换有: [单选题] *A.两行互换B.两列互换C.将某一行乘上一个不为0的系数(正确答案)D.都正确14、()矩阵的初等行变换不包括的形式有: [单选题] *A. 将某一行乘上一个不等于零的系数B.将任意两行互换C. 将某一行乘上一个不等于零的系数再加到另一行上去D.将某一行加上一个相同的常数(正确答案)17、()关于标准线性规划的特征,哪一项不正确: [单选题] *A.决策变量全≥0B.约束条件全为线性等式C.约束条件右端常数无约束(正确答案)D.目标函数值求最大18、()线性规划的数学模型的组成部分不包括: [单选题] *A.决策变量B.决策目标函数C.约束条件D.计算方法(正确答案)19、()如果在线性规划标准型的每一个约束方程中各选一个变量,它在该方程中的系数为1,在其它方程中系数为零,这个变量称为: [单选题] *A.基变量(正确答案)B.决策变量C.非基变量D.基本可行解21、 (C)关于线性规划的最优解判定,说法不正确的是: [单选题] *A.如果是求最小化值,则所有检验数都小于等于零的基可行解是最优解。
运筹学复习试题和参考答案解析
《运筹学》一、判断题:在下列各题中,您认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。
1、 T2、 F3、 T4、T5、T6、T7、 F8、 T9、 F10、T 11、 F 12、 F 13、T 14、 T 15、 F1、线性规划问题的每一个基本可行解对应可行域的一个顶点。
( T )2、用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。
( F )3、若线性规划的可行域非空有界,则其顶点中必存在最优解。
( T )4、满足线性规划问题所有约束条件的解称为可行解。
( T )5、在线性规划问题的求解过程中,基变量与非机变量的个数就是固定的。
( T )6、对偶问题的对偶就是原问题。
( T )7、在可行解的状态下,原问题与对偶问题的目标函数值就是相等的。
( F )8、运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。
( T )9、指派问题的解中基变量的个数为m+n。
( F )10、网络最短路径就是指从网络起点至终点的一条权与最小的路线。
( T )11、网络最大流量就是网络起点至终点的一条增流链上的最大流量。
( F)12、工程计划网络中的关键路线上事项的最早时间与最迟时间往往就是不相等。
( F )13、在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
(T )14、单目标决策时,用不同方法确定的最佳方案往往就是不一致的。
( T )15、动态规则中运用图解法的顺推方法与网络最短路径的标号法上就是一致的。
( F )二、单项选择题1、A2、B3、D4、B5、A6、C7、B8、C9、 D 10、B11、A 12、D 13、C 14、C 15、B1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为( A )。
A、增大B、不减少C、减少D、不增大2、若线性规划问题的最优解不唯一,则在最优单纯形表上( B )。
《运筹学》期末复习题
《运筹学》期末复习题一、单项选择题1、下列叙述正确的是()。
A.线性规划问题,若有最优解,则必是一个基变量组的可行基解B.线性规划问题一定有可行基解C.线性规划问题的最优解只能在最低点上达到D.单纯形法求解线性规划问题时,每换基迭代一次必使目标函数值下降一次答案:A2、线性规划的变量个数与其对偶问题的()相等。
A.变量目标函数C.约束条件个数答案:C3、在利用表上作业法求各非基变量的检验数时,有闭回路法和()两种方法。
A.西北角法C.最低费用法答案:B4、下列各项()不是目标规划的特点。
A.多目标C.具有优先次序答案:B5、下列关于图的说法中,错误的为()。
A.点表示所研究的事物对象C.无向图是由点及边所构成的图答案:D6、利用单纯形法求解线性规划问题时,首先需要()。
A.找初始基础可行基C.确定改善方向答案:A7、对偶问题最优解的剩余变量解值()原问题对应变量的检验数的绝对值。
A.大于C.等于答案:C第1页共17页B.变量约束条件D.不确定B.位势法D.元素差额法B.单一目标D.不求最优B.检验当前基础可行解是否为最优解D.确定入变量的最大值和出变量B.小于D.不能确定8、当某个非基变量检验数为零,则该问题有()。
A.无解B.无穷多最优解C.退化解D.惟一最优解答案:B9、PERT网络图中,()表示一个工序。
A.节点B.弧C.权D.关键路线答案:B10、假设对于一个动态规划问题,应用顺推法以及逆推解法得出的最优解分别为P和D,则有(A.P>DB.P答案:C11、下列有关线性规划问题的标准形式的叙述中错误的是()。
A.目标函数求极大B.约束条件全为等式C.约束条件右端常数项全为正D.变量取值全为非负答案:C12、线性规划问题的数学模型由目标函数、约束条件和()三个部分组成。
A.非负条件B.顶点集合C.最优解D.决策变量答案:D13、如果原问题有最优解,则对偶问题一定具有()。
A.无穷多解B.无界解C.最优解D.不能确定答案:C14、运输问题的基变量有()个。
运筹学复习题——考试题
《运筹学》复习题一、填空题(1分×10=10分)1.运筹学的主要研究对象是(组织系统的管理问题)。
2.运筹学的核心主要是运用(数学)方法研究各种系统的优化。
3.模型是一件实际事物或现实情况的代表或抽象。
4.通常对问题中变量值的限制称为(约束条件),它可以表示成一个等式或不等式的集合。
5.运筹学研究和解决问题的基础是(最优化技术),并强调系统整体优化功能。
6.运筹学用(系统)的观点研究(功能)之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势是进一步依赖于计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境。
10.用运筹学分析与解决问题,是一个科学决策的过程。
11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。
12.运筹学中所使用的模型是数学模型。
用运筹学解决问题的核心是(建立数学模型),并对模型求解。
13.用运筹学解决问题时,要分析,定义待决策的问题。
14.运筹学的系统特征之一是用系统的观点研究功能关系。
15.数学模型中,“s.t.”表示约束。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。
18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。
19.线性规划问题是求一个(线性目标函数),在一组(线性约束)条件下的极值问题。
20.图解法适用于含有两个变量的线性规划问题。
21.线性规划问题的可行解是指满足所有约束条件的解。
22.在线性规划问题的基本解中,所有的(非基变量)等于零。
23.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关24.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
25.线性规划问题有可行解,则必有基可行解。
26.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解的集合中进行搜索即可得到最优解。
运筹学复习题及 答案
运筹学复习题及答案一、一个毛纺厂用羊毛和涤纶生产A、B、C混纺毛料,生产1单位A、B、C分别需要羊毛和涤纶3、2;1、1;4、4单位,三种产品的单位利润分别为4、1、5。
每月购进的原料限额羊毛为8000单位,涤纶为3000单位,问此毛纺厂如何安排生产能获得最大利润?(要求:建立该问题的数学模型)解:设生产混纺毛料ABC各x1、x2、x3单位max z=x1+x2+5x33x1+x2+4x3≤80002x1+x2+4x3≤3000x1,x2,x3≥0二、写出下述线性规划问题的对偶问题max s=2x1+3x2-5x3+x4x1+x2-3x3+x4≥52x1 +2x3-x4≤4x2 +x3+x4=6x1,x2,x3≥0;x4无约束解:先将原问题标准化为:max s=2x1+3x2-5x3+x4-x1-x2+3x3-x4≤-52x1 +2x3-x4≤4x2 +x3+x4=6x1,x2,x3≥0;x4无约束则对偶问题为:min z=-5y1+4y2+6y3-y1+2y2≥2-y1+ y2≥33y1+ 2y2+y3≥-5-y1-y2+y3=1y1,y2≥0,y3无约束三、求下述线性规划问题min S =2x1+3x2-5x3x 1+x 2-3x 3 ≥5 2x 1 +2x 3 ≤4x 1,x 2,x 3≥0解:引入松弛变量x4,x5,原问题化为标准型:max Z=-S =-2x 1-3x 2+5x 3x 1+x 2-3x 3 -x 4=5 2x 1 +2x 3 +x 5=4x 1,x 2,x 3, x 4,x 5≥0 对应基B 0=(P2,P5T(B 0)=x1的检验数为正,x1进基,由min {5/1,4/2}=4/2知,x5出基,迭代得新基B1=(P2,P1),对应的单纯形表为T(B 1)=至此,检验数全为非正,已为最优单纯形表。
对应的最优解为: x1=2,x2=3,x3=x4=x5=0,max z=-13,故原问题的最优解为: x1=2,x2=3,x3 =0,min s=13。
运筹学复习题
1.某家具制造厂生产五种不同规格的家具。
每件家具都要经过机械成型、打磨、上漆等几个主要生产工序。
每种家具的每道工序所使用的时间及每道工序的可用时间、每种家具的利润等数据如表1-1所示。
问工厂应如何安排生产,才能使总利润最大?表1-1家具生产数据生产工序所需时间可用时间(小时)一二三四五成型 3 4 6 2 3 3600 打磨 4 3 5 6 4 3950 上漆 2 3 3 4 3 2800 利润(百元)2.7 3 4.5 2.5 32.G.A.T公司的产品之一是一种新式玩具,该产品的估计单位利润为3美元。
因为该产品具有极大的需求,公司决定增加该产品原来每天1000件的生产量。
但是从卖主那里可以购得的玩具配件(A,B)是有限的。
每一玩具需要两个A类配件,而卖主只能将其供应量从现在的每天2000增加到3000。
同时,每一玩具需要一个B类的配件,但卖主却无法增加目前每天1000的供应量。
因为目前无法找到新的供货商,所以公司决定自己开发一条生产线,在公司内部生产玩具配件A 和B 。
据估计,公司自己生产的成本将会比从卖主那里购买增加2.5美元每件(A,B )。
管理层希望能够确定玩具以及两种配件的生产组合以取得最大的利润。
将该问题视为资源分配问题,公司的一位管理者为该问题建立如下的参数表:使用Excel 求解,求解后的电子表格和灵敏度报告如下图所示:A B C DE F 1 生产玩具 生产配件2 单位利润3 -2.5 34 资源 单位资源使用量 所需资源 可获得的资源总量5 资源A 2 -1 3000 <= 3000 6资源B1 -11000<=1000资源 每种活动的单位资源使用量可获得的资源总量生产玩具生产配件 配件A 配件B 2 1 -1 -1 3000 1000 单位利润 3美元-2.5美元78 活动量2000 1000 总利润3500可变单元格终递减目标式允许的允许的单元格名字值成本系数增量减量$B$8 活动量单位资源使用量2000 0 3 2 0.5$C$8 活动量生产配件1000 0 -2.5 1 0.5约束终阴影约束允许的允许的单元格名字值价格限制值增量减量$D$5 资源A 所需资源3000 0.5 3000 1E+30 1000$D$6 资源B 所需资源1000 2 1000 500 1E+30(1)用Excel建模时,单元格F8的输入是什么?(2)针对第一个活动(生产玩具),运用Excel敏感性报告,给出该活动单位利润从3美元增加到4美元时问题的最优解和总利润。
运筹学复习题
单项选择题(将唯一正确答案前面的字母填入题后的括号里。
正确得2 分,选错、多选或不选得0 分)1.原问题与对偶问题都有可行解,则(D)。
A.原问题有最优解,对偶问题没有最优解 B. 原问题与对偶问题可能都没有最优解C. 一个问题有最优解,另一个问题有无界解D. 原问题与对偶问题都有最优解2、当线性规划问题的可行解集合非空时一定(D)。
A. 包含原点X=(0,0,…)B. 有界C. 无界D. 是凸集3、若原问题中xi 为自由变量,那么对偶问题中的第i个约束一定为(A)。
A. 等式约束B. “≤”型约束C. “≥”约束D. 无法确定4.在目标规划中,要求不低于第一目标值,恰好完成第二目标值,则其目标函数为(A)。
A. min Z = P1d1- + P2(d2- + d2+)B. min Z = P1d1+ + P2(d2- + d2+)C. min Z = P1(d1- + d1+) + P2(d2- + d2+)D. min Z = P1(d2- + d2+) + P2d2-5.若树 T 有 n 个点,那么它的边数一定是(D)。
A. 2nB. nC. n+1D. n-16.完全决定确定型动态规划问题第k+1阶段的状态S k+1的是(D)。
A. 阶段数kB. 决策U kC. 状态S kD. 状态S k与决策U k7.任何图中,次为奇数的顶点的个数必为(B)。
A. 奇数B. 偶数C. 奇偶性无法判断D. 奇数偶数均可8.图=(V,E)有生成树的充要条件是(C)。
A. G是欧拉图B. G是完全图C. G是连通图D. G是有限图G9.求m个产地,n个销地的运输问题的表上作业法中,用最小元素法确定初始可行解时基变量(即填有数字格)的个数为(A)A. m+n-1B. m+nC. m+n+1D. mn10.求解指派问题的匈牙利方法要求系数矩阵中每个元素都是(A)。
A. 非负的B. 大于零C. 无约束D. 非零常数11.满足线性规划问题全部约束条件的解称为(C)。
运筹学复习题
运筹学复习题一、选择题1.若树T 有n 个顶点,那么它的边数一定是 ( ) A .n B .n-1 C .n+1 D . 2n 2、决策的三要素是( )。
A. 方案、状态和收益B. 方案集、状态集和损益矩阵C. 方案、状态和损失D. 方案集、状态集和概率集 3.线性规划问题中只满足约束条件的解称为 ( )。
A .基本解B .可行解C .最优解D .基本可行解 4.如果要使目标规划实际实现值不超过目标值,则应满足( )A.0>+dB.0=+dC.0_=d D.0,0_>>+d d5、线性规划问题的数学模型的三个部分中不包括( )。
A. 约束条件B. 最优解C. 决策变量D. 目标函数 6.线性规划一般模型中,自由变量可以用两个非负变量的 ( )代换。
A .和 B .差 C .积 D .商7、针对某一特定的不确定型的决策问题,分别采用五种决策准则(等可能准则、乐观准则、悲观准则、折衷准则和后悔值准则)进行决策,其决策结果( )。
A. 相同 B. 一般不相同 C. 绝大多数相同 D. 不能确定 8.最早运用运筹学理论的是( )A . 二次世界大战期间,英国政府将运筹学运用到政府制定计划B .二次世界大战期间,英国军事部门将运筹学运用到军事战略部署C .50年代,运筹学运用到研究人口,能源,粮食,第三世界经济发展等问题上D . 美国最早将运筹学运用到农业和人口规划问题上 9.可用于风险条件下决策类型的是( ) A .最大最大决策标准 B.最大期望收益值标准 C.最大最小决策标准D.最小最大遗憾值决策标准10.在库存管理中,“订货提前期”,亦可称为( ) A .再订货点B.前置时间C.前置时间内的需求量D.经济订货量11.线性规划的图解法适用于( ) A .只含有一个变量的线性规划问题 B.只含有2个变量的线性规划问题 C.含有多个变量的线性规划问题D.任何情况 12.网络计划技术是解决哪类管理问题的科学方法?( ) A .环境条件不确定问题 B. 组织生产和进行计划管理 C.具有对抗性局势竞争问题D.订货与库存问题13.在网络计划技术中,以结点代表活动,以箭线表示活动之间的先后承接关系,这种图称之为( )A .箭线式网络图 B.结点式网络图 C.最短路线图 D.最大流量图 14.网络图中,完成一项活动可能最短的时间,称为( ) A .作业时间 B.最早完成时间 C.最迟完成时间D.最可能时间15.在一个网络中,如果从一个起点出发到所有的点,找出一条或几条路线,以使在这样一些路线中所采用的全部支线的总长度最小,这种方法称之为( ) A .点的问题B. 最小生成树问题C.树的问题D. 线的问题 16.线性规划模型的特点是 ( )。
运筹学试习题及答案
运筹学试习题及答案《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2、图解法适用于含有两个变量的线性规划问题。
3、线性规划问题的可行解是指满足所有约束条件的解。
4、在线性规划问题的基本解中,所有的非基变量等于零。
5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7、线性规划问题有可行解,则必有基可行解。
8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。
9、满足非负条件的基本解称为基本可行解。
10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13、线性规划问题可分为目标函数求极大值和极小_值两类。
14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。
17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。
20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m行解的个数最为_C_。
′〞′A、m个B、n个C、CnD、Cm个2、下列图形中阴影部分构成的集合是凸集的是A mn3、线性规划模型不包括下列_ D要素。
运筹学
运筹学 复习题A一:单选题(本大题共10小题,每题3分,共30分)1.对线性规划问题标准型:maxZ=CX,AX=b,X ≥0,利用单纯形法求解时,每作一次换基迭代,都能保证它相应得目标函数值Z 必为(C )A .增大B .减少C .不减少D .不增大 2.某二维线性规划问题的可行域为一正方形,则该问题的最优解(D ) A. 必在正方形的一条边上达到 B.必在正方形内部达到 C.必在正方形外部达到 D. 必在正方形的某个顶点达到 3.线性规划的对偶问题和原问题存在如下关系( A )A .对偶问题的对偶是原问题 B.原问题存在可行解,对偶问题必存在可行解 C .原问题无可行解,其对偶问题必无可行解 D .原问题有最优解,则对偶问题也有最优解,且最优解相同 4.求解需求量大于供应量的运输问题不需要做的是( D )A .虚设一个供应点B .令虚设的供应点到任何需求点的单位运费为0C .取虚设的供应点的供应量为恰当值D .删去一个需求点5.线性规划解的情况,不包括以下哪一种?( B ) A .恰好有一个最优解 B .恰好有两个最优解 C .无解 D .无界解6.任何求最大目标函数值的纯整数规划或混合整数规划的最大目标函数值( C )相应的线性规划的最大目标函数值。
A .小于 B.大于 C.小于或等于 D.大于或等于 7.在利润最大化的生产计划中,下列说法错误的是( B )A.影子价格大于0的资源没有剩余B.有剩余的资源影子价格大于0;C.安排生产的产品机会成本等于利润D.机会成本大于利润的产品不安排生产。
8. 下列是关于标准的∞∞//1//M M排队模型的叙述,其中不正确的是( B )A .顾客到达过程服从泊松分布 B.服务时间服从泊松分布C .单通道即只有一个服务台 D. 排队长度及顾客来源无限制9. 如下表所示为大海和丽娟的“情侣博弈”,行策略表示大海的策略,列策略表示丽娟的策略,其中的数值为在不同局势下他们的益损值(或满意度),前后两个数值分别表示大海、丽娟的益损值。
《运筹学》试题及答案大全
《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。
2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。
4、在图论中,称无圈的连通图为树。
5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。
2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。
⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。
(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。
《运筹学》期末复习题
《运筹学》期末复习题第一讲运筹学概念一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。
2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。
3.模型是一件实际事物或现实情况的代表或抽象。
4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。
5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。
运筹学研究和解决问题的效果具有连续性。
6.运筹学用系统的观点研究功能之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性. 8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境.10.用运筹学分析与解决问题,是一个科学决策的过程。
11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。
12.运筹学中所使用的模型是数学模型。
用运筹学解决问题的核心是建立数学模型,并对模型求解。
13用运筹学解决问题时,要分析,定议待决策的问题。
14.运筹学的系统特征之一是用系统的观点研究功能关系。
15.数学模型中,“s·t”表示约束。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。
18。
1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。
二、单选题1.建立数学模型时,考虑可以由决策者控制的因素是( A )A.销售数量 B.销售价格 C.顾客的需求 D.竞争价格2.我们可以通过( C)来验证模型最优解。
A.观察 B.应用 C.实验 D.调查3.建立运筹学模型的过程不包括(A )阶段。
A.观察环境 B.数据分析 C.模型设计 D.模型实施4.建立模型的一个基本理由是去揭晓那些重要的或有关的( B )A数量B变量 C 约束条件 D 目标函数5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、已知线性规划问题 max z = (c1 + t1 ) x1 + c 2 x 2 + c3 x3 + 0 x 4 + 0 x5 a11 x1 + a12 x 2 + a13 x3 + x 4 = b1 + 3t 2 st. a 21 x1 + a 22 x 2 + a 23 x3 + x5 = b2 + t 2 x j ≥ 0 ( j = 1, ,5) 当 t1 = t 2 =0 时,用单纯形法求得最终表如下: x1 x3 5/2 x1 5/2 cj − zj 0 1 0 x2 1/2 -1/2 -4 x3 1 0 0 x4 1/2 -1/6 -4 x5 0 1/3 -2
根据以上计算结果,分析并回答以下问题: (1)最优生产方案和最大总利润是什么?按此方案生产,现有的原料是否 还有剩余?哪一种有剩余?余多少? (2)如果市场上甲原料的价格为 4.5(百元/公斤) ,那么从市场上购得 1000 公斤的甲原料扩大生产是否合算(即总利润是否增加)?为什么? ( 3) 若 D 产品的价格系数增大到 34 (百元/公斤) , 原最优解会否发生变化? 为什么? (4)在原考虑的 A、B、C、D 四种型号产品基础上,如果又提出产品 E, 它对甲、乙、丙的消耗系数分别为 5、6、2,价格系数为 74(百元/公斤) ,那么 原最优方案是否要改变,为什么? (5)若在本题已有已知条件基础上,还要考虑各产品的生产准备费用(视 为固定成本) ,其中 A 产品的生产准备费为 1000(百元) ,B 产品的生产准备费 为 800(百元) ,C 产品的生产准备费为 950(百元) ,D 产品的生产准备费为 750 (百元) ,而且由于某些原因,A、B、C 三种产品至多生产其中的两种。写出考 虑这些新增条件下(不考虑产品 E) ,使生产利润最大的生产计划模型(不解) 。 五、某化学制药厂有 m 种有害副产品,它们的数量为 bi(i=1,…,m)。按照 规定,必须经过处理,制成 n 种无害物后才能废弃。设 aij 为每制成一单位第 j (j=1,…n)种无害物可以处理掉第 i 种有害物的数量,cj 为制成一单位第 j 种 无害物的费用。 1.现欲求各无害物的产量 xj 以使总的处理费用为最小, 请写出此问题的 线性规划模型; 2.写出此问题的对偶规划模型,并解释对偶规划模型的经济意义。 六 给出线性规划问题 max z = 2 x1 + 3 x 2 + x3 1 1 1 3 x1 + 3 x 2 + 3 x3 ≤ 1 4 7 1 x1 + x 2 + x 2 ≤ 3 3 3 3 x j ≥ 0 ( j = 1,2,3) 用单纯形法求解得最终单纯形表见下表。 2 3 1 CB 基 B x1 x2 x3 2 x1 1 1 0 -1
0 x4 4
0 x5 -1
3
x2 cj − zj
2
0 0
1 0
2 -3
-1 -5
1 -1
试分析下列各种条件下最优解(基)的变化: (1)目标函数中变量x 3 的系数变为 6; (2)分别确定目标函数中变量x l 和x 2 的系数c 1 、c 2 在什么范围内变动时最优解 不变; 1 2 (3)约束条件右端项由 3 变为 3 ; 1 (4)增加一个新的变量 x6 , P6 = 1 , c6 = 7 ; 十六、 某服装厂设计了一款新式女装准备推向全国,如直接大批生产与销 售,主观估计成功与失败概率各为 0.5,其分别的获利为 1200 万元与-500 万元, 如果取消生产销售计划,则损失设计与准备费用 40 万元。为稳妥起见,可先小 批试销,试销的投入需 45 万元,根据历史资料与专家估计,试销成功与失败的 概率分别为 0.6 和 0.4,又据过去情况大批生产销售为成功的例子中,试销成功 的占 84%,大批生产销售失败的事例中试销成果的占 36%。试根据以上数据, 先计算在试销成功与失败两种情况下, 进行大批量生产与销售时成功与失败的各 自概率,再画出决策树按 EMV 准则确定最优决策。 十三、某航空公司在 A 市到 B 市的航线上用波音 737 客机执行飞行任务。 已知该机有效载客量为 138 人。按民用航空有关条例,旅客因有事或误机,机票 可免费改签一次,也有在飞机起飞前退票的。为避免由此发生的空座损失,该航 空公司决定每个航班超量售票(即每班售出票数为 138+S 张) 。但由此会发生持 票登机旅客多于座位数的情况,这种情况下,航空公司规定,对超员旅客愿改乘 本公司后续航班的,机票免费(即退回原机票款) ;若换乘其他航空公司航班的, 按机票价的 150%退款。据统计前一类旅客(改乘本公司)占超员中的 80%,后 一类(换乘他公司)占 20%。又据该公司长期统计,每个航班旅客退票和改签发 生的人数 i 的概率 p(i)如表 3 所示。
OBJECTIVE FUNCTION VALUE 1) 19923.08 VARIABLE X1 X2 X3 X4 ROW 2) VALUE 230.769226 100.000000 1238.461548 0.000000 SLACK OR SURPLUS 0.000000 REDUCED COST 0.000000 0.000000 0.000000 4.384615 DUAL PRICES 1.384615
1
40 30 5 10 60 40 6 40 80 50 7 70 D 20 C
60
A
20 50
2
B
70 40
3
4
30
十.一双代号网络计划如图,图中箭线下不带括弧的数值表示正常工作时间,括 弧内的数值表示最短工作时间,箭线上的数值表示直接费率(赶工单位时间增加 的费用) ,箭线上没有数字表示该工作不能赶工(即在现有条件下不能缩短工作 时间) 。设起始时间为 0,要求:
要求:1. 确定 c1 , c 2 , c3 , b1 , b2 , a11 , a12 , a13 , a 21 , a 22 , a 23 的值; 2. 当 t 2 =0 时, t1 在什么范围内变化上述最优解不变; 3. 当 t1 =0 时, t 2 在什么范围内变化上述最优基不变。 四、某公司准备以甲、乙、丙三种原料生产 A、B、C、D 四种型号的产品, 每一单位产品对各原料的消耗系数、价格系数及原料成本等已知条件如下表:
C4 4(3) A 4
4
E2 3(2) G7 3(2)
1
2
6
7
D9 3(2) B8 8(6)
5
F3 4(2) H9 4(3)
3
(1) 对上述网络计划进行审查时,发现少了一项工作 M,它的紧前工作为 A, 紧后工作为 G,M 工作所需时间为 5 天,且不能赶工。画出增加 M 后的网络计 划(可在原图上添加) ; (2) 在图上标出(增加 M 后)正常工作时间下的关键线路(用双线或其它色 笔)并写出以下时间参数 ①工作D的最早完成时间EF 2-5 = ②工作H的最迟开始时间LS 3-7 = ③工作E的自由时差FF 4-6 = ④工作A的总时差TF 1-2 = ⑤此时的计算工期= (3) 如果要求工期比原计划提前 2 天,并要求以尽可能小的总费用实现该工 期,哪些工作应赶工,赶工几天? 调整后该网络计划有几条关键线路(要求具 体说明调整的过程和调整后各条关键线路) 十二、某施工单位提交的一项目的网络计划如下图所示,箭线下面的数字为 该工作(工序)的正常工作时间(天) ,要求工期 18 天。
表3 i p(i) 0.06 5 0.04 6 0.03 7 0.02 8 0.01
试确定该航空公司从 A 市到 B 市的航班每班应多售出的机票张数 S,使预期的 收益最大。 九、 某汽车公司有两家汽车配件制造厂 A 和 B, 负责向两个服务配送中心 C 和 D 供应汽车配件。运送的道路网络及各路段的允许通过容量如下图所示。设 配件制造厂的供应数量无限制,求向 C、D 的供应量最大的运送方案和相应的最 大供应量(求解的主要过程可在图上标出) 。
产品 原料 甲 乙 丙 单位产品价格 (百元/公斤) A 1 .5 4 2 45 B 2 1 3 35 C 4 2 1 40 D 3 1 2 30 原料成本 (百元/公斤) 4 5 2 原料限量 (公斤) 5500 3500 2000
1.为解决“在现有原料量限制下,如何安排A、B、C、D四种产品的产量, 使总利润(这里利润简化为销售收入与原料成本之差)最大”这一问题,可建立 一线性规划模型,令x 1 、x 2 、x 3 、x 4 依次表示各型号产品的计划产量,试列出这 个模型,并记该模型为模型 1; 2.利用一解线性规划的程序解上述问题(模型 1) ,得到的部分结果如下:
2
C 5
4
A
1
4 E6
G 8
6
3
B
3
H D 6
5
3
1.监理工程师在审查该图时发现工作 D 的紧前工作除 B 外还应有 A,请在 图中把这一关系正确表示出来,并指出该网络计划的关键线路(在图上用双线或 色笔标出)和(计算)工期; 2.当上述网络计划尚未实施时,建设单位提出需增加工作 M,它的紧前工 作为 A 和 B,紧后工作为 E 和 G,M 工作所需时间为 9 天。画出增加 M 后的网 络计划,并指出此时的关键线路(在图上用双线或色笔标出)和(计算)工期; 3.增加工作 M 后,如工期仍要求 18 天,施工单位经分析后,考虑有些工 作可以适当赶工,并估算出赶工 1 天所需增加的费用(直接费率) ,如下表所示 (表中未列出的工作不能赶工) :
工作名称 正常时间 最短时间 直接费率 (百元/天)
A B C D E G
4 3 5 6 6 8
2 2 4 4 4 7
6 3 2 1 2 3
给出使工期仍为 18 天且增加赶工费最少的方案 (要求写出每步调整的工作, 调整的天数及最后方案的网络计划, 并在最后方案的网络计划中标出关键线路) 。