必修四第一章三角函数测试题(含答案)
必修4第一章三角函数同步练习及答案
第一章 三角函数§1.1 任意角和弧度制一、选择题1.若α是第一象限角,则下列各角中一定为第四象限角的是 ( ) (A) 90°-α (B) 90°+α (C)360°-α (D)180°+α2.终边与坐标轴重合的角α的集合是 ( ) (A){α|α=k ·360°,k ∈Z} (B){α|α=k ·180°+90°,k ∈Z} (C){α|α=k ·180°,k ∈Z} (D){α|α=k ·90°,k ∈Z}3.若角α、β的终边关于y 轴对称,则α、β的关系一定是(其中k ∈Z ) ( ) (A) α+β=π (B) α-β=2π(C) α-β=(2k +1)π (D) α+β=(2k +1)π 4.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为 ( )(A)3π (B)32π (C)3 (D)25.将分针拨快10分钟,则分针转过的弧度数是 ( ) (A)3π(B)-3π (C)6π (D)-6π *6.已知集合A ={第一象限角},B ={锐角},C ={小于90°的角},下列四个命题:①A =B =C ②A ⊂C ③C ⊂A ④A ∩C =B ,其中正确的命题个数为 ( ) (A)0个 (B)2个 (C)3个 (D)4个 二.填空题7.终边落在x 轴负半轴的角α的集合为 ,终边在一、三象限的角平分线上的角β的集合是 . 8. -1223πrad 化为角度应为 . 9.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的 倍. *10.若角α是第三象限角,则2α角的终边在 ,2α角的终边在 . 三.解答题11.试写出所有终边在直线x y 3-=上的角的集合,并指出上述集合中介于-1800和1800之间的角.12.已知0°<θ<360°,且θ角的7倍角的终边和θ角终边重合,求θ.13.已知扇形的周长为20 cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少? *14.如下图,圆周上点A 依逆时针方向做匀速圆周运动.已知A 点1分钟转过θ(0<θ<π)角,2分钟到达第三象限,14分钟后回到原来的位置,求θ.§1.2.1.任意角的三角函数一.选择题1.函数y =|sin |sin x x +cos |cos |x x +|tan |tan x x的值域是 ( )(A){-1,1} (B){-1,1,3} (C) {-1,3} (D){1,3} 2.已知角θ的终边上有一点P (-4a ,3a )(a ≠0),则2sin θ+cos θ的值是 ( )(A) 25 (B) -25 (C) 25或 -25(D) 不确定3.设A 是第三象限角,且|sin 2A |= -sin 2A ,则2A是 ( )(A) 第一象限角 (B) 第二象限角 (C) 第三象限角 (D) 第四象限角4. sin2cos3tan4的值 ( ) (A)大于0 (B)小于0 (C)等于0 (D)不确定5.在△ABC 中,若cos A cos B cos C <0,则△ABC 是 ( )(A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)锐角或钝角三角形 *6.已知|cos θ|=cos θ, |tan θ|= -tan θ,则2θ的终边在 ( )(A)第二、四象限 (B)第一、三象限 (C)第一、三象限或x 轴上 (D)第二、四象限或x 轴上 二.填空题 7.若sin θ·cos θ>0, 则θ是第 象限的角;8.求值:sin(-236π)+cos 137π·tan4π -cos 133π= ;9.角θ(0<θ<2π)的正弦线与余弦线的长度相等且符号相同,则θ的值为 ; *10.设M =sin θ+cos θ, -1<M <1,则角θ是第 象限角. 三.解答题11.求函数y =lg(2cos x12.求:13sin 330tan()319cos()cos6906ππ︒⋅--⋅︒的值.13.已知:P (-2,y )是角θ终边上一点,且sin θ= -55,求cos θ的值. *14.如果角α∈(0,2π),利用三角函数线,求证:sin α<α<tan α.数学必修(4)第一章、三角函数超辉数学- 3 - 同步练习§1.2.2 同角三角函数的基本关系式一、选择题1.已知sin α=45,且α为第二象限角,那么tan α的值等于( )(A)34(B)43- (C)43(D)43-2.已知sin αcos α=81,且4π<α<2π,则cos α-sin α的值为( )(A)23 (B)43(C) (D)±23 3.设是第二象限角,则sin cos αα ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1-4.若tan θ=31,π<θ<32π,则sin θ·cos θ的值为( )(A)±310 (B)3105.已知sin cos 2sin 3cos αααα-+=51,则tan α的值是( )(A)±83 (B)83(C)83- (D)无法确定*6.若α是三角形的一个内角,且sin α+cos α=32,则三角形为( ) (A)钝角三角形 (B)锐角三角形 (C)直角三角形(D)等腰三角形二.填空题7.已知sin θ-cos θ=12,则sin 3θ-cos 3θ= ;8.已知tan α=2,则2sin 2α-3sin αcos α-2cos 2α= ;9.(α为第四象限角)= ;*10.已知cos (α+4π)=13,0<α<2π,则sin(α+4π)= .三.解答题11.若sin x = 35m m -+,cos x =425mm -+,x ∈(2π,π),求tan x 。
必修四第一章 三角函数 精选练习题(有答案和解析)
必修四第一章 三角函数精选练习题一、选择题1.在0°~360°的范围内,与-510°终边相同的角是( ) A .330° B .210° C .150° D .30°B [因为-510°=-360°×2+210°,因此与-510°终边相同的角是210°.] 2.cos 420°的值为( ) A .12 B .-12C .32D .-32A [cos 420°=cos(360°+60°)=cos 60°=12,故选A.]3.已知角θ的终边上一点P (a ,-1)(a ≠0),且tan θ=-a ,则sin θ的值是( ) A .±22 B .-22 C .22 D .-12B [由题意得tan θ=-1a =-a , 所以a 2=1, 所以sin θ=-1a 2+(-1)2=-22.] 4.一个扇形的弧长与面积的数值都是6,这个扇形中心角的弧度数是( ) A .1 B .2 C .3 D .4C [设扇形的半径为r ,中心角为α,根据扇形面积公式S =12lr 得6=12×6×r ,所以r =2, 所以α=l r =62=3.]5.已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,则sin θ-cos θ的值为( ) A .23 B .13 C .-23 D .-13 C [∵已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,∴1+2sin θcos θ=169,∴2sin θcos θ=79,故sin θ-cos θ=-(sin θ-cos θ)2 =-1-2sin θ·cos θ =-23,故选C.]6.函数y =tan(sin x )的值域是( ) A .⎣⎢⎡⎦⎥⎤-π4,π4B .⎣⎢⎡⎦⎥⎤-22,22C .[]-tan 1,tan 1D .[]-1,1C [sin x ∈[-1,1],又-π2<-1<1<π2,且y =tan x 在⎝ ⎛⎭⎪⎫-π2,π2上是增函数,所以y min =tan(-1)=-tan 1,y max =tan 1.]7.将函数y =sin ⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移π3个单位,得到的图象对应的解析式为( )A .y =sin 12xB .y =sin ⎝ ⎛⎭⎪⎫12x -π2C .y =sin ⎝ ⎛⎭⎪⎫12x -π6D .y =sin ⎝ ⎛⎭⎪⎫2x -π6 C [函数y =sin ⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标伸长到原来的2倍可得y =sin ⎝ ⎛⎭⎪⎫12x -π3,再将所得的图象向左平移π3个单位,得到函数y =sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x +π3-π3=sin ⎝ ⎛⎭⎪⎫12x -π6.] 8.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间是( ) A .⎣⎢⎡⎦⎥⎤0,π8B .⎣⎢⎡⎦⎥⎤π8,π2C .⎣⎢⎡⎦⎥⎤0,3π8D .⎣⎢⎡⎦⎥⎤3π8,π2C [令2k π-π2≤2x -π4≤2k π+π2(k ∈Z )得k π-π8≤x ≤k π+3π8(k ∈Z ),k =0时,x∈⎣⎢⎡⎦⎥⎤-π8,3π8,又x ∈⎣⎢⎡⎦⎥⎤0,π2, ∴x ∈⎣⎢⎡⎦⎥⎤0,3π8,故选C.]9.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π4B .y =2sin ⎝ ⎛⎭⎪⎫2x -π4或y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 C .y =2sin ⎝ ⎛⎭⎪⎫2x +3π4D .y =2sin ⎝ ⎛⎭⎪⎫2x -3π4C [由图可知A =2,4⎝ ⎛⎭⎪⎫π8+π8=2πω得ω=2,且2×⎝ ⎛⎭⎪⎫-π8+φ=π2+2k π(k ∈Z )∴φ=2k π+3π4(k ∈Z ), 又∵|φ|<π, ∴φ=3π4,故选C.]10.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )C [∵P 0(2,-2),∴∠P 0Ox =π4.按逆时针转时间t 后得 ∠POP 0=t ,∠POx =t -π4. 此时P 点纵坐标为2sin ⎝ ⎛⎭⎪⎫t -π4,∴d =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫t -π4.当t =0时,d =2,排除A ,D ; 当t =π4时,d =0,排除B.]11.设α是第三象限的角,且⎪⎪⎪⎪⎪⎪cos α2=-cos α2,则α2的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 B [∵α是第三象限的角, ∴π+2k π<α<3π2+2k π,k ∈Z . ∴π2+k π<α2<3π4+k π,k ∈Z . ∴α2在第二或第四象限. 又∵⎪⎪⎪⎪⎪⎪cos α2=-cos α2,∴cos α2<0.∴α2是第二象限的角.]12.化简1+2sin (π-2)·cos (π-2)得( )A .sin 2+cos 2B .cos 2-sin 2C .sin 2-cos 2D .±cos 2-sin 2 C [1+2sin (π-2)·cos (π-2) =1+2sin 2·(-cos 2) =(sin 2-cos 2)2, ∵π2<2<π,∴sin 2-cos 2>0. ∴原式=sin 2-cos 2.]13.同时具有下列性质的函数可以是( ) ①对任意x ∈R ,f (x +π)=f (x )恒成立; ②图象关于直线x =π3对称; ③在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.A .f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6C .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3D .f (x )=cos ⎝ ⎛⎭⎪⎫2x -π6B [依题意知,满足条件的函数的周期是π,图象以直线x =π3为对称轴,且在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.对于A 选项,函数周期为4π,因此A 选项不符合;对于C 选项,f ⎝ ⎛⎭⎪⎫π3=-1,但该函数在⎣⎢⎡⎦⎥⎤-π6,π3上不是增函数,因此C 选项不符合;对于D 选项,f ⎝ ⎛⎭⎪⎫π3≠±1,即函数图象不以直线x =π3为对称轴,因此D 选项不符合.综上可知,应选B.]14.已知函数f (x )=-2tan(2x +φ)(|φ|<π),若f ⎝ ⎛⎭⎪⎫π16=-2,则f (x )的一个单调递减区间是( )A .⎝ ⎛⎭⎪⎫3π16,11π16B .⎝ ⎛⎭⎪⎫π16,9π16C .⎝ ⎛⎭⎪⎫-3π16,5π16D .⎝ ⎛⎭⎪⎫π16,5π16 A [由f ⎝ ⎛⎭⎪⎫π16=-2得-2tan ⎝ ⎛⎭⎪⎫π8+φ=-2,所以tan ⎝ ⎛⎭⎪⎫π8+φ=1,又|φ|<π,所以φ=π8,f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π8, 令k π-π2<2x +π8<k π+π2,k ∈Z 得 k π2-5π16<x <k π2+3π16,k ∈Z .可得f (x )的单调递减区间是⎝ ⎛⎭⎪⎫k π2-5π16,k π2+3π16,k ∈Z ,令k =1,可得f (x )的一个单调递减区间是⎝ ⎛⎭⎪⎫3π16,11π16.]二、填空题15.对于锐角α,若tan α=34,则cos 2α+2sin 2α=________. 6425 [由题意可得:cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=6425.]16.已知sin α=13,且α是第二象限角,那么cos(3π-α)的值为________. 223[cos(3π-α)=-cos α=-(-1-sin 2α)=1-⎝ ⎛⎭⎪⎫132=223.] 17.函数y =3-tan x 的定义域是________.⎝ ⎛⎦⎥⎤k π-π2,k π+π3(k ∈Z ) [作出三角数线如图,由函数可知3-tan x ≥0中tan x ≤3,而3对应角为π3,由图中阴影部分可得定义域为⎝ ⎛⎦⎥⎤k π-π2,k π+π3(k ∈Z ).]18.函数y =tan ⎝ ⎛⎭⎪⎫2x -π4的定义域为________.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π8+k π2,k ∈Z[2x -π4≠π2+k π,即x ≠3π8+k π2,k ∈Z .]19.若函数y =sin(ωx +φ)(ω>0)的部分图象如图所示,则ω=________.4 [观察图象可知函数y =sin(ωx +φ)的半个周期为π4, 所以2πω=π2,ω=4.]20.已知函数f (x )=sin(ωx +φ)(ω>0),若将f (x )的图象向左平移π3个单位长度所得的图象与将f (x )的图象向右平移π6个单位长度所得的图象重合,则ω的最小值为________.4 [由条件可知,图象变换后的解析式分别为y =sin ⎝ ⎛⎭⎪⎫ωx +ωπ3+φ和y =sin ⎝ ⎛⎭⎪⎫ωx -ωπ6+φ,由于两图象重合,所以ωπ3+φ=-ωπ6+φ+2k π(k ∈Z ). 即ω=4k (k ∈Z ),由ω>0,∴ωmin =4.]21.一扇形的圆心角为2弧度,记此扇形的周长为C ,面积为S ,则C -1S 的最大值为________.4 [由已知可得弧长l =2r ,周长C =4r ,面积S =12×lr =r 2,∴C -1S =4r -1r 2=-1r 2+4r =-⎝ ⎛⎭⎪⎫1r -22+4,故C -1S 的最大值为4.] 22.已知角α终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角α的最小正值是________.5π3 [角α终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,即⎝ ⎛⎭⎪⎫12,-32, tan α=-3212=-3,且α为第四象限角,所以角α的最小正值是5π3.]23.函数y =2+cos x2-cos x(x ∈R )的最大值为________.3 [由题意有y =42-cos x-1,因为-1≤cos x ≤1,所以1≤2-cos x ≤3,则43≤42-cos x ≤4,由此可得13≤y ≤3,于是函数y =2+cos x 2-cos x (x ∈R )的最大值为3.]24.对于函数f (x )=⎩⎨⎧sin x ,sin x ≤cos x ,cos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+k π(k ∈Z )时,该函数取得最小值-1; ③该函数的图象关于x =5π4+2k π(k ∈Z )对称; ④当且仅当2k π<x <π2+2k π(k ∈Z )时,0<f (x )≤22. 其中正确命题的序号是________. ③④ [作出函数f (x )的图象如图所示:由图象可知f (x )为周期函数,T =2π,①错误;当x =2k π+π或x =2k π+3π2时,取最小值-1,故②错误;x =π4+2k π(k ∈Z )和x =5π4+2k π(k ∈Z )都是该图象的对称轴,故③正确; 当2k π<x <π2+2k π(k ∈Z )时,f (x )图象在x 轴上方且f (x )max =22. 故0<f (x )≤22.故④正确.]三、解答题25.已知sin(π-α)·cos(-8π-α)=60169,且α∈⎝ ⎛⎭⎪⎫π4,π2,求sin α与cos α的值.[解] 由已知条件可得sin αcos α=60169,∴(sin α+cos α)2=1+2sin αcos α=1+120169=289169, (sin α-cos α)2=1-2sin αcos α=1-120169=49169. ∵x ∈⎝ ⎛⎭⎪⎫π4,π2,∴sin α>cos α, ∴⎩⎪⎨⎪⎧sin α+cos α=1713,sin α-cos α=713,解方程组得sin α=1213,cos α=513.26.(1)已知角α的终边经过点P (4,-3),求2sin α+cos α的值; (2)已知角α的终边经过点P (4a ,-3a )(a ≠0),求2sin α+cos α的值; (3)已知角α终边上一点P 到x 轴的距离与到y 轴的距离之比为3∶4,求2sin α+cos α的值.[解] (1)∵α终边过点P (4,-3),∴r =|OP |=5,x =4,y =-3, ∴sin α=y r =-35,cos α=x r =45, ∴2sin α+cos α=2×⎝ ⎛⎭⎪⎫-35+45=-25.(2)∵α终边过点P (4a ,-3a )(a ≠0), ∴r =|OP |=5|a |,x =4a ,y =-3a . 当a >0时,r =5a ,sin α=y r =-35, cos α=x r =45, ∴2sin α+cos α=-25;当a <0时,r =-5a ,∴sin α=y r =35, cos α=x r =-45, ∴2sin α+cos α=25.综上,2sin α+cos α=-25或25. (3)当点P 在第一象限时,sin α=35, cos α=45,2sin α+cos α=2; 当点P 在第二象限时,sin α=35, cos α=-45,2sin α+cos α=25;当点P 在第三象限时,sin α=-35, cos α=-45,2sin α+cos α=-2; 当点P 在第四象限时,sin α=-35, cos α=45,2sin α+cos α=-25.27.是否存在角α,β,α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.[解] 假设存在角α,β满足条件,则{sin α=2sin β, ①3cos α=2cos β, ② 由①2+②2得sin 2α+3cos 2α=2. ∴cos 2α=12, ∴cos α=22.∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α=±π4.当α=π4时,代入②得:cos β=32, ∵0<β<π,∴β=π6,代入①可知成立; 当α=-π4时,代入②得cos β=32,∵0<β<π,∴β=π6,此时代入①式不成立,故舍去. ∴存在α=π4,β=π6满足条件.28.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1. (1)求函数f (x )的最大值,并求取得最大值时x 的值; (2)求函数f (x )的单调递增区间.[解] (1)当2x +π3=2k π+π2,则x =k π+π12(k ∈Z )时,f (x )max =3. (2)当2k π-π2≤2x +π3≤2k π+π2,即k π-5π12≤x ≤k π+π12时,函数f (x )为增函数.故函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ). 29.如图是函数y =A sin(ωx +φ)+k (A >0,ω>0,|φ|<π2)的一段图象.(1)求此函数解析式;(2)分析一下该函数是如何通过y =sin x 变换得来的? [解] (1)由图象知A =-12-⎝ ⎛⎭⎪⎫-322=12,k =-12+⎝ ⎛⎭⎪⎫-322=-1,T =2×⎝ ⎛⎭⎪⎫2π3-π6=π,∴ω=2πT =2.∴y =12sin(2x +φ)-1. 当x =π6,2×π6+φ=π2,∴φ=π6. ∴所求函数解析式为y =12sin ⎝ ⎛⎭⎪⎫2x +π6-1.(2)把y =sin x 向左平移π6个单位得到y =sin ⎝ ⎛⎭⎪⎫x +π6,然后纵坐标保持不变、横坐标缩短为原来的12倍,得到y =sin ⎝ ⎛⎭⎪⎫2x +π6,再横坐标保持不变,纵坐标变为原来的12倍,得到y =12sin ⎝ ⎛⎭⎪⎫2x +π6,最后把函数y =12sin ⎝ ⎛⎭⎪⎫2x +π6的图象向下平移1个单位,得到y=12sin ⎝ ⎛⎭⎪⎫2x +π6-1的图象.30.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象在y 轴上的截距为1,它在y 轴右侧的第一个最大值点和最小值点分别为(x 0,2)和(x 0+3π,-2).(1)求f (x )的解析式;(2)将f (x )的图象上的所有点的横坐标缩短到原来的13倍(纵坐标不变),然后再将所得的图象向右平移π3个单位,得到函数g (x )的图象,写出函数g (x )的解析式,并用五点作图的方法画出g (x )在长度为一个周期的闭区间上的图象.[解] (1)由f (x )=A sin(ωx +φ)在y 轴上的截距为1,最大值为2,得1=2sin φ,所以sin φ=12.又|φ|<π2,所以φ=π6.由题意易知T =2[(x 0+3π)-x 0]=6π, 所以ω=2πT =13, 所以f (x )=2sin ⎝ ⎛⎭⎪⎫x 3+π6.(2)将f (x )的图象上的所有点的横坐标缩短到原来的13倍(纵坐标不变),得到y =2sin ⎝ ⎛⎭⎪⎫x +π6的图象;再把所得图象向右平移π3个单位,得到g (x )=2sin ⎝ ⎛⎭⎪⎫x -π3+π6=2sin ⎝ ⎛⎭⎪⎫x -π6的图象.列表:。
(好题)高中数学必修四第一章《三角函数》测试(包含答案解析)
一、选择题1.将函数sin()y x ϕ=+的图像上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将所得图像向左平移12π个单位后得到的函数图像关于原点中心对称,则sin 2ϕ=( )A .12-B .12C .3-D .3 2.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .83.我国著名数学家华罗庚先生曾倡导“0.618优选法”,0.618是被公认为最具有审美意义的比例数字,我们称为黄金分割.“0.618优选法”在生产和科研实践中得到了非常广泛的应用,华先生认为底与腰之比为黄金分割比51510.618⎛⎫--≈ ⎪ ⎪⎝⎭的黄金三角形是“最美三角形”,即顶角为36°的等腰三角形.例如,中国国旗上的五角星就是由五个“最美三角形”与一个正五边形组成的.如图,在其中一个黄金ABC 中,黄金分割比为BCAC.试根据以上信息,计算sin18︒=( )A 51- B 51- C 51+ D 354.设函数()32sin cos f x x x x +,给出下列结论: ①()f x 的最小正周期为π ②()y f x =的图像关于直线12x π=对称③()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减④把函数2cos2y x =的图象上所有点向右平移12π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的编号是( ). A .①④B .②④C .①②④D .①②③5.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图,将()y f x =的图象向右平移π6个单位长得到函数y g x 的图象,则()g x 的单调增区间为( )A .()ππ2π,2π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z B .()π5π2π,2π36k k k ⎡⎤++∈⎢⎥⎣⎦Z C .()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z D .()π5ππ,π36k k k ⎡⎤++∈⎢⎥⎣⎦Z 6.使函数()3)cos(2)f x x x θθ=+++是偶函数,且在0,4⎡⎤⎢⎥⎣⎦π上是减函数的θ的一个值是( ) A .6π B .3π C .23π D .56π7.有以下四种变换方式: ①向左平移12π个单位长度,再将每个点的横坐标伸长为原来的2倍;②向左平移6π个单位长度,再将每个点的横坐标伸长为原来的2倍; ③再将每个点的横坐标伸长为原来的2倍,再向左平移6π个单位长度; ④再将每个点的横坐标伸长为原来的2倍,再向右平移6π个单位长度; 其中能将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象变为函数sin y x =图象的是( )A .①③B .②③C .①④D .②④8.:sin 31p x x +>的一个充分不必要条件是( ) A .02x π<<B .203x π<<C .32x ππ-<<D .566x ππ<<9.已知函数()tan()0,2f x x πωϕωϕ⎛⎫=+≠<⎪⎝⎭,点2,03π⎛⎫⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是其相邻的两个对称中心,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则ϕ=( ) A .6π B .6π-C .3π D .3π-10.将函数()3sin()2f x x =--图象上每一点的纵坐标不变,横坐标缩短为原来的13,再向右平移29π个单位得到函数()g x 的图象,若()g x 在区间,18πθ⎡⎤-⎢⎥⎣⎦上的最大值为1,则θ的最小值为( )A .12πB .6πC .3π D .18π 11.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题:①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .112.函数22y cos x sinx =- 的最大值与最小值分别为( ) A .3,-1 B .3,-2 C .2,-1D .2,-2二、填空题13.某地区每年各个月份的月平均最高气温近似地满足周期性规律,因此第n 个月的月平均最高气温()G n 可近似地用函数()()cos G n A n k ωϕ=++来刻画,其中正整数n 表示月份且[]1,12n ∈,例如1n =表示1月份,n 和k 是正整数,0>ω,()0,πϕ∈.统计发现,该地区每年各个月份的月平均最高气温有以下规律:①该地区月平均最高气温最高的7月份与最低的1月份相差30摄氏度; ②1月份该地区月平均最高气温为3摄氏度,随后逐月递增直到7月份达到最高; ③每年相同的月份,该地区月平均最高气温基本相同. 根据已知信息,得到()G n 的表达式是______. 14.将函数()4cos 2f x x π⎛⎫=⎪⎝⎭与直线()1g x x =-的所有交点从左到右依次记为125,,...,A A A ,若P 点坐标为()0,3,则125...PA PA PA +++=____.15.已知5tan22α=,则sin()2πα+=_______. 16.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度15的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60和30,第一排和最后一排的距离为106米(如图所示),旗杆底部与第一排在一个水平面上,若国歌长度约为50秒,升旗手应以__________(米 /秒)的速度匀速升旗.17.函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移3π个单位后与函数()f x 的图象重合,则下列结论正确的是______.①()f x 的一个周期为2π-; ②()f x 的图象关于712x π=-对称; ③76x π=是()f x 的一个零点; ④()f x 在5,1212ππ⎛⎫- ⎪⎝⎭单调递减;18.给出下列4个命题:①函数2cos 32y x π⎛⎫=+ ⎪⎝⎭是奇函数;②函数y =sin (2x +3π)的图象关于点(12π,0)成中心对称; ③x =8π是函数y =sin (2x +54π)的一条对称轴方程;④存在实数α,使得3242πα⎛⎫+= ⎪⎝⎭.把你认为正确命题的序号都填在横线上____.19.关于函数()sin |||sin |f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增; ③()f x 在[],ππ-有4个零点;④()f x 的最大值为2; 其中所有正确结论的编号是_________.20.函数251612()sin (0)236x x f x x x x ππ-+⎛⎫=--> ⎪⎝⎭的最小值为_______. 三、解答题21.已知()2sin 216f x x a π⎛⎫=-++⎪⎝⎭(a 为常数). (1)求()f x 的最小正周期和单调递增区间; (2)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最大值为4,求a 的值. 22.已知函数()()sin (0,0,0)2f x A x A πωϕωϕ=+>><<的部分图象如图所示.(1)求()f x 的解析式;(2)若将函数()f x 的图象上各点的横坐标缩短到原来的一半,然后再向左平移12π个单位长度,得到()g x 的图象,求函数()g x 的单调递增区间. 23.已知函数()22sin cos 2cos ,x x R f x x x =+∈.(1)求()f x 的最小正周期;(2)求()f x 在[]0,π上的单调递减区间; (3)令()18g x f x π⎛⎫=+- ⎪⎝⎭,若()2g x a <-对于,63x ππ⎡⎤∈-⎢⎥⎣⎦恒成立,求实数a 的取值范围.24.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><的部分图象如下图所示.(1)求函数()f x 的解析式,并写出函数()f x 的单调递增区间; (2)将函数()f x 图象上所有点的横坐标缩短到原来的14(纵坐标不变),再将所得的函数图象上所有点向左平移02m m π⎛⎫<< ⎪⎝⎭个单位长度,得到函数()g x 的图象.若函数()g x 的图象关于直线512x π=对称,求函数()g x 在区间7,1212ππ⎡⎤⎢⎥⎣⎦上的值域. 25.已知02ω<<,函数()sin()3f x x πω=+,且2()().3f x f x π=-(1)求()f x 的最小正周期及()f x 的对称中心; (2)若()f x 在[,]t t -上单调递增,求t 的最大值. 26.函数()cos()(0)f x x ωφω=+>的部分图像如图所示.(1)求()f x 的表达式; (2)若[1,2]x ∈,求()f x 的值域;(3)将()f x 的图像向右平移112个单位后,再将所得图像横坐标伸长到原来的2倍,纵坐标不变,得到函数()y g x =的图像,求()g x 的单调递减区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先根据条件写出图像变换后的函数解析式,然后根据图像关于原点中心对称可知函数为奇函数,由此得到ϕ的表示并计算出sin 2ϕ的结果. 【详解】因为变换平移后得到函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由条件可知sin 26y x πϕ⎛⎫=++ ⎪⎝⎭为奇函数, 所以6k πϕπ+=,3sin 2sin 2sin 332k ππϕπ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭故选C . 【点睛】本题考查三角函数的图像变换以及根据函数奇偶性判断参数值,难度一般.正弦型函数()()sin f x A x =+ωϕ为奇函数时,k k Z ϕπ=∈,为偶函数时,2k k Z πϕπ=+∈.2.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标, 可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11 yx=-和2cosy xπ=交点的横坐标,从而通过函数图象求解.3.B解析:B【分析】先由ABC是一个顶角为36°的等腰三角形,作其底边上的高,再利用sin18sin DAC︒=∠,结合腰和底之比求其结果即可.【详解】依题意可知,黄金ABC是一个顶角为36°的等腰三角形,如图,51,BCAB ACAC-==,36BAC∠=︒,过A作AD BC⊥于D,则AD也是三角形的中线和角平分线,故1151512sin18sin2BCDCDACAC AC--︒=∠====.故选:B.【点睛】本题解题关键在于读懂题意,将问题提取出来,变成简单的几何问题,即突破结果.4.C解析:C【分析】根据题意,利用辅助角公式和两角和的正弦公式化简得()2sin(2)3f x xπ=+,根据2Tωπ=求出最小正周期即可判断①;利用整体代入法求出()y f x=的对称轴,即可判断②;利用整体代入法求出()y f x=的单调减区间,从而可得在区间2,63ππ⎡⎤⎢⎥⎣⎦上先减后增,即可判断③;根据三角函数的平移伸缩的性质和诱导公式化简,即可求出平移后函数,从而可判断④.【详解】解:函数()3cos22sin cos3cos2sin22sin(2)3f x x x x x x xπ++=+,即:()2sin(2)3f x x π=+,所以()f x 的最小正周期为222T πππω===,故①正确; 令2,32πππ+=+∈x k k Z ,解得:,122k x k Z ππ=+∈, 当0k =时,则直线12x π=为()y f x =的对称轴,故②正确; 令3222,232k x k k Z πππππ+≤+≤+∈,解得:7,1212ππππ+≤≤+∈k x k k Z , 所以()f x 的单调递减区间为:7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,当0k =时,()f x 的一个单调递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦, 则区间7,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故在区间2121,3228,6ππππ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦上先减后增,故③错误; 把函数2cos2y x =的图象上所有点向右平移12π个单位长度,得到s 2)2cos 22co 22cos 2126332sin(2y x x x x πππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-=-=+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎦⎣⎦+⎝⎭⎣即平移后得到函数()y f x =的图象,故④正确. 所以所有正确结论的编号是:①②④. 故选:C. 【点睛】关键点点睛:本题考查三角函数的图象和性质,熟练掌握正弦型函数的周期、对称轴、单调区间的求法,以及三角函数的平移伸缩是解题的关键,还考查辅助角公式、两角和的正弦公式以及诱导公式的应用,考查学生化简运算能力.5.C解析:C 【分析】根据()f x 的图象,可求出()f x 的解析式,进而根据图象平移变换规律,可得到()g x 的解析式,然后求出单调增区间即可. 【详解】由()f x 的图象,可得1A =,311ππ4126T =-,即πT =,则2ππT ω==,所以2ω=,由π16f ⎛⎫=⎪⎝⎭,可得πsin 216ϕ⎛⎫⨯+= ⎪⎝⎭,所以ππ22π62k ϕ⨯+=+()k ∈Z ,则π2π6k ϕ=+()k ∈Z , 又π2ϕ<,所以π6ϕ=,故()πsin 26f x x ⎛⎫=+ ⎪⎝⎭.将()f x 的图象向右平移π6个单位长得到函数πππsin 22sin 2666y x x ⎛⎫⎛⎫=-⨯+=- ⎪ ⎪⎝⎭⎝⎭,故函数()πsin 26g x x ⎛⎫=- ⎪⎝⎭, 令πππ2π22π262k x k -≤-≤+()k ∈Z ,解得()ππππ63k x k k -≤≤+∈Z , 所以()g x 的单调增区间为()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z . 故选:C. 【点睛】本题考查三角函数的图象性质,考查三角函数图象的平移变换,考查三角函数的单调性,考查学生的推理能力与计算求解能力,属于中档题.6.B解析:B 【解析】1())cos(2)2()cos(2))2sin(2)226f x x x x x x πθθθθθ=+++=+++=++,由于()f x 为偶函数,则(0)2sin()26f πθ=+=±,sin()1,662k πππθθπ+=±+=+,3k πθπ=+,当0k =时,3πθ=,()2sin(2)2sin(2)362f x x x πππ=++=+2cos2x =,当[0,]4x π∈时,2[0,]2x π∈,()2cos2f x x =为减函数,符合题意,所以选B.7.A解析:A 【分析】直接利用三角函数图像的平移变换和伸缩变换求出结果. 【详解】对于①:sin 26y x π⎛⎫=-⎪⎝⎭向左平移12π个单位长度得到sin 2+=sin2126y x x ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,再将每个点的横坐标伸长为原来的2倍,得到sin y x =;故①正确;对于②:sin 26y x π⎛⎫=-⎪⎝⎭向左平移6π个单位长度得到sin 2+=sin 2+666y x x πππ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=+ ⎪⎝⎭;故②错误;对于③:sin 26y x π⎛⎫=- ⎪⎝⎭将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=-⎪⎝⎭,再向左平移6π个单位长度,得到sin sin 66y x x ππ⎛⎫=+-= ⎪⎝⎭;故③正确; 对于③:sin 26y x π⎛⎫=-⎪⎝⎭将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=-⎪⎝⎭,再向右平移6π个单位长度,得到sin sin()663y x x πππ⎛⎫=--=- ⎪⎝⎭;故④错误; 故选:A 【点睛】关于三角函数图像平移伸缩变换:先平移的话,如果平移a 个单位长度那么相位就会改变ωa ;而先伸缩势必会改变ω大小,这时再平移要使相位改变值仍为ωa ,那么平移长度不等于a .8.A解析:A 【分析】首先求解命题p 表示的集合,再根据集合关系表示充分不必要条件,判断选项. 【详解】:sin 2sin 13p x x x π⎛⎫+=+> ⎪⎝⎭,即1sin 32x π⎛⎫+> ⎪⎝⎭,解得:522,636k x k k Z πππππ+<+<+∈, 得22,62k x k k Z ππππ-+<<+∈,设22,62M x k x k k Z ππππ⎧⎫=-+<<+∈⎨⎬⎩⎭经分析,只有选项A 的集合是集合M 的真子集, 故选:A 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.9.A解析:A 【分析】由正切函数的图象性质,得出相邻两个对称中心之间的距离为半个周期,可求出T ,然后由T πω=求出ω,然后再代点讨论满足题意的ϕ,即可得出答案. 【详解】由正切函数图象的性质可知相邻两个对称中心的距离为2T ,得72263T πππ⎛⎫=-= ⎪⎝⎭. 则由1T πω==得1ω=,即得1ω=±. 由2πϕ<,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则可得1ω=-, ∴()()()tan tan f x x x ϕϕ=-+=--. 由2,32k k Z ππϕ-=∈得2,32k k Z ππϕ=-∈,因2πϕ<,可得6π=ϕ或3π-,当3πϕ=-时,()tan +3f x x π⎛⎫=- ⎪⎝⎭, 由+,232k x k k Z πππππ-<<+∈,得5,66k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由54,63ππ⎛⎫ ⎪⎝⎭7,66ππ⎛⎫ ⎪⎝⎭⊄,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上不是单调递减, 所以3πϕ=-不满足题意;当6π=ϕ时,()tan 6f x x π⎛⎫=-- ⎪⎝⎭,由,262k x k k Z πππππ-<-<+∈,得2,33k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为2,,33k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由25,3354,63ππππ⎛⎫⊂⎛⎫ ⎪⎝ ⎪⎝⎭⎭,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上单调递减,所以6π=ϕ满足题意; 综上可得:6π=ϕ满足题意. 故选:A.【点睛】关键点睛:正切型函数的对称中心和单调性的问题,通常采用代入检验法,注意正切函数的对称中心为0,2k k Z π⎛⎫∈⎪⎝⎭,. 10.D解析:D 【分析】由题先求出()3sin 323g x x π⎛⎫=+- ⎪⎝⎭,可得3,3363x πππθ⎡⎤+∈+⎢⎥⎣⎦,要满足题意,则332ππθ+≥,即可求出.【详解】将()f x 横坐标缩短为原来的13得到3sin(3)2y x =--,再向右平移29π个单位得到()23sin 323sin 3293g x x x ππ⎡⎤⎛⎫⎛⎫---=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=,,18x πθ⎡⎤∈-⎢⎥⎣⎦,则3,3363x πππθ⎡⎤+∈+⎢⎥⎣⎦,要使()g x 在区间,18πθ⎡⎤-⎢⎥⎣⎦上的最大值为1,则332ππθ+≥,即18πθ≥,则θ的最小值为18π. 故选:D. 【点睛】本题考查正弦型函数的性质,解题的关键是通过图象变化得出()3sin 323g x x π⎛⎫=+- ⎪⎝⎭,再根据正弦函数的性质求解.11.A解析:A 【分析】先求函数的定义域,再根据函数奇偶性定义,周期函数的定义可判断②③的正误,再根据函数解析的特征可判断④的正误,最后利用换元法可求判断①的正误. 【详解】22111()sin sin sin sin sin sin f x x x x x x x ⎛⎫⎛⎫=+-=- ⎪⎪⎝⎭⎝⎭, 由sin 0x ≠可得,x k k Z π≠∈,故函数的定义域为{}|,x x k k Z π≠∈, 所以函数的定义域关于原点对称. 又()()()222211()sin sin sin sin f x x x f x x x-=--=-=-,故()f x 为偶函数, 故②正确.又()()()221()sin sin f x x f x x πππ+=+-=+,故()f x 是周期函数且周期为π,故③正确.又()()()221()sin sin f x x f x x πππ-=--=-,故()f x 的图象关于直线2x π=对称,故④正确.令2sin t x =,则(]0,1t ∈且()1f x t t=-,因为1y t t=-为(]0,1上的增函数,故()max 0f x =,故①正确. 故选:A. 【点睛】思路点睛:对于复杂函数的性质的研究,注意先研究函数的定义域,再研究函数的奇偶性或周期性,最后再研究函数的单调性,讨论函数图象的对称性,注意根据()()f a x f x -=来讨论. 12.D解析:D 【解析】分析:将2cos x 化为21sin x -,令()sin 11x t t =-≤≤,可得关于t 的二次函数,根据t 的取值范围,求二次函数的最值即可.详解:利用同角三角函数关系化简,22cos 2sin sin 2sin 1y x x x x =-=--+ 设()sin 11x t t =-≤≤,则()()22211211y t t t t =--+=-++-≤≤,根据二次函数性质当1t =-时,y 取最大值2,当1t =时,y 取最小值2-. 故选D.点睛:本题考查三角函数有关的最值问题,此类问题一般分为两类,一种是解析式化为2sin sin y A x B x C =++的形式,用换元法求解;另一种是将解析式化为()sin y A x k ωϕ=++的形式,根据角的范围求解.二、填空题13.是正整数且【分析】根据最值列出等式求再根据最高点和最低点对应的月份求周期并求以及利用最高点求【详解】由题意可知解得:解得:当时得:所以的表达式是是正整数且故答案为:是正整数且【点睛】方法点睛:形如一解析:()π5π15cos 1866G n n ⎛⎫=++ ⎪⎝⎭,n 是正整数且[]1,12n ∈【分析】根据最值列出等式求,A k ,再根据最高点和最低点对应的月份求周期,并求ω,以及利用最高点求ϕ. 【详解】由题意可知()()330A k A k A k -+=⎧⎨+--+=⎩,解得:1518A k =⎧⎨=⎩,12712πω-=⋅,解得:6π=ω,当7x =时,72,6k k Z πϕπ⨯+=∈,得:726k ϕππ=-+()0,ϕπ∈,56ϕπ∴=,所以()G n 的表达式是()515cos 1866G n n ππ⎛⎫=++ ⎪⎝⎭,n 是正整数且[]1,12n ∈. 故答案为:()515cos 1866G n n ππ⎛⎫=++ ⎪⎝⎭,n 是正整数且[]1,12n ∈ 【点睛】方法点睛:形如()sin y A x k ωϕ=++ ()0,0A ω>>,一般根据最值求,A k ,利用最值,零点对应的自变量的距离求周期和ω,以及“五点法”中的一个点求ϕ.14.10【分析】由函数与直线的图象可知它们都关于点中心对称再由向量的加法运算得最后求得向量的模【详解】由函数与直线的图象可知它们都关于点中心对称所以【点睛】本题以三角函数和直线的中心对称为背景与平面向量解析:10 【分析】由函数()4cos 2f x x π⎛⎫=⎪⎝⎭与直线()1g x x =-的图象可知,它们都关于点3(1,0)A 中心对称,再由向量的加法运算得1253...5PA PA PA PA +++=,最后求得向量的模. 【详解】由函数()4cos 2f x x π⎛⎫=⎪⎝⎭与直线()1g x x =-的图象可知,它们都关于点3(1,0)A 中心对称,所以1253...5||5(010PA PA PA PA +++===. 【点睛】本题以三角函数和直线的中心对称为背景,与平面向量进行交会,考查运用数形结合思想解决问题的能力.15.【分析】先切化弦再诱导公式化简后运用余弦二倍角公式得解【详解】故答案为:【点睛】本题考查同角三角函数的基本关系诱导公式二倍角公式同角三角函数的基本关系本身是恒等式也可以看作是方程对于一些题可利用已知解析:19-【分析】先切化弦,再诱导公式化简后,运用余弦二倍角公式得解. 【详解】2tan|cos |,|sin |2232ααα∴=∴== 22451sin()cos cos sin 222999παααα∴+==-=-=-故答案为:19-. 【点睛】本题考查同角三角函数的基本关系、诱导公式、二倍角公式.同角三角函数的基本关系本身是恒等式,也可以看作是方程,对于一些题,可利用已知条件,结合同角三角函数的基本关系列方程组,通过解方程组达到解决问题的目的. 应用诱导公式化简求值的关键是利用诱导公式把任意角的三角函数值转化为锐角的三角函数值求解.转化过程中注意口诀“奇变偶不变,符号看象限”的应用.16.6【分析】根据题意可求得然后利用正弦定理求得最后在中利用求得答案【详解】在中由正弦定理得;在中(米)所以升旗速度(米/秒)故答案为06【点睛】本题主要考查了解三角形的实际应用此类问题的解决关键是建立解析:6 【分析】根据题意可求得,45BDC ∠=︒,30CBD ∠=︒,CD =BC ,最后在Rt ABC 中利用sin60AB BC =︒求得答案. 【详解】在BCD 中,45BDC ∠=︒,30CBD ∠=︒,CD =由正弦定理,得sin 45sin 30CD BC ︒==︒在Rt ABC 中,sin?60302AB BC =︒==(米). 所以升旗速度300.650t AB v ===(米/秒). 故答案为0.6. 【点睛】本题主要考查了解三角形的实际应用.此类问题的解决关键是建立数学模型,把实际问题转化成数学问题,利用所学知识解决,属于中档题.17.①②③【分析】先由图像的平移变换推导出的解析式再分析函数的周期零点对称性单调性判断是否正确【详解】解:函数的图象向右平移个单位后与函数的图象重合的一个周期为故①正确;的对称轴满足:当时的图象关于对称解析:①②③ 【分析】先由图像的平移变换推导出()f x 的解析式,再分析函数的周期、零点、对称性、单调性,判断是否正确. 【详解】解:函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移π3个单位后与函数()f x 的图象重合,()sin 2sin 2333f x x x πππ⎡⎤⎛⎫⎛⎫∴=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,()f x ∴的一个周期为2π-,故①正确;()y f x =的对称轴满足:232x k ππ-=π+,k Z ∈, ∴当2k =-时,()y f x =的图象关于7πx 12=-对称,故②正确; 由()sin 203f x x π⎛⎫=-= ⎪⎝⎭,23x k ππ-=得26k x ππ=+, 76x π∴=是()f x 的一个零点,故③正确; 当5,1212x ππ⎛⎫∈-⎪⎝⎭时,2,322x πππ⎛⎫-∈- ⎪⎝⎭, ()f x ∴在5,1212ππ⎛⎫-⎪⎝⎭上单调递增,故④错误. 故答案为:①②③.【点睛】本题考查命题真假的判断,考查三角函数的平移变换、三角函数的性质等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.18.①③【分析】根据三角函数的奇偶性对称中心对称轴和最值对四个命题逐一分析由此确定正确命题的序号【详解】①为奇函数所以①正确②由于所以②错误③由于所以③正确④由于的最大值为所以④错误故答案为:①③【点睛解析:①③ 【分析】根据三角函数的奇偶性、对称中心、对称轴和最值对四个命题逐一分析,由此确定正确命题的序号. 【详解】①,22cos sin 323y x x π⎛⎫=+=- ⎪⎝⎭为奇函数,所以①正确.②,由于sin 2sin 11232πππ⎛⎫⨯+== ⎪⎝⎭,所以②错误. ③,由于53sin 2sin 1842πππ⎛⎫⨯+==- ⎪⎝⎭,所以③正确.④4πα⎛⎫+ ⎪⎝⎭32<,所以④错误. 故答案为:①③ 【点睛】本小题主要考查三角函数的奇偶性、对称性、最值以及诱导公式,属于中档题.19.①④【分析】结合题意得出函数的奇偶性根据奇偶性研究函数在时的性质对结论逐一判断即可【详解】解:∵定义域为∴∴函数是偶函数故①对;当时∴由正弦函数的单调性可知函数在区间上单调递减故②错;当时由得根据偶解析:①④ 【分析】结合题意,得出函数的奇偶性,根据奇偶性研究函数在0x >时的性质对结论逐一判断即可. 【详解】解:∵()sin |||sin |f x x x =+,定义域为R ,∴()()sin |||sin |f x x x -=-+-sin sin ()x x f x =+=, ∴函数()f x 是偶函数,故①对;当[]0,x π∈时,()sin |||sin |f x x x =+sin sin 2sin x x x =+=, ∴由正弦函数的单调性可知,函数()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递减,故②错; 当[]0,x π∈时,由()2sin 0f x x ==得0x =,x π=,根据偶函数的图象和性质可得,()f x 在[),0π-上有1个零点x π=- ,∴()f x 在[],ππ-有3个零点,故③错;当0x ≥时,()sin |||sin |f x x x =+sin sin x x =+2sin ,sin 00,sin 0x x x ≥⎧=⎨<⎩,根据奇偶性可得函数()f x 的图象如图,∴当sin 1x =时,函数()f x 有最大值()max 2f x =,故④对; 故答案为:①④. 【点睛】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.20.【分析】可拆分理解构造由对勾函数可得时取得最小值又当时也取到最小值即可求解【详解】令由对勾函数性质可知当时;因为当时所以当时取到最小值所以故答案为:【点睛】本题考查函数最值的求解拆分构造函数是解题关解析:52【分析】可拆分理解,构造251616()5x x g x x x x-+==+-,由对勾函数可得4x =时取得最小值,又当4x =时,12sin 236x ππ⎛⎫-- ⎪⎝⎭也取到最小值,即可求解 【详解】令251616()5x x g x x x x-+==+-,由对勾函数性质可知当4x =时,min ()3g x =;因为121sin 2362x ππ⎛⎫--- ⎪⎝⎭,当4x =时,121sin 2362x ππ⎛⎫--=-⎪⎝⎭,所以当4x =时,()f x 取到最小值,5(4)2f =,所以min 5()2f x =. 故答案为:52【点睛】本题考查函数最值的求解,拆分构造函数是解题关键,属于中档题三、解答题21.(1)π,5,,36k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;(2)2a =. 【分析】(1)利用诱导公式化简函数的解析式,再根据正弦函数的周期性和单调性求解. (2)根据0,2x π⎡⎤∈⎢⎥⎣⎦得到52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,然后利用正弦函数的性质求解. 【详解】 (1)()2sin 212sin 2166f x x a x a ππ⎛⎫⎛⎫=-++=--++ ⎪ ⎪⎝⎭⎝⎭,它的最小正周期为22ππ=. 令3222262k x k πππππ+≤-≤+, 解得536k x k ππππ+≤≤+, 所以函数的单调递增区间为5,,36k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . (2)因为0,2x π⎡⎤∈⎢⎥⎣⎦时, 所以52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以()f x 的最大值为42sin 16a π⎡⎤⎛⎫=-⨯-++ ⎪⎢⎥⎝⎭⎣⎦, 解得2a =. 【点睛】方法点睛:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式; 2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2πω,y =tan(ωx +φ)的最小正周期为πω;3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.22.(1)1()sin(2)26f x x π=-;(2),,26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 【分析】(1)由有图像,根据最大值求A ,利用周期求ω,利用最高点的坐标求φ; (2)根据图像变换求出()g x 的解析式,然后求正弦型函数的单调区间. 【详解】(1)根据函数的图象得:1,42312A T πππ⎛⎫==-= ⎪⎝⎭,故=2ω, 将1,32π⎛⎫⎪⎝⎭代入函数的关系式,整理得22()32k k Z ππϕπ+=+∈,由于0||2πϕ<<,所以6πϕ=-.故1()sin(2)26f x x π=-. (2)1()sin(2)26f x x π=-,将函数()f x 的图象上各点的横坐标缩短到原来的一半得 1sin(4)26y x π=-,再向左平移12π个单位长度,得到1()sin 4()2126g x x ππ⎡⎤=+-⎢⎥⎣⎦1()sin(4)26g x x π=+.令242,262k x k k Z ππππ-≤+≤π+∈, 整理得,26212k k x k Z ππππ-≤≤+∈, 所以函数的单调递增区间为:,,26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 【点睛】(1)求三角函数解析式的方法:①求A 通常用最大值或最小值;②求ω通常用周期;③求φ通常利用函数上的点带入即可求解;(2)关于三角函数图像平移伸缩变换:先平移的话,如果平移a 个单位长度那么相位就会改变ωa ;而先伸缩势必会改变ω大小,这时再平移要使相位改变值仍为ωa ,那么平移长度不等于a .(3)求y =Asin (ωx +φ)+B 的单调区间通常用“同增异减”.23.(1)T π=;(2)5,88ππ⎡⎤⎢⎥⎣⎦;(3)()2+∞. 【分析】(1)化简函数()214f x x π⎛⎫=++ ⎪⎝⎭,结合三角函数的图象与性质,即可求解;(2)由正弦函数的单调性可得答案;(3)化简()2g x x =,根据,63x ππ⎡⎤∈-⎢⎥⎣⎦,求得()g x ,再根据题意,得到2a ->,即可求解.【详解】(1)由题意,函数()sin 2cos21214f x x x x π⎛⎫=++=++ ⎪⎝⎭,可得其最小正周期是22T ππ==. (2)由3222,242k x k k Z πππππ+≤+≤+∈得 5,88k x k k Z ππππ+≤≤+∈ 又∵[]0,x π∈,∴5,88x ππ⎡⎤∈⎢⎥⎣⎦ 故单减区间为5,88ππ⎡⎤⎢⎥⎣⎦.(3)由()122844g x f x x x πππ⎛⎫⎛⎫=+-=++= ⎪⎪⎝⎭⎝⎭ 因为,63x ππ⎡⎤∈-⎢⎥⎣⎦,得22,33x ππ⎡⎤∈-⎢⎥⎣⎦,则1cos 2,12x ⎡⎤∈-⎢⎥⎣⎦,所以()22g x x ⎡=∈-⎢⎣,若()2g x a <-对于,63x ππ⎡⎤∈-⎢⎥⎣⎦恒成立,则()max 2a g x ->所以2a >+,即求实数a 的取值范围()2+∞. 【点睛】本题主要考查了三角恒等变换,以及三角函数的图象与性质综合应用,其中解答中利用三角恒等变换的公式,求得函数的解析式,结合三角函数的图象与性质求解是解答的关键,着重考查了推理与运算能力,属于中档试题. 24.(1)12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)[]1,2-. 【分析】(1)由三角函数的图象,求得函数的解析式12()2sin 23f x x π⎛⎫=-⎪⎝⎭,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得2()2sin 223g x x m π⎛⎫=-+ ⎪⎝⎭,根据()g x 的图象关于直线512x π=对称,求得m 的值,得到()2sin 23g x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解. 【详解】(1)由图象可知2A =,422433T πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦, 所以212T πω==,所以1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭, 由图可求出最低点的坐标为,23π⎛⎫- ⎪⎝⎭,所以2sin 236f ππϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭, 所以262k ππϕπ+=-+,所以22,3k k Z πϕπ=-+∈, 因为||ϕπ<,所以23πϕ=-,所以12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,由1222,2232k x k k Z πππππ-+≤-≤+∈,可得744,33k x k k Z ππππ+≤≤+∈. 所以函数()f x 的单调递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2)由题意知,函数22()2sin 2()2sin 2233g x x m x m ππ⎡⎤⎛⎫=+-=-+ ⎪⎢⎥⎣⎦⎝⎭, 因为()g x 的图象关于直线512x π=对称, 所以5222,1232m k k Z ππππ⨯-+=+∈,即,62k m k Z ππ=+∈, 因为02m π<<,所以6m π=,所以()2sin 23g x x π⎛⎫=-⎪⎝⎭. 当7,1212x ππ⎡⎤∈⎢⎥⎣⎦时,52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,可得1sin 2,132x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以2sin 2[1,2]3x π⎛⎫-∈- ⎪⎝⎭,即函数()g x 的值域为[]1,2-. 【点睛】解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解. 25.(1)最小正周期为4π,对称中心22,0,3k k Z ππ⎛⎫-∈ ⎪⎝⎭;(2)3π 【分析】(1)由已知条件求出ω,再利用正弦函数的性质即可求解;(2)求出函数的单调递增区间,得到353t t t t ππ⎧≤⎪⎪⎪-≥-⎨⎪-<⎪⎪⎩即可求出.【详解】 (1)2()()3f x f x π=-,()f x ∴的图象关于3x π=对称,,332k k Z πππωπ∴⨯+=+∈,解得13,2k k Z ω=+∈, 02ω<<,12ω∴=, 1()sin()23f x x π∴=+,则()f x 的最小正周期2412T ππ==, 令1,23x k k Z ππ+=∈,则22,3x k k Z ππ=-∈, ∴()f x 的对称中心为22,0,3k k Z ππ⎛⎫-∈ ⎪⎝⎭;(2)令122,2232k x k k Z πππππ-+≤+≤+∈, 则可得()f x 的单调递增区间为54,4,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,若()f x 在[,]t t -上单调递增,则353t t t t ππ⎧≤⎪⎪⎪-≥-⎨⎪-<⎪⎪⎩,解得03t π<≤,∴t 的最大值为3π. 【点睛】关键点睛:本题考查正弦型函数的性质,解题的关键是根据2()()3f x f x π=-得出()f x 的图象关于3x π=对称,进而求出ω,即可结合正弦函数的性质求解.26.(1)()cos 4f x x ππ⎛⎫=+ ⎪⎝⎭(2)12⎡⎤-⎢⎥⎣⎦ (3)154,4,33k k k Z ⎡⎤-+∈⎢⎥⎣⎦【分析】(1)由题意可得251244T πω⎛⎫==-⨯ ⎪⎝⎭,得ωπ=,又314f ⎛⎫=- ⎪⎝⎭可求出函数表达式. (2)当[1,2]x ∈时,52444x πππππ≤+≤+,由余弦函数图像可得答案. (3)先根据图象变换求出()g x 的解析式,再根据余弦型函数的单调减区间求解即可.【详解】(1)由题意可得251244T πω⎛⎫==-⨯ ⎪⎝⎭,得ωπ= 所以()()cos f x x πφ=+,又当1534424x +==时,314f ⎛⎫=- ⎪⎝⎭即33cos 144f πφ⎛⎫⎛⎫=+=-⎪ ⎪⎝⎭⎝⎭,则324k k Z πφππ+=+∈, 所以124k k Z φππ=+∈,, 所以()cos 2cos 44f x x k x πππππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭(2)当[1,2]x ∈时,52444x πππππ≤+≤+cos 14x ππ⎛⎫≤+≤ ⎪⎝⎭所以当[1,2]x ∈时,()f x 的值域为12⎡⎤-⎢⎥⎣⎦(3)将()f x 的图像向右平移112个单位后可得:cos 6y x ππ⎛⎫=+ ⎪⎝⎭,再将所得图像横坐标伸长到原来的2倍,纵坐标不变得到:()1cos 26g x x ππ⎛⎫=+ ⎪⎝⎭,由122,26k x k k Z πππππ≤+≤+∈ 1544,33k x k k Z -≤≤+∈所以()g x 的单调递减区间为:154,4,33k k k Z ⎡⎤-+∈⎢⎥⎣⎦【点睛】关键点睛:本题考查根据三角函数的图象求解析式以及根据解析式求值域和解决图象平移问题,解答本题的关键是读懂三角函数的图象,得到251244T πω⎛⎫==-⨯ ⎪⎝⎭和314f ⎛⎫=- ⎪⎝⎭从而求出解析式,在根据图象左右平移求解析式时,要注意将()f x 的图像向右平移112个单位后可得:1cos 124y x ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦,属于中档题.。
(常考题)北师大版高中数学必修四第一章《三角函数》测试卷(含答案解析)
一、选择题1.如图,一个质点在半径为1的圆O 上以点P 为起始点,沿逆时针方向旋转,每2s 转一圈,由该质点到x 轴的距离y 关于时间t 的函数解析式是( )A .2sin()3y t ππ=+ B .2sin()3y t ππ=- C .2sin()3y t ππ=-D .2sin()3y t ππ=+2.已知函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合,则ϕ的值为( )A .56πB .56π-C .6π D .6π-3.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6π B .4π C .3π D .2π 4.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .85.函数1sin3y x =-的图像与直线3x π=,53x π=及x 轴所围成的图形的面积是( ) A .23π B .πC .43π D .53π 6.下列结论正确的是( ) A .sin1cos1< B .2317cos cos 54ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C .()()tan 52tan 47->-D .sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭7.已知函数()tan()0,02f x x πωϕϕω⎛⎫=+<<< ⎪⎝⎭最小正周期为2π,且()f x 的图象过点,03π⎛⎫⎪⎝⎭,则方程()sin 2([0,])3f x x x π⎛⎫=+∈π ⎪⎝⎭所有解的和为( )A .76πB .56π C .2πD .3π 8.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( ) A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C 9.函数3cos 2cos 2sin cos cos510y x x x ππ=-的递增区间是( ) A .2[,]105k k ππππ-+(k Z ∈) B .2[,]510k k ππππ-+ (k Z ∈) C .3[,]510k k ππππ-- (k Z ∈) D .37[,]2020k k ππππ-+ (k Z ∈) 10.下列函数中,既是偶函数,又在(),0-∞上是增函数的是( ) A .()22xxf x -=- B .()23f x x =-C .()2ln =-f x xD .()cos3=f x x x11.已知函数()tan()0,2f x x πωϕωϕ⎛⎫=+≠<⎪⎝⎭,点2,03π⎛⎫⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是其相邻的两个对称中心,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则ϕ=( ) A .6π B .6π-C .3π D .3π-12.函数()sin ln ||f x x x =⋅的部分图象大致为( )A .B .C .D .二、填空题13.将函数()sin 24f x x π⎛⎫=-⎪⎝⎭的图像先向右平移8π个单位,再将横坐标缩短到原来的一半(纵坐标不变)后,得到函数()g x 的图像,则函数()g x 的解析式为_________.14.已知函数273(0)()323(0)x x f x x x x ⎧+≤⎪=⎨⎪-++>⎩,()3cos 4g x x x =++,若对任意[3,3]t ∈-,总存在0,2s π⎡⎤∈⎢⎥⎣⎦,使得()()f t a g s +≤成立,则实数a 的取值范围为__________.15.若函数π()sin()cos()3f x x x ωω=++的一个周期是π,则常数ω的一个取值可以为__________.16.已知函数()cos (0)f x a x b a =+>的最大值为3,最小值为1,则函数(2)2()([,]3y f x f x x ππ=-∈的值域为_________.17.如图,从气球A 上测得正前方的B ,C 两点的俯角分别为75︒,30,此时气球的高是60m ,则BC 的距离等于__________m .18.已知函数f (x )=A sin (3πx +φ),x ∈R ,A >0,0<φ<2π.y =f (x )的部分图象,如图所示,P ,Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ),点R 的坐标为(1,0),∠PRQ =23π,则sin ∠PQR =_____.19.已知函数()3sin(2)cos(2)(||)2f x x x πϕϕϕ---<的图象关于y 轴对称,则()f x 在区[6π-,5]12π上的最大值为__.20.已知定义在R 上的函数()f x 满足3()2f x f x ⎛⎫=-+⎪⎝⎭,且(2)3f -=,则(2020)f =________.三、解答题21.已知函数1()sin 22,23f x x x R π⎛⎫=-+∈ ⎪⎝⎭.(1)求()f x 的最小正周期; (2)求()f x 的单调递减区间; (3)求()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值 22.已知函数()22sin cos 2cos ,x x R f x x x =+∈. (1)求()f x 的最小正周期;(2)求()f x 在[]0,π上的单调递减区间; (3)令()18g x f x π⎛⎫=+- ⎪⎝⎭,若()2g x a <-对于,63x ππ⎡⎤∈-⎢⎥⎣⎦恒成立,求实数a 的取值范围.23.已知函数1()2sin cos 62f x x x π⎛⎫=-- ⎪⎝⎭. (1)求函数()f x 的最小正周期;(2)求函数()f x 在区间[]0,π上的单调递增区间. 24.把()cos()(0,||)2f x x πωϕωϕ=+><的图象纵坐标保持不变,横坐标变为原来的2倍得()g x 的图象,已知()g x 图象如图所示(1)求函数()f x 的解析式; (2)若()()2()6h x f x g x π=-+,求()h x 在0,2π⎡⎤⎢⎥⎣⎦上的值域. 25.已知函数()2sin 1f x x =-.(1)求函数f (x )的最大值,并求此时x 的值; (2)写出()0f x >的解集. 26.已知712sin cos 2225ππαα⎛⎫⎛⎫---+= ⎪ ⎪⎝⎭⎝⎭,其中0,4πα⎛⎫∈ ⎪⎝⎭.(1)求tan α的值;(2)求3sin sin 3cos ααα-的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先根据图象理解t 秒后23POx t ππ∠=+,再根据三角函数的定义求点P 的纵坐标和该质点到x 轴的距离y 关于时间t 的函数解析式. 【详解】由题意可知点P 运动的角速度是22ππ=(弧度/秒) 那么点P 运动t 秒后23POx t ππ∠=+, 又三角函数的定义可知,点P 的纵坐标是2sin 3t ππ⎛⎫+⎪⎝⎭, 因此该质点到x 轴的距离y 关于时间t 的函数解析式是2sin 3y t ππ⎛⎫=+ ⎪⎝⎭. 故选:A 【点睛】关键点点睛:本题的关键是理解三角函数的定义,并正确表示点23POx t ππ∠=+,即可表示函数的解析式.2.A解析:A 【分析】根据三角函数的平移变换得到cos(2)y x ϕπ=+-后,再根据诱导公式变为sin(2)2y x πϕ=+-,然后利用图象重合列式可得结果.【详解】函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,得到cos[2()]cos(2)2y x x πϕϕπ=-+=+-sin(2)2x πϕπ=+-+sin(2)2x πϕ=+-,依题意可得223k ππϕπ-=+()k ∈Z ,所以526k πϕπ=+()k ∈Z 因为πϕπ-≤≤,所以0k =,56πϕ=. 故选:A. 【点睛】关键点点睛;经过平移变换后,利用诱导公式化为同名函数是解题关键,属于中档题. 3.C解析:C【分析】由图可知,172482g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,根据函数图象的平移变化法则可知()()sin 2x g x ϕ=-,于是推出1717sin 22424g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 224882g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈,因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.4.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标,可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11y x =-和2cos y x π=交点的横坐标,从而通过函数图象求解.5.C解析:C 【分析】作出函数1sin3y x =-的图像,利用割补法,补成长方形,计算面积即可. 【详解】作出函数1sin3y x =-的图象,如图所示,利用割补法,将23π到π部分的图象与x 轴围成的图形补到图中3π到23π处阴影部分,凑成一个长为3π,宽为2的长方形,后面π到53π,同理;∴1sin3y x =-的图象与直线3x π=,53x π=及x 轴所围成的面积为24233ππ⨯=,故选:C. 【点睛】用“五点法”作()sin y A ωx φ=+的简图,主要是通过变量代换,设z x ωϕ=+,由z 取0,2π,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 6.D解析:D 【分析】利用正弦函数的单调性可判断AD 选项的正误;利用正切函数的单调性可判断C 选项的正误;利用余弦函数的单调性可判断B 选项的正误. 【详解】对于A 选项,因为正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增, 且01122ππ<-<<,则sin1sin 1cos12π⎛⎫>-=⎪⎝⎭,A 选项错误; 对于B 选项,因为余弦函数cos y x =在()0,π上为减函数,23233cos cos cos 555πππ⎛⎫-== ⎪⎝⎭,1717cos cos cos 444πππ⎛⎫-== ⎪⎝⎭, 3045πππ<<<,则3cos cos 54ππ<,即2317cos cos 54ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,当900x -<<时,正切函数tan y x =单调递增, 因为9052470-<-<-<,所以,()()tan 52tan 47-<-,C 选项错误;对于D 选项,因为正弦函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,因为021018πππ-<-<-<,所以,sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 选项正确. 故选:D. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.7.A解析:A 【分析】先根据()f x 的最小正周期计算出ω的值,再根据图象过点,03π⎛⎫⎪⎝⎭结合ϕ的范围求解出ϕ的值,再根据条件将方程变形,先确定出tan 23x π⎛⎫+ ⎪⎝⎭的值,然后即可求解出方程的根,由此确定出方程所有解的和. 【详解】因为()f x 的最小正周期为2π,所以22πωπ==,又因为()f x 的图象过点,03π⎛⎫⎪⎝⎭,所以2tan 03πϕ⎛⎫+= ⎪⎝⎭, 所以2,3k k Z ϕππ+=∈,又因为02πϕ<<,所以3πϕ=且此时1k =,所以()sin 23f x x π⎛⎫=+ ⎪⎝⎭,即tan 2sin 233x x ππ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭, 即tan 2cos 21033x x ππ⎡⎤⎛⎫⎛⎫++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 又因为tan 203x π⎛⎫+= ⎪⎝⎭时,sin 203x π⎛⎫+= ⎪⎝⎭,cos 213x π⎛⎫+=± ⎪⎝⎭,所以tan 2cos 210tan 2=0333x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫++-=⇔+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 因为[]0,x π∈,所以72,333x πππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦, 当tan 2=03x π⎛⎫+⎪⎝⎭时,23x ππ+=或223x ππ+=,解得3x π=或56x π=, 所以方程()[]()sin 20,3f x x x ππ⎛⎫=+∈ ⎪⎝⎭所有解的和为57366πππ+=. 故选:A. 【点睛】关键点点睛:解答本题的关键是通过分析方程得到tan 2=03x π⎛⎫+ ⎪⎝⎭,此处需要注意不能直接约去tan 23x π⎛⎫+⎪⎝⎭,因为需要考虑tan 2=03x π⎛⎫+⎪⎝⎭的情况. 8.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==-⎪⎝⎭,2cos 23:C y x π⎛⎫=-⎪⎝⎭, ∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.9.C解析:C 【分析】利用三角恒等变换的公式,化简得由函数cos(2)5y x π=+,再根据余弦型函数的性质,即可求解函数的单调递增区间,得到答案. 【详解】由函数3cos 2cos2sin cos cos cos 2cos sin 2sin cos(2)510555y x x x x x x πππππ=-=-=+, 令222,5k x k k Z ππππ-+≤+≤∈,整理得3,510k x k k Z ππππ-+≤≤-+∈, 所以函数的单调递增区间为3[,],510k k k Z ππππ-+-+∈,故选C. 【点睛】本题主要考查了三角恒等变换的化简,以及三角函数的性质的应用,其中解答中根据三角恒等变换的公式,化简得到函数的解析式,再利用三角函数的性质求解是解答的关键,着重考查了运算与求解能力,属于基础题.10.C解析:C 【分析】利用奇偶性的定义判断函数奇偶性,判断AD 错误,结合常见基本初等函数的单调性判断B 错误,C 正确即可. 【详解】选项A 中,()22xxf x -=-,定义域R ,()()()2222xx x x f x f x ---=-=--=-,则()f x 是奇函数,不符合题意;选项D 中,()cos3=f x x x ,定义域R ,()()()cos 3cos3f x x x x x f x -=--=-=-,则()f x 是奇函数,不符合题意;选项B 中,()23f x x =-,定义域R ,()()()2233x x f x f x -=--=-=,则()f x 是偶函数,但二次函数()23f x x =-在在(),0-∞上是减函数,在()0,∞+上是增函数,故不符合题意;选项C 中,()2ln =-f x x ,定义域为(),0-∞()0,+∞,()()2ln 2ln f x x x f x -=--=-=,则()f x 是偶函数.当()0,x ∈+∞时,()2ln f x x =-是减函数,所以由偶函数图象关于y 轴对称可知,()f x 在(),0-∞上是增函数,故符合题意. 故选:C. 【点睛】 方法点睛:定义法判断函数()f x 奇偶性的方法: (1)确定定义域关于原点对称; (2)计算()f x -;(3)判断()f x -与()f x 的关系,若()()f x f x -=,则()f x 是偶函数;若()()f x f x -=-,则()f x 是奇函数;若两者均不成立,则()f x 是非奇非偶函数.11.A解析:A 【分析】由正切函数的图象性质,得出相邻两个对称中心之间的距离为半个周期,可求出T ,然后由T πω=求出ω,然后再代点讨论满足题意的ϕ,即可得出答案. 【详解】由正切函数图象的性质可知相邻两个对称中心的距离为2T ,得72263T πππ⎛⎫=-=⎪⎝⎭. 则由1T πω==得1ω=,即得1ω=±. 由2πϕ<,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则可得1ω=-, ∴()()()tan tan f x x x ϕϕ=-+=--.由2,32k k Z ππϕ-=∈得2,32k k Z ππϕ=-∈,因2πϕ<,可得6π=ϕ或3π-,当3πϕ=-时,()tan +3f x x π⎛⎫=- ⎪⎝⎭,由+,232k x k k Z πππππ-<<+∈,得5,66k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由54,63ππ⎛⎫ ⎪⎝⎭7,66ππ⎛⎫ ⎪⎝⎭⊄,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上不是单调递减, 所以3πϕ=-不满足题意;当6π=ϕ时,()tan 6f x x π⎛⎫=-- ⎪⎝⎭,由,262k x k k Z πππππ-<-<+∈,得2,33k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为2,,33k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由25,3354,63ππππ⎛⎫⊂⎛⎫ ⎪⎝ ⎪⎝⎭⎭,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上单调递减, 所以6π=ϕ满足题意; 综上可得:6π=ϕ满足题意. 故选:A.【点睛】关键点睛:正切型函数的对称中心和单调性的问题,通常采用代入检验法,注意正切函数的对称中心为0,2k k Z π⎛⎫∈⎪⎝⎭,. 12.D解析:D 【分析】先根据函数的奇偶性,可排除A ,C ,根据当01x <<时,()0f x <即可排除B .得出答案. 【详解】因为()sin ln ||(0)f x x x x =⋅≠,所以()sin()ln ||sin ln ||()f x x x x x f x -=-⋅-=-=-,所以()f x 为奇函数,故排除A ,C .当01x <<时,sin 0x >,ln ||0x <,则()0f x <,故排除B , 故选:D .【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.二、填空题13.【分析】利用函数的图象变换规律即可得到的解析式【详解】函数的图像先向右平移个单位后解析式变为:再将横坐标缩短到原来的一半(纵坐标不变)后解析式变为:所以故答案为:【点睛】方法点睛:函数的图像与函数的 解析:cos4x -【分析】利用函数()()sin f x A x =+ωϕ的图象变换规律,即可得到()g x 的解析式. 【详解】函数()sin 24f x x π⎛⎫=- ⎪⎝⎭的图像先向右平移8π个单位后解析式变为:sin 2sin 2co 288s 2y x x x πππ⎡⎤⎛⎫⎛⎫=--=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将横坐标缩短到原来的一半(纵坐标不变)后解析式变为:()cos 22x y -=⨯,所以()cos 4g x x =-. 故答案为:cos4x -. 【点睛】方法点睛:函数sin ωφf xA xB 的图像与函数sin y x =的图像两者之间可以通过变化A ,ω,φ,B 来相互转化,A 、ω影响图像的形状,φ、B 影响图像与x 轴交点的位置,由A 引起的变换称为振幅变换,由ω引起的变换称为周期变换,它们都是伸缩变换;由φ引起的变换称为相位变换,由B 引起的变换称为上下平移变换,它们都是平移变换.三角函数图像变换的两种方法为先平移后伸缩和先伸缩后平移.14.【分析】求出f (t )和g (s )的值域根据存在性和恒成立问题转化为求出a 的范围【详解】对于函数f (x )当x≤0时f (x )单调递增由﹣3≤t≤0可得f (t )∈﹣43当x >0时f (x )=﹣x2+2x+3= 解析:(],2-∞【分析】求出f (t )和g (s )的值域,根据存在性和恒成立问题,转化为()()()maxmaxf t ag s +≤求出a 的范围. 【详解】对于函数f (x ),当x ≤0时,f (x )733x =+单调递增,由﹣3≤t ≤0,可得f (t )∈[﹣4,3],当x >0时,f (x )=﹣x 2+2x +3=﹣(x ﹣1)2+4,由0<t ≤3,可得f (t )∈[0,4], ∴对任意t ∈[﹣3,3],f (t )∈[﹣4,4],对于函数g (x )=x +cos x +4=2sin (x 6π+)+4, ∵s ∈[0,2π],∴s 6π+∈[6π,23π], ∴g (s )∈[5,6],∴对于s ∈[0,2π],使得g (s )∈[5,6],∵对任意t ∈[﹣3,3],总存在s ∈[0,2π],使得f (t )+a ≤g (s )成立,故()()()max maxf t ag s +≤∴a +4≤6,解得a ≤2, 故答案为:(],2-∞ 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .15.2(答案不唯一)【分析】把函数化为一个角的一个三角函数形式然后利用正弦函数的周期求解注意题中已知条件是函数的一个周期是并没有说是最小正周期因此只要函数的最小正周期是除以一个正整数都可满足题意【详解】解析:2(答案不唯一) 【分析】把函数化为一个角的一个三角函数形式,然后利用正弦函数的周期求解,注意题中已知条件是函数的一个周期是π,并没有说π是最小正周期.因此只要函数的最小正周期是π除以一个正整数,都可满足题意. 【详解】1()sin cos cossin sin(1)sin cos 3322f x x x x x x ππωωωωω=+-=-+,令cosϕ=sin ϕ=,且ϕ为锐角,则()sin()f x x ωϕ=+,由2T ππω==,得2ω=,实际上,由2T ππω==得2ω=±,或者2kππω=(k Z ∈且0k ≠),2k ω=(k Z ∈且0k ≠),ω可为任意一个非零点的偶数. 故答案为:2.(填任一非0的偶数都可以). 【点睛】关键点点睛:本题考查三角函数的周期,求解三角函数周期,一般是把函数化为一个角的一个三角函数形式,然后利用正弦函数的周期性求解.而我们一般说周期通常是求最值正周期,若题中强调某个数是函数的一个周期,则这个周期不一定是最小正周期.16.【分析】根据三角函数性质列方程求出得到进而得到利用换元法即可求出的值域【详解】根据三角函数性质的最大值为最小值为解得则函数则函数令则令由得所以的值域为故答案为:【点睛】关键点睛:解题关键在于求出后利解析:7,12⎡⎤-⎢⎥⎣⎦【分析】根据三角函数性质,列方程求出,a b ,得到()cos 2f x x =+, 进而得到22cos 2cos 3(2)2()y x f x f x x =-=--,利用换元法, 即可求出(2)2()([,]3y f x f x x ππ=-∈的值域【详解】根据三角函数性质,()cos (0)f x a x b a =+>的最大值为3a b +=,最小值为1b a -=,解得2,1b a ==,则函数()cos 2f x x =+,则函数(2)2()cos 222cos 4y f x f x x x =-=+--cos22cos 2x x =--22cos 2cos 3x x =--,3x ππ≤≤,令cos t x =,则112t -≤≤, 令2()223g t t t =--,由112t -≤≤得,7(),12g t ⎡⎤∈-⎢⎥⎣⎦,所以,(2)2()([,]3y f x f x x ππ=-∈的值域为7,12⎡⎤-⎢⎥⎣⎦故答案为:7,12⎡⎤-⎢⎥⎣⎦【点睛】关键点睛:解题关键在于求出()cos 2f x x =+后,利用换元法得出2()223g t t t =--,112t -≤≤,进而求出()g t 的范围,即可求出所求函数的值域,难度属于中档题 17.【分析】由题意画出图形由两角差的正切求出的正切值然后通过求解两个直角三角形得到和的长度作差后可得答案【详解】由图可知在中在中河流的宽度等于故答案为:【点睛】本题给出实际应用问题求河流在两地的宽度着重解析:1)【分析】由题意画出图形,由两角差的正切求出15︒的正切值,然后通过求解两个直角三角形得到DC 和DB 的长度,作差后可得答案. 【详解】由图可知,15DAB ∠=︒ ()tan 45tan 30tan15tan 453021tan 45tan 30︒-︒︒=︒-︒==-+︒︒在Rt ADB 中,60AD =(tan15602120DB AD ∴=⋅︒=⨯=-在Rt ADC 中,60,60DAC AD ∠=︒=tan 60DC AD ∴=⋅︒=()()1201201BC DC DB m ∴=-=-=∴河流的宽度BC 等于)1201m故答案为:1) 【点睛】本题给出实际应用问题,求河流在,B C 两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.18.【分析】根据周期求出再由直角三角形的边角关系以及勾股定理求出最后由正弦定理求出【详解】过点作延长线的垂线垂足为连接如下图所示则由正弦定理可知则故答案为:【点睛】本题主要考查了正弦型函数图象的性质的应【分析】根据周期求出32TDQ ==,再由直角三角形的边角关系以及勾股定理求出,PR PQ ,最后由正弦定理求出sin PQR ∠.【详解】过点Q作PR 延长线的垂线,垂足为D ,连接PQ ,如下图所示263T ππ==,则32T DQ == 6xRQ RQD π∠=∠=3tan336DR DQ π∴=⋅=⨯= 223,23,12921PR DP PQ PD PQ ∴===+=+=由正弦定理可知sin sin PQ PRPRQ PQR=∠∠则33sin 212sin 1421PR PRQPQR PQ⋅⋅∠∠===21【点睛】本题主要考查了正弦型函数图象的性质的应用,涉及了正弦定理解三角形,属于中档题.19.【分析】利用辅助角公式化简可得再根据图象关于轴对称可求得再结合余弦函数的图像求出最值即可【详解】因为函数的图象关于轴对称所以即又则即又因为所以则当即时取得最大值故答案为:【点睛】判定三角函数的奇偶性 3【分析】利用辅助角公式化简可得()2sin(2)6f x x πϕ=--,再根据图象关于y 轴对称可求得()2cos2f x x =-,再结合余弦函数的图像求出最值即可.【详解】因为函数()()()2cos 2f x x x ϕϕ=---2sin(2)6x πϕ=--的图象关于y 轴对称,所以πππ62k ϕ--=+,即()2ππ,3k k Z ϕ=--∈. 又2πϕ<,则π3ϕ=,即()2sin(2)2cos22f x x x π=-=-.又因为π5π612x -≤≤,所以π5π236x -≤≤,则当5π26x =,即5π12x =时,()f x 取得最大值5π2cos6-=.【点睛】判定三角函数的奇偶性时,往往与诱导公式进行结合,如: 若()sin y x ωϕ=+为奇函数,则π,Z k k ϕ=∈;若()sin y x ωϕ=+为偶函数,则ππ+,Z 2k k ϕ=∈; 若()cos y x ωϕ=+为偶函数,则π,Z k k ϕ=∈;若()cos y x ωϕ=+为奇函数,则ππ+,Z 2k k ϕ=∈. 20.3【分析】由已知可得是函数的一个周期所以再由可求得可得答案【详解】由已知可得则有则是函数的一个周期所以又所以所以故答案为:3【点睛】本题考查了函数的周期性及其应用准确理解周期性的定义是解题的关键属于解析:3 【分析】由已知可得,3是函数()f x 的一个周期,所以(2020)(1)f f =,再由(2)3f -=, 可求得()13f =,可得答案. 【详解】由已知可得,3()2f x f x ⎛⎫+=- ⎪⎝⎭,则有333(3)++()222f x f x f x f x ⎛⎫⎛⎫+==-+= ⎪ ⎪⎝⎭⎝⎭,则3是函数()f x 的一个周期, 所以(2020)(67331)(1)f f f =⨯+=, 又(2)3f -=,所以()()123f f =-=, 所以(2020)3f =,故答案为:3. 【点睛】本题考查了函数的周期性及其应用,准确理解周期性的定义是解题的关键,属于中档题.三、解答题21.(1)π;(2)()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(3)最小值为32;最大值为94. 【分析】(1)利用正弦型函数的周期公式可求得函数()f x 的最小正周期; (2)解不等式()3222232k x k k Z πππππ+≤-≤+∈,可得出函数()f x 的单调递减区间;(3)由44x ππ-≤≤求出23x π-的取值范围,利用正弦函数的基本性质可求得函数()f x 的最小值和最大值. 【详解】(1)因为1()sin 2223f x x π⎛⎫=-+ ⎪⎝⎭, 所以函数()f x 的最小正周期22T ππ==; (2)由()3222232k x k k Z πππππ+≤-≤+∈,得()5111212k x k k Z ππππ+≤≤+∈.即函数()f x 的单调递减区间为()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (3)因为44x ππ-≤≤,所以52636πππ-≤-≤x ,所以, 当232x ππ-=-即12x π=-时,函数()f x 取最小值,()min 13sin 2222f x π⎛⎫=-+= ⎪⎝⎭; 当236x ππ-=即4x π=时,函数()f x 取最大值,()max 19sin 2264f x π=+=. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).22.(1)T π=;(2)5,88ππ⎡⎤⎢⎥⎣⎦;(3)()2+∞. 【分析】(1)化简函数()214f x x π⎛⎫=++ ⎪⎝⎭,结合三角函数的图象与性质,即可求解; (2)由正弦函数的单调性可得答案;(3)化简()2g x x =,根据,63x ππ⎡⎤∈-⎢⎥⎣⎦,求得()g x ,再根据题意,得到2a ->,即可求解. 【详解】(1)由题意,函数()sin 2cos21214f x x x x π⎛⎫=++=++ ⎪⎝⎭, 可得其最小正周期是22T ππ==. (2)由3222,242k x k k Z πππππ+≤+≤+∈得 5,88k x k k Z ππππ+≤≤+∈ 又∵[]0,x π∈,∴5,88x ππ⎡⎤∈⎢⎥⎣⎦ 故单减区间为5,88ππ⎡⎤⎢⎥⎣⎦.(3)由()122844g x f x x x πππ⎛⎫⎛⎫=+-=++= ⎪ ⎪⎝⎭⎝⎭ 因为,63x ππ⎡⎤∈-⎢⎥⎣⎦,得22,33x ππ⎡⎤∈-⎢⎥⎣⎦,则1cos 2,12x ⎡⎤∈-⎢⎥⎣⎦,所以()22g x x ⎡=∈-⎢⎣,若()2g x a <-对于,63x ππ⎡⎤∈-⎢⎥⎣⎦恒成立,则()max 2a g x ->所以2a >+,即求实数a 的取值范围()2+∞.【点睛】本题主要考查了三角恒等变换,以及三角函数的图象与性质综合应用,其中解答中利用三角恒等变换的公式,求得函数的解析式,结合三角函数的图象与性质求解是解答的关键,着重考查了推理与运算能力,属于中档试题.23.(1)π;(2)单调递增区间为0,3π⎡⎤⎢⎥⎣⎦,5,6ππ⎡⎤⎢⎥⎣⎦.【分析】(1)先根据二倍角公式、辅助角公式化简函数,再根据正弦函数的周期公式求周期; (2)根据正弦函数性质求单调区间,再取对应区间即得结果.【详解】(1)11()2sin sin 22f x x x x ⎫=+-⎪⎪⎝⎭1cos21222x x -=+-12cos 2sin 2226x x x π⎛⎫=-=- ⎪⎝⎭, 所以()f x 的最小正周期22T ππ==. (2)令26z x π=-,[]0,x π∈,则11,66z ππ⎡⎤∈-⎢⎥⎣⎦, 因为sin y z =,11,66z ππ⎡⎤∈-⎢⎥⎣⎦的单调增区间是,62ππ⎡⎤-⎢⎥⎣⎦,311,26ππ⎡⎤⎢⎥⎣⎦, 由2662x πππ-≤-≤或3112266x πππ≤-≤, 得:03x π≤≤或56x ππ≤≤, 所以()f x 在[]0,π内的单调递增区间为0,3π⎡⎤⎢⎥⎣⎦,5,6ππ⎡⎤⎢⎥⎣⎦. 【点睛】本题考查二倍角公式、辅助角公式、正弦函数性质,解题关键是要熟练掌握三角函数的性质,考查分析求解能力,属基础题.24.(1)1()cos(2)3f x x π=-;(2)3,12⎡⎤--⎢⎥⎣⎦. 【分析】(1)由伸缩变换得1()cos()2g x x ωϕ=+,由()g x 的图像的周期为54()263T πππ=-=,解得2ω=,由()g x 图像过点(,1)3π,求得ϕ,进而得到()g x ,()f x 的解析式.(2)易得()22cos ()2cos()166h x x x ππ=----,令cos()6t x π=-,利用二次函数的性质求解.【详解】(1)由题意1()cos()2g x x ωϕ=+,由()g x 的图像可得:函数()g x 的周期为54()263T πππ=-=, 解得2ω=,∴()cos )(g x x ϕ=+,由图知()g x 图像过点(,1)3π, 所以cos()13πϕ+=, 则23k πϕπ=-+,k Z ∈, 因为||2ϕπ<,取0k =得3πϕ=-, 所以()cos()3g x x π=-,从而函数()f x 的解析式为()cos(2)3f x x π=-. (2)()()2()cos(2)2cos()636h x f x g x x x πππ=-+=---, 22cos ()2cos()166x x ππ=----, 令cos()6t x π=-, 由0,2x π⎡⎤∈⎢⎥⎣⎦,得,663x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1,12t ⎡⎤∈⎢⎥⎣⎦, 则22132212()22y t t t =--=--,1,12t ⎡⎤∈⎢⎥⎣⎦, 当12t =时,y 有最小值32-, 此时,1cos()62x π-=,63x ππ-=,即2x π=, 当1t =时有最大值1-,此时cos()16x π-=,06x π-=,即6x π=. 所以函数()h x 的值域为3,12⎡⎤--⎢⎥⎣⎦. 【点睛】方法点睛:求解三角函数的值域(最值)常见到以下几种类型:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域);②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).25.(1)最大值1,2,2x k k Z ππ=+∈;(2)5{|22,}66x k x k k Z ππππ+≤≤+∈. 【分析】(1)当sin 1x =时,函数取最大值得解;(2)根据三角函数的图象解不等式得解集.【详解】(1)当sin 1x =即2,2x k k Z ππ=+∈时,()2111max f x =⨯-=; (2)由题得1sin 2x >,所以不等式的解集为5{|22,}66x k x k k Z ππππ+≤≤+∈. 【点睛】关键点睛:解答这类题的关键是熟练掌握三角函数的图象和性质,再灵活利用其解题. 26.(1)3tan 4α=;(2)3sin 3sin 3cos 25ααα=--. 【分析】(1)利用诱导公式可得出12cos sin 25αα=,根据题意可得出关于cos α、sin α的值,求出cos α、sin α的值,利用同角三角函数的商数关系可求得tan α的值; (2)将所求代数式变形为()()3322sin sin sin 3cos sin 3cos sin cos αααααααα=--+,在分式的分子和分母中同时除以3cos α,利用弦化切可求得所求代数式的值.【详解】(1)712sin cos 2225ππαα⎛⎫⎛⎫---+= ⎪ ⎪⎝⎭⎝⎭, 由诱导公式可得123sin cos cos sin 2522ππαααα⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭, 0,4πα⎛⎫∈ ⎪⎝⎭,cos sin 0αα∴>>,由已知可得2212cos sin 25cos sin 1cos sin 0αααααα⎧=⎪⎪+=⎨⎪>>⎪⎩,解得4cos 53sin 5αα⎧=⎪⎪⎨⎪=⎪⎩, 因此,sin 3tan cos 4ααα==; (2)()()3322sin sin sin 3cos sin 3cos sin cos αααααααα=--+()()332223sin tan 325sin sin tan 3tan 131cos cos cos ααααααααα===-⎛⎫-+⎛⎫-+ ⎪⎪⎝⎭⎝⎭. 【点睛】方法点睛:三角函数求值问题中已知tan α,求关于sin α、cos α的代数式的值时,一般利用弦化切公式后直接代入tan α的值,在关于sin α、cos α的齐次式中,常常利用弦化切的方程转化为含tan α的代数式.。
(典型题)高中数学必修四第一章《三角函数》检测卷(含答案解析)(1)
一、选择题1.若函数()sin 2f x x =与()2cos g x x =都在区间(),a b 上单调递减,则b a -的最大值是( ) A .π4B .π3C .π2D .2π32.函数()()sin cos y x =的部分图象大致为( )A .B .C .D .3.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积12=(弦⨯矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有弧AB 长为83π,半径等于4米的弧田,按照上述经验公式计算所得弧田面积约是( )(3 1.73≈)A .6平方米B .9平方米C .12平方米D .15平方米4.己知函数()sin()(0,||)2f x x πωϕωϕ=+><的最小正周期为π,且图象向右平移12π个单位后得到的函数为偶函数,则下列说法错误的有( ) A .()f x 关于点5(,0)12π对称 B .()f x 关于直线6x π=对称C .()f x 在,]1212π5π[-单调递增 D .()f x 在7[,]1212ππ单调递减5.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭图象相邻两条对称轴之间的距离为π2,将函数()y f x =的图象向左平移π6个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象( ) A .关于点π,012⎛⎫⎪⎝⎭对称 B .关于点π,012⎛⎫-⎪⎝⎭对称 C .关于直线π12x =对称 D .关于直线π12x =-对称 6.将函数()sin 3f x x π⎛⎫=- ⎪⎝⎭的图象横坐标缩短到原来的12(纵坐标不变),然后向左平移3π个单位,所得函数记为()g x .若1x ,20,2x π⎛⎫∈ ⎪⎝⎭,12x x ≠,且()()12g x g x =,则()12g x x +=( ) A .12-B .3-C .12D .327.已知函数y =f (x )的部分图象如图所示,则其解析式可能是( )A .()sin 2f x x x =B .()||sin 2f x x x =C .()cos 2f x x x =D .()||cos2f x x x =8.设函数()tan 3f x x π=-,()sin 3g x x π⎛⎫=-⎪⎝⎭,则函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是( ) A .4B .5C .12D .139.已知函数()sin cos f x x x =+,则下列说法正确的是( ) A .()f x 的最小值为0 B .()f x 的最大值为2 C .()()2f x f x π-=D .1()2f x =在0,2π⎡⎤⎢⎥⎣⎦上有解 10.已知函数()()()()2sin 0,0,f x x ωϕωϕπ=+>∈的部分图像如图所示,将()y f x =图像上所有点的横坐标缩小到原来的12(纵坐标不变),所得图像对应的函数()g x 解析式为( )A .()2sin 46g x x π⎛⎫=+⎪⎝⎭B .()2sin 43g x x π⎛⎫=+⎪⎝⎭C .()2sin 23g x x π⎛⎫=+ ⎪⎝⎭D .()2sin 3g x x π⎛⎫=+ ⎪⎝⎭11.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫= ⎪⎝⎭,()3g π=,则ω的取值共有( ) A .6个B .5个C .4个D .3个12.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象(如图所示),则下列有关函数()f x 的结论错误的是( )A .图象关于点,012π⎛⎫- ⎪⎝⎭对称 B .最小正周期是π C .在0,6π⎛⎫⎪⎝⎭上单调递减 D .在0,12π⎡⎤⎢⎥⎣⎦3二、填空题13.已知函数273(0)()323(0)x xf x x x x ⎧+≤⎪=⎨⎪-++>⎩,()3sin cos 4g x x x =++,若对任意[3,3]t ∈-,总存在0,2s π⎡⎤∈⎢⎥⎣⎦,使得()()f t a g s +≤成立,则实数a 的取值范围为__________.14.若函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,则6f π⎛⎫⎪⎝⎭的值是___________. 15.已知函数()()2sin 0f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是-2,则ω的最小值等于__________.16.函数3()2sin 34f x x π⎛⎫=- ⎪⎝⎭的图象为C ,以下说法: (1)其中最小正周期为23π; (2)图象关于点(,0)4π对称;(3)由2sin3y x =的图象向右平移34π个单位长度可以得到图象C ; (4)直线4πx =-是其图象的其中一条对称轴. 其中正确命题的序号是__________.17.如图,从气球A 上测得正前方的B ,C 两点的俯角分别为75︒,30,此时气球的高是60m ,则BC 的距离等于__________m .18.给出下列4个命题:①函数2cos 32y x π⎛⎫=+ ⎪⎝⎭是奇函数;②函数y =sin (2x +3π)的图象关于点(12π,0)成中心对称;③x =8π是函数y =sin (2x +54π)的一条对称轴方程;④存在实数α,使得32sin 42πα⎛⎫+= ⎪⎝⎭.把你认为正确命题的序号都填在横线上____.19.函数251612()sin (0)236x x f x x x x ππ-+⎛⎫=--> ⎪⎝⎭的最小值为_______. 20.已知定义在R 上的函数()f x 满足3()2f x f x ⎛⎫=-+⎪⎝⎭,且(2)3f -=,则(2020)f =________.三、解答题21.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示.(1)求()f x 的解析式;(2)将()y f x =图象上所有点的横坐标缩小到原来的12倍(纵坐标不变),再将图象上所有点的纵坐标扩大到原来的2倍(横坐标不变),最后向下平移2个单位得到()y g x =图象,求函数()y g x =的解析式及在R 上的对称中心坐标. 22.已知函数()2sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象与直线2y =的相邻两个交点间的距离为2π,且________.在①函数6f x π⎛⎫+ ⎪⎝⎭为偶函数;②33f π⎛⎫=⎪⎝⎭③x R ∀∈,()6f x f π⎛⎫≤⎪⎝⎭;这三个条件中任选一个,补充在上面问题中,并解答. (1)求函数()f x 的解析式;(2)求函数()f x 在[]0,π上的单调递增区间. 23.函数()cos()0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的部分图象如图所示.(1)写出()f x 的解析式; (2)将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,讨论关于x 的方程()3()0f x g x m -⋅-=(11)m -<≤在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数.24.游客乘坐位于长沙贺龙体育场的摩天轮可近观长沙中心城区城市美景,远眺岳麓山,俯瞰橘子洲,饱览湘江风光.据工作人员介绍,该摩天轮直径约100米,摩天轮的最低处P 与地面的距离为20米,设有60个座舱,游客先乘坐直升电梯到入口(人口在摩天轮距地面的最低处)处等待,当座舱到达最低处P 时有序进入座舱,摩天轮逆时针方向匀速运行一周约需20分钟.以摩天轮的圆心为坐标原点,水平线为x 轴建立如图所示的平面直角坐标系.(1)试将游客甲离地面的距离()h t (单位:米)表示为其坐上摩天轮的时间t (单位:分钟)的函数;(2)若游客乙在甲后的5分钟也在点P 处坐上摩天轮,求在乙坐上摩天轮后的多少分钟时甲乙的离地面距离之差首次达到最大.25.已知函数()()2sin f x x ωϕ=+(0>ω,0ϕπ<<)的最大值和最小正周期相同,()f x 的图象过点(3,且在区间10,12⎡⎤⎢⎥⎣⎦上为增函数.(1)求函数()f x 的解析式;(2)若函数()()1g x f x =+在区间()0,b 上只有4个零点,求b 的最大值.26.如图,有一矩形空地ABCD ,240AB BC ==米,现计划种植甲、乙两种蔬菜,已知单位面积种植甲蔬菜的经济价值是种植乙蔬菜经济价值的3倍,但种植甲蔬菜需要有辅助光照.AB 边中点O 处处恰有一可旋转光源满足甲蔬菜生长的需要,该光源照射范围是60EOF ∠=︒,其中E 、F 分别在边BC ,CD 上.(1)若30BOE ∠=︒,求四边形OECF 的面积; (2)求该空地产生最大经济价值时种植甲种蔬菜的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题意求出(),()f x g x 原点附近的单调递减区间,根据递减区间分析可得max 3π4b =,min π4a =,相减即可. 【详解】 解:由题意函数()sin 2f x x =在π3π,44⎛⎫⎪⎝⎭上单调递减,函数()2cos g x x =在()0,π上单调递减, 所以则max 3π4b =,min π4a =,所以b a -的最大值为3πππ442-=. 故选:C. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.2.A解析:A 【分析】先确定奇偶性,再取特殊值确定函数值可能为负,排除三个选项后得出结论. 【详解】记()()sin cos f x x =,则()()()sin cos()sin cos ()f x x x f x -=-==,为偶函数,排除D ,当23x π=时,21()sin cos sin 032f x π⎛⎫⎛⎫⎛⎫==-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,排除B ,C . 故选:A . 【点睛】本题考查由解析式先把函数图象,解题方法是排除法,可通过研究函数的性质如奇偶性、单调性等排除一些选项,再由特殊的函数值,函数值的正负,变化趋势等排除一些选项后得出正确结论.3.B解析:B 【分析】根据已知求出矢2=,弦2AD ==. 【详解】由题意可得:823=43AOB ππ∠=,4OA =,在Rt AOD 中,可得:3AOD π∠=,6DAO π∠=,114222OD AO ==⨯=, 可得:矢422=-=,由sin43AD AO π===可得:弦2AD ==所以:弧田面积12=(弦⨯矢+矢221)22)292=+=≈平方米.故选:B 【点睛】方法点睛:有关扇形的计算,一般是利用弧长公式l r α=、扇形面积公式12S lr =及直角三角函数求解.4.A解析:ABD 【分析】由周期可求出ω,再由平移后为偶函数求出ϕ,即得()sin 23πf x x ⎛⎫=-⎪⎝⎭,求出512f π⎛⎫⎪⎝⎭可判断A ;求出6f π⎛⎫⎪⎝⎭可判断B ;令222,232k x k k Z πππππ-+≤-≤+∈求出单调递增区间可判断C ;由C 选项可判断D. 【详解】()f x 的最小正周期为π,22πωπ∴==,()sin(2)f x x ϕ=+,向右平移12π个单位后得到sin 26y x πϕ⎛⎫=-+ ⎪⎝⎭为偶函数, ,62k k Z ππϕπ∴-=+∈,即2,3k k Z πϕπ=+∈, ||2πϕ<,3ϕπ∴=-,()sin 23f x x π⎛⎫∴=-⎪⎝⎭, 对于A ,55sin 2sin 10121232f ππππ⎛⎫⎛⎫=⨯-==≠ ⎪ ⎪⎝⎭⎝⎭,故()f x 不关于点5(,0)12π对称,故A 错误; 对于B ,sin 2sin 001663f πππ⎛⎫⎛⎫=⨯-==≠± ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,令222,232k x k k Z πππππ-+≤-≤+∈,解得5,1212k x k k Z ππππ-+≤≤+∈, 当0k =时,51212x ππ-≤≤,故()f x 在,]1212π5π[-单调递增,故C 正确; 对于D ,由C 选项可知,()f x 在5[,]1212ππ单调递增,故D 错误.故选:ABD. 【点睛】本题考查正弦型函数的性质,可通过代入验证的方法判断对称轴和对称中心,利用整体换元可求单调区间.5.B解析:B 【分析】由相邻两条对称轴之间的距离为2π,可知22T π=,从而可求出2ω=,再由()y f x =的图像向左平移6π个单位后,得到的图象关于y 轴对称,可得sin 13πϕ⎛⎫+=± ⎪⎝⎭,从而可求出ϕ的值,然后逐个分析各个选项即可 【详解】因为相邻两条对称轴的距离为2π,故22T π=,T π=,从而2ω=. 设将()f x 的图像向左平移6π单位后,所得图像对应的解析式为()g x , 则()sin 23g x x πϕ⎛⎫=++ ⎪⎝⎭,因()g x 的图像关于y 轴对称,故(0)1g =±,所以sin 13πϕ⎛⎫+=± ⎪⎝⎭,,32k k Z ππϕπ+=+∈,所以,6k k Z πϕπ=+∈, 因||2ϕπ<,所以6π=ϕ. 又()sin 26f x x π⎛⎫=+ ⎪⎝⎭,令2,62x k k Z πππ+=+∈,故对称轴为直线,26k x k Z ππ=+∈,所以C ,D 错误; 令2,6x k k ππ+=∈Z ,故,212k x k Z ππ=-∈,所以对称中心为,0,212k k Z ππ⎛⎫-∈⎪⎝⎭,所以A 错误,B 正确. 故选:B 【点睛】此题考查了三角函数的图像变换和三角函数的图像和性质,属于基础题.6.D解析:D 【分析】先利用函数()sin y A ωx φ=+的图像变换规律求得()g x 的解析式,再利用正弦函数的图像的对称性,求得12x x +的值,可得()12g x x +的值. 【详解】将函数()sin 3f x x π⎛⎫=-⎪⎝⎭的图象横坐标缩短到原来的12(纵坐标不变),可得sin 23y x π⎛⎫=- ⎪⎝⎭的图象;再向左平移3π个单位,所得函数()sin 23g x x π⎛⎫=+ ⎪⎝⎭,若1x ,20,2x π⎛⎫∈ ⎪⎝⎭,12x x ≠,则142,333x πππ⎛⎫+∈ ⎪⎝⎭,242,333x πππ⎛⎫+∈ ⎪⎝⎭, ()()12g x g x =,12223322x x πππ+++∴=,126x x π∴+=,则()122sin 2sin 633g x x πππ⎛⎫+=⨯+==⎪⎝⎭.故选:D. 【点睛】本题考查函数()sin y A ωx φ=+的图像变换规律,正弦函数的对称性,属于中档题.7.B解析:B 【分析】利用函数()0f π=排除两个选项,再由奇偶性排除一个后可得正确选项. 【详解】由图象知()0f π=,经验证只有AB 满足,C 中()cos 2f ππππ==,D 中()f ππ=,排除CD ,A 中函数满足()sin(2)sin 2()f x x x x x f x -=--==为偶函数,B 中函数满足()sin(2)sin 2()f x x x x x f x -=--=-=-为奇函数,而图象关于原点对称,函数为奇函数,排除A ,选B . 故选:B . 【点睛】思路点睛:由函数图象选择解析式可从以下方面入手:(1)从图象的左右位置,观察函数的定义域;从图象的上下位置,观察函数的值域; (2)从图象的变化趋势观察函数的单调性; (3)从图象的对称性观察函数的奇偶性; (4)从图象的特殊点,排除不合要求的解析式..8.A解析:A 【分析】由题意知函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数,作出两个函数图象,数形结合即可求解. 【详解】令()()()0h x f x g x =-=可得()()f x g x =,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于 函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数. 分别作出()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象,由图知两个函数图象在区间[]2,2ππ-上有4个交点,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是4, 故选:A 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点; (2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.9.C解析:C 【分析】可得()()2f x f x π+=,得出()f x 是以2π为周期的函数,故只需考虑0,2x π⎡⎤∈⎢⎥⎣⎦即可.【详解】()()sin cos cos sin 222f x x x x x f x πππ⎛⎫⎛⎫+=+++=+= ⎪ ⎪⎝⎭⎝⎭,()f x ∴是以2π为周期的函数,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()sin cos sin cos 4f x x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,则3,444x πππ⎡⎤+∈⎢⎥⎣⎦,41x π⎛⎫+ ⎝∴≤⎪⎭≤根据函数的周期性可得()f x 的最小值为1,故AB 错误,∴1()2f x =在0,2π⎡⎤⎢⎥⎣⎦上无解,故D 错误, ()()sin cos cos sin222f x x x x x f x πππ⎛⎫⎛⎫-=-+-=+= ⎪ ⎪⎝⎭⎝⎭,故C 正确. 故选:C. 【点睛】本题考查三角函数的应用,解题的关键是得出()f x 是以2π为周期的函数,故只需考虑0,2x π⎡⎤∈⎢⎥⎣⎦即可. 10.B解析:B 【分析】 由32341234T πππ⎛⎫=--= ⎪⎝⎭可求出T π=,进而可得2ω=,令 ()22122k k Z ππϕπ⨯+=+∈结合()0,ϕπ∈即可求得ϕ的值,再根据三角函数图象的伸缩变换即可求()g x 的解析式. 【详解】 由图知32934123124T ππππ⎛⎫=--== ⎪⎝⎭, 所以T π=,可得2ππω=,解得2ω=,所以()()2sin 2f x x ϕ=+, 令()22122k k Z ππϕπ⨯+=+∈,所以()23k k Z πϕπ=+∈,因为()0,ϕπ∈,所以令0k =,可得3πϕ=,所以()2sin 23f x x π⎛⎫=+⎪⎝⎭,将()y f x =图像上所有点的横坐标缩小到原来的12(纵坐标不变), 可得()2sin 43g x x π⎛⎫=+ ⎪⎝⎭,故选:B11.B解析:B 【分析】根据函数在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫=⎪⎝⎭,()3g π=,可得周期的范围,进而得到关于ω的方程与不等式,结合n *∈N 可求ω的值,从而可得答案. 【详解】因为()g x 在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,04g π⎛⎫=⎪⎝⎭,()3g π=, 所以()()7,62,4422121,442T T n n T n N πππωπππωπππω*⎧-≤=⎪⎪⎪-≥=⎨⎪⎪---==∈⎪⎩得263ω≤≤,423n ω-=,n *∈N , 所以242633n -≤≤, 解得15n ≤≤.即1,2,3,4,5n =,可得23ω=,102,3,143,6,经检验均符合题意,所以ω的取值共有5个. 故选:B 【点睛】关键点点睛:本题主要考查余弦函数的几何性质,解题的关键是利用单调区间以及对称点、最值点与周期的关系列出不等式.12.C解析:C 【分析】首先根据题中所给的函数图象,从最值、周期和特殊点着手将解析式确定,之后结合函数的性质对选项逐一分析,得到结果. 【详解】根据图象得到:2A =,311341264T πππ=-=,所以T π=, 所以2ππω=,解得2ω=,所以()()2sin 2f x x ϕ=+.将点,26π⎛⎫ ⎪⎝⎭代入,得到2sin 23πϕ⎛⎫+= ⎪⎝⎭,则()232k k Z ππϕπ+=+∈,得()26k k Z πϕπ=+∈,又2πϕ<,所以6π=ϕ, 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 对于A ,20126ππ⎛⎫⨯-+= ⎪⎝⎭,则函数()f x 关于,012π⎛⎫- ⎪⎝⎭对称,故A 正确; 对于B ,函数的周期22T ππ==,故B 正确; 对于C ,当0,6x π⎛⎫∈ ⎪⎝⎭时,2,662x πππ⎛⎫+∈ ⎪⎝⎭,此时函数()f x 为增函数,故C 错误; 对于D ,当0,12x π⎡⎤∈⎢⎥⎣⎦时,2,663x πππ⎡⎤+∈⎢⎥⎣⎦,则1sin 262x π⎡⎛⎫+∈⎢ ⎪⎝⎭⎣⎦,2sin 26x π⎛⎫⎡+∈ ⎪⎣⎝⎭,故()f x 在0,12π⎡⎤⎢⎥⎣⎦D 正确.故选:C . 【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有根据图象确定函数解析式,正弦型函数的相关性质,属于简单题目.二、填空题13.【分析】求出f (t )和g (s )的值域根据存在性和恒成立问题转化为求出a 的范围【详解】对于函数f (x )当x≤0时f (x )单调递增由﹣3≤t≤0可得f (t )∈﹣43当x >0时f (x )=﹣x2+2x+3= 解析:(],2-∞【分析】求出f (t )和g (s )的值域,根据存在性和恒成立问题,转化为()()()maxmaxf t ag s +≤求出a 的范围.对于函数f (x ),当x ≤0时,f (x )733x =+单调递增,由﹣3≤t ≤0,可得f (t )∈[﹣4,3],当x >0时,f (x )=﹣x 2+2x +3=﹣(x ﹣1)2+4,由0<t ≤3,可得f (t )∈[0,4], ∴对任意t ∈[﹣3,3],f (t )∈[﹣4,4],对于函数g (x )=x +cos x +4=2sin (x 6π+)+4, ∵s ∈[0,2π],∴s 6π+∈[6π,23π], ∴g (s )∈[5,6],∴对于s ∈[0,2π],使得g (s )∈[5,6],∵对任意t ∈[﹣3,3],总存在s ∈[0,2π],使得f (t )+a ≤g (s )成立,故()()()max maxf t ag s +≤∴a +4≤6,解得a ≤2, 故答案为:(],2-∞ 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .14.4或-4【分析】由题意可得故函数的周期为求得;在中令求得从而求得的值【详解】∵函数对任意的都有∴故函数的周期为∴所以∴在中令可得:即∴则故答案为:4或-4【点睛】求三角函数解析式的方法:(1)求A 通解析:4或-4. 【分析】 由题意可得()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π,求得=3ω;在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,求得sin 0ϕ=,从而求得6f π⎛⎫⎪⎝⎭的值.∵函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭, ∴()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π, ∴22=3ππω,所以=3ω. ∴()()4sin 3f x x ϕ=+. 在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,可得:()03f f π⎛⎫= ⎪⎝⎭, 即()4sin =4sin πϕϕ+,∴sin =0ϕ. 则=4sin()4cos 462f ππϕϕ⎛⎫+==±⎪⎝⎭. 故答案为: 4或-4. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.15.【分析】先根据函数在区间上的最小值是确定的取值范围进而可得到或求出的范围得到答案【详解】函数在区间上的最小值是则的取值范围是当时函数有最小值或或的最小值等于故答案为:【点睛】本题主要考查正弦函数的最解析:32【分析】先根据函数在区间[,]34ππ-上的最小值是2-确定x ω的取值范围,进而可得到32ωππ--或342ωππ,求出ω的范围得到答案. 【详解】函数()2sin (0)f x x ωω=>在区间[,]34ππ-上的最小值是2-, 则x ω的取值范围是[,]34ωπωπ-,当22x k πωπ=-+,k Z ∈时,函数有最小值2-,32ωππ∴--,或342ωππ,k Z ∈,∴32ω≥,或6ω,k Z ∈, 0ω>,ω∴的最小值等于32.故答案为:32. 【点睛】本题主要考查正弦函数的最值的应用.考查基础知识的运用能力.三角函数式高考的重要考点,一定要强化复习.16.(1)(2)(4)【分析】根据正弦型函数周期公式正弦型函数对称中心坐标正弦型函数对称轴等知识逐项验证即可求得答案【详解】对于(1)根据正弦型函数周期公式:可得:函数最小正周期为:故(1)正确;对于(解析:(1)(2)(4) 【分析】根据正弦型函数周期公式,正弦型函数对称中心坐标,正弦型函数对称轴等知识,逐项验证,即可求得答案. 【详解】对于(1),根据正弦型函数周期公式:2T ωπ=可得:函数3()2sin 34f x x π⎛⎫=-⎪⎝⎭最小正周期为:2233T ππ==,故(1)正确; 对于(2),根据正弦函数sin ()y x x R =∈的图象的对称中心为(0),k π 正弦型函数3()2sin 34f x x π⎛⎫=-⎪⎝⎭∴令334,k Z x k ππ=∈-,解得4,3k k Z x ππ=+∈ ∴其对称中心坐标为(,0),34k k Z ππ+∈当0k =时,对称中心坐标为(,0)4π,故(2)正确;对于(3),将2sin3y x =的图象向右平移34π个单位长度 可得:392sin 32sin 344y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭92sin 322sin 344x x πππ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭∴将2sin3y x =的图象向右平移34π个单位长度不能得到图象C ,故(3)错误;对于(4),根据正弦函数sin ()y x x R =∈的图象的对称轴方程为,2x k k Z ππ=+∈,正弦型函数3()2sin 34f x x π⎛⎫=- ⎪⎝⎭∴令,2334Z x k k πππ=+∈-,解得51,32k k x Z ππ=+∈ 当2k =-时,512342x πππ=+=--, ∴3()2sin 34f x x π⎛⎫=-⎪⎝⎭一条对称轴4πx =-,故(4)正确; 故答案为:(1)(2)(4).【点睛】本题解题关键是掌握整体法求正弦函数图象的对称中心和对称轴的方法,考查了分析能力和计算能力,属于中档题.17.【分析】由题意画出图形由两角差的正切求出的正切值然后通过求解两个直角三角形得到和的长度作差后可得答案【详解】由图可知在中在中河流的宽度等于故答案为:【点睛】本题给出实际应用问题求河流在两地的宽度着重解析:1)【分析】由题意画出图形,由两角差的正切求出15︒的正切值,然后通过求解两个直角三角形得到DC 和DB 的长度,作差后可得答案.【详解】由图可知,15DAB ∠=︒()tan 45tan 30tan15tan 453021tan 45tan 30︒-︒︒=︒-︒==-+︒︒在Rt ADB 中,60AD =(tan15602120DB AD ∴=⋅︒=⨯=-在Rt ADC 中,60,60DAC AD ∠=︒=tan 60DC AD ∴=⋅︒=()()1201201BC DC DB m ∴=-=-=∴河流的宽度BC 等于)1201m故答案为:1) 【点睛】本题给出实际应用问题,求河流在,B C 两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.18.①③【分析】根据三角函数的奇偶性对称中心对称轴和最值对四个命题逐一分析由此确定正确命题的序号【详解】①为奇函数所以①正确②由于所以②错误③由于所以③正确④由于的最大值为所以④错误故答案为:①③【点睛解析:①③ 【分析】根据三角函数的奇偶性、对称中心、对称轴和最值对四个命题逐一分析,由此确定正确命题的序号. 【详解】①,22cos sin 323y x x π⎛⎫=+=- ⎪⎝⎭为奇函数,所以①正确.②,由于sin 2sin 11232πππ⎛⎫⨯+== ⎪⎝⎭,所以②错误. ③,由于53sin 2sin 1842πππ⎛⎫⨯+==- ⎪⎝⎭,所以③正确.④4πα⎛⎫+ ⎪⎝⎭32<,所以④错误. 故答案为:①③ 【点睛】本小题主要考查三角函数的奇偶性、对称性、最值以及诱导公式,属于中档题.19.【分析】可拆分理解构造由对勾函数可得时取得最小值又当时也取到最小值即可求解【详解】令由对勾函数性质可知当时;因为当时所以当时取到最小值所以故答案为:【点睛】本题考查函数最值的求解拆分构造函数是解题关解析:52【分析】可拆分理解,构造251616()5x x g x x x x-+==+-,由对勾函数可得4x =时取得最小值,又当4x =时,12sin 236x ππ⎛⎫-- ⎪⎝⎭也取到最小值,即可求解 【详解】令251616()5x x g x x x x-+==+-,由对勾函数性质可知当4x =时,min ()3g x =;因为121sin 2362x ππ⎛⎫--- ⎪⎝⎭,当4x =时,121sin 2362x ππ⎛⎫--=-⎪⎝⎭,所以当4x =时,()f x 取到最小值,5(4)2f =,所以min 5()2f x =.故答案为:52【点睛】本题考查函数最值的求解,拆分构造函数是解题关键,属于中档题20.3【分析】由已知可得是函数的一个周期所以再由可求得可得答案【详解】由已知可得则有则是函数的一个周期所以又所以所以故答案为:3【点睛】本题考查了函数的周期性及其应用准确理解周期性的定义是解题的关键属于解析:3 【分析】由已知可得,3是函数()f x 的一个周期,所以(2020)(1)f f =,再由(2)3f -=, 可求得()13f =,可得答案. 【详解】由已知可得,3()2f x f x ⎛⎫+=- ⎪⎝⎭,则有333(3)++()222f x f x f x f x ⎛⎫⎛⎫+==-+= ⎪ ⎪⎝⎭⎝⎭,则3是函数()f x 的一个周期, 所以(2020)(67331)(1)f f f =⨯+=, 又(2)3f -=,所以()()123f f =-=, 所以(2020)3f =, 故答案为:3. 【点睛】本题考查了函数的周期性及其应用,准确理解周期性的定义是解题的关键,属于中档题.三、解答题21.(1)()2sin 23f x x π⎛⎫=-⎪⎝⎭;(2)()4sin 423g x x π⎛⎫=-- ⎪⎝⎭,,2()412k k ππ⎛⎫+-∈ ⎪⎝⎭Z . 【分析】(1)结合图象求出A ,ϕ,代入点的坐标,求出ϕ,从而求出函数()f x 的解析式; (2)通过图象变换,求出函数()g x 的解析式,根据三角函数的性质求出()g x 的对称中心即可. 【详解】(1)由图象知:3532,41234A T πππ⎛⎫==--= ⎪⎝⎭, 解得:T π=,故22πωπ==,故()2sin(2)f x x ϕ=+, 将点,03π⎛-⎫ ⎪⎝⎭代入解析式得:2sin 03πϕ⎛⎫-+= ⎪⎝⎭,故()223k k ϕππ=+∈Z , 而2πϕ<,故3πϕ=-,故()2sin 23f x x π⎛⎫=-⎪⎝⎭; (2)将()y f x =图象上所有点的横坐标缩小到原来的12倍, 解析式转化为2sin 43y x π⎛⎫=-⎪⎝⎭, 再将图象上所有点的纵坐标扩大到原来的2倍(横坐标不变), 解析式转化为4sin 43y x π⎛⎫=-⎪⎝⎭, 最后向下平移2个单位得到()y g x =图象, 则()4sin 423y g x x π⎛⎫==-- ⎪⎝⎭,令()4sin 43h x x π⎛⎫=- ⎪⎝⎭, 令4()3x k k ππ-=∈Z ,解得:()412k x k ππ=+∈Z , 故()h x 的对称中心是,0()412k k ππ⎛⎫+∈⎪⎝⎭Z , 故()g x 的对称中心是,2()412k k ππ⎛⎫+-∈⎪⎝⎭Z . 【点睛】方法点睛:已知f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 22.(1)()()2sin f x x ϕ=+;(2)答案见解析. 【分析】由已知得周期从而求得ω, 选①:(1)得出()6f x π+,根据偶函数与诱导公式求得ϕ;(2)求出()f x 的增区间,再与[0,]π求交集可得;选②:(1)解方程3f π⎛⎫= ⎪⎝⎭ϕ; (2)同选①选③:(1)由6f π⎛⎫ ⎪⎝⎭是最大值可得ϕ; (2)同选① 【详解】解:∵()f x 的图象与直线2y =的相邻两个交点间的距离为2π, ∴2T π=,即22ππω=,∴1ω=,∴()()2sin f x x ϕ=+. 方案一:选条件① (1)∵2sin 66f x x ππϕ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭为偶函数, ∴62k ππϕπ+=+,即3k πϕπ=+,k Z ∈,∵02πϕ<<,∴3πϕ=,∴()2sin 3f x x π⎛⎫=+⎪⎝⎭. (2)令22232k x k πππππ-+≤+≤+,k Z ∈,得:52266k x k ππππ-+≤≤+,k Z ∈,令0k =,得566x ππ-≤≤, ∴函数()f x 在[]0,π上的单调递增区间为06,π⎡⎤⎢⎥⎣⎦(写成开区间也可得分) 方案二:选条件②(1)方法1:∵2sin 33f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭∴sin 32πϕ⎛⎫+= ⎪⎝⎭,∴2k 33ππϕπ+=+或2233k ππϕπ+=+,k Z ∈, ∴2k ϕ=π或23k πϕπ=+,k Z ∈,∵02πϕ<<,∴3πϕ=,∴()2sin 3f x x π⎛⎫=+⎪⎝⎭;方法2:∵2sin 33f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭∴sin 32πϕ⎛⎫+= ⎪⎝⎭,∵02πϕ<<,∴5336πππϕ<+<, ∴233ππϕ+=即3πϕ=,∴()2sin 3f x x π⎛⎫=+ ⎪⎝⎭;(2)同方案一. 方案三:选条件③ ∵x R ∀∈,()6f x f π⎛⎫≤ ⎪⎝⎭,∴6f π⎛⎫ ⎪⎝⎭为()f x 的最大值, ∴262k ππϕπ+=+,k Z ∈,即23k πϕπ=+,k Z ∈,∵02πϕ<<,∴3πϕ=,∴()2sin 3f x x π⎛⎫=+⎪⎝⎭; (2)同方案一. 【点睛】思路点睛:本题考查三角函数的图象与性质,掌握正弦函数的性质是解题关键.()sin()(0,0)f x A x A ωϕω=+>>,只要把x ωϕ+作为一个整体,用它替换sin y x =中的x 可确定函数的性质如单调性、对称中心、对称轴,最值,也可由()sin()(0,0)f x A x A ωϕω=+>>中x 的范围求出t x ωϕ=+的范围M ,然后考虑sin y x =在x M ∈时的性质得出结论. 23.(1)()cos(2)6f x x π=+;(2)见解析.【分析】(1)根据图象求出周期,再根据最低点可求ϕ,从而得到函数解析式. (2)求出()g x 的解析式,故方程可化为cos 206m x π⎛⎫---= ⎪⎝⎭,可通过直线y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭ 的图象的交点的个数解决方程的解的个数.【详解】(1)由函数的图象可得()f x 的周期为2236πππ⎛⎫⨯-=⎪⎝⎭,故22πωπ==, 又26312f ππ⎛⎫+ ⎪=- ⎪ ⎪⎝⎭,故5cos 2+112πϕ⎛⎫⨯=- ⎪⎝⎭, 所以526k πϕππ+=+即2,6k k Z πϕπ=+∈,因为02πϕ<<,故6π=ϕ,所以()cos(2)6f x x π=+. (2)()cos(2)cos 266g x x x ππ=-+=, 故()3()cos(2)3cos 26f xg x m x x m π-⋅-=+--cos 2cossin 2sin3cos 2cos 2666x x x m m x πππ⎛⎫=---=--- ⎪⎝⎭ 故方程在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数即为y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭图象交点的个数,cos 26y x π⎛⎫=- ⎪⎝⎭在,2ππ⎡⎤-⎢⎥⎣⎦上的图象如图所示,由图象可得: 当1m -=-31m <-<即1m =或31m -<<时,方程有2个不同的解; 当31m -<-≤31m ≤<时,方程有4个不同的解; 当33m <-≤33m ≤<时,方程有3个不同的解; 【点睛】 方法点睛:(1)平移变换有“左加右减”(水平方向的平移),注意是对自变量x 做加减.(2)与余弦型函数有关的方程的解的个数的讨论,一般可转化为动直线与确定函数的图象的交点个数来讨论.24.(1)()50sin 707050cos ,010210h t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭;(2)52分钟. 【分析】(1)根据题意分析游客甲绕原点作匀速圆周运动,根据三角函数定义可把他离地面的距离()h t 表示出来;(2)先求出游客乙离地面距离的函数()g t ,则()()h h t g t =-△即为甲乙的离地面距离之差,利用函数求最值. 【详解】(1)法1:据题意,游客甲绕原点按逆时针方向作角速度为22010ππ=弧度/分钟的匀速圆周运动,设经过t 分钟后甲到达Q ,则以OP 为始边,OQ 为终边的角的大小是10t π, 因为圆的半径为50r =米,由三角函数定义知点Q 的纵坐标为50sin 102y t ππ⎛⎫=- ⎪⎝⎭,则其离地面的距离为:()()205050sin 7050cos 010210h t t t t πππ⎛⎫=++-=-≥⎪⎝⎭. 法2:因为摩天轮是作匀速圆周运动,故可设()()()sin 0,0h t A t b A ωϕω=++>>,据题意有12050,2070,A b A A b b ⎧+==⎧⇒⎨⎨-+==⎩⎩又周期20T =,所以10πω=,由在最低点入舱得01022πππϕϕ⋅+=-⇒=-,故得()50sin 707050cos ,010210h t t t t πππ⎛⎫=-+=-≥⎪⎝⎭. (2)由(1)可知游客乙离地面的距离:()()7050cos 57050sin 1010g t t t ππ⎡⎤=--=-⎢⎥⎣⎦,其中时间t 表示游客甲坐上摩天轮的时间,则甲乙的离地面距离之差为:()()50sin cos 1010104h h t g t t t t ππππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭△,当()21042t k k ππππ-=+∈Z ,即()15202t k k =+∈Z 时,甲乙离地面距离之差达到最大,所以152t =,即游客乙坐上摩天轮552t -=分钟后,甲乙的离地面距离之差首次达到最大. 【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式:(1)求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型;(2) 数学模型(解析式)建立后,不仅要考虑函数本身的定义域,还要结合实际问题确定自变量的取值范围.25.()2sin 3f x x ππ⎛⎫=+ ⎪⎝⎭;(2)296【分析】(1)根据条件先求ω,再根据()0f =ϕ,最后再验证ϕ值,确定函数的解析式;(2)根据条件求函数的零点,确定b 的最大值应是第5个零点. 【详解】 (1)函数的最大值是2,∴,函数的周期2T =,即22πωπω=⇒=,()02sin f ϕ==,且0ϕπ<<,3πϕ∴=或23π, 当3πϕ=时,()2sin 3f x x ππ⎛⎫=+⎪⎝⎭,当10,12x ⎡⎤∈⎢⎥⎣⎦时,5,3312x ππππ⎡⎤+∈⎢⎥⎣⎦ 0,2π⎡⎤⎢⎥⎣⎦,满足条件; 当23ϕπ=时,()22sin 3f x x ππ⎛⎫=+⎪⎝⎭,当10,12x ⎡⎤∈⎢⎥⎣⎦时,223,334x ππππ⎡⎤+∈⎢⎥⎣⎦ 3,22ππ⎡⎤⎢⎥⎣⎦,所以函数在区间10,12⎡⎤⎢⎥⎣⎦上为减函数,所以舍去, 所以函数()2sin 3f x x ππ⎛⎫=+ ⎪⎝⎭; (2)()2sin 103g x x ππ⎛⎫=++= ⎪⎝⎭,得1sin 32x ππ⎛⎫+=- ⎪⎝⎭, 72,36x k k Z ππππ+=+∈,解得:52,6x k k Z =+∈, 或112,36x k k Z ππππ+=+∈,解得:32,2x k k Z =+∈, 函数()()1g x f x =+在区间()0,b 上只有4个零点,∴这四个零点应是56,32,176,72,那么b 的最大值应是第5个零点,即296, 所以b 的最大值是296. 【点睛】关键点点睛:本题第一问注意求出两个ϕ 后需验证是否满足条件,第二个关键点是,注意()0,b 是开区间,开区间内只有四个零点,则b 的最大值是第5个零点.26.(1)400平方米;(2)200平方米. 【分析】(1)四边形OECF 的面积OBCF BOE S S S =-△;(2)设[0BOE α∠=∈︒,45]︒,过点F 作FM AB ⊥于点M ,利用三角函数的知识可得EOF S △;设单位面积种植乙蔬菜的经济价值为m ,该空地产生的经济价值为y ,可用含α的式子表示出y ;令()cos sin(120)f ααα=⋅︒-,结合三角恒等变换公式和余弦函数的图象与性质求出()f α取得最小值时,α的值,再将其代入EOF S △的表达式中即可得解. 【详解】解:(1)由60EOF ∠=︒,30BOE ∠=︒,可知⊥OF OB ,O 为AB 中点,2AB BC =,OB BC ∴=,∴四边形FOBC 为正方形.在Rt BOE △中,30BOE ∠=︒,20OB =米,BE ∴=,∴四边形OECF 的面积为12020204002OBCF BOE S S -=⨯-⨯=△平方米.(2)设[0BOE α∠=∈︒,45]︒,则120AOF α∠=︒-,过点F 作FM AB ⊥于点M ,在Rt OBE △中,cos OB BOE OE ∠=,20cos cos OB OE BOE α∴==∠,在Rt OMF △中,sin FMAOF OF∠=,20sin sin(120)FM OF AOF α∴==∠︒-.112020·sin sin 6022cos sin(120)EOF S OE OF EOF αα∴=∠=⨯⨯⨯︒=︒-△,设单位面积种植乙蔬菜的经济价值为m ,该空地产生的经济价值为y ,则()3EOF EOF ABCD y mS m S S =+-△△矩形3(2040)cos sin(120)cos sin(120)m m αααα=⨯+⨯-⋅︒-⋅︒-[800]cos sin(120)m αα=+⋅︒-.令21()cos sin(120)sin cos 2f αααααα=⋅︒-=-cos 2111sin 2cos(230)242ααα+=-⨯=+︒+.[0α∈︒,45]︒,230[30α∴+︒∈︒,120]︒,1cos(230)[2α∴+︒∈-.若该空地产生的经济价值y 最大,则()f α应取得最小值,为12-,此时0α=︒,200EOF S ∴====△平方米. 故该空地产生最大经济价值时种植甲种蔬菜的面积为200平方米. 【点睛】本题考查函数的实际应用,还涉及三角恒等变换与三角函数的图象与性质,选择适当的函数模型是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.。
(常考题)北师大版高中数学必修四第一章《三角函数》测试题(含答案解析)(1)
一、选择题1.将函数sin()y x ϕ=+的图像上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将所得图像向左平移12π个单位后得到的函数图像关于原点中心对称,则sin 2ϕ=( )A .12-B .12C .D 2.设函数()3sin()10,2f x x πωϕωϕ⎛⎫=++><⎪⎝⎭的最小正周期为π,其图象关于直线3x π=对称,则下列说法正确是( )A .()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减; C .()f x 的一个对称中心是7,012π⎛⎫⎪⎝⎭; D .将()f x 的图象向左平移12ϕ个单位长度得到函数3sin 21y x =+ 的图象. 3.如果一个函数在给定的区间上的零点个数恰好为8,则称该函数为“比心8中函数”.若函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上的“比心8中函数”,则ω的取值范围是( ) A .4149,66⎡⎫⎪⎢⎣⎭B .4953,66⎡⎫⎪⎢⎣⎭C .3741,66⎡⎫⎪⎢⎣⎭D .[8,9)4.函数1sin3y x =-的图像与直线3x π=,53x π=及x 轴所围成的图形的面积是( ) A .23π B .πC .43π D .53π 5.已知函数sin()0,0,||2y A x b A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的图象上相邻的一个最大值点与对称中心分别为2,39π⎛⎫ ⎪⎝⎭,,018π⎛⎫⎪⎝⎭,则函数()f x 的单调增区间为( ) A .222,3939k k ππππ⎛⎫-+ ⎪⎝⎭,k Z ∈ B .242,3939k k ππππ⎛⎫--⎪⎝⎭,k Z ∈ C .227,318318k k ππππ⎛⎫++⎪⎝⎭,k Z ∈ D .272,318318k k ππππ⎛⎫--⎪⎝⎭,k Z ∈6.使函数())cos(2)f x x x θθ=+++是偶函数,且在0,4⎡⎤⎢⎥⎣⎦π上是减函数的θ的一个值是( ) A .6π B .3π C .23π D .56π7.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( ) A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C8.已知奇函数()f x 满足()(2)f x f x =+,当(0,1)x ∈时,函数()2x f x =,则12log 23f ⎛⎫= ⎪⎝⎭( ) A .1623-B .2316-C .1623D .23169.有以下四种变换方式: ①向左平移12π个单位长度,再将每个点的横坐标伸长为原来的2倍;②向左平移6π个单位长度,再将每个点的横坐标伸长为原来的2倍; ③再将每个点的横坐标伸长为原来的2倍,再向左平移6π个单位长度; ④再将每个点的横坐标伸长为原来的2倍,再向右平移6π个单位长度; 其中能将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象变为函数sin y x =图象的是( )A .①③B .②③C .①④D .②④10.已知函数1,01()11sin ,14242x x f x x x π+≤≤⎧⎪=⎨+<≤⎪⎩,若不等式2()()20f x af x -+<在[]0,4x ∈上恒成立,则实数a 的取值范围为( )A .3a >B .23a <<C .22a >D .92a >11.函数()()sin ln 0=->f x x x ωω只有一个零点,则实数ω的取值范围是( ) A .()0,πB .5,2⎫⎛⎪⎝⎭ππe C .50,2⎫⎛ ⎪⎝⎭πeD .5,2⎫⎛∞ ⎪⎝⎭π+e 12.如图,摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.某摩天轮最高点距离地面高度为120m ,转盘直径为110m 设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要20min .游客甲坐上摩天轮的座舱,开始转动t min 后距离地面的高度为H m ,则在转动一周的过程中,高度H 关于时间t 的函数解析式是( )A .()55cos 65020102H t t ππ⎛⎫=-+≤≤ ⎪⎝⎭B .()55sin 65020102H t t ππ⎛⎫=-+≤≤ ⎪⎝⎭C .()55cos 65020102H t t ππ⎛⎫=++≤≤ ⎪⎝⎭D .()55sin 65020102H t t ππ⎛⎫=++≤≤ ⎪⎝⎭二、填空题13.下列判断正确的是___________(将你认为所有正确的情况的代号填入横线上). ①函数1tan 21tan 2xy x+=-的最小正周期为π;②若函数()lg f x x =,且()()f a f b =,则1ab =; ③若22tan 3tan 2αβ=+,则223sin sin 2αβ-=;④若函数()2221sin 41x xy x ++=+的最大值为M ,最小值为N ,则2M N +=.14.已知函数cos ,[],y a x x ωππ=+∈-(其中,a ω为常数,且0>ω)有且仅有3个零点,则ω的最小值是_________.15.“一湾如月弦初上,半壁澄波镜比明”描述的是敦煌八景之一的月牙泉.如图所示,月牙泉由两段在同一平面内的圆弧形岸连接围成.两岸连接点间距离为603米.其中外岸为半圆形,内岸圆弧所在圆的半径为60米.某游客绕着月牙泉的岸边步行一周,则该游客步行的路程为_______米.16.已知函数()()π5sin 24f x x x ⎛⎫=-∈ ⎪⎝⎭R ,对于下列说法:①要得到()5sin 2g x x =的图象,只需将()f x 的图象向左平移4π个单位长度即可;②()y f x =的图象关于直线3π8x =对称:③()y f x =在[]π,π-内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦;④5π8y f x ⎛⎫=+⎪⎝⎭为奇函数.则上述说法正确的是________(填入所有正确说法的序号). 17.已知函数()sin()f x A x ωϕ=+(其中0A >,0,0ωϕπ><<)的图象关于点M 5(,0)12π成中心对称,且与点M 相邻的一个最低点为2(,3)3π-,则对于下列判断: ①直线2x π=是函数()f x 图象的一条对称轴;②函数()3y f x π=-为偶函数;③函数1y =与35()()1212y f x x ππ=-≤≤的图象的所有交点的横坐标之和为7π.其中正确的判断是__________________.(写出所有正确判断的序号)18.已知函数f (x ),任意x 1,x 2∈,22ππ⎛⎫- ⎪⎝⎭(x 1≠x 2),给出下列结论:①f (x +π)=f (x );②f (-x )=f (x );③f (0)=1; ④1212()()f x f x x x -->0;⑤1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭.当()tan f x x =时,正确结论的序号为________.19.已知函数()2sin()(0)f x x ωϕω=+>满足()24f π=,()0f π=,且()f x 在区间(,)43ππ上单调,则ω的值有_________个.20.关于函数()()4sin 23f x x x R π⎛⎫=+∈ ⎪⎝⎭,有下列命题: ①函数()y f x =的表达式可以改写为4cos 26y x π⎛⎫=- ⎪⎝⎭; ②函数()y f x =是以2π为最小正周期的周期函数; ③函数()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称; ④函数()y f x =的图象关于直线6x π=-对称.其中正确的序号是______.三、解答题21.已知函数1()sin 22,23f x x x R π⎛⎫=-+∈ ⎪⎝⎭. (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间; (3)求()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值 22.如图,在矩形OABC 中,22OA OC ==,将矩形OABC 绕着顶点O 逆时针旋转,得到矩形OA B C ''',记旋转的角度为θ,0,2πθ⎛⎫∈ ⎪⎝⎭旋转前后两个矩形公共部分的面积为()S θ.(1)求3S π⎛⎫⎪⎝⎭; (2)若()72S θ=,求sin θ. 23.已知2sin ()cos(2)tan()(),sin()tan(3)f παπαπααπααπ-⋅-⋅-+=+⋅-+ (1)化简()f α;(2)若1(),8f α=且,42ππα<<求cos sin αα-的值; (3)求满足1()4f α≥的α的取值集合. 24.己知函数()sin 3cos (0, 0 )f x A x A x A ωωω=+>>,其部分图象如图所示.(1)求A 和ω的值;(2)求函数()y f x =在[]0,π的单调增区间.25.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><的部分图象如下图所示.(1)求函数()f x 的解析式,并写出函数()f x 的单调递增区间; (2)将函数()f x 图象上所有点的横坐标缩短到原来的14(纵坐标不变),再将所得的函数图象上所有点向左平移02m m π⎛⎫<< ⎪⎝⎭个单位长度,得到函数()g x 的图象.若函数()g x 的图象关于直线512x π=对称,求函数()g x 在区间7,1212ππ⎡⎤⎢⎥⎣⎦上的值域. 26.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表: 时刻 0:00 1:00 2:00 3:00 4:00 5:00 水深5.0006.2507.1657.5007.1656.250(1)这个港口的水深与时间的关系可用函数(,)近似描述,试求出这个函数解析式;(2)一条货船的吃水深度(船底与水面的距离)为5米,安全条例规定至少要有1.25米的安全间隙(船底与洋底的距离),利用(1)中的函数计算,该船何时能进入港口?在港口最多能呆多久?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先根据条件写出图像变换后的函数解析式,然后根据图像关于原点中心对称可知函数为奇函数,由此得到ϕ的表示并计算出sin 2ϕ的结果. 【详解】因为变换平移后得到函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由条件可知sin 26y x πϕ⎛⎫=++ ⎪⎝⎭为奇函数,所以6k πϕπ+=,sin 2sin 2sin 332k ππϕπ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭故选C . 【点睛】本题考查三角函数的图像变换以及根据函数奇偶性判断参数值,难度一般.正弦型函数()()sin f x A x =+ωϕ为奇函数时,k k Z ϕπ=∈,为偶函数时,2k k Z πϕπ=+∈.2.D解析:D 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式,再结合正弦函数的图象与性质,判断点是否在函数图象上可判断A ,求得函数的单调区间及对称中心即可判断选项BC ,由平移变换求得变化后的解析式并对比即可判断D. 【详解】函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期是π 所以22πωπ==,则()()3sin 21f x x ϕ=++,()()3sin 21f x x ϕ=++图象关于直线3x π=对称,对称轴为2,2x k k Z πϕπ+=+∈,代入可得2,32k k Z ππϕπ⨯+=+∈,解得,6k k Z πϕπ=-+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以当0k =时, 6πϕ=-, 则()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭, 对于A,当0x =时,()3103sin 11622f π=-+=-+=- ,所以错误; 对于B,()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的单调递减区间为3222,262k x k k πππππ+-+∈Z ≤≤, 解得5,36k x k k Z ππππ+≤≤+∈,因为123ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以错误; 对于C ,773sin 213sin 11012126f ππππ⎛⎫⎛⎫=⨯-+=+=≠⎪ ⎪⎝⎭⎝⎭,所以7,012π⎛⎫ ⎪⎝⎭不是()f x 的一个对称中心,所以错误; 对于D ,1212πϕ=,将()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移12π个单位长度得到可得3sin 213sin 21126y x x ππ⎡⎤⎛⎫=-++=+ ⎪⎢⎥⎝⎭⎣⎦,所以能得到3sin 21y x =+的图象,所以正确. 故选: D. 【点睛】本题考查了正弦函数的图象与性质的综合应用,关键点是根据已知条件先求出正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.3.A解析:A 【分析】根据题意问题转化为方程1sin()2x ωπ=在区间[0,1]上有8个解,根据正弦函数的图像与性质可求得1sin()2x ωπ=在区间[0,1]上取第8个解为416x ω=、第9个解为496x ω=,则4149166ωω≤<,解不等式即可. 【详解】根据题意,函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上零点个数为8,即方程1sin()2x ωπ=在区间[0,1]上有8个解, ∴26x k πωππ=+或52,6x k k Z πωππ=+∈, 当0k =时,1sin()2x ωπ=在区间[0,1]上取第1个解16x ω=,取第2个解56x ω=; 当1k =时,1sin()2x ωπ=在区间[0,1]上取第3个解136x ω=,取第4个解176x ω=; 当3k =时,1sin()2x ωπ=在区间[0,1]上取第7个解376x ω=,取第8个解416x ω=; 当4k =时,1sin()2x ωπ=在区间[0,1]上取第9个解496x ω=. 则4149166ωω≤<,解得414966ω≤<. 故选:A4.C解析:C 【分析】作出函数1sin3y x =-的图像,利用割补法,补成长方形,计算面积即可. 【详解】作出函数1sin3y x =-的图象,如图所示,利用割补法,将23π到π部分的图象与x 轴围成的图形补到图中3π到23π处阴影部分,凑成一个长为3π,宽为2的长方形,后面π到53π,同理;∴1sin3y x =-的图象与直线3x π=,53x π=及x 轴所围成的面积为24233ππ⨯=,故选:C. 【点睛】用“五点法”作()sin y A ωx φ=+的简图,主要是通过变量代换,设z x ωϕ=+,由z 取0,2π,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 5.A解析:A 【分析】由最大值点和对称中心的坐标可以求出()f x 的解析式,利用三角函数的性质,整体代换得出该复合函数的单调增区间. 【详解】图像上相邻的一个最大值点与对称中心分别为2,39π⎛⎫⎪⎝⎭,,018π⎛⎫⎪⎝⎭, 3A ∴=,0b =且124918T ππ=-,可得23T π=, 23Tπω∴==, 3sin(3)y x ϕ∴=+ 将2,39π⎛⎫⎪⎝⎭代入可得3sin(3)3y x ϕ=+=, 可得22,32k k Z ππϕπ+=+∈,且2πϕ<, 6πϕ∴=-,可得()3sin(3)6f x x π=-,令6232,22k x k k Z πππππ-+≤-≤+∈,可得222+9393k x k ππππ-≤≤,故选:A. 【点睛】方法点睛:根据图像求函数()sin()f x A x k ωϕ=++的解析式,根据最高点和对称中心的纵坐标可求出A 和k ,根据横坐标可求出周期T ,进而求出ω.求该函数的单调区间时,用整体代换的思想,借助正弦函数的单调区间,用解不等式的方法求复合函数的单调区间.6.B解析:B 【解析】1())cos(2))cos(2))2sin(2)26f x x x x x x πθθθθθ=+++=+++=++,由于()f x 为偶函数,则(0)2sin()26f πθ=+=±,sin()1,662k πππθθπ+=±+=+,3k πθπ=+,当0k =时,3πθ=,()2sin(2)2sin(2)362f x x x πππ=++=+2cos2x =,当[0,]4x π∈时,2[0,]2x π∈,()2cos2f x x =为减函数,符合题意,所以选B.7.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==-⎪⎝⎭,2cos 23:C y x π⎛⎫=-⎪⎝⎭, ∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.8.B解析:B 【分析】由已知得到(2)()f x f x +=,即得函数的周期是2,把12(log 23)f 进行变形得到223()16f log -, 由223(0,1)16log ∈满足()2x f x =,求出即可. 【详解】(2)()f x f x +=,所以函数的周期是2.根据对数函数的图象可知12log 230<,且122log 23log 23=-;奇函数()f x 满足(2)()f x f x +=和()()f x f x -=-则2312222223(log 23)(log )(log 23)(log 234)()16f f f f f log =-=-=--=-, 因为223(0,1)16log ∈ 2231622323()21616log f log ∴-=-=-,故选:B . 【点睛】考查学生应用函数奇偶性的能力,函数的周期性的掌握能力,以及运用对数的运算性质能力.9.A解析:A 【分析】直接利用三角函数图像的平移变换和伸缩变换求出结果. 【详解】对于①:sin 26y x π⎛⎫=-⎪⎝⎭向左平移12π个单位长度得到sin 2+=sin2126y x x ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,再将每个点的横坐标伸长为原来的2倍,得到sin y x =;故①正确;对于②:sin 26y x π⎛⎫=-⎪⎝⎭向左平移6π个单位长度得到sin 2+=sin 2+666y x x πππ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=+ ⎪⎝⎭;故②错误;对于③:sin 26y x π⎛⎫=-⎪⎝⎭将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=-⎪⎝⎭,再向左平移6π个单位长度,得到sin sin 66y x x ππ⎛⎫=+-= ⎪⎝⎭;故③正确; 对于③:sin 26y x π⎛⎫=- ⎪⎝⎭将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=-⎪⎝⎭,再向右平移6π个单位长度,得到sin sin()663y x x πππ⎛⎫=--=- ⎪⎝⎭;故④错误; 故选:A 【点睛】关于三角函数图像平移伸缩变换:先平移的话,如果平移a 个单位长度那么相位就会改变ωa ;而先伸缩势必会改变ω大小,这时再平移要使相位改变值仍为ωa ,那么平移长度不等于a .10.D解析:D 【分析】这是一个复合函数的问题,通过换元()t f x = ,可知新元的范围,然后分离参数,转为求函数的最大值问题,进而计算可得结果. 【详解】由题可知当[]0,1x ∈时,有[]()11,2f x x =+∈, 当4](1,x ∈时,0sin14xπ≤≤,即111()sin,12422x f x π⎡⎤=+∈⎢⎥⎣⎦ 所以当[]0,4x ∈时,1,22()f x ⎡∈⎤⎢⎥⎣⎦,令()t f x =,则1,22t ⎡⎤∈⎢⎥⎣⎦,从而问题转化为不等式220t at -+<在1,22t ⎡⎤∈⎢⎥⎣⎦上恒成立,即222t a t t t+>=+在1,22t ⎡⎤∈⎢⎥⎣⎦上恒成立, 由2y t t =+,1,22t ⎡⎤∈⎢⎥⎣⎦,设1212t t <<<()()()1212121212122220t t f t f t t t t t t t t t --=-+-=->, 所以2y t t =+在12t ⎡∈⎢⎣是单调递减函数,122t t <<<,()()()1212121212122220t t f t f t t t t t t t t t --=-+-=-<, 所以2y t t=+在2t ⎤∈⎦是单调递增函数,在1,22t ⎡⎤∈⎢⎥⎣⎦上先减后增,而2t t +在12t =时有最大值为92,所以92a >.【点睛】本题考查含参数的恒成立问题,运用到分离参数法求参数范围,还结合双勾函数的单调性求出最值, 同时考查学生的综合分析能力和数据处理能力.11.C解析:C 【分析】函数()()sin ln 0=->f x x x ωω只有一个零点,等价于sin y x ω=与ln y x =图象只有一个交点,作出两个函数的图象,数形结合即可求解. 【详解】函数()()sin ln 0=->f x x x ωω只有一个零点, 可得sin ln 0x x ω-=只有一个实根,等价于sin y x ω=与ln y x =图象只有一个交点, 作出两个函数的图象如图所示,由sin y x ω=可得其周期2T πω=,当x e =时,ln 1y e ==sin y x ω=最高点5,12A πω⎛⎫⎪⎝⎭所以若恰有一个交点,只需要5ln 12πω>,即52e πω>, 解得:52e πω<,又因为0>ω,所以502eπω<<, 故选:C 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.12.B解析:B 【分析】先判断游客进仓后第一次到达最高点时摩天轮旋转半周,大约需要10min ,结合摩天轮最高点距离地面高度为120m ,可得10t =时,120H =,再利用排除法可得答案. 【详解】因为游客在座舱转到距离地面最近的位置进舱,转一周大约需要20min , 所以游客进仓后第一次到达最高点时摩天轮旋转半周,大约需要10min , 又因为摩天轮最高点距离地面高度为120m , 所以10t =时,120H =,对于A ,10t =时,55cos 106555cos 65651022H πππ⎛⎫=⨯-+=+= ⎪⎝⎭,不合题意;对于B ,10t =时,55sin 106555sin 651201022H πππ⎛⎫=⨯-+=+= ⎪⎝⎭,符合题意;对于C ,10t =时,355cos 106555cos65651022H πππ⎛⎫=⨯++=+= ⎪⎝⎭,不合题意; 对于D ,10t =时,355sin 106555sin65101022H πππ⎛⎫=⨯++=+= ⎪⎝⎭,不合题意; 故选:B. 【点睛】方法点睛:特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型: (1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.二、填空题13.③④【分析】①化简可得即可求出;②由可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得利用奇函数的性质可得【详解】对①则最小正周期为故①错误;对②若则可能相等故②错误;对③若则即即即即故③解析:③④ 【分析】①,化简可得tan 24y x π⎛⎫=+⎪⎝⎭,即可求出;②由,a b 可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得24sin 141x xy x +=++,利用奇函数的性质可得.【详解】对①,tantan 21tan 24tan 21tan 241tan tan 24xx y x x x πππ++⎛⎫===+ ⎪-⎝⎭-⋅,则最小正周期为2π,故①错误;对②,若()()f a f b =,则,a b 可能相等,故②错误;对③,若22tan 3tan 2αβ=+,则2222sin 3sin 2cos cos αβαβ=+,即222222sin cos 3cos sin 2cos cos αβαβαβ=+,即22222222sin cos cos cos 3cos sin 3cos cos αβαβαβαβ+=+,即22cos 3cos βα=,即223sin sin 2αβ-=,故③正确;对④,()22221sin 4sin 14141x xx x y x x +++==+++,令()24sin 41x x g x x =++,则()()g x g x -=,故()g x 是奇函数,()()max min 0g x g x ∴+=,()()max min 112M N g x g x ∴+=+++=,故④正确.故答案为:③④. 【点睛】本题考查正切型函数的周期,考查同角三角函数的关系,考查奇函数的应用,解题的关键是正确利用三角函数的关键进行化简.14.2【分析】根据函数为偶函数可知函数必有一个零点为可得根据函数的图象可知解得即可得解【详解】因为函数为偶函数且有且仅有3个零点所以必有一个零点为所以得所以函数的图象与直线在上有且仅有3个交点因为函数的解析:2 【分析】根据函数为偶函数可知函数必有一个零点为0x =,可得1a =-,根据函数cos y x ω=(0)>ω的图象可知222πππωω≤<⨯,解得24ω≤<即可得解.【详解】因为函数cos ,[],y a x x ωππ=+∈-为偶函数,且有且仅有3个零点,所以必有一个零点为0x =, 所以cos00a +=,得1a =-,所以函数cos y x ω=(0)>ω的图象与直线1y =在[,]-ππ上有且仅有3个交点, 因为函数cos y x ω=(0)>ω的最小正周期2T πω=,所以2T T π≤<,即222πππωω≤<⨯,得24ω≤<,所以ω的最小值是2.故答案为:2 【点睛】关键点点睛:根据偶函数图象的对称性求出a 是解题关键.15.【分析】如图作出月牙湖的示意图由题意可得可求的值进而由图利用扇形的弧长公式可计算得解【详解】如图是月牙湖的示意图是的中点连结可得由条件可知所以所以所以月牙泉的周长故答案为:【点睛】关键点点睛:本题的 解析:(40303)π+【分析】如图,作出月牙湖的示意图,由题意可得3sin 2QPO ∠=,可求,QPO QPT ∠∠的值,进而由图利用扇形的弧长公式可计算得解. 【详解】如图,是月牙湖的示意图,O 是QT 的中点,连结PO ,可得PO QT ⊥,由条件可知603QT =,60PQ = 所以3sin QPO ∠=,所以3QPO π∠=,23QPT π∠=,所以月牙泉的周长(260303403033l πππ=⨯+⨯=+. 故答案为:(40303π+ 【点睛】关键点点睛:本题的关键是根据实际问题抽象出图象,再根据数形结合分析问题.16.②④【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案【详解】①要得到的图象应将的图象向左平移个单位长度所以①错误;②令解得所以直线是的一条对称轴故②正确;③令解得因为所以在定义域内的单解析:②④ 【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案. 【详解】①要得到()5sin 2g x x =的图象,应将()ππ5sin 25sin 248f x x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象向左平移π8个单位长度,所以①错误;②令ππ2π42x k -=+,k ∈Z ,解得3ππ82k x =+,k ∈Z ,所以直线3π8x =是()y f x =的一条对称轴,故②正确;③令ππ3π22π42π22k k x ≤+≤-+,k ∈Z ,解得3π7πππ88k x k +≤≤+,k ∈Z ,因为[]π,πx ∈-,所以()f x 在定义域内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦和5ππ,88⎡⎤--⎢⎥⎣⎦,所以③错误;④5π5ππ5sin 25sin 2884y f x x x ⎡⎤⎛⎫⎛⎫=+=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦是奇函数,所以该说法正确. 【点睛】本题考查了正弦型函数的对称轴、单调性、奇偶性与平移变换,考查了学生对()sin y A ωx φ=+的图象与性质的掌握,属于中档题.17.②③【分析】根据已知条件确定函数的解析式进一步利用整体思想确定函数的对称轴方程对称中心及各个交点的特点进一步确定答案【详解】函数(其中)的图象关于点成中心对称且与点相邻的一个最低点为则:所以进一步解解析:②③ 【分析】根据已知条件确定函数的解析式,进一步利用整体思想确定函数的对称轴方程,对称中心及各个交点的特点,进一步确定答案. 【详解】函数()()sin f x A x ωϕ=+(其中0A >,0,0ωϕπ><<)的图象关于点M 5,012π⎛⎫⎪⎝⎭成中心对称,且与点M 相邻的一个最低点为2,33π⎛⎫- ⎪⎝⎭,, 则:2543124T πππ-== ,所以T π=: ,326f x sin x π⎛⎫=+ ⎪⎝⎭(). 进一步解得:223A πωπ===, 由于()()sin f x A x ωϕ=+(其中0A >,0,0ωϕπ><<)的图象关于点M 5,012π⎛⎫⎪⎝⎭成中心对称,,所以:5212k k Z πϕπ⋅+∈=(), 解得:5,6k k Z πϕπ-∈= ,由于0ϕπ<<, 所以:当1k = 时,6πϕ=.所以: ①当2x π=时,33262f sin πππ⎛⎫=+=- ⎪⎝⎭().故错误. ②3232633f x sin x cos x πππ⎡⎤⎛⎫⎛⎫--+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=. 则3y f x π⎛⎫=- ⎪⎝⎭为偶函数,故正确. ③由于:351212x ππ-≤≤, 则:0266x ππ≤+≤,所以函数()f x 的图象与1y =有6个交点. 根据函数的交点设横坐标为123456x x x x x x 、、、、、, 根据函数的图象所有交点的横标和为7π.故正确. 故答案为②③ 【点睛】本题考查的知识要点:正弦型函数的解析式的求法,主要确定A ,ω、φ的值,三角函数诱导公式的变换,及相关性质得应用,属于基础题型.18.①④【分析】根据正切函数的周期判断①是否正确正切函数的奇偶性判断②是否正确由判断③是否正确由正切函数的单调性判断④是否正确由正切函数的图象判断⑤是否正确【详解】由于f(x)=tanx 的周期为π故①正解析:①④ 【分析】根据正切函数()tan f x x =的周期判断①是否正确,正切函数的奇偶性判断②是否正确,由tan 00=判断③是否正确,由正切函数的单调性判断④是否正确,由正切函数的图象判断⑤是否正确. 【详解】由于f (x )=tan x 的周期为π,故①正确; 函数f (x )=tan x 为奇函数,故②不正确; f (0)=tan 0=0,故③不正确;④表明函数为增函数,而f (x )=tan x 为区间,22ππ⎛⎫- ⎪⎝⎭上的增函数,故④正确;⑤由函数f (x )=tan x 的图象可知,设A =12()()2f x f x +,B =122x x f +⎛⎫⎪⎝⎭故函数在区间,02π⎛⎫- ⎪⎝⎭上有1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭, 在区间0,2π⎛⎫⎪⎝⎭上有1212()()22x x f x f x f ++⎛⎫<⎪⎝⎭,故⑤不正确. 故答案为:①④ 【点睛】本题考查了正切函数的图象和性质,属于中档题.19.9【分析】由在区间上单调可得故进一步求出范围即可【详解】由知故;又在区间上单调故即18符合条件的的值有9个故答案为:9【点睛】本题考查三角函数的图象与性质考查转化与化归思想考查逻辑推理能力运算求解能解析:9 【分析】 由()f x 在区间(,)43ππ上单调,可得342T ππ-,故6T π,进一步求出ω范围即可. 【详解】由()24f π=,()0f π=知,34244T kT πππ+=-=,k ∈N , 故312T k π=+,2(12)3k ω+=,k ∈N ; 又()f x 在区间(,)43ππ上单调,∴342T ππ-,故6T π,∴212T πω=,即2(12)123k +, ∴172k,k ∈N , 0k ∴=,1,2⋯,8符合条件的ω的值有9个. 故答案为:9. 【点睛】本题考查三角函数的图象与性质,考查转化与化归思想,考查逻辑推理能力、运算求解能力,属中档题.20.①③【分析】利用诱导公式化简函数判断①正误;求出函数周期判断②;求出函数的对称中心判断③;求出函数的对称轴判断④【详解】解:对于①所以①正确;对于②最小正周期所以②不正确;对于③因为所以为的对称中心解析:①③ 【分析】利用诱导公式化简函数()f x ,判断①正误;求出函数()f x 周期判断②;求出函数()f x 的对称中心判断③;求出函数()f x 的对称轴判断④. 【详解】解:对于①,()4sin 24cos 2323f x x x πππ⎛⎫⎛⎫=+=-- ⎪ ⎪⎝⎭⎝⎭4cos 24cos 2326x x πππ⎛⎫⎛⎫=+-=- ⎪ ⎪⎝⎭⎝⎭,所以①正确;对于②,最小正周期222T πππω===,所以②不正确; 对于③,因为4sin 4sin 00633f πππ⎛⎫⎛⎫-=-+== ⎪ ⎪⎝⎭⎝⎭所以,,06π⎛⎫- ⎪⎝⎭为()f x 的对称中心,故③正确;对于④,()()4sin 23f x x x R π⎛⎫=+∈ ⎪⎝⎭的对称直线满足2,32x k k Z πππ+=+∈,6x π=-不满足条件,所以④不正确.故答案为:①③. 【点睛】本题考查正弦函数的性质,考查基本概念、基本知识的理解掌握程度,属于基础题.三、解答题21.(1)π;(2)()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(3)最小值为32;最大值为94. 【分析】(1)利用正弦型函数的周期公式可求得函数()f x 的最小正周期; (2)解不等式()3222232k x k k Z πππππ+≤-≤+∈,可得出函数()f x 的单调递减区间;(3)由44x ππ-≤≤求出23x π-的取值范围,利用正弦函数的基本性质可求得函数()f x 的最小值和最大值. 【详解】(1)因为1()sin 2223f x x π⎛⎫=-+ ⎪⎝⎭, 所以函数()f x 的最小正周期22T ππ==; (2)由()3222232k x k k Z πππππ+≤-≤+∈,得()5111212k x k k Z ππππ+≤≤+∈.即函数()f x 的单调递减区间为()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (3)因为44x ππ-≤≤,所以52636πππ-≤-≤x ,所以, 当232x ππ-=-即12x π=-时,函数()f x 取最小值,()min 13sin 2222f x π⎛⎫=-+= ⎪⎝⎭; 当236x ππ-=即4x π=时,函数()f x 取最大值,()max 19sin 2264f x π=+=. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).22.(1)36S π⎛⎫= ⎪⎝⎭;(2)1sin 3θ=. 【分析】(1)作出图形,可知公共部分区域为直角三角形,计算出两直角边的长,由此可求得该直角三角形的面积;(2)分6πθ=、06πθ<<、62ππθ<<三种情况讨论,求出()S θ的表达式,结合()728S θ=可求得sin θ的值. 【详解】 (1)当3πθ=时,A '点在矩形OABC 外部,公共部分形状为三角形,设A O BC D '⋂=,则6COD π∠=,3tan63CD CO π==, 则1133132236S CD CO π⎛⎫=⨯⨯=⨯⨯=⎪⎝⎭;(2)①当6πθ=时,点A '在线段BC 上,此时,223A C A O OC ''=-=,113136222S OC A C π⎛⎫'=⨯=⨯⨯=⎪⎝⎭; ②当06πθ<<时,公共部分为四边形,A '点在矩形OABC 内部,过点A '作线段AB 的平行线,分别交线段AO 、BC 于点E 、F ,设A B BC G ''⋂=,则有如下长度:2cos OE θ=,22cos AE θ=-,2sin A E θ'=,12sin A F θ'=-,()12sin tan FG θθ=-,则()OEA A FG OABC AEFB S S S S S θ''=---△△矩形矩形, 即()()()()111222cos 2cos 2sin 12sin 12sin tan 22S θθθθθθθ=⨯---⨯⨯-⨯-- ()2sin 12sin 45sin 2cos 2sin cos 2cos 2cos θθθθθθθθ--=--=,由题知45sin 2cos 8θθ-=,两边同时平方得221640sin 25sin 494cos 32θθθ-+=, 由22cos 1sin θθ=-,整理得2249sin 320sin 790θθ-+=,即()()3sin 183sin 790θθ--=,因为06πθ<<,所以1sin 2θ<,故1sin 3θ=;③当62ππθ<<时,公共部分为三角形,且()116228S S πθ⎛⎫<=⨯=< ⎪⎝⎭,不合题意; 综上所述,1sin 3θ=. 【点睛】关键点点睛:解决本题第二问的关键就是找出θ的临界情况,然后对θ的取值进行分类讨论,确定公共区域的形状,计算求出()S θ的表达式,结合已知条件求解sin θ的值.23.(1)()sin cos f ααα=;(2);(3)5,1212k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. 【分析】(1)利用诱导公式化简,即可求出()f α; (2)结合(1)得1()sin cos 8f ααα==,利用同角三角函数的关系,结合α的范围,即可得答案;(3)由题意可得1sin 22α≥,利用三角函数的图像与性质,即可求得α的范围. 【详解】(1)2sin cos tan ()sin cos (sin )(tan )f αααααααα⋅⋅==--; (2)由(1)可得1()sin cos 8f ααα==,则23(cos sin )12sin cos 4αααα-=-=, ,sin cos 42ππααα<<∴>,即cos sin 0αα-<cos sin 2αα∴-=-;(3)由题意得11()sin cos sin 224f αααα==≥,1sin 22α∴≥, 5222,66k k k Z πππαπ∴+≤≤+∈,即5,1212k k k Z πππαπ+≤≤+∈,所以α的取值集合为5,1212k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. 【点睛】本题考查诱导公式的应用、同角三角函数的关系、三角函数的图像与性质,考查分析理解,求值化简的能力,考查学生对基础知识的掌握程度,属基础题. 24.(1)1A =,2ω=;(2)0,12π⎡⎤⎢⎥⎣⎦和7,12ππ⎡⎤⎢⎥⎣⎦. 【分析】(1)根据辅助角公式和两角和的正弦公式化简得()2sin 3f x A x πω⎛⎫=+ ⎪⎝⎭,由函数图象可知()f x 的最大值为2,可求出A ,由图象可知43124T πππ=-=,结合2T πω=,即可求出ω的值;(2)由(1)得2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,利用整体代入法并结合正弦函数的单调性,即可求出()y f x =在[]0,π的单调增区间. 【详解】解:(1)由题可知,()sin cos (0,0)f x A x x A ωωω=+>>即1()2sin cos 2sin 223f x A x x A x πωωω⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 由图象可知,()f x 的最大值为2,则22A =,所以1A =, 由图象可知,43124T πππ=-=,则2T ππω==,所以2ω=; (2)由(1)得2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭, 令222,232k x k k πππ-+π≤+≤+π∈Z , 解得:5,1212k x k k Z ππππ-+≤≤+∈, 又因为[]0,x π∈,所以函数()y f x =在[]0,π的单调增区间为:0,12π⎡⎤⎢⎥⎣⎦和7,12ππ⎡⎤⎢⎥⎣⎦. 【点睛】思路点睛:本题考查由函数()sin y A ωx φ=+的部分图象求解析式,由函数图象的最大值求出A ,由周期2T πω=求出ω,从而可求出函数解析式,再利用整体代入法求正弦型函数的单调性,熟练掌握正弦函数的图象和性质是解题的关键. 25.(1)12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)[]1,2-. 【分析】(1)由三角函数的图象,求得函数的解析式12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得2()2sin 223g x x m π⎛⎫=-+ ⎪⎝⎭,根据()g x 的图象关于直线512x π=对称,求得m 的值,得到()2sin 23g x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解. 【详解】(1)由图象可知2A =,422433T πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦, 所以212T πω==,所以1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭,由图可求出最低点的坐标为,23π⎛⎫- ⎪⎝⎭,所以2sin 236f ππϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭, 所以262k ππϕπ+=-+,所以22,3k k Z πϕπ=-+∈, 因为||ϕπ<,所以23πϕ=-,所以12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,由1222,2232k x k k Z πππππ-+≤-≤+∈,可得744,33k x k k Z ππππ+≤≤+∈. 所以函数()f x 的单调递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(2)由题意知,函数22()2sin 2()2sin 2233g x x m x m ππ⎡⎤⎛⎫=+-=-+ ⎪⎢⎥⎣⎦⎝⎭, 因为()g x 的图象关于直线512x π=对称, 所以5222,1232m k k Z ππππ⨯-+=+∈,即,62k m k Z ππ=+∈,因为02m π<<,所以6m π=,所以()2sin 23g x x π⎛⎫=-⎪⎝⎭. 当7,1212x ππ⎡⎤∈⎢⎥⎣⎦时,52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,可得1sin 2,132x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 所以2sin 2[1,2]3x π⎛⎫-∈- ⎪⎝⎭,即函数()g x 的值域为[]1,2-. 【点睛】解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解. 26.(1) 2.5sin()56y x π=+;(2)该船1:00至5:00和13:00至17:00期间可以进港,在港口最多能呆4个小时. 【分析】(1)由表格中数据可得, 2.5,5,12A B T ===,26T ππω==,取3x =代入可得2,k k Z ϕπ=∈,则解析式可得;(2)由(1)得计算2.5sin()5 6.256x π+≥解x 范围即可得结果.【详解】解:(1)由表格中数据可得, 2.5,5,12A B T ===. 因为0>ω,所以22126T πππω===. 因为3x =时y 取得最大值,所以32,62k k Z ππϕπ⨯+=+∈,解得2,k k Z ϕπ=∈.所以这个函数解析式为 2.5sin()56y x π=+(2)因为货船的吃水深度为5米,安全间隙至少要有1.25米, 所以2.5sin()5 6.256x π+≥,即1sin()562x π+≥, 所以522,666m x m m N πππππ+≤≤+∈,解得112512,m x m m N +≤≤+∈.取0,1,m m ==得15,1317x x ≤≤≤≤.。
(常考题)北师大版高中数学必修四第一章《三角函数》检测题(含答案解析)
一、选择题1.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6π B .4π C .3πD .2π 2.下列命题正确的是( )A .函数sin ||y x =是偶函数又是周期函数B .函数3tan 3tan xy x +=-是奇函数C .函数tan 6y ax π⎛⎫=+⎪⎝⎭的最小正周期是aπD .函数cos(sin )y x =是奇函数 3.对于函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭,有以下四种说法: ①函数的最小值是32-②图象的对称轴是直线()312k x k Z ππ=-∈ ③图象的对称中心为,0()312k k Z ππ⎛⎫-∈⎪⎝⎭④函数在区间7,123ππ⎡⎤--⎢⎥⎣⎦上单调递增. 其中正确的说法的个数是( ) A .1B .2C .3D .44.函数3cos 2cos 2sin cos cos510y x x x ππ=-的递增区间是( ) A .2[,]105k k ππππ-+(k Z ∈) B .2[,]510k k ππππ-+ (k Z ∈)C .3[,]510k k ππππ-- (k Z ∈) D .37[,]2020k k ππππ-+ (k Z ∈) 5.函数()3sin 22xf x x =-的部分图象大致为( ) A . B .C .D .6.函数2()cos sin (R)f x x x x =+∈的最小值为( ) A .54B .1C .1-D .2-7.当5,2,2παβπ⎛⎫∈ ⎪⎝⎭时,若αβ>,则以下不正确的是( ) A .sin sin tan tan αββα->-B .cos tan cos tan αββα+<+C .sin tan sin tan αββα> D .tan sin tan sin αββα<8.现有四个函数:①y =x |sin x |,②y =x 2cos x ,③y =x ·e x ;④1y x x=+的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .①②③④B .①③②④C .②①③④D .③②①④9.设函数()sin()(0,||)f x x ωϕωϕπ=+><.若5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,且1108f π⎛⎫=⎪⎝⎭,()f x 在443,ππ⎛⎫-⎪⎝⎭单调,则( ) A .23ω=,12πϕ=B .23ω=,1112πϕ=- C .13ω=,1124πϕ=-D .13ω=,724πϕ= 10.将函数()3sin()2f x x =--图象上每一点的纵坐标不变,横坐标缩短为原来的13,再向右平移29π个单位得到函数()g x 的图象,若()g x 在区间,18πθ⎡⎤-⎢⎥⎣⎦上的最大值为1,则θ的最小值为( )A .12πB .6πC .3π D .18π 11.如图,摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.某摩天轮最高点距离地面高度为120m ,转盘直径为110m 设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要20min .游客甲坐上摩天轮的座舱,开始转动t min 后距离地面的高度为H m ,则在转动一周的过程中,高度H 关于时间t 的函数解析式是( )A .()55cos 65020102H t t ππ⎛⎫=-+≤≤ ⎪⎝⎭B .()55sin 65020102H t t ππ⎛⎫=-+≤≤ ⎪⎝⎭C .()55cos 65020102H t t ππ⎛⎫=++≤≤ ⎪⎝⎭D .()55sin 65020102H t t ππ⎛⎫=++≤≤ ⎪⎝⎭12.已知函数()sin cos f x x x =+,则下列说法正确的是( ) A .()f x 的最小值为0 B .()f x 的最大值为2 C .()()2f x f x π-=D .1()2f x =在0,2π⎡⎤⎢⎥⎣⎦上有解二、填空题13.已知函数()()3cos g x x ωϕ=+()0ω>满足04g π⎛⎫=⎪⎝⎭,()3g π=,且最小正周期3T π≥,则符合条件的ω的取值个数为___________.14.对任意0,4πϕ⎡⎤∈⎢⎥⎣⎦,函数()sin()f x x ωϕ=+在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递增,则实数ω的取值范围是________. 15.已知()()sin 03f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=-⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是___________.16.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ . 17.将函数()4cos 2f x x π⎛⎫=⎪⎝⎭与直线()1g x x =-的所有交点从左到右依次记为125,,...,A A A ,若P 点坐标为(,则125...PA PA PA +++=____.18.已知函数()sin f x x =,若对任意的实数(,)46αππ∈--,都存在唯一的实数(0,)m β∈,使()()0f f αβ+=,则实数m 的最大值是____.19.已知函数2()cos ()1(0,0,0)2πf x A ωx φA ωφ=++>><<的最大值为3,()f x 的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则(1)(2)f f +=_____.20.已知函数sin cos |sin cos |()22+--=+x x x x f x [0,]m 上恰有4个零点,则实数m 的取值范围为________.三、解答题21.在①将函数f (x )图象向右平移12π个单位所得图象关于y 轴对称:②函数6y f x π⎛⎫=+ ⎪⎝⎭是奇函数;③当712x π=时,函数6y f x π⎛⎫=- ⎪⎝⎭取得最大值.三个中任选一个,补充在题干中的横线处,然后解答问题.题干:已知函数()2sin()f x x ωϕ=+,其中0,||2πωϕ><,其图象相邻的对称中心之间的距离为2π,___________. (1)求函数y =f (x )的解析式;(2)求函数y =f (x )在,22ππ⎡⎤-⎢⎥⎣⎦上的最小值,并写出取得最小值时x 的值. 注:如果选择多个条件分别解答,按第一个解答计分. 22.已知函数()2cos ,(0)6f x x πωω⎛⎫=-> ⎪⎝⎭,若()4f x f π⎛≤⎫⎪⎝⎭对任意的实数x 都成立.(1)求ω的最小值;(2)在(1)中ω值的条件下,若函数()()1(0)g x f kx k =+>的最小正周期为π,当0,3x π⎡⎤∈⎢⎥⎣⎦时,方程()g x m =恰有两个不同的解,求实数m 的取值范围.23.已知函数21()cos(2)sin ()(02)2632f x x x ππωωω=+++-<<,且()04f π=.(1)求()f x 的解析式;(2)先将函数()y f x =图象上所有的点向右平移6π个单位长度,再将所得各点的纵坐标伸长到原来的2倍,横坐标不变,得到函数()y g x =的图象.若()g x 在区间,44ππαα⎛⎫-+ ⎪⎝⎭有且只有一个0x ,使得0()g x 取得最大值,求α的取值范围. 24.已知函数()1tan ln1tan xf x x-=+.(1)判断函数()f x 的奇偶性,并证明;(2)若()()()1tan tan f xa x g x e x-=-在,04π⎛⎫- ⎪⎝⎭上有零点,求实数a 的取值范围.25.已知函数2()cos cos (0)f x x x x ωωωω=->周期是2π. (1)求()f x 的解析式,并求()f x 的单调递增区间;(2)将()f x 图像上所有点的横坐标扩大到原来的2倍,再向左平移6π个单位,最后将整个函数图像向上平移32个单位后得到函数()g x 的图像,若263x ππ≤≤时,()2g x m -<恒成立,求m 得取值范围.26.已知某海滨浴场的海浪高度y (单位:米)与时间()024t t ≤≤(单位:时)的函数关系记作()y f t =,下表是某日各时的浪高数据:经长期观测,函数()y f t =可近似地看成是函数cos y A t b ω=+.(1)根据以上数据,求出函数cos y A t b ω=+的最小正周期T 及函数表达式(其中0A >,0>ω);(2)根据规定,当海浪高度不低于0.75米时,才对冲浪爱好者开放,请根据以上结论,判断一天内从上午7时至晚上19时之间,该浴场有多少时间可向冲浪爱好者开放?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由图可知,172482g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,根据函数图象的平移变化法则可知()()sin 2x g x ϕ=-,于是推出1717sin 224242g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 224882g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈, 因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.2.B解析:B 【分析】根据函数的奇偶性与周期性判断各个选项. 【详解】sin y x =是偶函数,但不是周期函数,A 错误;对函数()f x =0>得tan x <<,33k x k k Z ππππ-<<+∈,定义域关于原点对称,()()f x f x -==-=-,函数是奇函数,B 正确;tan 6y ax π⎛⎫=+ ⎪⎝⎭的最小正周期是a π,C 错误;记()g x cos(sin )x =,定义域是R ,()()cos sin cos(sin )cos(sin )()g x x x x f x -=-=-==⎡⎤⎣⎦,()f x 是偶函数,D 错误.故选:B . 【点睛】关键点点睛:本题考查函数的奇偶性与周期性.判断奇偶性一般用奇偶性的定义进行判断.tan y x ω=的最小正周期是T πω=,sin()y x ωϕ=+的最小正周期是2πω.3.B解析:B 【分析】求出函数的最值,对称中心坐标,对称轴方程,以及函数的单调区间,即可判断正误. 【详解】函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭, 当3=42x ππ+时,即=12x π,函数()f x 取得最小值为132122-⨯+=-,故①正确; 当342x k πππ+=+时,即=,123k x k Z ππ+∈,函数()f x 的图象的对称轴是直线=,123k x k Z ππ+∈,故②错误; 当34x k ππ+=时,即,123k x k Z ππ=-+∈,函数()f x 的图象的对称中心为1,,1232k k Z ππ⎛⎫-+∈ ⎪⎝⎭,故③错误; 当3232242k x k πππππ+≤+≤+,即252,123123k k x k Z ππππ+≤≤+∈,函数()f x 的递增区间为252,,123123k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当1k =-时,()f x 的递增区间为7,124ππ⎡⎤--⎢⎥⎣⎦,故④正确. 故选:B 【点睛】关键点点睛:函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭的递增区间转化为sin 34y x π⎛⎫=+ ⎪⎝⎭的递减区间.4.C解析:C 【分析】利用三角恒等变换的公式,化简得由函数cos(2)5y x π=+,再根据余弦型函数的性质,即可求解函数的单调递增区间,得到答案. 【详解】由函数3cos 2cos2sin cos cos cos 2cos sin 2sin cos(2)510555y x x x x x x πππππ=-=-=+, 令222,5k x k k Z ππππ-+≤+≤∈,整理得3,510k x k k Z ππππ-+≤≤-+∈, 所以函数的单调递增区间为3[,],510k k k Z ππππ-+-+∈,故选C. 【点睛】本题主要考查了三角恒等变换的化简,以及三角函数的性质的应用,其中解答中根据三角恒等变换的公式,化简得到函数的解析式,再利用三角函数的性质求解是解答的关键,着重考查了运算与求解能力,属于基础题.5.A解析:A 【分析】求得函数()y f x =的定义域,分析函数()y f x =的奇偶性,结合2f π⎛⎫⎪⎝⎭的值以及排除法可得出合适的选项. 【详解】对于函数()3sin 22xf x x =-,20x -≠,得2x ≠±,所以,函数()y f x =的定义域为{}2x x ≠±.()()()sin 2sin 222x xf x f x x x --==-=----,函数()y f x =为奇函数,图象关于原点对称,排除B 、D 选项;又02f ⎛⎫= ⎪⎝⎭π,排除C 选项. 故选:A. 【点睛】本题考查利用函数的解析式选择图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.6.C解析:C 【分析】由平方关系化为sin x 的函数,换元后利用二次函数性质得最小值. 【详解】由已知2()1sin sin f x x x =-+,令sin t x =,则[1,1]t ∈-,2()()1f x g t t t ==-++215()24t =--+,∵[1,1]t ∈-,∴1t =-时,min ()1g t =-. 故选:C . 【点睛】本题考查与三角函数有关的复合函数的最值.求三角函数的最值有两种类型:(1)利用三角恒等变换公式化函数为()sin()f x A x k ωϕ=++形式,然后由正弦函数性质得最值或值域.(2)转化为关于sin x (或cos x )的函数,用换元法,设sin t x =(或cos t x =)变成关于t 的二次函数,利用二次函数的性质求得最值或值域.7.D解析:D 【分析】对A ,由()sin tan f x x x =+在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断;对B ,由()cos tan f x x x =-在52,2ππ⎛⎫ ⎪⎝⎭上单调递减可判断;对C ,由()sin tan f x x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断;对D ,由tan ()sin x f x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断.【详解】A .设()sin tan f x x x =+,则()f x 在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>,所以sin tan sin tan ααββ+>+,所以sin sin tan tan αββα->-,所以A 对,不符合题意;B .设()cos tan f x x x =-,则()f x 在52,2ππ⎛⎫⎪⎝⎭上单调递减, 因为αβ>,所以()()f f αβ<,所以cos tan cos tan ααββ-<-, 所以cos tan cos tan αββα+<+,所以B 对,不符合题意; C .设()sin tan f x x x =,因为sin ,tan x x 在52,2ππ⎛⎫⎪⎝⎭都为正数,且都单调递增, 所以()sin tan f x x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>, 所以sin tan sin tan ααββ>,所以sin tan sin tan αββα>,所以C 对,不符合题意; D .设tan ()sin x f x x =,则tan 1()sin cos x f x x x ==在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>,所以tan tan sin sin αβαβ>, 所以tan sin tan sin αββα>,所以D 错,符合题意. 故选:D. 【点睛】本题考查利用三角函数的单调性比较大小,解题的关键是恰当构造函数,判断函数的单调性,利用单调性判断大小.8.D解析:D 【分析】根据各函数的特征如函数值的正负,单调性、奇偶性,定义域、值域等进行判断. 【详解】左边第一个图象中0x <时,0y <,只有③满足,此时只有D 可选,实际上,左边第二个图象关于y 轴对称,是偶函数,只有②满足,而0x >时,10y x x=+>恒成立,只有最右边的图象满足,由此也可得顺序是③②①④,选D . 故选:D . 【点睛】思路点睛:本题考查由函数解析式选择函数图象,解题时可两者结合,由函数解析式和图象分别确定函数的性质,如奇偶性、单调性、函数值的正负,特殊的函数值,变化趋势等等,两者对照可得结论.9.A解析:A 【分析】5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,可得 58x π=时函数取得最大值,则函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫- ⎪⎝⎭单调,再利用排除法可得答案. 【详解】 因为5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,则58x π=时函数取得最大值, 所以函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫- ⎪⎝⎭单调, 对于A ,若23ω=,12πϕ=,可得2()sin 312f x x π⎛⎫=+ ⎪⎝⎭,5sin 182f ππ⎛⎫== ⎪⎝⎭,11sin 08f ππ⎛⎫== ⎪⎝⎭,3254412,,4,31222x x πππππππ⎛⎫⎛⎫⎡⎤∈-⇒+∈-⊆- ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦,则2()sin 312f x x π⎛⎫=+ ⎪⎝⎭在443,ππ⎛⎫-⎪⎝⎭单调递增,故A 符合题意; 对于B ,若23ω=,1112πϕ=-,可得211()sin 312f x x π⎛⎫=-⎪⎝⎭,5sin 1182f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故B 不符合题意; 对于C ,若13ω=,1124πϕ=-,可得111()sin 324f x x π⎛⎫=-⎪⎝⎭,5sin 1842f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故C 不符合题意; 对于D ,若13ω=,724πϕ=,可得17()sin 324f x x π⎛⎫=+ ⎪⎝⎭,113sin 0842f ππ⎛⎫==≠ ⎪⎝⎭,故D 不符合题意; 故选:A. 【点睛】方法点睛:特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.10.D解析:D 【分析】由题先求出()3sin 323g x x π⎛⎫=+- ⎪⎝⎭,可得3,3363x πππθ⎡⎤+∈+⎢⎥⎣⎦,要满足题意,则332ππθ+≥,即可求出.【详解】将()f x 横坐标缩短为原来的13得到3sin(3)2y x =--,再向右平移29π个单位得到()23sin 323sin 3293g x x x ππ⎡⎤⎛⎫⎛⎫---=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=,,18x πθ⎡⎤∈-⎢⎥⎣⎦,则3,3363x πππθ⎡⎤+∈+⎢⎥⎣⎦,要使()g x 在区间,18πθ⎡⎤-⎢⎥⎣⎦上的最大值为1,则332ππθ+≥,即18πθ≥,则θ的最小值为18π. 故选:D. 【点睛】本题考查正弦型函数的性质,解题的关键是通过图象变化得出()3sin 323g x x π⎛⎫=+- ⎪⎝⎭,再根据正弦函数的性质求解.11.B解析:B 【分析】先判断游客进仓后第一次到达最高点时摩天轮旋转半周,大约需要10min ,结合摩天轮最高点距离地面高度为120m ,可得10t =时,120H =,再利用排除法可得答案. 【详解】因为游客在座舱转到距离地面最近的位置进舱,转一周大约需要20min , 所以游客进仓后第一次到达最高点时摩天轮旋转半周,大约需要10min , 又因为摩天轮最高点距离地面高度为120m , 所以10t =时,120H =,对于A ,10t =时,55cos 106555cos 65651022H πππ⎛⎫=⨯-+=+= ⎪⎝⎭,不合题意;对于B ,10t =时,55sin 106555sin 651201022H πππ⎛⎫=⨯-+=+= ⎪⎝⎭,符合题意;对于C ,10t =时,355cos 106555cos65651022H πππ⎛⎫=⨯++=+= ⎪⎝⎭,不合题意; 对于D ,10t =时,355sin 106555sin65101022H πππ⎛⎫=⨯++=+= ⎪⎝⎭,不合题意; 故选:B. 【点睛】方法点睛:特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型: (1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.12.C解析:C 【分析】可得()()2f x f x π+=,得出()f x 是以2π为周期的函数,故只需考虑0,2x π⎡⎤∈⎢⎥⎣⎦即可.【详解】()()sin cos cos sin 222f x x x x x f x πππ⎛⎫⎛⎫+=+++=+= ⎪ ⎪⎝⎭⎝⎭,()f x ∴是以2π为周期的函数,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()sin cos sin cos 4f x x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,则3,444x πππ⎡⎤+∈⎢⎥⎣⎦,41x π⎛⎫+ ⎝∴≤⎪⎭≤根据函数的周期性可得()f x 的最小值为1,故AB 错误,∴1()2f x =在0,2π⎡⎤⎢⎥⎣⎦上无解,故D 错误, ()()sin cos cos sin222f x x x x x f x πππ⎛⎫⎛⎫-=-+-=+= ⎪ ⎪⎝⎭⎝⎭,故C 正确. 故选:C. 【点睛】本题考查三角函数的应用,解题的关键是得出()f x 是以2π为周期的函数,故只需考虑0,2x π⎡⎤∈⎢⎥⎣⎦即可. 二、填空题13.5【分析】是零点是极大值点利用三角函数图像与性质可知它们之间相差可得到的一个关系式由可得到另一个范围解出的范围得到符合条件的的取值个数【详解】因为满足且最小正周期所以得所以解得故的取值共有5个故答案解析:5 【分析】4π是零点,π是极大值点,利用三角函数图像与性质,可知它们之间相差42T nT +,可得到,n ω的一个关系式423n ω+=,由3T π≥可得到ω另一个范围,解出n 的范围,得到符合条件的ω的取值个数. 【详解】因为()g x 满足04g π⎛⎫=⎪⎝⎭,()3g π=, 且最小正周期3T π≥,所以()()23214422T n T n T n N ππωπππω⎧=≥⎪⎪⎨+⎪-=+=∈⎪⎩,得06ω<≤,423n ω+=, 所以42063n +<≤,解得04n ≤≤.故ω的取值共有5个. 故答案为:5 【点睛】求三角函数的解析式时,由2Tπω=即可表示出ω;确定ϕ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标0x ,则令00x ωϕ+=或0x ωϕπ+=),即可求出ϕ,否则需要代入点的坐标,利用一些已知点的坐标代入解析式,再结合函数的性质解出ω和ϕ,若对,A ω的符号或对ϕ的范围有要求,则可用诱导公式变换使其符合要求.14.【分析】根据题意可得从而可得讨论或再求出的单调递增区间只需是单调递增区间的子集即可求解【详解】由正弦函数的性质的每个增区间的长度为其中函数的最小正周期为函数在区间上单调地藏可得即①当时此时单调递增当解析:130,42⎛⎤⎧⎫⋃-⎨⎬ ⎥⎝⎦⎩⎭【分析】 根据题意可得22T π≥,从而可得2ω≤,讨论0>ω,0ω=或0ω<,再求出()sin()f x x ωϕ=+的单调递增区间,只需,2ππ⎡⎤⎢⎥⎣⎦是单调递增区间的子集即可求解.【详解】()()sin f x x ωϕ=+,0,4πϕ⎡⎤∈⎢⎥⎣⎦,由正弦函数的性质,()f x 的每个增区间的长度为2T,其中函数()f x 的最小正周期为2T ωπ=.函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调地藏,可得22T π≥,即2ω≤.①当0>ω时,此时02ω<≤,x ωϕ+单调递增, 当2,2,22x k k k Z ππωϕππ⎡⎤+∈-+∈⎢⎥⎣⎦,()f x 单调递增,解得112,2,22x k k k Z πππϕπϕωω⎡⎤⎛⎫⎛⎫∈--+-∈ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 只需11,2,2,222k k k Z πππππϕπϕωω⎡⎤⎡⎤⎛⎫⎛⎫⊆--+-∈ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦,从而可得1222,122k k Z k πππϕωπππϕω⎧⎛⎫≥-- ⎪⎪⎪⎝⎭∈⎨⎛⎫⎪≤+- ⎪⎪⎝⎭⎩, 解得2141,2,2k k k Z ϕϕωππ⎡⎤∈--+-∈⎢⎥⎣⎦对0,4πϕ⎡⎤∀∈⎢⎥⎣⎦成立, 则21410214k k πωππ--⨯≤≤+-⨯,即141,2,4k k k Z ω⎡⎤∈-+∈⎢⎥⎣⎦,由124141204k k k ⎧+>-⎪⎪⎨⎪+>⎪⎩,解得1588k -<<,k Z ∈,0k ∴=.所以,10,4ω⎛⎤∈ ⎥⎝⎦;②当0ω=时,函数()sin f x ϕ=为常函数,不合乎题意; ③当0ω<时,20ω-≤<,x ωϕ+单调递减,由322,22k x k k Z πππωϕπ+≤+≤+∈, 解得13122,22k x k k Z πππϕπϕωω⎛⎫⎛⎫+-≤≤+-∈ ⎪ ⎪⎝⎭⎝⎭对0,4πϕ⎡⎤∀∈⎢⎥⎣⎦成立, 可得13222,122k k Z k πππϕωπππϕω⎧⎛⎫≥+- ⎪⎪⎪⎝⎭∈⎨⎛⎫⎪≤+- ⎪⎪⎝⎭⎩,解得122,43,2k k k Z ϕϕωππ⎡⎤∈+-+-∈⎢⎥⎣⎦对0,4πϕ⎡⎤∀∈⎢⎥⎣⎦成立,于是12210434k k πωππ+-⨯≤≤+-⋅,即521,4,2k k k Z ω⎡⎤∈++∈⎢⎥⎣⎦,由5142225402k k k ⎧+≥+⎪⎪⎨⎪+<⎪⎩,解得518k -≤<-,由k Z ∈,1k =-,此时,32ω=-.综上所述,实数ω的取值范围是130,42⎛⎤⎧⎫⋃-⎨⎬ ⎥⎝⎦⎩⎭.故答案为:130,42⎛⎤⎧⎫⋃-⎨⎬ ⎥⎝⎦⎩⎭.【点睛】关键点点睛:本题考查了三角函数的性质,解题的关键是求出函数的单调递增区间,使,2ππ⎡⎤⎢⎥⎣⎦是单调递增区间的子集,考查了分类讨论的思想. 15.【分析】由周期公式可得由三角函数的中心对称可得结合即可得为奇数即可得由可得进而可得即可得解【详解】由可得由是奇函数可得函数的图象关于中心对称所以即又所以所以为奇数由可得因为在上没有最小值所以即故答案解析:511,612ππ⎛⎤⎥⎝⎦【分析】由周期公式可得ω,由三角函数的中心对称可得,3k k Z πϕπ=+∈,结合()06f f π⎛⎫< ⎪⎝⎭即可得k 为奇数,即可得()sin 23πf x x ⎛⎫=-⎪⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭,进而可得432332t πππ<-≤,即可得解. 【详解】由T π=可得22T πω==,()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭由3y f x π⎛⎫=-⎪⎝⎭是奇函数可得函数()f x 的图象关于,03π⎛-⎫⎪⎝⎭中心对称, 所以2,33k k Z ππϕπ⎛⎫⨯-++=∈ ⎪⎝⎭,即,3k k Z πϕπ=+∈, 又()06f f π⎛⎫< ⎪⎝⎭,所以2sin sin 33ππϕϕ⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭, 所以,3k k πϕπ=+为奇数,()sin 2sin 2333f x x k x ππππ⎛⎫⎛⎫=+++=- ⎪ ⎪⎝⎭⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭, 因为()f x 在[)0,t 上没有最小值,所以432332t πππ<-≤即511,612t ππ⎛⎤∈ ⎥⎝⎦. 故答案为:511,612ππ⎛⎤⎥⎝⎦. 【点睛】本题考查了三角函数图象与性质的应用,考查了运算求解能力,牢记知识点是解题关键,属于中档题.16.【分析】根据扇形的周长求出扇形半径再根据扇形面积公式计算即可【详解】设该扇形的半径为r 根据题意有故答案为【点睛】本题主要考查了扇形的面积公式弧长公式属于中档题 解析:916【分析】根据扇形的周长求出扇形半径,再根据扇形面积公式计算即可. 【详解】设该扇形的半径为r ,根据题意,有2l r r α=+,322r r ∴=+,34r ∴=,211992221616S r α∴==⨯⨯=扇形.故答案为916. 【点睛】本题主要考查了扇形的面积公式,弧长公式,属于中档题.17.10【分析】由函数与直线的图象可知它们都关于点中心对称再由向量的加法运算得最后求得向量的模【详解】由函数与直线的图象可知它们都关于点中心对称所以【点睛】本题以三角函数和直线的中心对称为背景与平面向量解析:10 【分析】由函数()4cos 2f x x π⎛⎫=⎪⎝⎭与直线()1g x x =-的图象可知,它们都关于点3(1,0)A 中心对称,再由向量的加法运算得1253...5PA PA PA PA +++=,最后求得向量的模. 【详解】由函数()4cos 2f x x π⎛⎫=⎪⎝⎭与直线()1g x x =-的图象可知, 它们都关于点3(1,0)A 中心对称,所以221253...5||5(01)(30)10PA PA PA PA +++==-+-=. 【点睛】本题以三角函数和直线的中心对称为背景,与平面向量进行交会,考查运用数形结合思想解决问题的能力.18.【分析】利用任意性与存在性原命题可转化为有且仅有一个解然后根据三角函数的性质和图像求解即可【详解】由则存在唯一的实数使即有且仅有一个解作函数图像与直线当两个图像只有一个交点时由图可知故实数的最大值是解析:34π【分析】利用任意性与存在性原命题可转化为()12,,22f k k β⎛⎫=∈ ⎪ ⎪⎝⎭有且仅有一个解,然后根据三角函数的性质和图像求解即可. 【详解】由()sin f x x =,(,)46αππ∈--,则()21,22f α⎛⎫∈-- ⎪ ⎪⎝⎭,存在唯一的实数(0,)m β∈,使()()0f f αβ+=,即()12,,22f k k β⎛⎫=∈ ⎪ ⎪⎝⎭有且仅有一个解,作函数图像()y fβ=与直线1,2y k k ⎛=∈ ⎝⎭, 当两个图像只有一个交点时,由图可知,344m ππ<≤, 故实数m 的最大值是34π. 故答案为:34π 【点睛】本题主要考查了三角函数的图像与性质,属于较为基础题.19.【分析】利用二倍角公式可得由函数的最大值可求出由相邻两条对称轴间的距离可求出周期再利用周期公式可求出将点代入解析式可求出从而可得函数的解析式即可求出的值【详解】因为函数的最大值为所以所以由函数相邻两 解析:3【分析】利用二倍角公式可得()cos(22)122A Af x ωx φ=+++,由函数的最大值可求出A ,由相邻两条对称轴间的距离可求出周期,再利用周期公式可求出ω,将点(0,2)代入解析式可求出ϕ,从而可得函数的解析式,即可求出(1)(2)f f +的值. 【详解】21cos(22)()cos ()11cos(22)1222ωx φA Af x A ωx φA ωx φ++=++=⋅+=+++,因为函数()f x 的最大值为3,所以1322A A++=,所以2A =, 由函数()f x 相邻两条对称轴间的距离为2,可得周期4T =,所以222T ππω==,所以4πω=, 所以()cos(2)22πf x x φ=++,又()f x 的图象与y 轴的交点坐标为(0,2),所以cos 222ϕ+=,所以cos20ϕ=,又02πϕ<<,所以=4πϕ,所以()cos()2sin 2222πππf x x x =++=-+,所以(1)(2)sin 2sin 2120232πf f π+=-+-+=-+-+=.故答案为:3 【点睛】本题主要考查求三角函数的图象与性质,二倍角的余弦公式,诱导公式,属于中档题.20.【分析】周期为先考查一个周期函数判断零点个数及坐标再结合周期性即可求解【详解】是函数的一个周期当时当时只有四个零点在上恰有4个零点实数m 的取值范围为故答案为:【点睛】本题考查函数的零点个数求参数注意 解析:517[,)36ππ 【分析】()f x 周期为2π,先考查一个周期函数,判断零点个数及坐标,再结合周期性,即可求解【详解】2x π=是函数()f x 的一个周期,当[0,2]x π时,5cos [,]244()5sin [0,][,2]44x x f x x x πππππ⎧+∈⎪⎪=⎨⎪+∈⋃⎪⎩当[0,2]x π时,()f x 只有四个零点5745,,,6633ππππ, 在[0,]m 上恰有4个零点,实数m 的取值范围为517[,)36ππ. 故答案为:517[,)36ππ. 【点睛】本题考查函数的零点个数求参数,注意函数图像和性质的应用,属于中档题.三、解答题21.条件选择见解析;(1)()2sin 23f x x π⎛⎫=- ⎪⎝⎭;(2)12x π=-时,函数f (x )取得最小值,最小值为2-. 【分析】(1)由相邻中心距离得周期,从而可得ω,选择①,写出平移后解析式,由对称性得新函数为偶函数,结合诱导公式求得ϕ, 选择②,求出6y f x π⎛⎫=+ ⎪⎝⎭,由函数为奇函数,结合诱导公式求得ϕ, 选择③,求出()6y f x π=-,代入712x π=,结合正弦函数最大值可得ω, 从而得函数解析式; (2)()2sin 23f x x π⎛⎫=- ⎪⎝⎭由,求得23x π-的范围,然后由正弦函数性质得最小值.【详解】(1)因为函数f (x )=2sin(ωx +φ)的图象相邻的对称中心之间的距离为2π, 所以周期22T π=,即T =π,所以22T πω==.若选择①,因为函数f (x )图象向右平移12π个单位所得图象关于y 轴对称,所以()2sin 22sin 2126g x x x ππϕϕ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象关于y 轴对称,所以62k ππϕπ-=+,k Z ∈,因为||2ϕπ<,所以3πϕ=-.所以函数y =f (x )的解析式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.若选择②,因为2sin 22sin 2663y f x x x πππϕϕ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦是奇函数,所以3k πϕπ+=,k Z ∈,因为||2ϕπ<,所以3πϕ=-.所以函数y =f (x )的解析式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.若选择③,2sin 22sin 2663y f x x x πππϕϕ⎡⎤⎛⎫⎛⎫⎛⎫=-=⨯-+=-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,由题设,当712x π=时,函数6y f x π⎛⎫=- ⎪⎝⎭取得最大值,所以当722()1232k k Z πππϕπ⨯-+=+∈,即2()3k k Z πϕπ=-∈, 因为||2ϕπ<,所以3πϕ=-.所以函数y =f (x )的解析式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭. (2)因为()2sin 23f x x π⎛⎫=- ⎪⎝⎭,,22x ππ⎡⎤∈-⎢⎥⎣⎦,所以422,333x πππ⎡⎤-∈-⎢⎥⎣⎦,所以当232x ππ-=-,即12x π=-时,函数f (x )取得最小值,最小值为2-.【点睛】关键点点睛:本题考查由三角函数的图象与性质求解析式,解题关键是掌握正弦函数的图象与性质,解题时注意“五点法”和整体思想的应用.对于奇偶性问题注意诱导公式的应用,由此计算比较方便.22.(1)23ω=;(2)[13,3)m∈+.【分析】(1)根据条件得到4fπ⎛⎫⎪⎝⎭为函数的最大值,结合函数的最值求出ω即可.(2)根据条件求出()g x的解析式,在同一坐标系中,作出函数()y g x=和y m=的图象,利用数形结合求解.【详解】(1)若()4f x fπ⎛⎫⎪⎝⎭对任意的实数x都成立,则4fπ⎛⎫⎪⎝⎭为函数的最大值,则2,46k kππωπ-=∈Z,得2,46k kππωπ=+∈Z,即28,3k kω=+∈Z,∵0>ω,∴当0k=时,ω取得最小值,最小值为23ω=;(2)在(1)中ω值的条件下23ω=,则2()2cos36f x xπ⎛⎫=-⎪⎝⎭,2()()12cos1,(0)36g x f kx kx kπ⎛⎫=+=-+>⎪⎝⎭,∵()g x的最小正周期为π,∴223kππ=,即3k=,则()2cos216g x xπ⎛⎫=-+⎪⎝⎭,作出函数()03y g x xπ⎛⎫=≤≤⎪⎝⎭和y m=的图象如图:3xπ≤≤,则2662xπππ-≤-≤,所以0cos216xπ⎛⎫≤-≤⎪⎝⎭,则()13g x≤≤,且()02cos1316gπ⎛⎫=-+=⎪⎝⎭,由图象知:要使()g x m =恰有两个不同的解,则[1m ∈+. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 23.(1)()cos 2f x x =;(2)11,1212ππ⎛⎤⎥⎝⎦. 【分析】(1)利用降幂公式降次,然后利用辅助角公式合一,代入()04f π=求解即可;(2)根据伸缩平移得到函数()2cos 23g x x π⎛⎫=- ⎪⎝⎭,然后利用整体法,求解23x π⎛⎫-⎪⎝⎭的范围,再根据题干列不等式求解. 【详解】(1)21cos 213()22622x f x x πωπω⎛⎫-+⎪⎛⎫⎝⎭=++- ⎪⎝⎭1cos 2sin 22626x x ππωω⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭ cos 2x ω=.因为02ω<<,cos 042f πωπ⎛⎫== ⎪⎝⎭所以1ω=,()cos 2f x x =. (2)由题可知,()2cos 22cos 263g x x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ 因为()g x 在区间,44ππαα⎛⎫-+ ⎪⎝⎭上有且只有一个0x ,使得()0g x 取得最大值,所以0()()244ππααπ<+--≤,即0απ<≤.因为,44x ππαα⎛⎫∈-+⎪⎝⎭, 所以22,2366x πππαα⎛⎫-∈-+ ⎪⎝⎭则112,666πππα⎡⎫-∈-⎪⎢⎣⎭,132,666πππα⎛⎫+∈ ⎪⎝⎭,当206πα-<,即12πα>时,226παπ+≤,故`111212ππα<≤;当206πα-≥,即12πα≤时,132266πππα<+≤,故α∈∅. 综上,α的取值范围为11,1212ππ⎛⎤⎥⎝⎦. 【点睛】关于三角函数解析式的化简问题,首先需要利用和差公式或者诱导公式展开化为同角,其次利用降幂公式进行降次,最后利用辅助角公式进行合一变换,最终得到()()sin f x A x =+ωϕ的形式.24.(1)函数()f x 为奇函数,证明见解析;(2)(),0-∞. 【分析】(1)求出函数()f x 的定义域,计算得出()f x -与()f x 之间的关系,由此可得出结论; (2)由,04x π⎛⎫∈-⎪⎝⎭可得出1tan 0x -<<,1tan 0x ->,利用()0g x =可得出tan 1tan x a x =+,求出函数tan 1tan x y x =+在,04π⎛⎫- ⎪⎝⎭上的值域,由此可得出实数a 的取值范围.【详解】(1)对于函数()1tan ln1tan x f x x -=+,有1tan 01tan xx->+,即tan 10tan 1x x -<+,解得1tan 1x -<<,解得()44k x k k Z ππππ-<<+∈,所以,函数()f x 的定义域为(),44k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z , ()()()()11tan 1tan 1tan 1tan ln ln ln ln 1tan 1tan 1tan 1tan x x x x f x f x x x x x ---+--⎛⎫-====-=- ⎪+--++⎝⎭, 所以,函数()f x 为奇函数; (2)()()()()1tan 1tan 1tan tan 1tan tan f x a x a x x g x ex x x---=-=-+, 04x π-<<,则1tan 0x -<<,1tan 0x ->,所以,0tan 11x <+<,令()0g x =,可得()tan 11tan 1101tan tan 1tan 1x x a x x x +-===-<+++,所以,实数a 的取值范围是(),0-∞.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 25.(1)1()sin 462f x x π⎛⎫=-- ⎪⎝⎭,单调递增区间为,21226k k ππππ-+⎡⎤⎢⎥⎣⎦,k Z ∈;(2)()0,2. 【分析】(1)根据正弦和余弦的二倍角公式化简可得1()sin 262f x x πω⎛⎫=-- ⎪⎝⎭,由222T ππω==,解得2ω=,带入正弦函数的递增区间242262k x k πππππ-≤-≤+,化简即可得解; (2)根据三角函数的平移和伸缩变换可得()sin 216g x x π⎛⎫=++ ⎪⎝⎭,根据题意只需要max min [()2][()2]g x m g x -<<+,分别在263x ππ≤≤范围内求出()g x 的最值即可得解. 【详解】(1)2()cos cos f x x x x ωωω=-12(cos 21)22x x ωω=-+ 1sin 262x πω⎛⎫=-- ⎪⎝⎭由222T ππω==,解得2ω= 所以,1()sin 462f x x π⎛⎫=-- ⎪⎝⎭ ∵242262k x k πππππ-≤-≤+∴224233k x k ππππ-≤≤+∴21226k k x ππππ-≤≤+ ∴()f x 的单调递增区间为,21226k k ππππ-+⎡⎤⎢⎥⎣⎦,k Z ∈(2)依题意得()sin 216g x x π⎛⎫=++ ⎪⎝⎭因为|()|2g x m -<,所以()2()2g x m g x -<<+因为当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,()2()2g x m g x -<<+恒成立所以只需max min [()2][()2]g x m g x -<<+转化为求()g x 的最大值与最小值当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,()y g x =为单调减函数所以max ()1126g x g π⎛⎫==+=⎪⎝⎭,()min 21103g x g π⎛⎫==-+= ⎪⎝⎭, 从而max [()2]0g x -=,min [()2]2g x +=,即02m << 所以m 的取值范围是()0,2. 【点睛】本题考查了三角函数的单调性和最值,考查了三角函数的辅助角公式和平移伸缩变换,有一定的计算量,属于中档题.本题关键点有: (1)三角函数基本量的理解应用; (2)三角函数图像平移伸缩变换的方法; (3)恒成立思想的理解及转化. 26.(1)12T =,0.5cos 16y t π=+;(2)从上午7时至晚上19时之间,共8个小时向冲浪爱好者开放. 【分析】(1)根据表格中数据规律确定T ,由2Tπω=,y 的最大值和最小值可确定,A b ,由此可得函数表达式;(2)利用余弦函数值域可求得t 的范围,进而确定所要求的时间段内的结果. 【详解】(1)由表中数据可知:18612T =-=,26T ωππ∴==, 1.50.50.52A -==, 1.50.512b +==,0.5cos 16y t π∴=+. (2)由(1)可得:0.5cos 10.756t π+≥,cos0.56t π∴≥-,即()2222363k t k k Z πππππ-≤≤+∈,解得:()124124k t k k Z -≤≤+∈, ∴从上午7时至晚上19时之间,当[]8,16t ∈时,可对冲浪爱好者开放,即从上午7时至晚上19时之间,共8个小时向冲浪爱好者开放. 【点睛】方法点睛:根据余弦型函数()cos y A x ωϕ=+的值域求解定义域的问题,采用整体对应的方式,将x ωϕ+整体对应余弦函数中的x 的范围,解不等式求得所求的定义域.。
(好题)高中数学必修四第一章《三角函数》测试题(有答案解析)
一、选择题1.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,2πϕ<)的部分图像如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=- ⎪⎝⎭B .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭C .()3sin 26f x x π⎛⎫=-⎪⎝⎭D .1()3sin 26f x x π⎛⎫=-⎪⎝⎭ 2.函数()2cos 3⎛⎫=+ ⎪⎝⎭πf x x 在[]0,π的单调递增区间是( ) A .20,3π⎡⎤⎢⎥⎣⎦B .2,33ππ⎡⎤⎢⎥⎣⎦C .,3ππ⎡⎤⎢⎥⎣⎦D .2π,π33.将函数sin()y x ϕ=+的图像上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将所得图像向左平移12π个单位后得到的函数图像关于原点中心对称,则sin 2ϕ=( )A .12-B .12C .3D 34.已知函数()f x 是定义在R 上的增函数,()0,1A -,()3,1B 是其图象上的两点,那么|(2sin 1)|1f x +≤ 的解集为( ) A .,33x k x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ B .722,66x k x k k ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭Z ∣ C .,63xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ D .722,66xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣5.如图,一半径为4.8m 的筒车按逆时针方向转动,已知筒车圆心O 距离水面2.4m ,筒车每60s 转动一圈,如果当筒车上点P 从水中浮现时(图中点0P )开始计时,则( )A .点P 第一次到达最高点需要10sB .点P 距离水面的高度h (单位:m )与时间t (单位:s )的函数解析式为4.8sin 2.4306h t ππ⎛⎫=-+ ⎪⎝⎭ C .在筒车转动的一圈内,点P 距离水面的高度不低于4.8m 共有10s 的时间 D .当筒车转动50s 时,点P 在水面下方,距离水面1.2m 6.设函数()3cos22sin cos f x x x x =+,给出下列结论: ①()f x 的最小正周期为π ②()y f x =的图像关于直线12x π=对称③()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减 ④把函数2cos2y x =的图象上所有点向右平移12π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的编号是( ). A .①④B .②④C .①②④D .①②③7.已知函数()sin 0,2y x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示,则( )A .1ω=,6π=ϕ B .1ω=,6πϕ=-C .2ω=,6π=ϕ D .2ω=,6πϕ=-8.《九章算术》中《方田》章有弧田面积计算问题,术日:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积12=(弦×矢+矢×矢).弧田是由圆弧(弧田弧)及圆弧两端点的弦(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到孤田弦的距离之差,现有一弧田,其矢长等于8米,若用上述弧田面积计算公式算得该弧田的面积为128平方米,则其弧田弧所对圆心角的正弦值为( ) A .60169B .120169C .119169D .591699.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,则( )A .()f x 是奇函数B .π2π33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭C .()f x 的一个周期是πD .()f x 的最小值小于010.已知函数()sin cos f x x x =+,则下列说法正确的是( ) A .()f x 的最小值为0 B .()f x 的最大值为2 C .()()2f x f x π-=D .1()2f x =在0,2π⎡⎤⎢⎥⎣⎦上有解11.若函数)22()sin 2cos sin f x x x x =-的图像为E ,则下列结论正确的是( ) A .()f x 的最小正周期为2π B .对任意的x ∈R ,都有()()3f x f x π=-C .()f x 在7(,)1212ππ上是减函数 D .由2sin 2y x =的图像向左平移3π个单位长度可以得到图像E 12.函数22y cos x sinx =- 的最大值与最小值分别为( ) A .3,-1 B .3,-2 C .2,-1D .2,-2二、填空题13.关于1()sin sin f x x x=-,有如下四个结论: ①()f x 是奇函数. ②()f x 图像关于y 轴对称.③2x π=是()f x 的一条对称轴.④()f x 有最大值和最小值. 其中说法正确的序号是________. 14.对任意0,4πϕ⎡⎤∈⎢⎥⎣⎦,函数()sin()f x x ωϕ=+在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递增,则实数ω的取值范围是________.15.若函数π()sin()cos()3f x x x ωω=++的一个周期是π,则常数ω的一个取值可以为__________.16.如图,以正方形的各边为底可向外作四个腰长为1的等腰三角形,则阴影部分面积的最大值是___________.17.sin 75=______.18.已知函数()()()sin 0,πf x x ωϕωϕ=+><的图像如图所示,则ϕ=__________.19.关于函数()()4sin 23f x x x R π⎛⎫=+∈ ⎪⎝⎭,有下列命题: ①函数()y f x =的表达式可以改写为4cos 26y x π⎛⎫=- ⎪⎝⎭; ②函数()y f x =是以2π为最小正周期的周期函数; ③函数()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称; ④函数()y f x =的图象关于直线6x π=-对称.其中正确的序号是______.20.如图是函数()2sin(),(0,)2f x x πωφωφ=+><的图象上的一段,则ω=_________φ =____三、解答题21.已知()442sin cos cossin f x x x x x ωωωω=+-(其中ω>0).(1)若()f x 的最小正周期是π,求ω的值及此时()f x 的对称中心; (2)若将()y f x =的图像向左平移4π个单位,再将所得的图像纵坐标不变,横坐标缩小为原来的12,得到()g x 的图像,若yg x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,求ω的取值范围.22.在①()f x 的图象关于直线3x π=对称,②()f x 的图象关于点,06π⎛⎫-⎪⎝⎭对称,③()f x 的图象上最高点中,有一个点的横坐标为6π这三个条件中任选一个,补充在下面问题中,并解答.问题:已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><<⎪⎝⎭的振幅为2,初相为3π,最小正周期不小于...π,且______. (1)求()f x 的解析式;(2)求()f x 在区间[],0π-上的最大值和最小值以及取得最大值和最小值时自变量x 的值.注:如果选择多个条件分别解答,按第一个解答计分. 23.已知函数()12sin 26x f x π⎛⎫=+⎪⎝⎭,x ∈R . (1)用“五点法”画出函数()f x 一个周期内的图象; (2)求函数()f x 在[],ππ-内的值域; (3)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象,求函数()g x 在[],ππ-内的单调增区间.24.已知函数()()sin f x A x ωϕ=+(0A >,0>ω,02πϕ<<)的部分图象如图所示,其中最高点以及与x 轴的一个交点的坐标分别为,16π⎛⎫⎪⎝⎭,5,012π⎛⎫ ⎪⎝⎭.(1)求()f x 的解析式;(2)设M ,N 为函数y t =的图象与()f x 的图象的两个交点(点M 在点N 左侧),且3MN π=,求t 的值.25.已知函数()2sin(2)(0)6f x x πωω=+>.(1)若点5(,0)8π是函数()f x 图像的一个对称中心,且(0,1)ω∈,求函数()f x 在3[0,]4π上的值域; (2)若函数()f x 在(,)33π2π上单调递增,求实数ω的取值范围.26.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表: 时刻 0:00 1:00 2:00 3:00 4:00 5:00 水深 5.000 6.250 7.165 7.500 7.165 6.250 时刻 6:00 7:00 8:00 9:00 10:00 11:00 水深 5.000 3.754 2.835 2.500 2.835 3.754 时刻 12:00 13:00 14:00 15:00 16:00 17:00 水深 5.000 6.250 7.165 7.500 7.165 6.250 时刻 18:00 19:00 20:00 21:00 22:00 23:00 水深5.0003.7542.8352.5002.8353.754(1)这个港口的水深与时间的关系可用函数(,)近似描述,试求出这个函数解析式;(2)一条货船的吃水深度(船底与水面的距离)为5米,安全条例规定至少要有1.25米的安全间隙(船底与洋底的距离),利用(1)中的函数计算,该船何时能进入港口?在港口最多能呆多久?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 本题首先可根据33π44T 求出ω,然后根据当43x π=时函数()f x 取最大值求出ϕ,最后代入30,2⎛⎫- ⎪⎝⎭,即可求出A 的值. 【详解】因为4π7π3π3124,所以33π44T ,T π=,因为2T πω=,所以2ω=,()sin(2)f x A x ϕ=+,因为当43x π=时函数()sin(2)f x A x ϕ=+取最大值, 所以()42232k k Z ππϕπ⨯+=+∈,()26k k Z πϕπ=-+∈,因为2πϕ<,所以6πϕ=-,()sin 26f x A x π⎛⎫=-⎪⎝⎭, 代入30,2⎛⎫- ⎪⎝⎭,3sin 26A π⎛⎫-=- ⎪⎝⎭,解得3A =,()3sin 26f x x π⎛⎫=- ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查根据函数图像求函数解析式,对于()sin()f x A x ωϕ=+,可通过周期求出ω,通过最值求出A ,通过代入点坐标求出ϕ,考查数形结合思想,是中档题.2.C解析:C 【分析】先求出函数的单调增区间,再给k 取值即得解.【详解】令22223+<+<+ππk πx πk π(k ∈Z ) ∴42233+<<+ππk πx k π(k ∈Z ), 所以函数的单调递增区间为4[2,2]33ππk πk π++(k ∈Z ), 当1k =-时,5233ππx -<<- 当0k =时,433x ππ<<又∵[]0,x π∈, 故选:C 【点睛】方法点睛:求三角函数()cos()f x A wx ϕ=+的单调区间,一般利用复合函数的单调性原理解答:首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.3.C解析:C 【分析】先根据条件写出图像变换后的函数解析式,然后根据图像关于原点中心对称可知函数为奇函数,由此得到ϕ的表示并计算出sin 2ϕ的结果. 【详解】因为变换平移后得到函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由条件可知sin 26y x πϕ⎛⎫=++ ⎪⎝⎭为奇函数,所以6k πϕπ+=,sin 2sin 2sin 33k ππϕπ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭故选C . 【点睛】本题考查三角函数的图像变换以及根据函数奇偶性判断参数值,难度一般.正弦型函数()()sin f x A x =+ωϕ为奇函数时,k k Z ϕπ=∈,为偶函数时,2k k Z πϕπ=+∈.4.D解析:D 【分析】由题意可得()01f =-,()31f =,所要解的不等式等价于()()0(2sin 1)3f f x f ≤+≤,再利用单调性脱掉f ,可得02sin 13x ≤+≤,再结合正弦函数的图象即可求解. 【详解】由|(2sin 1)|1f x +≤可得1(2sin 1)1f x -≤+≤, 因为()0,1A -,()3,1B 是函数()f x 图象上的两点,所以()01f =-,()31f =,所以()()0(2sin 1)3f f x f ≤+≤, 因为()f x 是定义在R 上的增函数, 可得02sin 13x ≤+≤,解得:1sin 12x -≤≤, 由正弦函数的性质可得722,66k x k k Z ππππ-+≤≤+∈, 所以原不等式的解集为722,66xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣, 故选:D 【点睛】关键点点睛:本题解题的关键点是将要解得不等式转化为()()0(2sin 1)3f f x f ≤+≤利用单调性可得02sin 13x ≤+≤.5.B解析:B 【分析】先建立坐标系,从点0P 开始计时,建立三角函数模型()0sin h A t b ωϕ=++,通过题中条件求出参数0,,,A b ωϕ,再利用函数解析式对选项依次判断正误即可. 【详解】以水面所在直线为t 轴,过O 作OO t '⊥轴,建立坐标系如图:设点P 距离水面的高度h (单位:m )与时间t (单位:s )的函数解析式为()0sin h A t b ωϕ=++.依题意可知, 2.4OO '=, 2.41sin 4.82OPO '∠==,6OPO π'∠=. 高度h 最大值为2.4 4.87.2+=,最小值为2.4 4.8 2.4-=-,故()()7.2 2.47.2 2.44.8, 2.422A b --+-====,周期60T =s ,则230T ππω==, 0t =时,06πϕ=-,故函数解析式为 4.8sin 2.4306h t ππ⎛⎫=-+⎪⎝⎭,故B 正确;点P 到达最高点时 4.8sin 2.47.2306h t ππ⎛⎫=-+= ⎪⎝⎭,即sin 1306t ππ⎛⎫-= ⎪⎝⎭,故2,3062t k k Z ππππ-=+∈,即2060,t k k Z =+∈,又0t ≥,故第一次到达最高点时,0,20k t ==s ,故A 错误;在筒车转动的一圈内,点P 距离水面的高度不低于4.8m ,即4.8sin 2.4 4.8306h t ππ⎛⎫=-+≥ ⎪⎝⎭,得1sin 3062t ππ⎛⎫-≥ ⎪⎝⎭,故563066t ππππ≤-≤,解得1030t ≤≤,故共有20 s 时间,C 错误;当筒车转动50s 时,即50t =代入 4.8sin 2.4306h t ππ⎛⎫=-+⎪⎝⎭得,34.8sin 50 2.4 4.8sin 2.4 2.43062h πππ⎛⎫=⨯-+=+=- ⎪⎝⎭,故点P 在水面下方,距离水面2.4m ,故D 错误. 故选:B. 【点睛】 关键点点睛:本题解题关键在于按照题意,建立三角函数模型()0sin h A t b ωϕ=++,并解出解析式,才能解决选项中的实际问题,突破难点.6.C解析:C 【分析】根据题意,利用辅助角公式和两角和的正弦公式化简得()2sin(2)3f x x π=+,根据2T ωπ=求出最小正周期即可判断①;利用整体代入法求出()y f x =的对称轴,即可判断②;利用整体代入法求出()y f x =的单调减区间,从而可得在区间2,63ππ⎡⎤⎢⎥⎣⎦上先减后增,即可判断③;根据三角函数的平移伸缩的性质和诱导公式化简,即可求出平移后函数,从而可判断④. 【详解】解:函数()2sin cos sin 22sin(2)3f x x x x x x x π++=+,即:()2sin(2)3f x x π=+,所以()f x 的最小正周期为222T πππω===,故①正确; 令2,32πππ+=+∈x k k Z ,解得:,122k x k Z ππ=+∈, 当0k =时,则直线12x π=为()y f x =的对称轴,故②正确; 令3222,232k x k k Z πππππ+≤+≤+∈,解得:7,1212ππππ+≤≤+∈k x k k Z , 所以()f x 的单调递减区间为:7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当0k =时,()f x 的一个单调递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦, 则区间7,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故在区间2121,3228,6ππππ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦上先减后增,故③错误; 把函数2cos2y x =的图象上所有点向右平移12π个单位长度, 得到s 2)2cos 22co 22cos 2126332sin(2y x x x x πππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-=-=+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎦⎣⎦+⎝⎭⎣ 即平移后得到函数()y f x =的图象,故④正确.所以所有正确结论的编号是:①②④.故选:C.【点睛】关键点点睛:本题考查三角函数的图象和性质,熟练掌握正弦型函数的周期、对称轴、单调区间的求法,以及三角函数的平移伸缩是解题的关键,还考查辅助角公式、两角和的正弦公式以及诱导公式的应用,考查学生化简运算能力.7.D解析:D【分析】根据函数的图象求出函数的周期,然后可以求出ω,通过函数经过的最大值点求出ϕ值,即可得到结果.【详解】由函数的图象可知:74123T πππ⎛⎫=-⨯=⎪⎝⎭,22T πω∴==. 当3x π=,函数取得最大值1,所以sin 213πϕ⎛⎫⨯+= ⎪⎝⎭,2232k k Z ππϕπ+=+∈,,||,02k πϕ<∴=,6πϕ∴=-, 故选:D.【点睛】 本题主要考查了由三角函数的图象求解析式,通过周期求ω的值,通过最值点求ϕ的值是解题的关键,属于基础题.8.B解析:B【分析】求出弦长,再求出圆的半径,然后利用三角形面积求解.【详解】如图,由题意8CD =,弓琖ACB 的面积为128,1(8)81282AB ⨯+⨯=,24AB =, 设所在圆半径为R ,即OA OB R ==,则22224(8)2R R ⎛⎫=-+ ⎪⎝⎭,解得13R =, 5OD =,由211sin 22AB OD OA AOB ⨯=∠得 2245120sin 13169AOB ⨯∠==. 故选:B .【点睛】关键点点睛:本题考查扇形与弓形的的有关计算问题,解题关键是读懂题意,在读懂题意基础上求出弦长AB ,然后求得半径R ,从而可解决扇形中的所有问题.9.D解析:D【分析】利用奇函数的性质判断A ,分别求3f π⎛⎫ ⎪⎝⎭和23f π⎛⎫ ⎪⎝⎭判断大小,取特殊值验证的方法判断C ,分区间计算一个周期内的最小值,判断选项D 。
(易错题)高中数学必修四第一章《三角函数》检测卷(包含答案解析)(1)
一、选择题1.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (51AB BC -=)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④2.已知函数()()cos f x x ωϕ=+(0>ω,0πϕ-<<)的图象关于点,08π⎛⎫⎪⎝⎭对称,且其相邻对称轴间的距离为23π,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象,则下列说法中正确的是( )A .()f x 的最小正周期23T π= B .58πϕ=-C .()317cos 248πx g x ⎛⎫=- ⎪⎝⎭D .()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦3.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .84.函数3cos 2cos2sin cos cos510y x x x ππ=-的递增区间是( )A .2[,]105k k ππππ-+(k Z ∈) B .2[,]510k k ππππ-+ (k Z ∈) C .3[,]510k k ππππ-- (k Z ∈) D .37[,]2020k k ππππ-+ (k Z ∈) 5.下列函数中,既是偶函数,又在(),0-∞上是增函数的是( ) A .()22xxf x -=- B .()23f x x =-C .()2ln =-f x xD .()cos3=f x x x6.675︒用弧度制表示为( ) A .114π B .134π C .154π D .174π 7.当5,2,2παβπ⎛⎫∈ ⎪⎝⎭时,若αβ>,则以下不正确的是( ) A .sin sin tan tan αββα->- B .cos tan cos tan αββα+<+ C .sin tan sin tan αββα> D .tan sin tan sin αββα<8.现有四个函数:①y =x |sin x |,②y =x 2cos x ,③y =x ·e x ;④1y x x=+的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .①②③④B .①③②④C .②①③④D .③②①④9.函数()13cos313x xf x x -=+的图象大致是( ) A . B .C .D .10.函数()()sin ln 0=->f x x x ωω只有一个零点,则实数ω的取值范围是( ) A .()0,πB .5,2⎫⎛⎪⎝⎭ππe C .50,2⎫⎛ ⎪⎝⎭πe D .5,2⎫⎛∞⎪⎝⎭π+e11.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫= ⎪⎝⎭,()3g π=,则ω的取值共有( ) A .6个B .5个C .4个D .3个12.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象(如图所示),则下列有关函数()f x 的结论错误的是( )A .图象关于点,012π⎛⎫- ⎪⎝⎭对称 B .最小正周期是π C .在0,6π⎛⎫⎪⎝⎭上单调递减 D .在0,12π⎡⎤⎢⎥⎣⎦上最大值是3 二、填空题13.已知函数cos ,[],y a x x ωππ=+∈-(其中,a ω为常数,且0>ω)有且仅有3个零点,则ω的最小值是_________.14.若函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,则6f π⎛⎫⎪⎝⎭的值是___________. 15.已知函数()()πsin (00)2f x M x M ωϕωϕ=+>><,的部分图象如图所示,其中()23A ,(点A 为图象的一个最高点)502B ⎛⎫- ⎪⎝⎭,,则函数()f x =___________.16.如图,某公园要在一块圆心角为3π,半径为20m 的扇形草坪OAB 中修建一个内接矩形文化景观区域CDEF ,若//EF AB ,则文化景观区域面积的最大值为______2m .17.已知M 是函数()()238sin f x x x x R π=--∈的所有零点之和.则M 的值为_____. 18.已知函数f (x )=A sin (3πx +φ),x ∈R ,A >0,0<φ<2π.y =f (x )的部分图象,如图所示,P ,Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ),点R 的坐标为(1,0),∠PRQ =23π,则sin ∠PQR =_____.19.奇函数()f x 对任意实数x 都有(2)()f x f x +=-成立,且01x 时,()21x f x =-,则()2log 11f =______.20.已知函数()3)cos(2)(0)f x x x ϕϕϕπ=+-+<<是定义在R 上的奇函数,则()8f π-的值为______.三、解答题21.在①将函数f (x )图象向右平移12π个单位所得图象关于y 轴对称:②函数6y f x π⎛⎫=+ ⎪⎝⎭是奇函数;③当712x π=时,函数6y f x π⎛⎫=- ⎪⎝⎭取得最大值.三个中任选一个,补充在题干中的横线处,然后解答问题.题干:已知函数()2sin()f x x ωϕ=+,其中0,||2πωϕ><,其图象相邻的对称中心之间的距离为2π,___________. (1)求函数y =f (x )的解析式;(2)求函数y =f (x )在,22ππ⎡⎤-⎢⎥⎣⎦上的最小值,并写出取得最小值时x 的值. 注:如果选择多个条件分别解答,按第一个解答计分.22.如图,一个半径为4米的筒车按逆时针方向每π分钟转1圈,筒车的轴心O 距水面的高度为2米.设筒车上的某个盛水筒W 到水面的距离为d (单位:米)(在水面下则d 为负数).若以盛水筒W 刚浮出水面时开始计算时间,则d 与时间t (单位:分钟)之间的关系为sin()0,0,22d A t K A ππωϕωϕ⎛⎫=++>>-<< ⎪⎝⎭.(1)求,,,A K ωϕ的值;(2)求盛水筒W 出水后至少经过多少时间就可到达最高点?(3)某时刻0t (单位:分钟)时,盛水筒W 在过O 点的竖直直线的左侧,到水面的距离为5米,再经过6π分钟后,盛水筒W 是否在水中? 23.为整治校园环境,设计如图所示的平行四边形绿地ABCD ,在绿地中种植两块相同的扇形花卉景观,两扇形的边(圆心分别为A 和C )均落在平行四边形ABCD 的边上,圆弧均与BD 相切,其中扇形的圆心角为120°,扇形的半径为12米.(1)求两块花卉景观扇形的面积;(2)记BDA θ∠=,求平行四边形绿地ABCD 占地面积S 关于θ的函数解析式,并求面积S 的最小值.24.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,,28M π⎛⎫⎪⎝⎭、5,28N π⎛⎫- ⎪⎝⎭分别为其图象上相邻的最高点、最低点. (1)求函数()f x 的解析式; (2)求函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调区间和值域. 25.已知函数()231cos 2f x x x =-+.(1)当π02x ⎡⎤∈⎢⎥⎣⎦,时,求函数()f x 的取值范围;(2)将()f x 的图象向左平移π6个单位得到函数()g x 的图象,求()g x 的单调递增区间. 26.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><的部分图象如下图所示.(1)求函数()f x 的解析式,并写出函数()f x 的单调递增区间; (2)将函数()f x 图象上所有点的横坐标缩短到原来的14(纵坐标不变),再将所得的函数图象上所有点向左平移02m m π⎛⎫<< ⎪⎝⎭个单位长度,得到函数()g x 的图象.若函数()g x 的图象关于直线512x π=对称,求函数()g x 在区间7,1212ππ⎡⎤⎢⎥⎣⎦上的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 设51AB =,则2BC =,再由14圆弧分别求出,,l m n ,再逐项判断即可得正确选项. 【详解】 不妨设51AB =,则2BC =,所以()512l BE π==⨯,()25135ED =-=所以(352m EG π==⨯,(134CG =-=,所以())422n GI ππ==⨯=,所以(())341222m n l πππ⨯+⨯=⨯==+,故①正确;(22227342m π-⨯==,))271222l n ππ-⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))122l n ππ⨯++==,((22332m ππ=⨯⨯-=-, 所以2m l n ≠+,故③不正确;11l n l n l n ++===⋅(1132m π==⨯,所以211m l n ≠+, 故④不正确;所以①②正确, 故选:A 【点睛】关键点点睛:本题解题的关键是读懂题意,正确求出扇形的半径,利用弧长公式求出弧长即,,l m n 的值.2.D解析:D 【分析】首先根据三角函数的性质,可知相邻对称轴间的距离是半个周期,判断A ;再求函数的解析式,判断B ;根据平移规律得到函数()g x ,判断C ;最后根据函数()g x 的解析式,利用整体代入的方法求函数的单调递减区间. 【详解】相邻对称轴间的距离是半个周期,所以周期是43π,故A 不正确; 243T ππω==,解得:32ω=,()f x 的图象关于点,08π⎛⎫⎪⎝⎭对称,3,282k k Z ππϕπ∴⨯+=+∈,解得:5,16k k Z πϕπ=+∈ 0πϕ-<<, 1116πϕ∴=-,故B 不正确;()311cos 216f x x π⎛⎫=-⎪⎝⎭,向左平移3π个单位长度后得()31133cos cos 2316216g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦故C 不正确; 当02x π≤≤时,3339,2161616x πππ⎡⎤-∈-⎢⎥⎣⎦,当3390,21616x ππ⎡⎤-∈⎢⎥⎣⎦时,函数单调递减,即 ,82x ππ⎡⎤∈⎢⎥⎣⎦,故D 正确. 故选:D 【点睛】关键点点睛:本题的关键是根据三角函数的性质求得函数()f x 的解析式,第四个选项是关键,需根据整体代入的方法,先求33216x π-的范围,再确定函数的单调递减区间. 3.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标, 可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11y x =-和2cos y x π=交点的横坐标,从而通过函数图象求解.4.C解析:C 【分析】利用三角恒等变换的公式,化简得由函数cos(2)5y x π=+,再根据余弦型函数的性质,即可求解函数的单调递增区间,得到答案. 【详解】由函数3cos 2cos2sin cos cos cos 2cos sin 2sin cos(2)510555y x x x x x x πππππ=-=-=+, 令222,5k x k k Z ππππ-+≤+≤∈,整理得3,510k x k k Z ππππ-+≤≤-+∈, 所以函数的单调递增区间为3[,],510k k k Z ππππ-+-+∈,故选C. 【点睛】本题主要考查了三角恒等变换的化简,以及三角函数的性质的应用,其中解答中根据三角恒等变换的公式,化简得到函数的解析式,再利用三角函数的性质求解是解答的关键,着重考查了运算与求解能力,属于基础题.5.C解析:C 【分析】利用奇偶性的定义判断函数奇偶性,判断AD 错误,结合常见基本初等函数的单调性判断B错误,C 正确即可. 【详解】选项A 中,()22xxf x -=-,定义域R ,()()()2222xx x x f x f x ---=-=--=-,则()f x 是奇函数,不符合题意;选项D 中,()cos3=f x x x ,定义域R ,()()()cos 3cos3f x x x x x f x -=--=-=-,则()f x 是奇函数,不符合题意;选项B 中,()23f x x =-,定义域R ,()()()2233x x f x f x -=--=-=,则()f x 是偶函数,但二次函数()23f x x =-在在(),0-∞上是减函数,在()0,∞+上是增函数,故不符合题意;选项C 中,()2ln =-f x x ,定义域为(),0-∞()0,+∞,()()2ln 2ln f x x x f x -=--=-=,则()f x 是偶函数.当()0,x ∈+∞时,()2ln f x x =-是减函数,所以由偶函数图象关于y 轴对称可知,()f x 在(),0-∞上是增函数,故符合题意. 故选:C. 【点睛】 方法点睛:定义法判断函数()f x 奇偶性的方法: (1)确定定义域关于原点对称; (2)计算()f x -;(3)判断()f x -与()f x 的关系,若()()f x f x -=,则()f x 是偶函数;若()()f x f x -=-,则()f x 是奇函数;若两者均不成立,则()f x 是非奇非偶函数.6.C解析:C 【分析】根据弧度制与角度制的关系求解即可. 【详解】因为180π︒=弧度, 所以156********4ππ︒=⨯=, 故选:C7.D解析:D 【分析】对A ,由()sin tan f x x x =+在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断;对B ,由()cos tan f x x x =-在52,2ππ⎛⎫ ⎪⎝⎭上单调递减可判断;对C ,由()sin tan f x x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断;对D ,由tan ()sin x f x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增可判断. 【详解】A .设()sin tan f x x x =+,则()f x 在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>,所以sin tan sin tan ααββ+>+,所以sin sin tan tan αββα->-,所以A 对,不符合题意;B .设()cos tan f x x x =-,则()f x 在52,2ππ⎛⎫ ⎪⎝⎭上单调递减,因为αβ>,所以()()f f αβ<,所以cos tan cos tan ααββ-<-, 所以cos tan cos tan αββα+<+,所以B 对,不符合题意; C .设()sin tan f x x x =,因为sin ,tan x x 在52,2ππ⎛⎫⎪⎝⎭都为正数,且都单调递增, 所以()sin tan f x x x =在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>, 所以sin tan sin tan ααββ>,所以sin tan sin tan αββα>,所以C 对,不符合题意; D .设tan ()sin x f x x =,则tan 1()sin cos x f x x x ==在52,2ππ⎛⎫⎪⎝⎭上单调递增, 因为αβ>,所以()()f αf β>,所以tan tan sin sin αβαβ>, 所以tan sin tan sin αββα>,所以D 错,符合题意. 故选:D. 【点睛】本题考查利用三角函数的单调性比较大小,解题的关键是恰当构造函数,判断函数的单调性,利用单调性判断大小.8.D解析:D 【分析】根据各函数的特征如函数值的正负,单调性、奇偶性,定义域、值域等进行判断. 【详解】左边第一个图象中0x <时,0y <,只有③满足,此时只有D 可选,实际上,左边第二个图象关于y 轴对称,是偶函数,只有②满足,而0x >时,10y x x=+>恒成立,只有最右边的图象满足,由此也可得顺序是③②①④,选D . 故选:D . 【点睛】思路点睛:本题考查由函数解析式选择函数图象,解题时可两者结合,由函数解析式和图象分别确定函数的性质,如奇偶性、单调性、函数值的正负,特殊的函数值,变化趋势等等,两者对照可得结论.9.A解析:A 【分析】先判断奇偶性,可排除C ,D ,由特殊值()f π,可排除B ,即可得到答案.【详解】因为()()()1331cos 3cos31331x x xx f x x x f x -----=⋅-=⋅=-++,所以函数()f x 为奇函数,排除C ,D ;又()13cos3013f ππππ-=>+,排除B , 故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.10.C解析:C 【分析】函数()()sin ln 0=->f x x x ωω只有一个零点,等价于sin y x ω=与ln y x =图象只有一个交点,作出两个函数的图象,数形结合即可求解. 【详解】函数()()sin ln 0=->f x x x ωω只有一个零点, 可得sin ln 0x x ω-=只有一个实根,等价于sin y x ω=与ln y x =图象只有一个交点, 作出两个函数的图象如图所示,由sin y x ω=可得其周期2T πω=,当x e =时,ln 1y e ==sin y x ω=最高点5,12A πω⎛⎫⎪⎝⎭所以若恰有一个交点,只需要5ln 12πω>,即52e πω>, 解得:52e πω<,又因为0>ω,所以502eπω<<, 故选:C 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.11.B解析:B 【分析】根据函数在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫=⎪⎝⎭,()3g π=,可得周期的范围,进而得到关于ω的方程与不等式,结合n *∈N 可求ω的值,从而可得答案. 【详解】因为()g x 在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,04g π⎛⎫=⎪⎝⎭,()3g π=,所以()()7,62,4422121,442T T n n T n N πππωπππωπππω*⎧-≤=⎪⎪⎪-≥=⎨⎪⎪---==∈⎪⎩得263ω≤≤,423n ω-=,n *∈N , 所以242633n -≤≤, 解得15n ≤≤.即1,2,3,4,5n =,可得23ω=,102,3,143,6,经检验均符合题意,所以ω的取值共有5个. 故选:B 【点睛】关键点点睛:本题主要考查余弦函数的几何性质,解题的关键是利用单调区间以及对称点、最值点与周期的关系列出不等式.12.C解析:C 【分析】首先根据题中所给的函数图象,从最值、周期和特殊点着手将解析式确定,之后结合函数的性质对选项逐一分析,得到结果. 【详解】根据图象得到:2A =,311341264T πππ=-=,所以T π=, 所以2ππω=,解得2ω=,所以()()2sin 2f x x ϕ=+.将点,26π⎛⎫ ⎪⎝⎭代入,得到2sin 23πϕ⎛⎫+= ⎪⎝⎭,则()232k k Z ππϕπ+=+∈,得()26k k Z πϕπ=+∈,又2πϕ<,所以6π=ϕ, 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 对于A ,20126ππ⎛⎫⨯-+= ⎪⎝⎭,则函数()f x 关于,012π⎛⎫- ⎪⎝⎭对称,故A 正确;对于B ,函数的周期22T ππ==,故B 正确; 对于C ,当0,6x π⎛⎫∈ ⎪⎝⎭时,2,662x πππ⎛⎫+∈ ⎪⎝⎭,此时函数()f x 为增函数,故C 错误; 对于D ,当0,12x π⎡⎤∈⎢⎥⎣⎦时,2,663x πππ⎡⎤+∈⎢⎥⎣⎦,则1sin 262x π⎡⎛⎫+∈⎢ ⎪⎝⎭⎣⎦,2sin 26x π⎛⎫⎡+∈ ⎪⎣⎝⎭,故()f x 在0,12π⎡⎤⎢⎥⎣⎦D 正确.故选:C . 【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有根据图象确定函数解析式,正弦型函数的相关性质,属于简单题目.二、填空题13.2【分析】根据函数为偶函数可知函数必有一个零点为可得根据函数的图象可知解得即可得解【详解】因为函数为偶函数且有且仅有3个零点所以必有一个零点为所以得所以函数的图象与直线在上有且仅有3个交点因为函数的解析:2 【分析】根据函数为偶函数可知函数必有一个零点为0x =,可得1a =-,根据函数cos y x ω=(0)>ω的图象可知222πππωω≤<⨯,解得24ω≤<即可得解.【详解】因为函数cos ,[],y a x x ωππ=+∈-为偶函数,且有且仅有3个零点,所以必有一个零点为0x =, 所以cos00a +=,得1a =-,所以函数cos y x ω=(0)>ω的图象与直线1y =在[,]-ππ上有且仅有3个交点, 因为函数cos y x ω=(0)>ω的最小正周期2T πω=,所以2T T π≤<,即222πππωω≤<⨯,得24ω≤<,所以ω的最小值是2.故答案为:2 【点睛】关键点点睛:根据偶函数图象的对称性求出a 是解题关键.14.4或-4【分析】由题意可得故函数的周期为求得;在中令求得从而求得的值【详解】∵函数对任意的都有∴故函数的周期为∴所以∴在中令可得:即∴则故答案为:4或-4【点睛】求三角函数解析式的方法:(1)求A 通解析:4或-4. 【分析】 由题意可得()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π,求得=3ω;在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,求得sin 0ϕ=,从而求得6f π⎛⎫⎪⎝⎭的值. 【详解】∵函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭, ∴()23f x f x π⎛⎫+=⎪⎝⎭,故函数()f x 的周期为23π, ∴22=3ππω,所以=3ω. ∴()()4sin 3f x x ϕ=+. 在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,可得:()03f f π⎛⎫= ⎪⎝⎭, 即()4sin =4sin πϕϕ+,∴sin =0ϕ. 则=4sin()4cos 462f ππϕϕ⎛⎫+==±⎪⎝⎭. 故答案为: 4或-4. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.15.【分析】由点的坐标可得的值由图象可求得函数的图象可得该函数的最小正周期可求得的值再将点的坐标代入函数的解析式结合的取值范围可求得的值可得出函数的解析式【详解】由于函数的图象的一个最高点为则由图象可知解析:ππ3sin 36x ⎛⎫- ⎪⎝⎭【分析】由点A 的坐标可得M 的值,由图象可求得函数()y f x =的图象可得该函数的最小正周期,可求得ω的值,再将点A 的坐标代入函数()y f x =的解析式,结合ϕ的取值范围可求得ϕ的值,可得出函数()y f x =的解析式. 【详解】由于函数()y f x =的图象的一个最高点为()2,3A ,则3M =, 由图象可知,函数()y f x =的最小正周期为452632T ⎛⎫=+= ⎪⎝⎭, 23T ππω∴==,()3sin 3x f x πϕ⎛⎫∴=+⎪⎝⎭, 将点A 的坐标代入函数()y f x =的解析式得()223sin 33f πϕ⎛⎫=+=⎪⎝⎭,可得2sin 13πϕ⎛⎫+= ⎪⎝⎭, 22ππϕ-<<,则27636πππϕ<+<,232ππϕ∴+=,解得6πϕ=-,()3sin 36x f x ππ⎛⎫∴=- ⎪⎝⎭故答案为:()3sin 36x f x ππ⎛⎫=- ⎪⎝⎭ 【点睛】本题考查利用三角函数图象求解函数解析式,考查计算能力,属于中等题.16.【分析】取中点连结交于点交于点连结设推导出和从而得出文化景观区域面积利用三角函数的性质解出面积最大值【详解】取中点连结交于点交于点连结设则文化景观区域面积:当即时文化景观区域面积取得最大值为故答案为 解析:()40023-【分析】取DC 中点M ,连结OM ,交EF 于点P ,交CD 于点N ,连结OD ,设DOM ϕ∠=,推导出DC 和CF ,从而得出文化景观区域面积,利用三角函数的性质,解出面积最大值. 【详解】取DC 中点M ,连结OM ,交EF 于点P ,交CD 于点N ,连结OD ,设DOM ϕ∠=,则20sin DN CN ϕ==,40sin DC ϕ∴=,20cos 20cos 203sin tan 30PFCF DE PN ON OP ϕϕϕ===-=-=-︒,∴文化景观区域面积:()4020203EFCD S sin cos sin ϕϕϕ=-矩形 400sin 24003(1cos 2)ϕϕ=--800sin(2)40033πϕ=+-,∴当232ππϕ+=,即12πϕ=时,文化景观区域面积取得最大值为2400(23)()m -.故答案为:400(23)-. 【点睛】本题考查文化景观区域面积的最大值的求法,考查扇形、三角函数恒等变换等基础知识,考查运算求解能力,是中档题.17.【分析】根据和的函数图像的对称点和交点个数得出答案【详解】令可得作出和的函数图像如图所示:由图像可知两函数图像有个交点又两函数图像均关于直线对称的个零点之和为故答案为:【点睛】本题考查了函数零点之和 解析:12【分析】根据8sin y x π=和23y x =-的函数图像的对称点和交点个数得出答案. 【详解】令()0f x =可得8sin 23x x π=-,作出8sin y x π=和23y x =-的函数图像如图所示:由图像可知两函数图像有8个交点, 又两函数图像均关于直线32x =对称,∴()f x 的8个零点之和为324122⨯⨯=.故答案为:12 【点睛】本题考查了函数零点之和,考查了转化与化归、数形结合的思想,属于基础题.18.【分析】根据周期求出再由直角三角形的边角关系以及勾股定理求出最后由正弦定理求出【详解】过点作延长线的垂线垂足为连接如下图所示则由正弦定理可知则故答案为:【点睛】本题主要考查了正弦型函数图象的性质的应解析:14【分析】根据周期求出32TDQ ==,再由直角三角形的边角关系以及勾股定理求出,PR PQ ,最后由正弦定理求出sin PQR ∠.【详解】过点Q 作PR 延长线的垂线,垂足为D ,连接PQ ,如下图所示263T ππ==,则32T DQ == 6xRQ RQD π∠=∠=tan36DR DQ π∴=⋅==PR DP PQ ∴=====由正弦定理可知sin sin PQ PRPRQ PQR=∠∠则sin sin PR PRQPQR PQ⋅∠∠===故答案为:2114【点睛】本题主要考查了正弦型函数图象的性质的应用,涉及了正弦定理解三角形,属于中档题.19.【分析】易得函数周期为4则结合函数为奇函数可得再由时即可求解【详解】则又则故答案为:【点睛】本题考查函数奇偶性与周期性的综合应用具体函数值的求法属于中档题 解析:511-【分析】易得函数周期为4,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭,结合函数为奇函数可得222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再由01x 时,()21xf x =-即可求解 【详解】()()(2)()4(2)4f x f x f x f x f x T +=-⇒+=-+=⇒=,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭, 又222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,[]216log 0,111∈, 则216log 112165log 211111f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭故答案为:511- 【点睛】本题考查函数奇偶性与周期性的综合应用,具体函数值的求法,属于中档题20.【分析】利用辅助角公式化简根据正弦型函数为奇函数可构造方程求得进而得到解析式代入即可求得结果【详解】为上的奇函数解得:又故答案为:【点睛】本题考查根据正弦型函数的奇偶性求解参数值已知解析式求解三角函解析:【分析】利用辅助角公式化简()f x ,根据正弦型函数为奇函数可构造方程求得ϕ,进而得到()f x 解析式,代入8x π=-即可求得结果.【详解】()()()2cos 22sin 26f x x x x πϕϕϕ⎛⎫=+-+=-+ ⎪⎝⎭,()f x 为R 上的奇函数,()6k k Z πϕπ∴-=∈,解得:()6k k Z πϕπ=+∈,又0ϕπ<<,6πϕ∴=,()2sin 2f x x ∴=,2sin 84f ππ⎛⎫⎛⎫∴-=-= ⎪ ⎪⎝⎭⎝⎭故答案为:. 【点睛】本题考查根据正弦型函数的奇偶性求解参数值、已知解析式求解三角函数值的问题;关键是能够通过辅助角公式将函数化简为正弦型函数,进而利用奇偶性构造方程求得参数.三、解答题21.条件选择见解析;(1)()2sin 23f x x π⎛⎫=- ⎪⎝⎭;(2)12x π=-时,函数f (x )取得最小值,最小值为2-. 【分析】(1)由相邻中心距离得周期,从而可得ω,选择①,写出平移后解析式,由对称性得新函数为偶函数,结合诱导公式求得ϕ, 选择②,求出6y f x π⎛⎫=+ ⎪⎝⎭,由函数为奇函数,结合诱导公式求得ϕ, 选择③,求出()6y f x π=-,代入712x π=,结合正弦函数最大值可得ω, 从而得函数解析式; (2)()2sin 23f x x π⎛⎫=- ⎪⎝⎭由,求得23x π-的范围,然后由正弦函数性质得最小值.【详解】(1)因为函数f (x )=2sin(ωx +φ)的图象相邻的对称中心之间的距离为2π,所以周期22T π=,即T =π,所以22T πω==.若选择①,因为函数f (x )图象向右平移12π个单位所得图象关于y 轴对称,所以()2sin 22sin 2126g x x x ππϕϕ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象关于y 轴对称,所以62k ππϕπ-=+,k Z ∈,因为||2ϕπ<,所以3πϕ=-.所以函数y =f (x )的解析式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.若选择②,因为2sin 22sin 2663y f x x x πππϕϕ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦是奇函数,所以3k πϕπ+=,k Z ∈,因为||2ϕπ<,所以3πϕ=-.所以函数y =f (x )的解析式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.若选择③,2sin 22sin 2663y f x x x πππϕϕ⎡⎤⎛⎫⎛⎫⎛⎫=-=⨯-+=-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,由题设,当712x π=时,函数6y f x π⎛⎫=- ⎪⎝⎭取得最大值,所以当722()1232k k Z πππϕπ⨯-+=+∈,即2()3k k Z πϕπ=-∈, 因为||2ϕπ<,所以3πϕ=-.所以函数y =f (x )的解析式为()2sin 23f x x π⎛⎫=- ⎪⎝⎭.(2)因为()2sin 23f x x π⎛⎫=- ⎪⎝⎭,,22x ππ⎡⎤∈-⎢⎥⎣⎦,所以422,333x πππ⎡⎤-∈-⎢⎥⎣⎦,所以当232x ππ-=-,即12x π=-时,函数f (x )取得最小值,最小值为2-.【点睛】关键点点睛:本题考查由三角函数的图象与性质求解析式,解题关键是掌握正弦函数的图象与性质,解题时注意“五点法”和整体思想的应用.对于奇偶性问题注意诱导公式的应用,由此计算比较方便. 22.(1)4,2,,26A K πωϕ===-=;(2)3π分钟;(3)再经过6π分钟后盛水筒不在水中.【分析】(1)先结合题设条件得到T π=,4,2A K ==,求得2ω=,再利用初始值计算初相ϕ即可;(2)根据盛水筒达到最高点时6d =,代入计算t 值,再根据0t >,得到最少时间即可; (3)先计算0t 时03sin 264t π⎛⎫-= ⎪⎝⎭,根据题意,利用同角三角函数的平方关系求0cos 26t π⎛⎫- ⎪⎝⎭,再由6π分钟后00sin()=sin 2sin 26663t t t ππππωϕ⎡⎤⎡⎤⎛⎫⎛⎫++-=-+ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,进而计算d 值并判断正负,即得结果. 【详解】解:(1)由题意知,T π=,即2ππω=,所以2ω=,由题意半径为4米,筒车的轴心O 距水面的高度为2米,可得:4,2A K ==, 当0t =时,0d =,代入4sin(2)2d t ϕ=++得,1sin 2ϕ=-, 因为22ππϕ-<<,所以6πϕ=-;(2)由(1)知:4sin 226d t π⎛⎫=-+ ⎪⎝⎭,盛水筒达到最高点时,6d =, 当6d =时,64sin 226t π⎛⎫=-+ ⎪⎝⎭,所以sin 216t π⎛⎫-= ⎪⎝⎭, 所以22,Z 62t k k πππ-=+∈,解得,Z 3t k k ππ=+∈,因为0t >,所以,当0k =时,min 3t π=, 所以盛水筒出水后至少经过3π分钟就可达到最高点; (3)由题知:04sin 2256t π⎛⎫-+= ⎪⎝⎭,即03sin 264t π⎛⎫-= ⎪⎝⎭, 由题意,盛水筒W 在过O 点的竖直直线的左侧,知0cos 206t π⎛⎫-< ⎪⎝⎭,所以0cos 264t π⎛⎫-=- ⎪⎝⎭,所以00313sin 2sin 2666342428t t ππππ⎛-⎡⎤⎡⎤⎛⎫⎛⎫+-=-+=⨯+-⨯= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦⎝⎭,所以,再经过6π分钟后321721420d --=⨯+=>, 所以再经过6π分钟后盛水筒不在水中. 【点睛】本题的解题关键在于准确求解出三角函数模型的解析式,才能利用三角函数性质解决实际问题,突破难点.23.(1)96π平方米;(2)1443sin 262S θ+-⎪⎝⎭=,且最小值为2883平方米. 【分析】(1)根据题中条件,由扇形面积公式,即可计算出结果;(2)过点A 作AE BD ⊥于点E ,由题中条件,得到12AE =,再由θ分别表示出BE 和DE ,得出BD ,进而可得出平行四边形ABCD 的面积S 关于θ的函数解析式,由三角函数的性质,即可求出最小值. 【详解】(1)因为两扇形所在圆的半径均为12米,扇形的圆心角为23π, 所以两块花卉景观扇形的面积为112212129623S ππ=⨯⨯⨯⨯=平方米;(2)过点A 作AE BD ⊥于点E ,因为圆弧均与BD 相切,所以E 即为切点,则12AE =, 又BDA θ∠=,23BAD π∠=,所以3DBA πθ∠=-,π0θ3, 在Rt ADE △中,tan AE DE θ=,所以1212cos tan sin DE θθθ==; 在Rt ABE △中,tan 3AE BE πθ⎛⎫=- ⎪⎝⎭,所以12cos 123tan sin 33BE πθππθθ⎛⎫- ⎪⎝⎭==⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭, 则12sin cos cos sin 12cos 3312cos 3sin sin sin sin 33BD BE DE πππθθθθθθππθθθθ⎡⎤⎛⎫⎛⎫⎛⎫-+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=+=+=⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭12sin31 sin sin sin2 362444πππθθθ====⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此平行四边形绿地ABCD占地面积1sin216222S BD AEπθ⎛⎫+-⎝⨯⨯⎪⎭=⨯=,因为π0θ3,所以52666πππθ<+<,因此当262ππθ+=,即6πθ=时,1sin262Sπθ⎛⎫+-⎪⎝⎭=取得最小值,且最小值为minS=.【点睛】关键点点睛:求解本题的关键在于用θ表示出BD,再由S BD AE=⨯,得出平行四边形的面积S关于θ的函数解析式,利用正弦函数的性质,即可求解最值.24.(1)()2sin24f x xπ⎛⎫=+⎪⎝⎭;(2)单调递增区间为0,8π⎡⎤⎢⎥⎣⎦,单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦,()f x值域为⎡⎤⎣⎦.【分析】(1)利用最高点与最低点坐标可求出A和周期T,由2Tπω=可求得ω的值,再将点,28Mπ⎛⎫⎪⎝⎭代入即可求得ϕ的值,进而可得函数()f x的解析式;(2)解不等式222242k x kπππππ-≤+≤+,k Z∈,可得()f x的单调的增区间,再与0,2π⎡⎤⎢⎥⎣⎦求交集即可得()f x在0,2π⎡⎤⎢⎥⎣⎦上的单调区间,利用单调性求出最值即得值域.【详解】(1)因为()f x图象上相邻两个最高点和最低点分别为,28π⎛⎫⎪⎝⎭,5,28π⎛⎫-⎪⎝⎭所以2A=,52882Tπππ=-=,则Tπ=,又2||Tπω=,0>ω,所以2ω=,()2sin(2)f x xϕ=+,又图象过点,28π⎛⎫ ⎪⎝⎭,所以22sin 28πϕ⎛⎫=⨯+ ⎪⎝⎭,即sin 14πϕ⎛⎫+= ⎪⎝⎭,所以242k ππϕπ+=+,k Z ∈,即24k πϕπ=+,k Z ∈.又||2ϕπ<,所以4πϕ=,所以()2sin 24f x x π⎛⎫=+ ⎪⎝⎭. (2)由222242k x k πππππ-≤+≤+,k Z ∈,得388k x k ππππ-≤≤+,k Z ∈, 所以()f x 的单调递增区间为3,88k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈, 又0,2x π⎡⎤∈⎢⎥⎣⎦,所以()f x 的单调递增区间为0,8π⎡⎤⎢⎥⎣⎦, 同理()f x 的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦.又(0)2sin 4f π==28f π⎛⎫= ⎪⎝⎭,2f π⎛⎫= ⎪⎝⎭所以当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 值域为⎡⎤⎣⎦. 【点睛】关键点点睛:本题解题的关键点是由五点法作图的特点得出相邻两个最高点和最低点横坐标之差的绝对值为半个周期,纵坐标为振幅,利用峰点或谷点坐标求ϕ,利用整体代入法求()f x 的单调区间,利用单调性求最值.25.(1)112⎡⎤-⎢⎥⎣⎦,;(2)ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【分析】(1)根据余弦的二倍角公式、辅助角公式化简()f x ,得到()πsin 26f x x ⎛⎫=- ⎪⎝⎭,再利用正弦函数的性质确定当π02x ⎡⎤∈⎢⎥⎣⎦,时,()f x 的取值范围; (2)根据图象的平移得到()πsin 26g x x ⎛⎫=+ ⎪⎝⎭,再利用正弦函数的性质可求得()g x 得单调递增区间. 【详解】(1)()211πcos cos2sin 222226f x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭,π02x ⎡⎤∈⎢⎥⎣⎦,,ππ5π2666x ⎡⎤∴-∈-⎢⎥⎣⎦,, π1sin 2162x ⎛⎫⎡⎤∴-∈- ⎪⎢⎥⎝⎭⎣⎦,.∴函数()f x 的取值范围为112⎡⎤-⎢⎥⎣⎦,. (2)由题意知:()ππππsin 2sin 26666g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 令πππ2π22π262k x k -≤+≤+,k Z ∈, 解得πππ2π.36k k k Z -≤≤+∈, ∴()g x 的单调递增区间为ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【点睛】本题考查了三角函数的性质,根据二倍角的余弦公式、辅助角公式化简函数,并求函数在区间上的最值,及函数的单调区间,考查学生的运算能力,属于中档题. 26.(1)12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)[]1,2-. 【分析】(1)由三角函数的图象,求得函数的解析式12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得2()2sin 223g x x m π⎛⎫=-+ ⎪⎝⎭,根据()g x 的图象关于直线512x π=对称,求得m 的值,得到()2sin 23g x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解. 【详解】(1)由图象可知2A =,422433T πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦, 所以212T πω==,所以1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭,由图可求出最低点的坐标为,23π⎛⎫- ⎪⎝⎭,所以2sin 236f ππϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭, 所以262k ππϕπ+=-+,所以22,3k k Z πϕπ=-+∈, 因为||ϕπ<,所以23πϕ=-,所以12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,由1222,2232k x k k Z πππππ-+≤-≤+∈,可得744,33k x k k Z ππππ+≤≤+∈. 所以函数()f x 的单调递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(2)由题意知,函数22()2sin 2()2sin 2233g x x m x m ππ⎡⎤⎛⎫=+-=-+ ⎪⎢⎥⎣⎦⎝⎭, 因为()g x 的图象关于直线512x π=对称, 所以5222,1232m k k Z ππππ⨯-+=+∈,即,62k m k Z ππ=+∈, 因为02m π<<,所以6m π=,所以()2sin 23g x x π⎛⎫=-⎪⎝⎭. 当7,1212x ππ⎡⎤∈⎢⎥⎣⎦时,52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,可得1sin 2,132x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以2sin 2[1,2]3x π⎛⎫-∈- ⎪⎝⎭,即函数()g x 的值域为[]1,2-. 【点睛】解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.。
(典型题)高中数学必修四第一章《三角函数》检测卷(包含答案解析)(1)
一、选择题1.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,2πϕ<)的部分图像如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=- ⎪⎝⎭B .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭C .()3sin 26f x x π⎛⎫=-⎪⎝⎭D .1()3sin 26f x x π⎛⎫=-⎪⎝⎭ 2.函数()2cos 3⎛⎫=+ ⎪⎝⎭πf x x 在[]0,π的单调递增区间是( ) A .20,3π⎡⎤⎢⎥⎣⎦B .2,33ππ⎡⎤⎢⎥⎣⎦C .,3ππ⎡⎤⎢⎥⎣⎦D .2π,π33.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长),巨轮的半径长为30m ,2AM BP m ==,巨轮逆时针旋转且每12分钟转一圈,若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为( )A .30sin 30122t ππ⎛⎫-+⎪⎝⎭B .30sin 3062t ππ⎛⎫-+⎪⎝⎭C .30sin 3262t ππ⎛⎫-+⎪⎝⎭D .30sin 62t ππ⎛⎫-⎪⎝⎭ 4.已知函数()sin 26f x x π⎛⎫=-⎪⎝⎭,若方程()35f x =的解为1x ,2x (120x x π<<<),则()12sin x x -=( )A .35B .45-C .D .5.将函数()sin 25f x x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度后得到函数()y g x =的图象,对于函数()y g x =有以下四个判断: ①该函数的解析式为2sin 210y x π⎛⎫=+ ⎪⎝⎭; ②该函数图象关于点,02π⎛⎫⎪⎝⎭对称; ③该函数在区间,44ππ⎡⎤-⎢⎥⎣⎦上单调递增; ④该函数在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增. 其中,正确判断的序号是( ) A .②③B .①②C .②④D .③④6.已知函数()()cos f x x ωϕ=+(0>ω,0πϕ-<<)的图象关于点,08π⎛⎫⎪⎝⎭对称,且其相邻对称轴间的距离为23π,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象,则下列说法中正确的是( )A .()f x 的最小正周期23T π= B .58πϕ=-C .()317cos 248πx g x ⎛⎫=- ⎪⎝⎭D .()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦7.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用.假设在水流量稳定的情况下,简车上的每一个盛水筒都做逆时针匀速圆周运动.现将筒车抽象为一个几何图形,如图所示,圆O 的半径为4米,盛水筒M 从点0P 处开始运动,0OP 与水平面的所成角为30,且每分钟恰好转动1圈,则盛水筒M 距离水面的高度H (单位;m )与时间t (单位:s )之间的函数关系式的图象可能是( )A .B .C .D .8.下列结论正确的是( ) A .sin1cos1< B .2317cos cos 54ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C .()()tan 52tan 47->-D .sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭9.使函数()3)cos(2)f x x x θθ=+++是偶函数,且在0,4⎡⎤⎢⎥⎣⎦π上是减函数的θ的一个值是( ) A .6π B .3π C .23π D .56π 10.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,则( )A .()f x 是奇函数B .π2π33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭C .()f x 的一个周期是πD .()f x 的最小值小于011.如图,摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.某摩天轮最高点距离地面高度为120m ,转盘直径为110m 设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要20min .游客甲坐上摩天轮的座舱,开始转动t min 后距离地面的高度为H m ,则在转动一周的过程中,高度H 关于时间t 的函数解析式是( )A .()55cos 65020102H t t ππ⎛⎫=-+≤≤ ⎪⎝⎭B .()55sin 65020102H t t ππ⎛⎫=-+≤≤ ⎪⎝⎭C .()55cos 65020102H t t ππ⎛⎫=++≤≤ ⎪⎝⎭D .()55sin 65020102H t t ππ⎛⎫=++≤≤ ⎪⎝⎭12.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫= ⎪⎝⎭,()3g π=,则ω的取值共有( ) A .6个B .5个C .4个D .3个二、填空题13.已知3()tan 1f x a x x =+(a ,b 为实数),且3(lg log 10)5f =,则(lglg3)f =____________.14.已知定义在R 上的函数()f x 满足:()()2f x f x π+=,且当[]0,x π∈时,()sin f x x =.若对任意的(],x m ∈-∞,都有()2f x ≤,则实数m 的取值范围是______. 15.如图,某公园要在一块圆心角为3π,半径为20m 的扇形草坪OAB 中修建一个内接矩形文化景观区域CDEF ,若//EF AB ,则文化景观区域面积的最大值为______2m .16.若函数f (x )=2sin(ωx +φ)(ω>0,0<φ<π)的图象经过点,26π⎛⎫⎪⎝⎭,且相邻两条对称轴间的距离为2π,则4f π⎛⎫⎪⎝⎭的值为________. 17.设函数()y f x =的定义域为D ,若对任意的1x ∈D ,总存在2x ∈D ,使得()()121f x f x ⋅=,则称函数()f x 具有性质M .下列结论:①函数3y x x =-具有性质M ; ②函数35x x y =+具有性质M ;③若函数()[]8log 2,0,y x x t =+∈具有性质M ,则510t =; ④若3sin y x a =+具有性质M ,则5a =. 其中正确结论的序号是____________.18.函数251612()sin (0)236x x f x x x x ππ-+⎛⎫=--> ⎪⎝⎭的最小值为_______. 19.关于函数()4sin(2)(),3f x x x R π=+∈有下列命题:①由12()()0f x f x ==可得12x x -必是π的整数倍;②()y f x =的图象关于点(,0)6π-对称;③()y f x =的表达式可改写为4cos(2);6y x π=-④()y f x =的图象关于直线6x π=-对称.其中正确命题的序号是_________.20.将函数()sin (0)f x x ωω=>的图象向右平移6π个单位长度,得到函数()y g x =的图像,若()y g x =是偶函数,则ω的最小值为________.三、解答题21.已知函数()12sin 26x f x π⎛⎫=+⎪⎝⎭,x ∈R .(1)用“五点法”画出函数()f x 一个周期内的图象; (2)求函数()f x 在[],ππ-内的值域; (3)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象,求函数()g x 在[],ππ-内的单调增区间.22.函数()sin()f x A x ωϕ=+(0,0,[0,2))A ωϕπ>>∈的图象如图所示:(1)求()f x 的解析式; (2)()f x 向左平移12π个单位后得到函数()g x ,求()g x 的单调递减区间;(3)若,2x ππ⎡⎤∈-⎢⎥⎣⎦且()32f x ≥,求x 的取值范围.23.已知向量a =(cosωx -sinωx ,sinωx),b =(-cosωx -sinωx,2cosωx).设函数f(x)=a b ⋅+λ(x ∈R)的图象关于直线x =π对称,其中ω,λ为常数,且ω∈1,12⎛⎫⎪⎝⎭.(1)求函数f(x)的最小正周期; (2)若y =f(x)的图象经过点,04π⎛⎫⎪⎝⎭,求函数f(x)在区间30,5π⎡⎤⎢⎥⎣⎦上的取值范围 24.已知函数()()()f x g x h x =,其()22g x x =,()h x =_____. (1)写出函数()f x 的一个周期(不用说明理由); (2)当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值和最小值. 从①cos 4x π⎛⎫+⎪⎝⎭,②2sin 24x π⎛⎫- ⎪⎝⎭这两个条件中任选一个,补充在上面问题中并作答, 注:如果选择多个条件分别解答.按第一个解答计分. 25.已知sin(3)(),cos x f x x R xπ-=∈(1)若α为第三象限角,且3sin 5α=-,求()f α的值. (2)若,34x ππ⎡⎤∈-⎢⎥⎣⎦,且21()2()1cos g x f x x =++,求函数()g x 的最小值,并求出此时对应的x 的值.26.函数()cos()(0)f x x ωφω=+>的部分图像如图所示.(1)求()f x 的表达式; (2)若[1,2]x ∈,求()f x 的值域;(3)将()f x 的图像向右平移112个单位后,再将所得图像横坐标伸长到原来的2倍,纵坐标不变,得到函数()y g x =的图像,求()g x 的单调递减区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 本题首先可根据33π44T 求出ω,然后根据当43x π=时函数()f x 取最大值求出ϕ,最后代入30,2⎛⎫- ⎪⎝⎭,即可求出A 的值. 【详解】因为4π7π3π3124,所以33π44T ,T π=,因为2T πω=,所以2ω=,()sin(2)f x A x ϕ=+,因为当43x π=时函数()sin(2)f x A x ϕ=+取最大值,所以()42232k k Z ππϕπ⨯+=+∈,()26k k Z πϕπ=-+∈,因为2πϕ<,所以6πϕ=-,()sin 26f x A x π⎛⎫=- ⎪⎝⎭,代入30,2⎛⎫- ⎪⎝⎭,3sin 26A π⎛⎫-=- ⎪⎝⎭,解得3A =,()3sin 26f x x π⎛⎫=- ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查根据函数图像求函数解析式,对于()sin()f x A x ωϕ=+,可通过周期求出ω,通过最值求出A ,通过代入点坐标求出ϕ,考查数形结合思想,是中档题.2.C解析:C 【分析】先求出函数的单调增区间,再给k 取值即得解. 【详解】 令22223+<+<+ππk πx πk π(k ∈Z ) ∴42233+<<+ππk πx k π(k ∈Z ), 所以函数的单调递增区间为4[2,2]33ππk πk π++(k ∈Z ), 当1k =-时,5233ππx -<<- 当0k =时,433x ππ<<又∵[]0,x π∈, 故选:C 【点睛】方法点睛:求三角函数()cos()f x A wx ϕ=+的单调区间,一般利用复合函数的单调性原理解答:首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.3.B解析:B 【分析】先通过计算得出转动的角速度,然后利用三角函数模型表示在转动的过程中点B 的纵坐标满足的关系式,则吊舱到底面的距离为点B 的纵坐标减2. 【详解】如图所示,以点M 为坐标原点,以水平方向为x 轴,以OM 所在直线为y 轴建立平面直角坐标系.因为巨轮逆时针旋转且每12分钟转一圈,则转动的角速度为6π每分钟, 经过t 分钟之后,转过的角度为6BOA t π∠=,所以,在转动的过程中,点B 的纵坐标满足:3230sin 30sin 322662y t t ππππ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭则吊舱距离地面的距离30sin 32230sin 306262h t t ππππ⎛⎫⎛⎫=-+-=-+ ⎪ ⎪⎝⎭⎝⎭. 故选:B . 【点睛】建立三角函数模型解决实际问题的一般步骤: (1)审题:审清楚题目条件、要求、理解数学关系; (2)建模:分析题目变化趋势,选择合适的三角函数模型; (3)求解:对所建立的数学模型进行分析研究,从而得到结论.4.B解析:B 【分析】求出函数()f x 在(0,)π上的对称轴,然后由正弦函数性质得1223x x π+=,这样12sin()x x -化为2222sin(2)sin 2cos(2)336x x x πππ⎛⎫-=+=- ⎪⎝⎭,而已知条件为23sin(2)65x π-=,再由正弦函数性质确定226x π-的范围,从而由平方关系求得结论.【详解】函数()sin 26f x x π⎛⎫=-⎪⎝⎭的对称轴满足:()262x k k Z πππ-=+∈,即()23k x k Z ππ=+∈,令0k =可得函数在区间()0,π上的一条对称轴为3x π=,结合三角函数的对称性可知1223x x π+=,则:1223x x π=-,()122222sin sin 2sin 2cos 2336x x x x x πππ⎛⎫⎛⎫⎛⎫-=-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由题意:0πx <<,则112666x πππ-<-<,23sin 265x π⎛⎫-= ⎪⎝⎭,120x x π<<<,则2226x πππ<-<,由同角三角函数基本关系可知:24cos 265x π⎛⎫-=- ⎪⎝⎭, 故选:B . 【点睛】关键点点睛:本题考查正弦函数的性质,考查平方关系.解题时根据自变量的范围求得此范围内函数的对称轴,从而得出两个变量12,x x 的关系,可化双变量为单变量,再根据函数值及函数性质确定出单变量的范围,从而求得结论.注意其中诱导公式的应用,目的是把求值式与已知条件中的角化为一致.5.A解析:A 【分析】根据函数平移变换得sin 2y x =,再根据正弦函数的性质依次讨论即可得答案. 【详解】解:由函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知: 将sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度之后 解析式为sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,选项①错误; 令2x k =π,k Z ∈,求得2k x =π,k Z ∈, 故函数的图象关于点,02k ⎛⎫⎪⎝⎭π对称, 令1k =,故函数的图象关于点,02π⎛⎫⎪⎝⎭对称,选项②正确; 则函数的单调递增区间满足:222()22k x k k Z ππππ-≤≤+∈,即()44k x k k Z ππππ-≤≤+∈,令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项③正确,④错误.故选:A. 【点睛】本题考查三角函数平移变换,正弦型函数的单调区间,对称中心等,考查运算求解能力,解题的易错点在于平移变换时,当1ω≠时,须将ω提出,平移只针对x 进行平移,具体的在本题中,sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度之后得sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,而不是sin 2sin 251010y x x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,是中档题. 6.D解析:D 【分析】首先根据三角函数的性质,可知相邻对称轴间的距离是半个周期,判断A ;再求函数的解析式,判断B ;根据平移规律得到函数()g x ,判断C ;最后根据函数()g x 的解析式,利用整体代入的方法求函数的单调递减区间. 【详解】相邻对称轴间的距离是半个周期,所以周期是43π,故A 不正确; 243T ππω==,解得:32ω=,()f x 的图象关于点,08π⎛⎫⎪⎝⎭对称,3,282k k Z ππϕπ∴⨯+=+∈,解得:5,16k k Z πϕπ=+∈ 0πϕ-<<, 1116πϕ∴=-,故B 不正确; ()311cos 216f x x π⎛⎫=- ⎪⎝⎭,向左平移3π个单位长度后得()31133cos cos 2316216g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 故C 不正确; 当02x π≤≤时,3339,2161616x πππ⎡⎤-∈-⎢⎥⎣⎦,当3390,21616x ππ⎡⎤-∈⎢⎥⎣⎦时,函数单调递减,即 ,82x ππ⎡⎤∈⎢⎥⎣⎦,故D 正确. 故选:D 【点睛】关键点点睛:本题的关键是根据三角函数的性质求得函数()f x 的解析式,第四个选项是关键,需根据整体代入的方法,先求33216x π-的范围,再确定函数的单调递减区间. 7.D解析:D 【分析】先根据题意建立坐标系,写出盛水筒M 距离水面的高度H 与时间t 之间的函数关系式,再根据关系式即可判断. 【详解】解:以O 为圆心,过点O 的水平直线为x 轴,建立如图所示的平面直角坐标系:0306xOP π∠==,OP ∴在()t s 内转过的角为:26030t t ππ=, ∴以x 轴正半轴为始边,以OP 为终边的角为:306t ππ-,P ∴点的纵坐标为:4sin 306t ππ⎛⎫-⎪⎝⎭, H ∴与t 之间的函数关系式为:4sin 2306H t ππ⎛⎫=-+⎪⎝⎭, 当sin 1306t ππ⎛⎫-= ⎪⎝⎭时,max 426H =+=, 当sin 1306t ππ⎛⎫-=-⎪⎝⎭时,max 422H =-+=-, 对A ,B ,由图像易知max min H H =-,故A ,B 错误; 对C ,max min H H <-,故C 错误; 对D ,max min H H >-,故D 正确. 故选:D. 【点睛】关键点点睛:本题解题的关键是理解题意,根据题意写出H 与t 之间的函数关系式.8.D解析:D 【分析】利用正弦函数的单调性可判断AD 选项的正误;利用正切函数的单调性可判断C 选项的正误;利用余弦函数的单调性可判断B 选项的正误. 【详解】对于A 选项,因为正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增, 且01122ππ<-<<,则sin1sin 1cos12π⎛⎫>-=⎪⎝⎭,A 选项错误; 对于B 选项,因为余弦函数cos y x =在()0,π上为减函数,23233cos cos cos 555πππ⎛⎫-== ⎪⎝⎭,1717cos cos cos 444πππ⎛⎫-== ⎪⎝⎭, 3045πππ<<<,则3cos cos 54ππ<,即2317cos cos 54ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,当900x -<<时,正切函数tan y x =单调递增, 因为9052470-<-<-<,所以,()()tan 52tan 47-<-,C 选项错误;对于D 选项,因为正弦函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,因为021018πππ-<-<-<,所以,sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 选项正确. 故选:D. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.9.B解析:B 【解析】1())cos(2))cos(2))2sin(2)26f x x x x x x πθθθθθ=+++=+++=++,由于()f x 为偶函数,则(0)2sin()26f πθ=+=±,sin()1,662k πππθθπ+=±+=+,3k πθπ=+,当0k =时,3πθ=,()2sin(2)2sin(2)362f x x x πππ=++=+2cos2x =,当[0,]4x π∈时,2[0,]2x π∈,()2cos2f x x =为减函数,符合题意,所以选B.10.D解析:D 【分析】利用奇函数的性质判断A ,分别求3f π⎛⎫⎪⎝⎭和23f π⎛⎫⎪⎝⎭判断大小,取特殊值验证的方法判断C ,分区间计算一个周期内的最小值,判断选项D 。
第一章三角函数测试题 (含详细答案)
必修四第一章三角函数单元测试 一、选择题1.设A ={小于90°的角},B ={第一象限的角},则A ∩B 等于( ). A .{锐角}B .{小于90° 的角}C .{第一象限的角}D .{α|k ·360°<α<k ·360°+90°(k ∈Z ,k ≤0)} 2.终边在直线y =-x 上的角的集合是( ). A .{α|α=45°+k ·180°(k ∈Z )} B .{α|α=135°+k ·180°(k ∈Z )} C .{α|α=45°+k ·360°(k ∈Z )}D .{α|α=-45°+k ·360°(k ∈Z )}3. 已知sin α=54,α∈(0,π),则tan α等于( ). A .34B .43 C .34±D .43±4.已知角 α 的终边经过点P (4,-3),则2sin α+cos α的值等于( ). A .-53 B .54 C .52 D .-52 5.已知sin α=-22,2π<α<23π,则角 α 等于( ). A .3πB .32πC .34πD .45π6.已知tan 14°≈41,则tan 7°约等于( ). A .17+4B .17-4C .17+2D .17-27.α是三角形的内角,则函数y =cos 2α-3cos α+6的最值情况是( ). A .既有最大值,又有最小值 B .既有最大值10,又有最小值831 C .只有最大值10 D .只有最小值831 8.若f (x )sin x 是周期为π的奇函数,则f (x )可以是( ). A .sin xB .cos xC .sin 2xD .cos 2x9.设4π<α<2π,sin α=a ,cos α=b ,tan α=c 则a ,b ,c 的大小关系为( ). A .a <b <cB .a >b >cC .b >a >cD .b <a <c10.已知sin α>sin β,那么下列命题成立的是( ). A .若α,β是第一象限角,则cos α>cos β B .若α,β是第二象限角,则tan α>tan β C .若α,β是第三象限角,则cos α>cos β D .若α,β是第四象限角,则tan α>tan β 二、填空题11.已知扇形的半径是1,周长为π,则扇形的面积是 . 12.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4}, 求A ∩B = .13.已知点P (tan α,cos α)在第三象限,则角 α 的终边在第 象限. 14.已知cos (π+α)=-53,sin αcos α<0,则sin (α-7π)的值为 . 15.函数y =x sin log 21的定义域是 .16.函数y =a +b sin x 的最大值是23,最小值是-21,则a = ,b = . 三、解答题17.设 α 是第二象限的角,sin α=53,求sin (637π-2α)的值.18.求下列函数的周期: (1)y =cos 2(πx +2),x ∈R ; (2)y =cos 4x -sin 4x ,x ∈R ; (3)y =sin x ·cos x +3cos 2x -23,x ∈R .19.已知x ∈[-3π,4π],f (x )=tan 2x +2tan x +2,求f (x )的最大值和最小值,并求出相应的x 值.20.求函数y =1tan tan 1tan tan 22+++-x x x x 的值域.第一章 三角函数参考答案一、选择题 1.D解析:A 集合中包含小于90°的正角,还有零角和负角,而B 集合表示终边落在第一象限的角.二者的交集不是A ,B ,C 三个选项.2.B解析:先在0°~360°内找终边在直线y =-x 上的角分别为135°或315°,所以终边在直线y =-x 上的所有角为k ·360°+135°,或k ·360°+315°,k ∈Z .k ·360°+135°=2k ·180°+135°,k ·360°+315°=(2k +1)180°+135°,由此得答案为B . 3.C解析:∵sin α=54,α∈(0,π),∴cos α=±53,∴tan α=±34. 4.D解析:∵r =22)3(4-+=5,∴sin α=ry =-53,cos α=r x =54.∴2sin α+cos α=2×(-53)+54=-52. 5.D 解析:∵sin 45π=sin (π+4π)=-sin 4π=-22,且2π<45π<23π,∴α=45π. 6.B解析:设tan 7°=x ,则tan 14°=2-12xx ≈41. 解得x ≈-4±17(负值舍去), ∴x ≈17-4. 7.D解析:∵y =cos 2α-3cos α+6=2cos 2α-3cos α+5=2(cos α-43)2+831,又 α 是三角形的内角,∴-1<cos α<1. 当cos α=43时,y 有最小值831.8.B解析:取f (x )=cos x ,则f (x )·sin x =21sin 2x 为奇函数,且T =π. 9.D解析:在单位圆中做出角 α 的正弦线、余弦线、正切线得b <a <c . 10.D解析:若α,β是第四象限角,且sin α>sin β,如图,利用单位圆中的三角函数线确定α,β的终边,故选D .二、填空题 11.答案:12-π. 12.答案:A ∩B ={α|-4≤α≤-π 或0≤α≤π }.解析:在集合A 中取k =…,-1,0,1,…得到无穷个区间…,[-2π,-π],[0,π],[2π,3π],…将这些区间和集合B 所表示的区间在数轴上表示如图:由图可知A ∩B ={α|-4≤α≤-π 或0≤α≤π }. 13.答案:二.解析:因为点P (tan α,cos α)在第三象限,因此有⎩⎨⎧ ,tan α<0⇒α在二、四象限,cos α<0⇒α在二、三象限(包括x 轴负半轴),所以 α 为第二象限角.即角 α 的终边在第二象限.14.答案:54. 解析:∵cos (π+α)=-cos α=-53,∴cos α=53. 又∵sin αcos α<0,∴sin α<0,α为第四象限角,∴sin α=-54=-cos 12α-,∴sin (α-7π)=sin (α+π-8π)=sin (π+α)=-sin α=54. 15.答案:(2k π,2k π+π)(k ∈Z ).解析:由x sin log 21≥0,得0<sin x ≤1,∴2k π<x <2k π+π(k ∈Z ).tan α<0cos α<0(第12题)(第10题`)16.答案:21,±1. 解析:当b >0时,得方程组⎪⎩⎪⎨⎧21=--23=+b a b a 解得⎪⎩⎪⎨⎧1=21=b a 当b <0时,得方程组⎪⎩⎪⎨⎧21=-+23=-b a b a 解得⎪⎩⎪⎨⎧1=-21=b a 三、解答题 17.答案:32512+507. 解:∵sin α=53,α是第二象限角, ∴cos α=-54,sin 2α=2sin αcos α=-2524, ∴cos 2α=1-2sin 2α=257, 故sin (637π-2α)=sin (6π-2 α)=21×257-23(-2524)=32512507+.18.答案:(1)1;(2)π;(3)π. 解:(1)y =cos 2(πx +2)=21[1+cos (2πx +4)] =21cos (2πx +4)+21. ∴T =ππ22=1. (2)y =cos 4x -sin 4x=(cos 2x +sin 2x )(cos 2x -sin 2x ) =cos 2x -sin 2x =cos 2x . ∴T =22π=π. (3)y =sin x ·cos x +3cos 2x -23 =21sin 2x +3·22cos +1x-23=21sin 2x +23cos 2x=sin (2x +3π).∴T =22π=π. 19.答案:x =-4π时y min =1,x =4π时y max =5.解析:f (x )=tan 2x +2tan x +2=(tan x +1)2+1.∵x ∈[-3π,4π],∴tan x ∈[-3,1]. ∴当tan x =-1,即x =-4π时,y 有最小值,y min =1;当tan x =1,即x =4π时,y 有最大值,y max =5.20.答案: [31,3].解析:将原函数去分母并整理得(y -1)tan 2x +(y +1)tan x +y -1=0. 当y ≠1时,∵tan x ∈R ,∴方程是关于tan x 的一元二次方程,有实根. ∴判别式△=(y +1)2-4(y -1)2≥0, 即3y 2-10y +3≤0.解之31≤y ≤3.而tan x =0时,y =1,故函数的值域为[31,3].。
高中数学必修四第一章三角函数测试题(有答案解析)
必修四第一章三角函数测试题一、选择题1.已知cos α=12,α∈(370°,520°),则α等于( )A .390°B .420°C .450°D .480° 2.若sin x ·tan x <0,则角x 的终边位于( )A .第一、二象限B .第二、三象限C .第二、四象限D .第三、四象限 3.函数y =tan x 2是( )A .周期为2π的奇函数B .周期为π2的奇函数C .周期为π的偶函数D .周期为2π的偶函数4.已知函数y =2sin(ωx +φ)(ω>0)在区间[0,2π]的图象如图,那么ω等于( )A .1B .2C.12D.13 5.函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则φ等于( )A .-π2B .2k π-π2(k ∈Z ) C .k π(k ∈Z )D .k π+π2(k ∈Z )6.若sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是( )A .-310B.310C .±310D.347.已知α为第三象限角,则所在的象限是( )8.在同一平面直角坐标系中,函数y =cos ⎝⎛⎭⎫x 2+3π2(x ∈[0,2π])的图象和直线y =12的交点个数是 ( )A .0B .1C .2D .49.函数y=2sin (﹣2x ),x ∈[0,π])为增函数的区间是( )][,[,[,10.设a =sin 5π7,b =cos 2π7,c =tan 2π7,则 ( ) A .a <b <cB .a <c <bC .b <c <aD .b <a <c二、填空题11.已知一扇形的弧所对的圆心角为54°,半径r =20 cm ,则扇形的周长为________ cm.12.方程sin πx =14x 的解的个数是________.13.已知函数f (x )=2sin(ωx +φ)的图象如图所示,则f (7π12)=________.14.已知函数y =sin πx3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是________.三、解答题15.已知f (α)=sin 2(π-α)·cos (2π-α)·tan (-π+α)sin (-π+α)·tan (-α+3π).(1)化简f (α); (2)若f (α)=18,且π4<α<π2,求cos α-sin α的值;(3)若α=-31π3,求f (α)的值.16.求函数y =3-4sin x -4cos 2x 的最大值和最小值,并写出函数取最值时对应的x 的值.17.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f (x )的单调增区间; (3)画出函数y =f (x )在区间[0,π]上的图象.18.在已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上一个最低点为M ⎝⎛⎭⎫2π3,-2. (1)求f (x )的解析式; (2)当x ∈⎣⎡⎦⎤π12,π2时,求f (x )的值域.19.如下图所示,函数y =2cos(ωx +θ)(x ∈R ,ω>0,0≤θ≤π2)的图象与y 轴交于点(0,3),且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点A (π2,0),点P 是该函数图象上一点,点Q (x 0,y 0)是P A 的中点,当y 0=32,x 0∈[π2,π]时,求x 0的值.20.求函数 的定义域、值域,并指出它的周期、奇偶性和单调性.必修四第一章三角函数测试题(答案)1、答案 B2、答案 B3、答案 A4、答案 B解析 由图象知2T =2π,T =π,∴2πω=π,ω=2.5、解析 若函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则f (0)=cos φ=0, ∴φ=k π+π2(k ∈Z ).答案 D6、答案 B 解析 ∵sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=2, ∴tan θ=3.∴sin θcos θ=sin θcos θsin 2θ+cos 2θ=tan θtan 2θ+1=310. 7、为第三象限角,即,表示出,然后再判断即可.为第三象限角,即k8、答案 C 解析 函数y =cos ⎝⎛⎭⎫x 2+3π2=sin x2,x ∈[0,2π], 图象如图所示,直线y =12与该图象有两个交点.9、﹣)()其增区间可由﹣+≤+≤,≤≤10、答案 D 解析 ∵a =sin5π7=sin(π-5π7)=sin 2π7.2π7-π4=8π28-7π28>0. ∴π4<2π7<π2.又α∈⎝⎛⎫π4,π2时,sin α>cos α.∴a =sin 2π7>cos 2π7=b . 又α∈⎝⎛⎭⎫0,π2时,sin α<tan α.∴c =tan 2π7>sin 2π7=a .∴c >a .∴c >a >b . 11、答案 6π+40解析 ∵圆心角α=54°=3π10,∴l =|α|·r =6π.∴周长为(6π+40) cm.12、答案 7 解析 在同一坐标系中作出y =sin πx 与y =14x 的图象观察易知两函数图象有7个交点,所以方程有7个解.13、答案 0解析 方法一 由图可知,32T =5π4-π4=π,即T =2π3,∴ω=2πT =3.∴y =2sin(3x +φ),将(π4,0)代入上式sin(3π4+φ)=0. ∴3π4+φ=k π,k ∈Z ,则φ=k π-3π4,k ∈Z . ∴f (7π12)=2sin(7π4+k π-3π4)=0.方法二 由图可知,32T =5π4-π4=π,即T =2π3.又由正弦图象性质可知,f (x 0)=-f (x 0+T2),∴f (7π12)=f (π4+π3)=-f (π4)=0.14、答案 8解析 T =6,则5T 4≤t ,∴t ≥152,∴t min =8.15、解 (1)f (α)=sin 2α·cos α·tan α(-sin α)(-tan α)=sin α·cos α.(2)由f (α)=sin αcos α=18可知(cos α-sin α)2=cos 2α-2sin αcos α+sin 2α=1-2sin αcos α=1-2×18=34.又∵π4<α<π2,∴cos α<sin α,即cos α-sin α<0.∴cos α-sin α=-32.(3)∵α=-31π3=-6×2π+5π3,∴f ⎝⎛⎭⎫-31π3=cos ⎝⎛⎭⎫-31π3·sin ⎝⎛⎭⎫-31π3 =cos ⎝⎛⎭⎫-6×2π+5π3·sin ⎝⎛⎭⎫-6×2π+5π3=cos 5π3·sin 5π3=cos(2π-π3)·sin(2π-π3) =cos π3·⎝⎛⎭⎫-sin π3=12·⎝⎛⎭⎫-32=-34.16、解 y =3-4sin x -4cos 2x =4sin 2x -4sin x -1 =4⎝⎛⎭⎫sin x -122-2,令t =sin x ,则-1≤t ≤1, ∴y =4⎝⎛⎭⎫t -122-2 (-1≤t ≤1). ∴当t =12,即x =π6+2k π或x =5π6+2k π(k ∈Z )时,y min =-2;当t =-1,即x =3π2+2k π (k ∈Z )时,y max =7.17、解 (1)∵x =π8是函数y =f (x )的图象的对称轴,∴sin ⎝⎛⎭⎫2×π8+φ=±1. ∴π4+φ=k π+π2,k ∈Z . ∵-π<φ<0,∴φ=-3π4.(2)由(1)知φ=-3π4,因此y =sin ⎝⎛⎭⎫2x -3π4. 由题意得2k π-π2≤2x -3π4≤2k π+π2,k ∈Z .∴函数y =sin ⎝⎛⎭⎫2x -3π4的单调增区间为⎣⎡⎦⎤k π+π8,k π+5π8,k ∈Z . (3)由y =sin ⎝⎛⎭⎫2x -3π4,知18、解 (1)由最低点为M ⎝⎛⎭⎫2π3,-2得A =2. 由x 轴上相邻两个交点之间的距离为π2,得T 2=π2,即T =π,∴ω=2πT =2ππ=2. 由点M ⎝⎛⎭⎫2π3,-2在图象上得2sin ⎝⎛⎭⎫2×2π3+φ=-2, 即sin ⎝⎛⎭⎫4π3+φ=-1,故4π3+φ=2k π-π2(k ∈Z ), ∴φ=2k π-11π6(k ∈Z ).又φ∈⎝⎛⎭⎫0,π2,∴φ=π6,故f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)∵x ∈⎣⎡⎦⎤π12,π2,∴2x +π6∈⎣⎡⎦⎤π3,7π6, 当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=7π6,即x =π2时,f (x )取得最小值-1,故f (x )的值域为[-1,2].19、解 (1)将x =0,y =3代入函数y =2cos(ωx +θ)中, 得cos θ=32,因为0≤θ≤π2,所以θ=π6. 由已知T =π,且ω>0,得ω=2πT =2ππ=2.(2)因为点A (π2,0),Q (x 0,y 0)是P A 的中点,y 0=32,所以点P 的坐标为(2x 0-π2,3). 又因为点P 在y =2cos(2x +π6)的图象上,且π2≤x 0≤π,所以cos(4x 0-5π6)=32,且7π6≤4x 0-5π6≤19π6,从而得4x 0-5π6=11π6,或4x 0-5π6=13π6,即x 0=2π3,或x 0=3π4.20.由 ,得 ( ),∴所求的函数定义域为:;值域为 ;周期为 ;它既不是奇函数,也不是偶函数;在区间 ( )上是单调减函数.。
最新北师大版高中数学必修四第一章《三角函数》测试题(包含答案解析)
一、选择题1.在平面直角坐标系中,AB 是单位圆上的一段弧(如右图),点P 是圆弧AB 上的动点,角α以Ox 为始边,OP 为终边.以下结论正确的是( )A .tan α<cos α<sin αB .cos α<tan α<sin αC .sin α<cos α<tan αD .以上答案都不对2.已知角α顶点在坐标原点,始边与x 轴非负半轴重合,终边过点()3,4P -,将α的终边逆时针旋转180︒,这时终边所对应的角是β,则cos β=( ) A .45-B .35C .35D .453.已知函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合,则ϕ的值为( )A .56πB .56π-C .6π D .6π-4.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6π B .4π C .3π D .2π 5.已知函数f (x )=2sinxsin (x+3φ)是奇函数,其中(0,)2πϕ∈ ,则函数g (x )=cos (2x-φ)的图象( )A .关于点(,0)12π对称 B .关于轴512x π=-对称 C .可由函数f (x )的图象向右平移6π个单位得到 D .可由函数f (x )的图象向左平移3π个单位得到 6.我国著名数学家华罗庚先生曾倡导“0.618优选法”,0.618是被公认为最具有审美意义的比例数字,我们称为黄金分割.“0.618优选法”在生产和科研实践中得到了非常广泛的应用,华先生认为底与腰之比为黄金分割比51510.61822⎛⎫--≈ ⎪ ⎪⎝⎭的黄金三角形是“最美三角形”,即顶角为36°的等腰三角形.例如,中国国旗上的五角星就是由五个“最美三角形”与一个正五边形组成的.如图,在其中一个黄金ABC 中,黄金分割比为BCAC.试根据以上信息,计算sin18︒=( )A .512- B .514- C .514+ D .3527.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法正确的是( )①函数()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称②函数()y f x =的图象关于直线512x π=-对称 ③函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减 ④该图象向右平移3π个单位可得2sin 2y x =的图象 A .①②B .①③C .①②③D .①②④8.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭图象相邻两条对称轴之间的距离为π2,将函数()y f x =的图象向左平移π6个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象( ) A .关于点π,012⎛⎫⎪⎝⎭对称 B .关于点π,012⎛⎫-⎪⎝⎭对称 C .关于直线π12x =对称 D .关于直线π12x =-对称 9.函数3cos 2cos 2sin cos cos510y x x x ππ=-的递增区间是( ) A .2[,]105k k ππππ-+(k Z ∈) B .2[,]510k k ππππ-+ (k Z ∈) C .3[,]510k k ππππ-- (k Z ∈) D .37[,]2020k k ππππ-+ (k Z ∈) 10.设()sin 24f x x π⎛⎫=+⎪⎝⎭,90,8x π⎡⎤∈⎢⎥⎣⎦,若函数()y f x a =-恰好有三个不同的零点,分别为1x 、2x 、()3123x x x x <<,则1232x x x ++的值为( ) A .πB .34π C .32π D .74π 11.《九章算术》中《方田》章有弧田面积计算问题,术日:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积12=(弦×矢+矢×矢).弧田是由圆弧(弧田弧)及圆弧两端点的弦(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到孤田弦的距离之差,现有一弧田,其矢长等于8米,若用上述弧田面积计算公式算得该弧田的面积为128平方米,则其弧田弧所对圆心角的正弦值为( ) A .60169B .120169C .119169D .5916912.设函数()tan 3f x x π=-,()sin 3g x x π⎛⎫=-⎪⎝⎭,则函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是( ) A .4B .5C .12D .13二、填空题13.已知函数()sin()0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,关于函数()y f x =有下列结论:①图象关于点,03π⎛⎫⎪⎝⎭对称; ②单调递减区间为2,,63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z ; ③若()f x a =,则cos 32a x πω⎛⎫-= ⎪⎝⎭; ④2()()log g x f x x =-有4个零点. 则其中结论正确的有____________(填上所有正确结论的序号)14.如图,以正方形的各边为底可向外作四个腰长为1的等腰三角形,则阴影部分面积的最大值是___________.15.函数()2sin(2),0,32f x x x ππ⎡⎤=-∈⎢⎥⎣⎦的单调减区间___________ 16.已知()()sin 03f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=-⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是___________.17.已知3 cos63απ⎛⎫-=⎪⎝⎭,则54cos sin63ππαα⎛⎫⎛⎫+-+⎪ ⎪⎝⎭⎝⎭的值为_____.18.如图,某公园要在一块圆心角为3π,半径为20m的扇形草坪OAB中修建一个内接矩形文化景观区域CDEF,若//EF AB,则文化景观区域面积的最大值为______2m. 19.函数[]y x=的函数值表示不超过x的最大整数,例如,[]3.54-=-,[]2.12=.则对于函数()[]f x x x=-,有下列说法:①()f x的值域为[)0,1;②()f x是1为周期的周期函数;③()f x是偶函数;④()f x在区间[)1,2上是单调递增函数.其中,正确的命题序号为___________.20.已知定义在R上的函数()f x满足3()2f x f x⎛⎫=-+⎪⎝⎭,且(2)3f-=,则(2020)f=________.三、解答题21.已知函数()()sin(0,)2f x A xπωϕωϕ=+><部分图象如图所示.(1)求ω和ϕ的值;(2)求函数()f x在[,]-ππ上的单调递增区间;(3)设()1212x f x f xππϕ⎛⎫⎛⎫=--+⎪ ⎪⎝⎭⎝⎭,已知函数2()2()3()21g x x x aϕϕ=-+-在,62ππ⎡⎤⎢⎥⎣⎦上存在零点,求实数a的最小值和最大值.22.已知θ为锐角,在以下三个条件中任选一个:①cos(2)sin(3)12sin()tan()2πθπθπθπθ-+=+-;②22sin cos10θθ--=;③cos()1sin()cos()sin()224θπππθθπθ-⋅-⋅+=+;并解答以下问题:(1)若选______(填序号),求θ的值;(2)在(1)的条件下,求函数y = tan(2x +θ)的定义域、周期和单调区间。23.若,63x ππ⎡⎤∈⎢⎥⎣⎦时,tan 23k x π⎛⎫+- ⎪⎝⎭的值总不大于零,求实数k 的取值范围. 24.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图像如图所示.(1)求函数f (x )解析式; (2)求函数f (x )单调增区间; (3)若x [,],求f (x )的值域.25.已知函数()()sin f x A x =+ωϕ(0A >,0>ω,2πϕ<)的部分图象如图所示.(1)求函数()f x 的解析式; (2)将函数()f x 的图象向右平移3π个单位长度,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,若函数()g x 在[]0,m 上单调递增,当实数m 取最大值时,求函数()f x 在[]0,m 上的最大值.26.已知某海滨浴场的海浪高度y (单位:米)与时间()024t t ≤≤(单位:时)的函数关系记作()y f t =,下表是某日各时的浪高数据:经长期观测,函数y f t =可近似地看成是函数cos y A t b =+.(1)根据以上数据,求出函数cos y A t b ω=+的最小正周期T 及函数表达式(其中0A >,0>ω);(2)根据规定,当海浪高度不低于0.75米时,才对冲浪爱好者开放,请根据以上结论,判断一天内从上午7时至晚上19时之间,该浴场有多少时间可向冲浪爱好者开放?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据三者的符号可得sin cos ,sin tan αααα>>,利用作差法可得tan ,cos αα大小关系不确定,从而可得正确的选项. 【详解】由题设可得AB 上的动点P 的坐标为()cos ,sin αα且()()1122cos ,sin ,cos ,sin A B θθθθ,其中122πθαθπ<<<<,12324ππθθπ<<<<, 注意到当13,4παθ⎛⎤∈ ⎥⎝⎦,tan 1α≤-,故按如下分类讨论: 若1324ππθα<<≤,则sin 0,cos 1,tan 1ααα>>-≤-, 故sin cos tan ααα>>.若234παθ<≤,则sin 0,cos 0,tan 0ααα><<,且20sin sin 2θα<≤<所以22221sin sin 1sin sin 12θθαα+-≤+-<,因为234πθπ<<,故20sin 2θ<<,故22211sin sin 12θθ-<+-<, 所以222sin sin 1θθ+-有正有负,所以2sin sin 1αα+-有正有负,而2sin sin 1tan cos cos ααααα+--=,cos 0α<,故tan cos αα-有正有负,故tan ,cos αα大小关系不确定. 故选:D. 【点睛】方法点睛:三角函数式的大小比较,可先依据终边的位置判断出它们的符号,也可以利用作差作商法来讨论,注意根据三角函数值的范围确定代数式的符号.2.B解析:B 【分析】先根据已知条件求解出cos α的值,然后根据,αβ之间的关系结合诱导公式求解出cos β的值. 【详解】 因为3cos 5α==,且180βα=+︒, 所以()3cos cos 180cos 5βαα=+︒=-=-, 故选:B. 【点睛】结论点睛:三角函数定义有如下推广:设点(),P x y 为角α终边上任意一点且不与原点重合,r OP =,则()sin ,cos ,tan 0y x yx r r xααα===≠. 3.A解析:A 【分析】根据三角函数的平移变换得到cos(2)y x ϕπ=+-后,再根据诱导公式变为sin(2)2y x πϕ=+-,然后利用图象重合列式可得结果.【详解】函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,得到cos[2()]cos(2)2y x x πϕϕπ=-+=+-sin(2)2x πϕπ=+-+sin(2)2x πϕ=+-,依题意可得223k ππϕπ-=+()k ∈Z ,所以526k πϕπ=+()k ∈Z因为πϕπ-≤≤,所以0k =,56πϕ=. 故选:A. 【点睛】关键点点睛;经过平移变换后,利用诱导公式化为同名函数是解题关键,属于中档题.4.C解析:C 【分析】由图可知,172482g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,根据函数图象的平移变化法则可知()()sin 2x g x ϕ=-,于是推出1717sin 224242g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 224882g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈, 因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.5.B解析:B 【分析】利用三角函数的奇偶性求得φ,再利用三角函数的图象对称性、函数y=Asin (ωx+φ)的图象变换规律,判断各个选项是否正确,从而得出结论. 【详解】函数f (x )=2sinxsin (x +3φ)是奇函数,其中0,2πϕ⎛⎫∈ ⎪⎝⎭, ∴y=2sinxsin (x+3φ)是奇函数,∴3φ=2π,φ=6π,则函数g (x )=cos (2x ﹣φ)=cos (2x ﹣6π). 当12x π=时,206x π-=,112g π⎛⎫= ⎪⎝⎭,则函数不关于点,012π⎛⎫ ⎪⎝⎭对称,选项A 错误;当512x π=-时,26x ππ-=-,则函数关于直线512x π=-对称,选项B 正确;函数()2sin sin 2sin cos sin 22f x x x x x x π⎛⎫=+== ⎪⎝⎭, 其图像向右平移6π个单位的解析式为sin 2sin 2sin 263y x x x ππ⎡⎤⎛⎫⎛⎫==-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项C 错误; 其图像向左平移3π个单位的解析式为2sin 2sin 2sin 233y x x x ππ⎡⎤⎛⎫⎛⎫==+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项D 错误; 故选B. 【点睛】本题主要考查三角函数的奇偶性、对称性,函数y=Asin (ωx+φ)的图象变换规律,属于中档题.函数()sin y A x ωϕ=+(A >0,ω>0)的性质:(1)奇偶性:=k ϕπ ,k Z ∈时,函数()sin y A x ωϕ=+为奇函数;=2k πϕπ+,k Z ∈时,函数()sin y A x ωϕ=+为偶函数.;(2)周期性:()sin y A x ωϕ=+存在周期性,其最小正周期为T =2πω;(3)单调性:根据y =sin t 和t =x ωϕ+的单调性来研究,由+22,22k x k k Z πππωϕπ-≤+≤+∈得单调增区间;由3+22,22k x k k Z πππωϕπ≤+≤+∈得单调减区间;(4)对称性:利用y =sin x 的对称中心为()(),0k k Z π∈求解,令()x k k ωϕπ+=∈Z ,求得x ;利用y =sin x 的对称轴为()2x k k Z ππ=+∈求解,令()+2x k k πωϕπ+=∈Z ,得其对称轴.6.B解析:B 【分析】先由ABC 是一个顶角为36°的等腰三角形,作其底边上的高,再利用sin18sin DAC ︒=∠,结合腰和底之比求其结果即可.【详解】依题意可知,黄金ABC是一个顶角为36°的等腰三角形,如图,51,BCAB ACAC-==,36BAC∠=︒,过A作AD BC⊥于D,则AD也是三角形的中线和角平分线,故1151512sin18sin224BCDCDACAC AC︒=∠===⋅=.故选:B.【点睛】本题解题关键在于读懂题意,将问题提取出来,变成简单的几何问题,即突破结果. 7.A解析:A【分析】根据()f x的图象及三角函数图像和性质,解得函数()f x的解析式,得到()2sin(2)3f x xπ=+,再结合三角函数的图像和性质逐一判定即可.【详解】由函数的图象可得2A=,周期4312Tπππ⎛⎫=⨯-=⎪⎝⎭所以222Tππωπ===,当12xπ=时函数取得最大值,即2sin221212fππϕ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭,所以22()122k kππϕπ⨯+=+∈Z,则23kπϕπ=+,又||2ϕπ<,得3πϕ=,故函数()2sin(2)3f x xπ=+,对于①,当6xπ=-时,()2sin(2())0663fπππ-=⨯-+=,正确;对于②,当512xπ=-时,()2sin551212(2())23fπππ=⨯+-=--,正确;对于③,令3222()232k x k k Z πππππ+≤+≤+∈得7()1212k x k k Z ππππ+≤≤+∈, 所以函数的单调递减区间为7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,27,,()361212k k k Z ππππππ⎡⎤⎡⎤--⊄++∈⎢⎥⎢⎥⎣⎦⎣⎦,所以不正确; 对于④,向右平移3π个单位,()2sin(2())2sin(2)3333f x x x ππππ-=-+=-,所以不正确; 故选:A. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.8.B解析:B 【分析】由相邻两条对称轴之间的距离为2π,可知22T π=,从而可求出2ω=,再由()y f x =的图像向左平移6π个单位后,得到的图象关于y 轴对称,可得sin 13πϕ⎛⎫+=± ⎪⎝⎭,从而可求出ϕ的值,然后逐个分析各个选项即可 【详解】因为相邻两条对称轴的距离为2π,故22T π=,T π=,从而2ω=. 设将()f x 的图像向左平移6π单位后,所得图像对应的解析式为()g x , 则()sin 23g x x πϕ⎛⎫=++ ⎪⎝⎭,因()g x 的图像关于y 轴对称,故(0)1g =±, 所以sin 13πϕ⎛⎫+=± ⎪⎝⎭,,32k k Z ππϕπ+=+∈,所以,6k k Z πϕπ=+∈, 因||2ϕπ<,所以6π=ϕ. 又()sin 26f x x π⎛⎫=+ ⎪⎝⎭,令2,62x k k Z πππ+=+∈,故对称轴为直线,26k x k Z ππ=+∈,所以C ,D 错误; 令2,6x k k ππ+=∈Z ,故,212k x k Z ππ=-∈,所以对称中心为,0,212k k Z ππ⎛⎫-∈⎪⎝⎭,所以A 错误,B 正确. 故选:B 【点睛】此题考查了三角函数的图像变换和三角函数的图像和性质,属于基础题.9.C解析:C 【分析】利用三角恒等变换的公式,化简得由函数cos(2)5y x π=+,再根据余弦型函数的性质,即可求解函数的单调递增区间,得到答案. 【详解】由函数3cos 2cos2sin cos cos cos 2cos sin 2sin cos(2)510555y x x x x x x πππππ=-=-=+, 令222,5k x k k Z ππππ-+≤+≤∈,整理得3,510k x k k Z ππππ-+≤≤-+∈, 所以函数的单调递增区间为3[,],510k k k Z ππππ-+-+∈,故选C. 【点睛】本题主要考查了三角恒等变换的化简,以及三角函数的性质的应用,其中解答中根据三角恒等变换的公式,化简得到函数的解析式,再利用三角函数的性质求解是解答的关键,着重考查了运算与求解能力,属于基础题.10.C解析:C 【分析】根据三角函数的对称性,先求出函数的对称轴,结合函数与方程的关系转化为两个函数的交点问题,利用数形结合进行求解即可. 【详解】 由()242x k k Z πππ+=+∈,得对称轴()28k x k ππ=+∈Z , 90,8x π⎡⎤∈⎢⎥⎣⎦,由90288k πππ≤+≤,解得124k -≤≤,当0k =时,对称轴8x π=,1k =时,对称轴58x π=. 由()0f x a -=得()f x a =,若函数()y f x a =-恰好有三个不同的零点,等价于函数()y f x =与y a =的图象有三个交点,作出函数()f x 的图象如图,得()20f =,则212a ≤<,由图象可知,点()()11,x f x 、()()22,x f x 关于直线8x π=对称,则124x x π+=, 点()()22,x f x 、()()33,x f x 关于直线58x π=对称,则2354x x π+=, 因此,1231223532442x x x x x x x πππ++=+++=+=. 故选:C . 【点睛】关键点点睛:本题考查正弦型函数的零点之和问题的求解,解题的关键就是分析出正弦型函数图象的对称轴,结合对称性求解.11.B解析:B 【分析】求出弦长,再求出圆的半径,然后利用三角形面积求解. 【详解】如图,由题意8CD =,弓琖ACB 的面积为128,1(8)81282AB ⨯+⨯=,24AB =, 设所在圆半径为R ,即OA OB R ==,则22224(8)2R R ⎛⎫=-+ ⎪⎝⎭,解得13R =, 5OD =,由211sin 22AB OD OA AOB ⨯=∠得 2245120sin 13169AOB ⨯∠==. 故选:B .【点睛】关键点点睛:本题考查扇形与弓形的的有关计算问题,解题关键是读懂题意,在读懂题意基础上求出弦长AB ,然后求得半径R ,从而可解决扇形中的所有问题.12.A解析:A 【分析】由题意知函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数,作出两个函数图象,数形结合即可求解. 【详解】令()()()0h x f x g x =-=可得()()f x g x =,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于 函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数. 分别作出()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象,由图知两个函数图象在区间[]2,2ππ-上有4个交点,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是4,故选:A 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点; (2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.二、填空题13.②③【分析】先根据图象结合已知条件限制求出的解析式再利用代入验证法判断①错误;利用整体代入法求单调区间判断②正确;解方程并结合诱导公式判断③正确;将函数零点问题转化成函数交点问题数形结合判断④错误即解析:②③ 【分析】先根据图象,结合已知条件限制求出()y f x =的解析式,再利用代入验证法判断①错误;利用整体代入法求单调区间判断②正确;解方程并结合诱导公式判断③正确;将函数零点问题转化成函数交点问题,数形结合判断④错误即可. 【详解】由图象可知,2A =,(0)2sin 1f ϕ==,故1sin 2ϕ=,又2πϕ<,故6π=ϕ,故()2sin 6f x x πω⎛⎫=+⎪⎝⎭,又由11112sin 012126f πππω⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭得,112,126k k Z ππωπ+=∈,即224,1111kk Z ω=-+∈, 由题意0>ω,由图知1112T π>,即22411T πω=<,故1k =时2ω=.故()2sin 26f x x π⎛⎫=+⎪⎝⎭.①因为252sin 2sin 103366f ππππ⎛⎫⎛⎫=+==≠⎪ ⎪⎝⎭⎝⎭,故点,03π⎛⎫ ⎪⎝⎭不是()y f x =图象的对称中心,故错误; ②令322,2,622x k k k Z πππππ⎛⎫+∈++∈ ⎪⎝⎭, 解得单调递减区间为2,,63k k k ππππ⎛⎫++∈⎪⎝⎭Z ,故正确;③若()2sin 26f x x a π⎛⎫=+= ⎪⎝⎭,则sin 262a x π⎛⎫+= ⎪⎝⎭, 则cos cos 2sin 2sin 2332362a x x x x πππππω⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=+-=+= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故正确; ④令2()()log 0g x f x x =-=,得方程2()log f x x =的根的问题, 即函数()2sin 26y f x x π⎛⎫==+⎪⎝⎭与函数2log y x =的交点个数问题,如图,令22,62x k k Z πππ+=+∈,则,6x k k Z ππ=+∈时()y f x =取得最大值2.如图,6x π=时,2()log f x x >;76x π=时,746π<,227log log 426π<=2()2log f x x =>;当136x π=时,1346π>,2213log log 426π>=,2()2log f x x =<. 故函数()2sin 26y f x x π⎛⎫==+ ⎪⎝⎭与函数2log y x =有3个交点,即2()()log g x f x x =-有3个零点.故错误. 故答案为:②③. 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点; (2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()0f x =等价于()()h x g x =,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.14.【分析】设等腰三角形底角为阴影面积为根据正弦函数的图象与性质即可得到结果【详解】设等腰三角形底角为则等腰三角形底边长为高为阴影面积为:当时阴影面积的最大值为故答案为【点睛】本题考查平面图形的面积问题解析:2+【分析】设等腰三角形底角为θ,阴影面积为2sin2θ2cos2θ2++,根据正弦函数的图象与性质即可得到结果. 【详解】设等腰三角形底角为θ,则等腰三角形底边长为2cos θ,高为sin θ, 阴影面积为:()21422cos θ2sin2θ2cos2θ22cos sin θθ⨯⨯⨯+=++224πθ⎛⎫=++ ⎪⎝⎭,当8πθ=时,阴影面积的最大值为2+故答案为2+ 【点睛】本题考查平面图形的面积问题,考查三角函数的图象与性质,解题关键用等腰三角形底角为θ表示等腰三角形的底边与高.15.【解析】当时由得所以减区间为解析:5,122ππ⎡⎤⎢⎥⎣⎦【解析】当[0,]2x π∈时,ππ2π2[,]333x -∈-,由22233x πππ≤-≤,得5122x ππ≤≤,所以减区间为5[,]122ππ. 16.【分析】由周期公式可得由三角函数的中心对称可得结合即可得为奇数即可得由可得进而可得即可得解【详解】由可得由是奇函数可得函数的图象关于中心对称所以即又所以所以为奇数由可得因为在上没有最小值所以即故答案解析:511,612ππ⎛⎤⎥⎝⎦【分析】由周期公式可得ω,由三角函数的中心对称可得,3k k Z πϕπ=+∈,结合()06f f π⎛⎫< ⎪⎝⎭即可得k 为奇数,即可得()sin 23πf x x ⎛⎫=-⎪⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭,进而可得432332t πππ<-≤,即可得解. 【详解】 由T π=可得22T πω==,()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭由3y f x π⎛⎫=- ⎪⎝⎭是奇函数可得函数()f x 的图象关于,03π⎛-⎫⎪⎝⎭中心对称, 所以2,33k k Z ππϕπ⎛⎫⨯-++=∈ ⎪⎝⎭,即,3k k Z πϕπ=+∈, 又()06f f π⎛⎫< ⎪⎝⎭,所以2sin sin 33ππϕϕ⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭, 所以,3k k πϕπ=+为奇数,()sin 2sin 2333f x x k x ππππ⎛⎫⎛⎫=+++=- ⎪ ⎪⎝⎭⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭, 因为()f x 在[)0,t 上没有最小值,所以432332t πππ<-≤即511,612t ππ⎛⎤∈ ⎥⎝⎦. 故答案为:511,612ππ⎛⎤⎥⎝⎦. 【点睛】本题考查了三角函数图象与性质的应用,考查了运算求解能力,牢记知识点是解题关键,属于中档题.17.0【分析】由已知利用三角函数的诱导公式分别求得与的值则答案可求【详解】解:∵∴∴故答案为:0【点睛】本题主要考查三角函数的化简求值考查诱导公式的应用属于基础题解析:0 【分析】由已知利用三角函数的诱导公式分别求得5cos()6πα+与4sin()3πα+的值,则答案可求. 【详解】 解:∵3cos()6πα-=, ∴5cos()cos[()]66ππαπα+=--3cos()6πα=--=-, 4sin()sin()33ππαα+=-+sin ()26ππα⎡⎤=---=⎢⎥⎣⎦3cos()6πα--=-,∴54cos()sin()63ππαα+-+33()0=---=, 故答案为:0. 【点睛】本题主要考查三角函数的化简求值,考查诱导公式的应用,属于基础题.18.【分析】取中点连结交于点交于点连结设推导出和从而得出文化景观区域面积利用三角函数的性质解出面积最大值【详解】取中点连结交于点交于点连结设则文化景观区域面积:当即时文化景观区域面积取得最大值为故答案为 解析:()40023-【分析】取DC 中点M ,连结OM ,交EF 于点P ,交CD 于点N ,连结OD ,设DOM ϕ∠=,推导出DC 和CF ,从而得出文化景观区域面积,利用三角函数的性质,解出面积最大值. 【详解】取DC 中点M ,连结OM ,交EF 于点P ,交CD 于点N ,连结OD ,设DOM ϕ∠=,则20sin DN CN ϕ==,40sin DC ϕ∴=,20cos 20cos 203tan 30PFCF DE PN ON OP ϕϕϕ===-=-=-︒,∴文化景观区域面积:()4020EFCD S sin cos ϕϕϕ=-矩形400sin 2cos 2)ϕϕ=--800sin(2)3πϕ=+-∴当232ππϕ+=,即12πϕ=时,文化景观区域面积取得最大值为2400(2)m -.故答案为:400(2-. 【点睛】本题考查文化景观区域面积的最大值的求法,考查扇形、三角函数恒等变换等基础知识,考查运算求解能力,是中档题.19.①②④【分析】当时即可判断①④;计算即可判断②也可以作图;计算即可判断③【详解】当时所以故①④正确;当时则故②正确;所以③错误故答案为:①②④【点睛】本题考查利用所学知识研究新定义函数的性质涉及到周解析:①②④ 【分析】当[,1)x n n ∈+时,()f x x n =-,即可判断①④;计算(1)f x +,()f x 即可判断②,也可以作图;计算12()33f -=,11()33f =即可判断③. 【详解】当[,1)x n n ∈+时,[]x n =,()||f x x n x n =-=-,所以()[0,1)f x ∈,故①④正确; 当[,1)x n n ∈+时,则1[1,2)x n n +∈++,[1]1x n +=+,(1)|1[1]|f x x x +=+-+|1(1)|||()x n x n f x =+-+=-=,故②正确;1112()|[]|3333f -=---=,1111()|[]|3333f =-=,所以③错误.故答案为:①②④. 【点睛】本题考查利用所学知识研究新定义函数的性质,涉及到周期性、单调性、奇偶性以及值域,是一道中档题.20.3【分析】由已知可得是函数的一个周期所以再由可求得可得答案【详解】由已知可得则有则是函数的一个周期所以又所以所以故答案为:3【点睛】本题考查了函数的周期性及其应用准确理解周期性的定义是解题的关键属于解析:3 【分析】由已知可得,3是函数()f x 的一个周期,所以(2020)(1)f f =,再由(2)3f -=, 可求得()13f =,可得答案.【详解】由已知可得,3()2f x f x ⎛⎫+=- ⎪⎝⎭,则有333(3)++()222f x f x f x f x ⎛⎫⎛⎫+==-+= ⎪ ⎪⎝⎭⎝⎭,则3是函数()f x 的一个周期, 所以(2020)(67331)(1)f f f =⨯+=, 又(2)3f -=,所以()()123f f =-=, 所以(2020)3f =, 故答案为:3. 【点睛】本题考查了函数的周期性及其应用,准确理解周期性的定义是解题的关键,属于中档题.三、解答题21.(1)ω=2,6π=ϕ;(2)5,6ππ⎡⎤--⎢⎥⎣⎦,,36ππ⎡⎤-⎢⎥⎣⎦,2π,π3;.(3)最小值为12,最大值为1716. 【分析】(1)先由函数图象,先得到周期,求出ω,再由最大值点,求出ϕ;(2)由(1)的结果,确定函数解析式,利用正弦函数的单调性,求出函数增区间,再由给定区间,即可得出结果;(3)先化简得到()sin 23x x πϕ⎛⎫=- ⎪⎝⎭,根据函数()g x 在,62ππ⎡⎤⎢⎥⎣⎦上存在零点,得到222sin 23sin 2133ππa x x ⎛⎫⎛⎫=--+-+ ⎪ ⎪⎝⎭⎝⎭在,62ππ⎡⎤⎢⎥⎣⎦上有解,令sin 23t x π⎛⎫=- ⎪⎝⎭,由正弦函数性质,求出,62x ππ⎡⎤⎢⎥⎣⎦时,[]0,1t ∈,再结合二次函数的性质,得到2231y t t =-++的范围,即可得出结果.【详解】(1)由图象可知:22362T πππ=-=,T π=,则22T πω==,又22,62k k Z ππϕπ⨯+=+∈得26k πϕπ=+,又2πϕ<,所以6π=ϕ,(2)()sin 26f x x π⎛⎫+⎝=⎪⎭,由222,262k x k k Z πππππ-≤+≤+∈得, ,36k x k k Z ππππ-≤≤+∈,令1k =-,得4536x ππ-≤≤-,因x ππ-≤≤,则56x ππ-≤≤-, 令0k =,得36x ππ-≤≤, 令1k =,得2736x ππ≤≤,因x ππ-≤≤,则2ππ3x ,所以()f x 在[,]-ππ上的单调递增区间为5,6ππ⎡⎤--⎢⎥⎣⎦,,36ππ⎡⎤-⎢⎥⎣⎦,2π,π3;. (3)()sin 2sin 21212126126x f x f x x x ππππππϕ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=--+=-+-++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1sin 2sin 2sin 22sin 2323x x x x x ππ⎛⎫⎛⎫=-+=-=- ⎪ ⎪⎝⎭⎝⎭,2()2sin 23sin 22133g x x x a ππ⎛⎫⎛⎫=---+- ⎪ ⎪⎝⎭⎝⎭,由函数()g x 在,62ππ⎡⎤⎢⎥⎣⎦上存在零点,则222sin 23sin 2133ππa x x ⎛⎫⎛⎫=--+-+ ⎪ ⎪⎝⎭⎝⎭在,62ππ⎡⎤⎢⎥⎣⎦上有解, 令sin 23t x π⎛⎫=-⎪⎝⎭,由,62x ππ⎡⎤∈⎢⎥⎣⎦,则220,33x ππ⎡⎤-∈⎢⎥⎣⎦,即[]0,1t ∈,则223171723121,488y t t t ⎛⎫⎡⎤=-++=--+∈ ⎪⎢⎥⎝⎭⎣⎦,所以17128a ≤≤,即117216a ≤≤, 故a 的最小值为12,最大值为1716. 【点睛】 思路点睛:求解含三角函数的二次式在给定区间上的最值时,一般需要用换元法,将三角函数换成t 来表示,得到关于t 的二次函数,由三角函数的性质,得到t 的范围,再结合二次函数的性质,即可求解.22.(1)答案见解析;(2)答案见解析. 【分析】(1)选①,用诱导公式化简得1cos 2θ=,然后可得θ;选②,利用平方关系化sin θ为cos θ,解出cos θ值,取1cos 2θ=,再得θ;选③,由诱导公式化简得1cos 2θ=±,取1cos 2θ=,得θ; (2)结合正切函数的性质求定义域、周期和单调区间. 【详解】解:(1)若选①,因为cos(2)sin(3)cos (sin )sin cos cos (tan )tan sin tan()2πθπθθθθθπθθθθπθ-+⋅-===⋅-⎛⎫+- ⎪⎝⎭, 所以1cos 2θ=,又θ为锐角,所以3πθ= .若选②,由22sin cos 10θθ--=,得()221coscos 10θθ---=,即22cos cos 10θθ+-=,即(2cos 1)(cos 1)0θθ-+=, 解得1cos 2θ=,或cos 1θ=-; 因为θ为锐角,所以1cos ,23πθθ==.若选③,因为cos()sin cos sin()22θπππθθπθ-⎛⎫⎛⎫⋅-+ ⎪ ⎪+⎝⎭⎝⎭2cos (cos )(sin )cos sin θθθθθ-=⋅-⋅-=-,所以21cos 4θ=,解得1cos 2θ=±,又θ为锐角,所以1cos ,23πθθ==. (2)由(1)知,3πθ=,则函数解析式为tan 23y x π⎛⎫=+⎪⎝⎭. 由232x k πππ+≠+,得212k x ππ≠+. 所以函数的定义域为,212k x x k ππ⎧⎫≠+∈⎨⎬⎩⎭Z . 函数的周期2T π=.由2232k x k πππππ-<+<+,得5212212k k x ππππ-<<+. 所以函数的单调递增区间为5,()212212k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z , 函数无单调递减区间. 【点睛】关键点点睛:本题考查诱导公式,考查正切函数的图象与性质.在函数tan()y A x ωϕ=+中,0A >,0>ω,则直线利用正切函数tan y x =的性质求解,把x ωϕ+作出tan y x =中的x 去求定义域,单调区间,对称轴与对称中心等等.23.3k ≤-【分析】先根据题意得tan 203k x π⎛⎫+-≤ ⎪⎝⎭,进而得πtan 23k x ⎛⎫≤-- ⎪⎝⎭在ππ,63x ⎡⎤∈⎢⎥⎣⎦上恒成立,在求函数πtan 23y x ⎛⎫=-- ⎪⎝⎭最小值即可得答案.【详解】解:根据题意得tan 203k x π⎛⎫+-≤ ⎪⎝⎭在ππ,63x ⎡⎤∈⎢⎥⎣⎦上恒成立,∴πtan 23k x ⎛⎫≤-- ⎪⎝⎭在ππ,63x ⎡⎤∈⎢⎥⎣⎦上恒成立. ∵ππ,63x ⎡⎤∈⎢⎥⎣⎦,∴ π20,33x π⎡⎤-∈⎢⎥⎣⎦,∴π0tan 233x ⎛⎫≤-≤ ⎪⎝⎭,所以π3tan 203x ⎛⎫-≤--≤ ⎪⎝⎭,∴min πtan 23x k ⎡⎤⎛⎫--≥ ⎪⎢⎥⎝⎭⎣⎦,∴3k ≤-. 【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可); ③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.24.(1)1()2sin()26f x x π=+(2)42[4,4],33k k k Z ππππ-+∈(3)[3,2]- 【分析】(1)由函数的最值求出A ,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式; (2)令122,2262k x k k z πππππ-≤+≤+∈,求得x 的范围,可得函数的增区间; (3)由x [,],利用正弦函数的值域求得()f x 的值域.【详解】(1)由函数的图象可得A =2,12T =12•2πω=83322πππ-=,求得12ω=. 再根据五点法作图可得12232ππϕ⨯+=,且||2ϕπ<,∴6π=ϕ, 故1()2sin()26f x x π=+.(2)令122,2262k x k k z πππππ-≤+≤+∈, 解得4244,33k x k k Z ππππ-≤≤+∈, 故函数的增区间为42[4,4],33k k k Z ππππ-+∈. (3)若x [,],则12,2633x πππ⎡⎤+∈-⎢⎥⎣⎦, ∴ 13sin()[262x π+∈-, 故1()2sin()[3,2]26f x x π=+∈-.【点睛】关键点点睛:根据三角函数图象求函数解析式,一般能直接看出振幅,再根据图象所给点求出周期,得到ω,最后利用五点法作图求出ϕ,根据函数解析式可求增区间、值域,属于中档题.25.(1) ()3)3f x x π=+;3【分析】(1)根据函数()f x 的部分图象可得A 及周期T ,再根据周期公式可求出ω,由五点法作图的第三个点可求出ϕ的值,从而可得函数()f x 的解析式;(2)根据平移变换和伸缩变换的规律,可求出()g x 的解析式,再根据函数()g x 在[]0,m 上单调递增,可求出m 的最大值,再根据正弦函数的图象与性质,即可求出函数()f x 在[0,]m 上的最大值.【详解】 (1)由已知可得3A =52()63πT ππ=-=,所以22=πωT=, 所以()3)f x x ϕ=+,根据五点法作图可得23πϕπ⨯+=,所以=3πϕ,所以()3)3f x x π=+(2) 将函数()f x 的图象向右平移3π个单位长度,可得22333πππy x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()43g x x π⎛⎫=- ⎪⎝⎭的图象,因为函数()g x 在[]0,m 上单调递增,所以432m ππ-≤,所以524m π≤,m 的最大值为524π,由50,24x π⎡⎤∈⎢⎥⎣⎦,可得32,334x πππ⎡⎤+∈⎢⎥⎣⎦,所以当2=32x +ππ时,()f x .故函数()f x 在[]0,m . 【点睛】方法点睛:确定()sin()(0,0)f x A x B A ωϕω=++>>的解析式的步骤: (1)求A ,B ,确定函数的最大值M 和最小值m ,则2M mA ,2M mB +=; (2)求ω,确定函数的周期T ,则2Tπω=; (3)求ϕ,常用方法有以下2种方法:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入;②五点法:确定ϕ值时,往往以寻找“五点法”中的特殊点作为突破口. 26.(1)12T =,0.5cos 16y t π=+;(2)从上午7时至晚上19时之间,共8个小时向冲浪爱好者开放. 【分析】(1)根据表格中数据规律确定T ,由2Tπω=,y 的最大值和最小值可确定,A b ,由此可得函数表达式;(2)利用余弦函数值域可求得t 的范围,进而确定所要求的时间段内的结果. 【详解】(1)由表中数据可知:18612T =-=,26T ωππ∴==, 1.50.50.52A -==, 1.50.512b +==,0.5cos 16y t π∴=+. (2)由(1)可得:0.5cos10.756t π+≥,cos0.56t π∴≥-,即()2222363k t k k Z πππππ-≤≤+∈,解得:()124124k t k k Z -≤≤+∈, ∴从上午7时至晚上19时之间,当[]8,16t ∈时,可对冲浪爱好者开放,即从上午7时至晚上19时之间,共8个小时向冲浪爱好者开放. 【点睛】方法点睛:根据余弦型函数()cos y A x ωϕ=+的值域求解定义域的问题,采用整体对应的方式,将x ωϕ+整体对应余弦函数中的x 的范围,解不等式求得所求的定义域.。
(典型题)高中数学必修四第一章《三角函数》测试(含答案解析)
一、选择题1.设函数5()sin 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移()0ϕϕ>个单位长度,得到函数()g x 的图象,若()g x 为偶函数,则ϕ的最小值是( ) A .6π B .3π C .23π D .56π 2.已知函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合,则ϕ的值为( )A .56πB .56π-C .6π D .6π-3.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6π B .4π C .3π D .2π 4.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .85.设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]32ππ上具有单调性,且()(),23f f ππ=-2()()23f f ππ=,则ω=( ) A .6 B .3 C .2D .16.设函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期为π,其图象关于直线3x π=对称,则下列说法正确是( )A .()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减; C .()f x 的一个对称中心是7,012π⎛⎫⎪⎝⎭; D .将()f x 的图象向左平移12ϕ个单位长度得到函数3sin 21y x =+ 的图象. 7.己知函数()sin()(0,||)2f x x πωϕωϕ=+><的最小正周期为π,且图象向右平移12π个单位后得到的函数为偶函数,则下列说法错误的有( ) A .()f x 关于点5(,0)12π对称 B .()f x 关于直线6x π=对称C .()f x 在,]1212π5π[-单调递增 D .()f x 在7[,]1212ππ单调递减8.已知函数()sin 0,2y x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示,则( )A .1ω=,6π=ϕ B .1ω=,6πϕ=-C .2ω=,6π=ϕ D .2ω=,6πϕ=-9.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( ) A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C10.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( )A .1B C .1916D .3411.已知函数2()[sin()])cos()f x x x x ωωω=+(0)>ω在[0,]π上有且只有四个零点,则实数ω的取值范围是( ) A .5[,2]3B .5(,2)3C .5[,2)3D .5(,2]312.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题:①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .1二、填空题13.下列判断正确的是___________(将你认为所有正确的情况的代号填入横线上). ①函数1tan 21tan 2xy x+=-的最小正周期为π;②若函数()lg f x x =,且()()f a f b =,则1ab =; ③若22tan 3tan 2αβ=+,则223sin sin 2αβ-=;④若函数()2221sin 41x xy x ++=+的最大值为M ,最小值为N ,则2M N +=.14.已知()tan 1f x a x =+(a ,b 为实数),且3(lg log 10)5f =,则(lglg3)f =____________.15.将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()y g x =的图象,若函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数,则实数ω的取值范围是__________.16.若函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,则6f π⎛⎫⎪⎝⎭的值是___________. 17.若函数π()sin()cos()3f x x x ωω=++的一个周期是π,则常数ω的一个取值可以为__________.18.已知函数()()π5sin 24f x x x ⎛⎫=-∈ ⎪⎝⎭R ,对于下列说法:①要得到()5sin 2g x x =的图象,只需将()f x 的图象向左平移4π个单位长度即可;②()y f x =的图象关于直线3π8x =对称:③()y f x =在[]π,π-内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦;④5π8y f x ⎛⎫=+⎪⎝⎭为奇函数.则上述说法正确的是________(填入所有正确说法的序号). 19.已知()()sin 03f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=-⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是___________.20.已知函数()()()sin 0,0,f x A x A ωϕωπϕπ=+>>-<<的部分图象如下图所示,则ϕ=________.三、解答题21.已知函数27()sin cos 2sin 632x f x x x ππ⎛⎫⎛⎫=-+--⎪ ⎪⎝⎭⎝⎭.(1)求函数()f x 的单调递增区间; (2)求使()0f x <成立的实数x 的取值集合.22.函数()cos()0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的部分图象如图所示.(1)写出()f x 的解析式; (2)将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,讨论关于x 的方程()3()0f x g x m -=(11)m -<≤在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数.23.已知()442sin cos cossin f x x x x x ωωωω=+-(其中ω>0).(1)若()f x 的最小正周期是π,求ω的值及此时()f x 的对称中心; (2)若将()y f x =的图像向左平移4π个单位,再将所得的图像纵坐标不变,横坐标缩小为原来的12,得到()g x 的图像,若y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,求ω的取值范围.24.已知函数()()2sin f x x ωϕ=+(0>ω,0ϕπ<<)的最大值和最小正周期相同,()f x 的图象过点(3,且在区间10,12⎡⎤⎢⎥⎣⎦上为增函数.(1)求函数()f x 的解析式;(2)若函数()()1g x f x =+在区间()0,b 上只有4个零点,求b 的最大值. 25.已知函数()231cos 2f x x x =-+. (1)当π02x ⎡⎤∈⎢⎥⎣⎦,时,求函数()f x 的取值范围;(2)将()f x 的图象向左平移π6个单位得到函数()g x 的图象,求()g x 的单调递增区间. 26.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><的部分图象如下图所示.(1)求函数()f x 的解析式,并写出函数()f x 的单调递增区间; (2)将函数()f x 图象上所有点的横坐标缩短到原来的14(纵坐标不变),再将所得的函数图象上所有点向左平移02m m π⎛⎫<< ⎪⎝⎭个单位长度,得到函数()g x 的图象.若函数()g x 的图象关于直线512x π=对称,求函数()g x 在区间7,1212ππ⎡⎤⎢⎥⎣⎦上的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意有()5sin 226g x x ϕπ⎛⎫=+ ⎪⎝⎭-,若()g x 为偶函数则52()62k k Z πππϕ-=+∈,结合0ϕ>可得出答案. 【详解】 解:由题意可得()()55()sin 2sin 2266g x f x x x πϕϕϕπ⎛⎫⎛⎫=+=+-=+ -⎪ ⎪⎝⎭⎝⎭因为()g x 为偶函数,则52()62k k Z πππϕ-=+∈,即2()32k k Z ππϕ=+∈ 因为0ϕ>,所以当1k =-时ϕ取得最小值6π. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2.A解析:A 【分析】根据三角函数的平移变换得到cos(2)y x ϕπ=+-后,再根据诱导公式变为sin(2)2y x πϕ=+-,然后利用图象重合列式可得结果.【详解】函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,得到cos[2()]cos(2)2y x x πϕϕπ=-+=+-sin(2)2x πϕπ=+-+sin(2)2x πϕ=+-,依题意可得223k ππϕπ-=+()k ∈Z ,所以526k πϕπ=+()k ∈Z 因为πϕπ-≤≤,所以0k =,56πϕ=. 故选:A. 【点睛】关键点点睛;经过平移变换后,利用诱导公式化为同名函数是解题关键,属于中档题. 3.C解析:C 【分析】由图可知,17248g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭()()sin 2x g x ϕ=-,于是推出1717sin 224242g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 224882g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈,因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.4.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标, 可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11y x =-和2cos y x π=交点的横坐标,从而通过函数图象求解.5.B解析:B 【分析】 由2()()23f f ππ=求出函数的一条对称轴,结合()f x 在区间[,]32ππ上具有单调性,且()()23f f ππ=-,可得函数的四分之一周期,即可求出ω的值.【详解】解:由2()()23f f ππ=,可知函数()f x 的一条对称轴为2723212x πππ+==, 则2x π=离最近对称轴距离为712212πππ-=. 又()()23f f ππ=-,则()f x 有对称中心5,012π⎛⎫⎪⎝⎭, 由于()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上具有单调性, 则1232T ππ-,所以3T π≥,从而7512124T ππ-=,所以23T π=,因为2T πω=,所以3ω=.故选:B【点睛】本题考查()sin()f x A x ωϕ=+型函数图象的应用,考查了学生灵活处理问题和解决问题的能力.6.D解析:D 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式,再结合正弦函数的图象与性质,判断点是否在函数图象上可判断A ,求得函数的单调区间及对称中心即可判断选项BC ,由平移变换求得变化后的解析式并对比即可判断D. 【详解】函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期是π 所以22πωπ==,则()()3sin 21f x x ϕ=++,()()3sin 21f x x ϕ=++图象关于直线3x π=对称,对称轴为2,2x k k Z πϕπ+=+∈,代入可得2,32k k Z ππϕπ⨯+=+∈,解得,6k k Z πϕπ=-+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以当0k =时, 6πϕ=-, 则()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭,对于A,当0x =时,()3103sin 11622f π=-+=-+=- ,所以错误; 对于B,()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的单调递减区间为3222,262k x k k πππππ+-+∈Z ≤≤, 解得5,36k x k k Z ππππ+≤≤+∈,因为123ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以错误; 对于C ,773sin 213sin 11012126f ππππ⎛⎫⎛⎫=⨯-+=+=≠⎪ ⎪⎝⎭⎝⎭,所以7,012π⎛⎫ ⎪⎝⎭不是()f x 的一个对称中心,所以错误; 对于D ,1212πϕ=,将()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移12π个单位长度得到可得3sin 213sin 21126y x x ππ⎡⎤⎛⎫=-++=+ ⎪⎢⎥⎝⎭⎣⎦,所以能得到3sin 21y x =+的图象,所以正确. 故选: D. 【点睛】本题考查了正弦函数的图象与性质的综合应用,关键点是根据已知条件先求出正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.7.A解析:ABD 【分析】由周期可求出ω,再由平移后为偶函数求出ϕ,即得()sin 23πf x x ⎛⎫=-⎪⎝⎭,求出512f π⎛⎫⎪⎝⎭可判断A ;求出6f π⎛⎫⎪⎝⎭可判断B ;令222,232k x k k Z πππππ-+≤-≤+∈求出单调递增区间可判断C ;由C 选项可判断D. 【详解】()f x 的最小正周期为π,22πωπ∴==,()sin(2)f x x ϕ=+,向右平移12π个单位后得到sin 26y x πϕ⎛⎫=-+ ⎪⎝⎭为偶函数, ,62k k Z ππϕπ∴-=+∈,即2,3k k Z πϕπ=+∈, ||2πϕ<,3ϕπ∴=-,()sin 23f x x π⎛⎫∴=- ⎪⎝⎭, 对于A ,55sin 2sin 10121232f ππππ⎛⎫⎛⎫=⨯-==≠ ⎪ ⎪⎝⎭⎝⎭,故()f x 不关于点5(,0)12π对称,故A 错误; 对于B ,sin 2sin 001663f πππ⎛⎫⎛⎫=⨯-==≠± ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,令222,232k x k k Z πππππ-+≤-≤+∈,解得5,1212k x k k Z ππππ-+≤≤+∈, 当0k =时,51212x ππ-≤≤,故()f x 在,]1212π5π[-单调递增,故C 正确; 对于D ,由C 选项可知,()f x 在5[,]1212ππ单调递增,故D 错误.故选:ABD.本题考查正弦型函数的性质,可通过代入验证的方法判断对称轴和对称中心,利用整体换元可求单调区间.8.D解析:D 【分析】根据函数的图象求出函数的周期,然后可以求出ω,通过函数经过的最大值点求出ϕ值,即可得到结果. 【详解】由函数的图象可知:74123T πππ⎛⎫=-⨯= ⎪⎝⎭,22T πω∴==. 当3x π=,函数取得最大值1,所以sin 213πϕ⎛⎫⨯+= ⎪⎝⎭,2232k k Z ππϕπ+=+∈,, ||,02k πϕ<∴=,6πϕ∴=-,故选:D. 【点睛】本题主要考查了由三角函数的图象求解析式,通过周期求ω的值,通过最值点求ϕ的值是解题的关键,属于基础题.9.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,2cos 23:C y x π⎛⎫=- ⎪⎝⎭,∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.10.C【分析】由诱导公式求得cos 6x π⎛⎫- ⎪⎝⎭,然后再由平方关系和诱导公式计算. 【详解】 由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫- ⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫-⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便.11.C解析:C 【分析】先化简函数的解析式,然后利用x 的范围求出26x πω⎛⎫-⎪⎝⎭的范围,根据题意列不等式求解ω.【详解】221cos 21()[sin()])cos()2sin(2)2262ωπωωωωω-=+=+=-+x f x x x x x x ,因为[0,]x π∈,得2,2666πππωωπ⎛⎫⎡⎤-∈-- ⎪⎢⎥⎝⎭⎣⎦x ,因为函数在[0,]π有且只有四个零点,则19232666πππωπ≤-<,解得523ω≤<. 故选:C. 【点睛】关于三角函数中求解ω的取值范围问题,一般要先求解出整体的范围,即x ωϕ+的范围,然后根据题意,分析x ωϕ+范围所在的区间,列不等式求解,即可求出ω.12.A【分析】先求函数的定义域,再根据函数奇偶性定义,周期函数的定义可判断②③的正误,再根据函数解析的特征可判断④的正误,最后利用换元法可求判断①的正误. 【详解】22111()sin sin sin sin sin sin f x x x x x x x ⎛⎫⎛⎫=+-=- ⎪⎪⎝⎭⎝⎭, 由sin 0x ≠可得,x k k Z π≠∈,故函数的定义域为{}|,x x k k Z π≠∈, 所以函数的定义域关于原点对称.又()()()222211()sin sin sin sin f x x x f x x x-=--=-=-,故()f x 为偶函数, 故②正确.又()()()221()sin sin f x x f x x πππ+=+-=+, 故()f x 是周期函数且周期为π,故③正确.又()()()221()sin sin f x x f x x πππ-=--=-,故()f x 的图象关于直线2x π=对称,故④正确.令2sin t x =,则(]0,1t ∈且()1f x t t=-,因为1y t t=-为(]0,1上的增函数,故()max 0f x =,故①正确. 故选:A. 【点睛】思路点睛:对于复杂函数的性质的研究,注意先研究函数的定义域,再研究函数的奇偶性或周期性,最后再研究函数的单调性,讨论函数图象的对称性,注意根据()()f a x f x -=来讨论. 二、填空题13.③④【分析】①化简可得即可求出;②由可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得利用奇函数的性质可得【详解】对①则最小正周期为故①错误;对②若则可能相等故②错误;对③若则即即即即故③解析:③④ 【分析】①,化简可得tan 24y x π⎛⎫=+⎪⎝⎭,即可求出;②由,a b 可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得24sin 141x xy x +=++,利用奇函数的性质可得.【详解】对①,tantan 21tan 24tan 21tan 241tan tan 24xx y x x x πππ++⎛⎫===+ ⎪-⎝⎭-⋅,则最小正周期为2π,故①错误;对②,若()()f a f b =,则,a b 可能相等,故②错误;对③,若22tan 3tan 2αβ=+,则2222sin 3sin 2cos cos αβαβ=+,即222222sin cos 3cos sin 2cos cos αβαβαβ=+,即22222222sin cos cos cos 3cos sin 3cos cos αβαβαβαβ+=+,即22cos 3cos βα=,即223sin sin 2αβ-=,故③正确;对④,()22221sin 4sin 14141x xx x y x x +++==+++,令()24sin 41x x g x x =++,则()()g x g x -=,故()g x 是奇函数,()()max min 0g x g x ∴+=,()()max min 112M N g x g x ∴+=+++=,故④正确.故答案为:③④. 【点睛】本题考查正切型函数的周期,考查同角三角函数的关系,考查奇函数的应用,解题的关键是正确利用三角函数的关键进行化简.14.【分析】令可知为奇函数根据与为相反数即可求解【详解】令定义域关于原点对称且所以为奇函数则所以由奇函数性质可得所以故答案为:【点睛】关键点点睛:首先要观察出中的部分为奇函数其次要能利用换底公式对数的运 解析:3-【分析】令tan ()a x g x =+,可知()g x 为奇函数,根据3lg log 10与lg lg3为相反数即可求解. 【详解】令tan ()a x g x =+,,2x k k Z ππ≠+∈,定义域关于原点对称,且()tan ()g x a x g x -=--=-, 所以()g x 为奇函数,则31(lg log 10)(lg)(lg lg 3)(lg lg 3)15lg 3f f fg ==-=-+=, 所以(lg lg3)514g -=-=, 由奇函数性质可得(lg lg3)4g =-, 所以(lglg3)(lglg3)1413f g =+=-+=-, 故答案为:3- 【点睛】关键点点睛:首先要观察出()f x中的部分tan ()a x g x =+为奇函数,其次要能利用换底公式,对数的运算性质找到3lg log 10与lg lg3为相反数,借助奇函数的性质求解.15.【分析】先求出由可求出利用单调性可得结合即可求解【详解】将函数的图象向右平移个单位长度得到函数因为所以因为函数在区间上是单调递增函数所以解得:因为所以故答案为:【点睛】关键点点睛:本题解题的关键点是解析:60,5⎛⎤⎥⎝⎦【分析】先求出()sin 12g x x πω⎛⎫=-⎪⎝⎭,由0,2x π⎡⎤∈⎢⎥⎣⎦可求出5121212x πππωωω⎛⎫-≤-≤ ⎪⎝⎭,利用单调性可得1225122ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,结合0>ω即可求解.【详解】将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()sin 12g x x πω⎛⎫=- ⎪⎝⎭,因为02x π≤≤,所以5121212x πππωωω⎛⎫-≤-≤⎪⎝⎭, 因为函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数, 所以1225122ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得:665ωω≤⎧⎪⎨≤⎪⎩,因为0>ω,所以605ω<≤, 故答案为:60,5⎛⎤ ⎥⎝⎦【点睛】关键点点睛:本题解题的关键点是由x 的范围求出12x πω⎛⎫-⎪⎝⎭的范围,将12x πω⎛⎫-⎪⎝⎭看成一个整体让其满足正弦函数的单调递增区间,即可得其满足的条件.16.4或-4【分析】由题意可得故函数的周期为求得;在中令求得从而求得的值【详解】∵函数对任意的都有∴故函数的周期为∴所以∴在中令可得:即∴则故答案为:4或-4【点睛】求三角函数解析式的方法:(1)求A 通解析:4或-4. 【分析】 由题意可得()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π,求得=3ω;在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,求得sin 0ϕ=,从而求得6f π⎛⎫⎪⎝⎭的值. 【详解】∵函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭, ∴()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π, ∴22=3ππω,所以=3ω. ∴()()4sin 3f x x ϕ=+. 在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,可得:()03f f π⎛⎫= ⎪⎝⎭, 即()4sin =4sin πϕϕ+,∴sin =0ϕ. 则=4sin()4cos 462f ππϕϕ⎛⎫+==±⎪⎝⎭. 故答案为: 4或-4. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.17.2(答案不唯一)【分析】把函数化为一个角的一个三角函数形式然后利用正弦函数的周期求解注意题中已知条件是函数的一个周期是并没有说是最小正周期因此只要函数的最小正周期是除以一个正整数都可满足题意【详解】解析:2(答案不唯一) 【分析】把函数化为一个角的一个三角函数形式,然后利用正弦函数的周期求解,注意题中已知条件是函数的一个周期是π,并没有说π是最小正周期.因此只要函数的最小正周期是π除以一个正整数,都可满足题意. 【详解】1()sin cos cossin sin(1cos 332f x x x x x x ππωωωωω=+-=-+,令cosϕ=sin ϕ=,且ϕ为锐角,则()sin()f x x ωϕ=+,由2T ππω==,得2ω=,实际上,由2T ππω==得2ω=±,或者2kππω=(k Z ∈且0k ≠),2k ω=(k Z ∈且0k ≠),ω可为任意一个非零点的偶数. 故答案为:2.(填任一非0的偶数都可以). 【点睛】关键点点睛:本题考查三角函数的周期,求解三角函数周期,一般是把函数化为一个角的一个三角函数形式,然后利用正弦函数的周期性求解.而我们一般说周期通常是求最值正周期,若题中强调某个数是函数的一个周期,则这个周期不一定是最小正周期.18.②④【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案【详解】①要得到的图象应将的图象向左平移个单位长度所以①错误;②令解得所以直线是的一条对称轴故②正确;③令解得因为所以在定义域内的单解析:②④ 【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案. 【详解】①要得到()5sin 2g x x =的图象,应将()ππ5sin 25sin 248f x x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象向左平移π8个单位长度,所以①错误;②令ππ2π42x k -=+,k ∈Z ,解得3ππ82k x =+,k ∈Z ,所以直线3π8x =是()y f x =的一条对称轴,故②正确;③令ππ3π22π42π22k k x ≤+≤-+,k ∈Z ,解得3π7πππ88k x k +≤≤+,k ∈Z ,因为[]π,πx ∈-,所以()f x 在定义域内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦和5ππ,88⎡⎤--⎢⎥⎣⎦,所以③错误;④5π5ππ5sin 25sin 2884y f x x x ⎡⎤⎛⎫⎛⎫=+=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦是奇函数,所以该说法正确. 【点睛】本题考查了正弦型函数的对称轴、单调性、奇偶性与平移变换,考查了学生对()sin y A ωx φ=+的图象与性质的掌握,属于中档题.19.【分析】由周期公式可得由三角函数的中心对称可得结合即可得为奇数即可得由可得进而可得即可得解【详解】由可得由是奇函数可得函数的图象关于中心对称所以即又所以所以为奇数由可得因为在上没有最小值所以即故答案解析:511,612ππ⎛⎤⎥⎝⎦【分析】由周期公式可得ω,由三角函数的中心对称可得,3k k Z πϕπ=+∈,结合()06f f π⎛⎫< ⎪⎝⎭即可得k 为奇数,即可得()sin 23πf x x ⎛⎫=-⎪⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭,进而可得432332t πππ<-≤,即可得解. 【详解】 由T π=可得22T πω==,()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭由3y f x π⎛⎫=- ⎪⎝⎭是奇函数可得函数()f x 的图象关于,03π⎛-⎫⎪⎝⎭中心对称, 所以2,33k k Z ππϕπ⎛⎫⨯-++=∈ ⎪⎝⎭,即,3k k Z πϕπ=+∈, 又()06f f π⎛⎫< ⎪⎝⎭,所以2sin sin 33ππϕϕ⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭, 所以,3k k πϕπ=+为奇数,()sin 2sin 2333f x x k x ππππ⎛⎫⎛⎫=+++=- ⎪ ⎪⎝⎭⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭, 因为()f x 在[)0,t 上没有最小值,所以432332t πππ<-≤即511,612t ππ⎛⎤∈ ⎥⎝⎦. 故答案为:511,612ππ⎛⎤⎥⎝⎦. 【点睛】本题考查了三角函数图象与性质的应用,考查了运算求解能力,牢记知识点是解题关键,属于中档题.20.【分析】根据图象得出函数的最小正周期可得出的值再将点代入函数解析式结合的取值范围可求出的值【详解】由图象可知函数的最小正周期则将点代入函数解析式得即因为函数在附近单调递减则得故答案为:【点睛】本题考 解析:6π【分析】根据图象得出函数()y f x =的最小正周期T ,可得出ω的值,再将点5,012π⎛⎫⎪⎝⎭代入函数解析式,结合ϕ的取值范围,可求出ϕ的值. 【详解】由图象可知,函数()y f x =的最小正周期11521212T πππ⎛⎫=⨯-=⎪⎝⎭,222T ππωπ∴===, 则()()sin 2f x A x ϕ=+, 将点5,012π⎛⎫⎪⎝⎭代入函数解析式得55sin 201212f A ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,即5sin 06πϕ⎛⎫+= ⎪⎝⎭, 因为函数()y f x =在512x π=附近单调递减,则()526k k Z πϕππ+=+∈, 得()26k k Z πϕπ=+∈,πϕπ-<<,0k ∴=,6π=ϕ. 故答案为:6π. 【点睛】本题考查利用图象求三角函数解析式中的参数,考查分析问题和解决问题的能力,属于中等题.三、解答题21.(1)22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)422,3x k x k k Z πππ⎧⎫-+<<∈⎨⎬⎩⎭∣.【分析】(1)化简()f x ,应用整体思想,结合正弦函数的递增区间,即可得出结论; (2)应用整体思想,运用正弦函数图像,建立不等式,即可求解. 【详解】()sin cos cos sincoscos sinsin cos 16633f x x x x x x ππππ=-+++-11cos cos cos 1cos 122x x x x x x x =-++-=+-12cos 12sin 126x x x π⎫⎛⎫=+-=+-⎪ ⎪⎪⎝⎭⎝⎭. (1)由22,262k x k k Z πππππ-+++∈,解得222,33k x k k Z ππππ-++∈, 所以()f x 的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)由(1)知()2sin 16f x x π⎛⎫=+- ⎪⎝⎭.因为()0f x <,即2sin 106x π⎛⎫+-< ⎪⎝⎭.所以1sin 62x π⎛⎫+< ⎪⎝⎭, 所以7+2++2,666k x k k Z πππππ-<<∈. 所以422,3k x k k Z πππ-+<<∈, 所以使()0f x <成立的x 的取值集合为422,3xk x k k Z πππ⎧⎫-+<<∈⎨⎬⎩⎭∣. 【点睛】方法点睛:解决正弦型函数的单调性和不等式的相关问题,运用整体思想,先由三角函数恒等变换,化简解析式为同一角同一三角函数的形式,再运用三角函数的性质以及建立三角不等式求解.22.(1)()cos(2)6f x x π=+;(2)见解析.【分析】(1)根据图象求出周期,再根据最低点可求ϕ,从而得到函数解析式. (2)求出()g x 的解析式,故方程可化为cos 206m x π⎛⎫---= ⎪⎝⎭,可通过直线y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭ 的图象的交点的个数解决方程的解的个数.【详解】(1)由函数的图象可得()f x 的周期为2236πππ⎛⎫⨯-=⎪⎝⎭,故22πωπ==,又26312fππ⎛⎫+⎪=- ⎪⎪⎝⎭,故5cos2+112πϕ⎛⎫⨯=-⎪⎝⎭,所以526kπϕππ+=+即2,6k k Zπϕπ=+∈,因为02πϕ<<,故6π=ϕ,所以()cos(2)6f x xπ=+.(2)()cos(2)cos266g x x xππ=-+=,故()3()cos(2)3cos26f xg x m x x mπ-⋅-=+--cos2cos sin2sin3cos2cos2666x x x m m xπππ⎛⎫=---=---⎪⎝⎭故方程在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数即为y m=-与cos26y xπ⎛⎫=-⎪⎝⎭图象交点的个数,cos26y xπ⎛⎫=-⎪⎝⎭在,2ππ⎡⎤-⎢⎥⎣⎦上的图象如图所示,由图象可得:当1m-=-31m<-<即1m=或31m-<<时,方程有2个不同的解;当31m-<-≤31m≤<时,方程有4个不同的解;当3322m-<-≤即3322m-≤<时,方程有3个不同的解;【点睛】方法点睛:(1)平移变换有“左加右减”(水平方向的平移),注意是对自变量x做加减.(2)与余弦型函数有关的方程的解的个数的讨论,一般可转化为动直线与确定函数的图象的交点个数来讨论.23.(1)=1ω,对称中心是(,0),82k k Z ππ-+∈,(2)1524ω≤≤【分析】(1)先对函数化简变形得(2+4f x x πω(),由函数的周期为π,得=1ω,再由2+=4x k ππ,可求出对称中心的横坐标,进而可得对称中心;(2)由题意得到())24g x x ωππω=++,由0,8x π⎡⎤∈⎢⎥⎣⎦可得424244x ωππωπππωωπ⎡⎤++∈++⎢⎥⎣⎦,,而y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,所以可得322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,从而可求出ω的取值范围 【详解】解:(1)()sin 2+cos 22+4f x x x x πωωω=(),()f x 的最小正周期是π,2==12ππωω∴∴,此时()2+4f x x π=(),令2+=4x k ππ,得,82k x k Z ππ=-+∈ ()f x ∴的对称中心是(,0),82k k Z ππ-+∈. (2)由题知())24g x x ωππω=++, 0,4824244x x πωππωπππωωπ⎡⎤⎡⎤∈∴++∈++⎢⎥⎢⎥⎣⎦⎣⎦,,,又()y g x =在08π⎡⎤⎢⎥⎣⎦,上单调递减,322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤∴++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,即32154242,242242k k k k Z k ππωππωωππππ⎧+≤+⎪⎪⇒+≤≤+∈⎨⎪+≥+⎪⎩, 150,24ωω>∴≤≤【点睛】关键点点睛:此题考查三角函数的恒等变换,考查三角函数的图像和性质,第2问解题的关键是求出424244x ωππωπππωωπ⎡⎤++∈++⎢⎥⎣⎦,,再由y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,可得322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,从而可求出ω的取值范围,属于中档题 24.()2sin 3f x x ππ⎛⎫=+ ⎪⎝⎭;(2)296【分析】(1)根据条件先求ω,再根据()0f =ϕ,最后再验证ϕ值,确定函数的解析式;(2)根据条件求函数的零点,确定b 的最大值应是第5个零点. 【详解】 (1)函数的最大值是2,∴,函数的周期2T =,即22πωπω=⇒=,()02sin f ϕ==,且0ϕπ<<,3πϕ∴=或23π, 当3πϕ=时,()2sin 3f x x ππ⎛⎫=+⎪⎝⎭,当10,12x ⎡⎤∈⎢⎥⎣⎦时,5,3312x ππππ⎡⎤+∈⎢⎥⎣⎦ 0,2π⎡⎤⎢⎥⎣⎦,满足条件; 当23ϕπ=时,()22sin 3f x x ππ⎛⎫=+⎪⎝⎭,当10,12x ⎡⎤∈⎢⎥⎣⎦时,223,334x ππππ⎡⎤+∈⎢⎥⎣⎦ 3,22ππ⎡⎤⎢⎥⎣⎦,所以函数在区间10,12⎡⎤⎢⎥⎣⎦上为减函数,所以舍去, 所以函数()2sin 3f x x ππ⎛⎫=+⎪⎝⎭; (2)()2sin 103g x x ππ⎛⎫=++= ⎪⎝⎭,得1sin 32x ππ⎛⎫+=- ⎪⎝⎭, 72,36x k k Z ππππ+=+∈,解得:52,6x k k Z =+∈, 或112,36x k k Z ππππ+=+∈,解得:32,2x k k Z =+∈, 函数()()1g x f x =+在区间()0,b 上只有4个零点,∴这四个零点应是56,32,176,72,那么b 的最大值应是第5个零点,即296,所以b 的最大值是296. 【点睛】关键点点睛:本题第一问注意求出两个ϕ 后需验证是否满足条件,第二个关键点是,注意()0,b 是开区间,开区间内只有四个零点,则b 的最大值是第5个零点.25.(1)112⎡⎤-⎢⎥⎣⎦,;(2)ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【分析】(1)根据余弦的二倍角公式、辅助角公式化简()f x ,得到()πsin 26f x x ⎛⎫=- ⎪⎝⎭,再利用正弦函数的性质确定当π02x ⎡⎤∈⎢⎥⎣⎦,时,()f x 的取值范围; (2)根据图象的平移得到()πsin 26g x x ⎛⎫=+ ⎪⎝⎭,再利用正弦函数的性质可求得()g x 得单调递增区间. 【详解】(1)()211πcos cos2sin 2226f x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭,π02x ⎡⎤∈⎢⎥⎣⎦,,ππ5π2666x ⎡⎤∴-∈-⎢⎥⎣⎦,, π1sin 2162x ⎛⎫⎡⎤∴-∈- ⎪⎢⎥⎝⎭⎣⎦,.∴函数()f x 的取值范围为112⎡⎤-⎢⎥⎣⎦,.(2)由题意知:()ππππsin 2sin 26666g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 令πππ2π22π262k x k -≤+≤+,k Z ∈, 解得πππ2π.36k k k Z -≤≤+∈, ∴()g x 的单调递增区间为ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【点睛】本题考查了三角函数的性质,根据二倍角的余弦公式、辅助角公式化简函数,并求函数在区间上的最值,及函数的单调区间,考查学生的运算能力,属于中档题. 26.(1)12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)[]1,2-. 【分析】(1)由三角函数的图象,求得函数的解析式12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得2()2sin 223g x x m π⎛⎫=-+ ⎪⎝⎭,根据()g x 的图象关于直线512x π=对称,求得m 的值,得到()2sin 23g x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解. 【详解】(1)由图象可知2A =,422433T πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦, 所以212T πω==,所以1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭, 由图可求出最低点的坐标为,23π⎛⎫- ⎪⎝⎭,所以2sin 236f ππϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭, 所以262k ππϕπ+=-+,所以22,3k k Z πϕπ=-+∈, 因为||ϕπ<,所以23πϕ=-,所以12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,由1222,2232k x k k Z πππππ-+≤-≤+∈,可得744,33k x k k Z ππππ+≤≤+∈. 所以函数()f x 的单调递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2)由题意知,函数22()2sin 2()2sin 2233g x x m x m ππ⎡⎤⎛⎫=+-=-+ ⎪⎢⎥⎣⎦⎝⎭, 因为()g x 的图象关于直线512x π=对称, 所以5222,1232m k k Z ππππ⨯-+=+∈,即,62k m k Z ππ=+∈, 因为02m π<<,所以6m π=,所以()2sin 23g x x π⎛⎫=-⎪⎝⎭. 当7,1212x ππ⎡⎤∈⎢⎥⎣⎦时,52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,可得1sin 2,132x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以2sin 2[1,2]3x π⎛⎫-∈- ⎪⎝⎭,即函数()g x 的值域为[]1,2-.【点睛】解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.。
人教版高一数学必修四测试题(含详细答案)
高一数学试题(必修4)(特别适合按14523顺序的省份)必修4 第一章三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C2 等于()A B C D3.已知的值为()A.-2 B.2 C.D.-4.下列函数中,最小正周期为π的偶函数是()A.y=sin2xB.y=cos C .sin2x+cos2x D. y=5 若角的终边上有一点,则的值是()A B C D6.要得到函数y=cos()的图象,只需将y=sin的图象()A.向左平移个单位 B.同右平移个单位C.向左平移个单位 D.向右平移个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象则y=f(x)是()A.y= B.y=C.y=D.8. 函数y=sin(2x+)的图像的一条对轴方程是()A.x=-B. x=- C .x=D.x=9.若,则下列结论中一定成立的是()A. B. C. D.10.函数的图象()A.关于原点对称 B.关于点(-,0)对称 C.关于y轴对称 D.关于直线x=对称11.函数是()A.上是增函数 B.上是减函数C.上是减函数D.上是减函数12.函数的定义域是()A.B.C. D.二、填空题:13. 函数的最小值是 .14 与终边相同的最小正角是_______________15. 已知则 .16 若集合,,则=_______________________________________三、解答题:17.已知,且.a)求sinx、cosx、tanx的值.b)求sin3x – cos3x的值.18 已知,(1)求的值(2)求的值19. 已知α是第三角限的角,化简20.已知曲线上最高点为(2,),由此最高点到相邻的最低点间曲线与x轴交于一点(6,0),求函数解析式,并求函数取最小值x的值及单调区间必修4 第一章三角函数(2)一、选择题:1.已知,则化简的结果为()A. B. C. D. 以上都不对2.若角的终边过点(-3,-2),则( )A.sin tan>0 B.cos tan>0C.sin cos>0 D.sin cot>03 已知,,那么的值是()A B C D4.函数的图象的一条对称轴方程是()A. B. C. D.5.已知,,则tan2x= ( ) A. B. C. D.6.已知,则的值为()A. B. 1 C. D. 2 7.函数的最小正周期为()A.1 B. C. D.8.函数的单调递增区间是()A. B.C. D.9.函数,的最大值为()A.1 B. 2 C. D.10.要得到的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位 D.向右平移个单位11.已知sin(+α)=,则sin(-α)值为()A. B. — C. D. —12.若,则()A. B. C. D.二、填空题13.函数的定义域是14.的振幅为初相为15.求值:=_______________16.把函数先向右平移个单位,然后向下平移2个单位后所得的函数解析式为________________________________三、解答题17 已知是关于的方程的两个实根,且,求的值18.已知函数,求:(1)函数y的最大值,最小值及最小正周期;(2)函数y的单调递增区间19.已知是方程的两根,且,求的值20.如下图为函数图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线对称的函数解析式必修4 第三章三角恒等变换(1)一、选择题:1.的值为 ( )A 0BC D2.,,,是第三象限角,则()A B C D3.设则的值是( )A B C D4. 已知,则的值为()A B C D5.都是锐角,且,,则的值是()A B C D6. 且则cos2x的值是()A B C D7.在中,的取值域范围是 ( )A B C D8. 已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为()A B C D9.要得到函数的图像,只需将的图像()A、向右平移个单位B、向右平移个单位C、向左平移个单位D、向左平移个单位10. 函数的图像的一条对称轴方程是()A、 B、 C、 D、11.若是一个三角形的最小内角,则函数的值域是( )A B C D12.在中,,则等于 ( )A B C D二、填空题:13.若是方程的两根,且则等于14. .在中,已知tanA ,tanB是方程的两个实根,则15. 已知,则的值为16. 关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图像关于点成中心对称图像;④将函数的图像向左平移个单位后将与的图像重合.其中正确的命题序号(注:把你认为正确的序号都填上)三、解答题:17. 化简18. 求的值.19. 已知α为第二象限角,且sinα=求的值.20.已知函数,求(1)函数的最小值及此时的的集合。
完整版)高中三角函数测试题及答案
完整版)高中三角函数测试题及答案高一数学必修4第一章三角函数单元测试班级:__________ 姓名:__________ 座号:__________评分:__________一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
(48分)1、已知$A=\{\text{第一象限角}\}$,$B=\{\text{锐角}\}$,$C=\{\text{小于90°的角}\}$,那么$A$、$B$、$C$ 关系是()A.$B=A\cap C$B.$B\cup C=C$C.$A\cap D$D.$A=B=C$2、将分针拨慢5分钟,则分钟转过的弧度数是A。
$\frac{\pi}{3}\sin\alpha-\frac{2}{3}\cos\alpha$ B。
$-\frac{\pi}{3}$C。
$\frac{\pi}{6}$D。
$-\frac{\pi}{6}$3、已知 $\tan\alpha=-5$,那么 $\tan\alpha$ 的值为A。
2B。
$\frac{1}{6164}$C。
$-\frac{1}{6164}$D。
$-\frac{2}{3}$4、已知角 $\alpha$ 的余弦线是单位长度的有向线段,那么角 $\alpha$ 的终边()A。
在 $x$ 轴上B。
在直线 $y=x$ 上C。
在 $y$ 轴上D。
在直线 $y=x$ 或 $y=-x$ 上5、若 $f(\cos x)=\cos 2x$,则 $f(\sin 15^\circ)$ 等于()A。
$-\frac{2}{3}$B。
$\frac{3}{2}$C。
$\frac{1}{2}$D。
$-\frac{1}{2}$6、要得到 $y=3\sin(2x+\frac{\pi}{4})$ 的图象只需将$y=3\sin 2x$ 的图象A。
向左平移 $\frac{\pi}{4}$ 个单位B。
向右平移 $\frac{\pi}{4}$ 个单位C。
(常考题)北师大版高中数学必修四第一章《三角函数》测试卷(有答案解析)
一、选择题1.已知函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,则下列结论正确的个数是( ) ①()f x 的最小值为2-; ②点,012π⎛⎫⎪⎝⎭是()f x 的图象的一个对称中心; ③()f x 的最小正周期为π; ④()f x 在,06π⎛⎫- ⎪⎝⎭上单调递增. A .1B .2C .3D .42.如图,一半径为4.8m 的筒车按逆时针方向转动,已知筒车圆心O 距离水面2.4m ,筒车每60s 转动一圈,如果当筒车上点P 从水中浮现时(图中点0P )开始计时,则( )A .点P 第一次到达最高点需要10sB .点P 距离水面的高度h (单位:m )与时间t (单位:s )的函数解析式为4.8sin 2.4306h t ππ⎛⎫=-+ ⎪⎝⎭C .在筒车转动的一圈内,点P 距离水面的高度不低于4.8m 共有10s 的时间D .当筒车转动50s 时,点P 在水面下方,距离水面1.2m3.设函数()cos 23f x x π⎛⎫=+ ⎪⎝⎭,则下列结论错误的是( )A .()f x 的一个对称中心为5,012π⎛⎫- ⎪⎝⎭B .()f x 的图象关于直线116x π=对称 C .()f x π+的一个零点为12x π=D .()f x 在5,36ππ⎛⎫⎪⎝⎭单调递减 4.己知函数()sin()(0,||)2f x x πωϕωϕ=+><的最小正周期为π,且图象向右平移12π个单位后得到的函数为偶函数,则下列说法错误的有( ) A .()f x 关于点5(,0)12π对称 B .()f x 关于直线6x π=对称C .()f x 在,]1212π5π[-单调递增 D .()f x 在7[,]1212ππ单调递减5.下列结论正确的是( )A .sin1cos1<B .2317cos cos 54ππ⎛⎫⎛⎫->-⎪ ⎪⎝⎭⎝⎭C .()()tan 52tan 47->-D .sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭6.下列命题正确的是( )A .函数sin ||y x =是偶函数又是周期函数B .函数y =是奇函数C .函数tan 6y ax π⎛⎫=+⎪⎝⎭的最小正周期是aπ D .函数cos(sin )y x =是奇函数7.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,则( )A .()f x 是奇函数B .π2π33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭C .()f x 的一个周期是πD .()f x 的最小值小于08.下列函数中,既是偶函数,又在(),0-∞上是增函数的是( ) A .()22xxf x -=- B .()23f x x =-C .()2ln =-f x xD .()cos3=f x x x9.675︒用弧度制表示为( ) A .114π B .134π C .154π D .174π 10.函数1cos y x x=+的图象可能是( )A .B .C .D .11.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题: ①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .112.函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,为了得sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移3π个单位长度 B .向右平移4π个单位长度 C .向左平移3π个单位长度D .向左平移4π个单位长度 二、填空题13.下列判断正确的是___________(将你认为所有正确的情况的代号填入横线上). ①函数1tan 21tan 2xy x+=-的最小正周期为π;②若函数()lg f x x =,且()()f a f b =,则1ab =; ③若22tan 3tan 2αβ=+,则223sin sin 2αβ-=;④若函数()2221sin 41x xy x ++=+的最大值为M ,最小值为N ,则2M N +=.14.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,||2ϕπ<)的部分图象如图所示.则函数()y f x =的解析式为________.15.2020年是苏颂诞辰1000周年,苏颂发明的水运仪象台被誉为世界上最早的天文钟.水运仪象台的原动轮叫枢轮,是一个直径约3.4米的水轮,它转一圈需要30分钟.如图,当点P 从枢轮最高处随枢轮开始转动时,退水壶内水面位于枢轮中心下方1.19米处.此时打开退水壶出水口,壶内水位以每分钟0.017米的速度下降,将枢轮转动视为匀速圆周运动,则点P 至少经过______分钟(结果取整数)进入水中.(参考数据:cos0.9815π≈,2cos0.9115π≈,cos 0.815π≈)16.sin 75=______. 17.将函数()4cos 2f x x π⎛⎫=⎪⎝⎭与直线()1g x x =-的所有交点从左到右依次记为125,,...,A A A ,若P 点坐标为()0,3,则125...PA PA PA +++=____.18.如图,某公园要在一块圆心角为3π,半径为20m 的扇形草坪OAB 中修建一个内接矩形文化景观区域CDEF ,若//EF AB ,则文化景观区域面积的最大值为______2m .19.函数(x)Asin(x )f ωϕ=+ (0A >,0>ω,0ϕπ<< )的部分图象如图所示,则4f π⎛⎫= ⎪⎝⎭________.20.已知函数2()cos ()1(0,0,0)2πf x A ωx φA ωφ=++>><<的最大值为3,()f x 的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则(1)(2)f f +=_____.三、解答题21.在①将函数f (x )图象向右平移12π个单位所得图象关于y 轴对称:②函数6y f x π⎛⎫=+ ⎪⎝⎭是奇函数;③当712x π=时,函数6y f x π⎛⎫=- ⎪⎝⎭取得最大值.三个中任选一个,补充在题干中的横线处,然后解答问题.题干:已知函数()2sin()f x x ωϕ=+,其中0,||2πωϕ><,其图象相邻的对称中心之间的距离为2π,___________. (1)求函数y =f (x )的解析式;(2)求函数y =f (x )在,22ππ⎡⎤-⎢⎥⎣⎦上的最小值,并写出取得最小值时x 的值. 注:如果选择多个条件分别解答,按第一个解答计分. 22.现给出以下三个条件:①()f x 的图象与x 轴的交点中,相邻两个交点之间的距离为2π; ②()f x 的图象上的一个最低点为2,23A π⎛⎫- ⎪⎝⎭; ③()01f =.请从上述三个条件中任选两个,补充到下面试题中的横线上,并解答该试题. 已知函数()()2sin 05,02f x x πωϕωϕ⎛⎫=+<<<< ⎪⎝⎭,满足________,________. (1)根据你所选的条件,求()f x 的解析式; (2)将()f x 的图象向左平移6π个单位长度,得到()g x 的图象求函数()()1y f x g x =-的单调递增区间. 23.已知函数1()sin 2126f x x a π⎛⎫=+++ ⎪⎝⎭(其中a 为常数). (1)求()f x 的单调减区间; (2)若0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为2,求a 的值. 24.长春某日气温()C y ︒是时间t (024t ≤≤,单位:小时)的函数,下面是某天不同时间的气温预报数据:cos()y A t b ωϕ=++的图象.(1)根据以上数据,试求cos()y A t b ωϕ=++(0A >,0>ω,0ϕπ<<)的表达式; (2)大数据统计显示,某种特殊商品在室外销售可获3倍于室内销售的利润,但对室外温度要求是气温不能低于23C ︒.根据(1)中所得模型,一个24小时营业的商家想获得最大利润,应在什么时间段(用区间表示)将该种商品放在室外销售,单日室外销售时间最长不能超过多长时间?(忽略商品搬运时间及其它非主要因素,理想状态下哦,奥力给!) 25.已知函数()3π2sin 24⎛⎫=+⎪⎝⎭f x x ,R x ∈.(1)求函数()f x 的最小正周期T 及()f x 的图象的对称轴;(2)完成表格,并在给定的坐标系中,用五点法作出函数()f x 在一个周期内的图象.x3π24u x =+()f x26.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><的部分图象如下图所示.(1)求函数()f x 的解析式,并写出函数()f x 的单调递增区间; (2)将函数()f x 图象上所有点的横坐标缩短到原来的14(纵坐标不变),再将所得的函数图象上所有点向左平移02m m π⎛⎫<< ⎪⎝⎭个单位长度,得到函数()g x 的图象.若函数()g x 的图象关于直线512x π=对称,求函数()g x 在区间7,1212ππ⎡⎤⎢⎥⎣⎦上的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】求出()min f x 可判断①的正误;利用正弦型函数的对称性可判断②的正误;求出()f x 的最小正周期可判断③的正误;利用正弦型函数的单调性可判断④的正误. 【详解】 对于①,()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,()()min 212f x ∴=⨯-=-,①正确;对于②,2sin 22sin 20121232f ππππ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,所以,点,012π⎛⎫⎪⎝⎭不是()f x 的图象的一个对称中心,②错误;对于③,函数()f x 的最小正周期为22T ππ==,③正确; 对于④,当,06x π⎛⎫∈-⎪⎝⎭时,2666x πππ-<+<,所以,函数()f x 在,06π⎛⎫- ⎪⎝⎭上单调递增. ④正确.因此,正确命题的序号为①③④. 故选:C. 【点睛】关键点点睛:对于正弦型函数基本性质的判断问题,一般将函数解析式化为()sin y A x b ωϕ=++或()cos y A x b ωϕ=++,将x ωϕ+视为一个整体,利用正弦函数或余弦函数的基本性质来求解.2.B解析:B 【分析】先建立坐标系,从点0P 开始计时,建立三角函数模型()0sin h A t b ωϕ=++,通过题中条件求出参数0,,,A b ωϕ,再利用函数解析式对选项依次判断正误即可. 【详解】以水面所在直线为t 轴,过O 作OO t '⊥轴,建立坐标系如图:设点P 距离水面的高度h (单位:m )与时间t (单位:s )的函数解析式为()0sin h A t b ωϕ=++.依题意可知, 2.4OO '=, 2.41sin 4.82OPO '∠==,6OPO π'∠=. 高度h 最大值为2.4 4.87.2+=,最小值为2.4 4.8 2.4-=-,故()()7.2 2.47.2 2.44.8, 2.422A b --+-====, 周期60T =s ,则230T ππω==, 0t =时,06πϕ=-,故函数解析式为 4.8sin 2.4306h t ππ⎛⎫=-+⎪⎝⎭,故B 正确;点P 到达最高点时 4.8sin 2.47.2306h t ππ⎛⎫=-+=⎪⎝⎭,即sin 1306t ππ⎛⎫-= ⎪⎝⎭,故2,3062t k k Z ππππ-=+∈,即2060,t k k Z =+∈,又0t ≥,故第一次到达最高点时,0,20k t ==s ,故A 错误;在筒车转动的一圈内,点P 距离水面的高度不低于4.8m ,即4.8sin 2.4 4.8306h t ππ⎛⎫=-+≥ ⎪⎝⎭,得1sin 3062t ππ⎛⎫-≥ ⎪⎝⎭,故563066t ππππ≤-≤,解得1030t ≤≤,故共有20 s 时间,C 错误;当筒车转动50s 时,即50t =代入 4.8sin 2.4306h t ππ⎛⎫=-+⎪⎝⎭得,34.8sin 50 2.4 4.8sin 2.4 2.43062h πππ⎛⎫=⨯-+=+=- ⎪⎝⎭,故点P 在水面下方,距离水面2.4m ,故D 错误. 故选:B. 【点睛】 关键点点睛:本题解题关键在于按照题意,建立三角函数模型()0sin h A t b ωϕ=++,并解出解析式,才能解决选项中的实际问题,突破难点.3.D解析:D 【分析】选项A 由()f x 的对称中心满足2,32x k k Z πππ+=+∈可判断;选项B ()f x 的对称轴满足:2,3x k k Z πππ+=+∈可判断;选项C 令12x π=,求得()cos02f x π==,可判断;选项D 由()f x 的增区间满足222,3k x k k Z ππππ-≤+≤∈可判断.【详解】由函数()cos 23f x x π⎛⎫=+ ⎪⎝⎭,选项A. ()f x 的对称中心满足2,32x k k Z πππ+=+∈则1,212x k k Z ππ=+∈,当1k =-时,512x π=-,所以5,012π⎛⎫-⎪⎝⎭为()f x 的一个对称中心,故A 正确; 选项B :()f x 的对称轴满足:2,3x k k Z πππ+=+∈即11,23x k k Z ππ=+∈,当3k =时,116x π=,故B 正确;选项C : ()()cos 2cos 233x x x f ππππ⎡⎤⎛⎫=+++=+ ⎪⎢⎥⎣⎦⎝⎭令12x π=,得ππcos 0122f π⎛⎫+== ⎪⎝⎭,故C 正确; 选项D :由()f x 的增区间满足222,3k x k k Z ππππ-≤+≤∈2,36k x k k Z ππππ-≤≤-∈, 当1k =时,536x ππ≤≤,所以()f x 在5,36ππ⎛⎫⎪⎝⎭单调递增,故D 错误, 故选:D . 【点睛】关键点睛:本题考查三角函数的单调性、对称性和零点问题,解答本题的关键是将23x π+看成一个整体,令2,32x k k Z πππ+=+∈;2,3x k k Z πππ+=+∈和222,3k x k k Z ππππ-≤+≤∈,得出答案,属于中档题.4.A解析:ABD 【分析】由周期可求出ω,再由平移后为偶函数求出ϕ,即得()sin 23πf x x ⎛⎫=- ⎪⎝⎭,求出512f π⎛⎫ ⎪⎝⎭可判断A ;求出6f π⎛⎫⎪⎝⎭可判断B ;令222,232k x k k Z πππππ-+≤-≤+∈求出单调递增区间可判断C ;由C 选项可判断D. 【详解】()f x 的最小正周期为π,22πωπ∴==,()sin(2)f x x ϕ=+,向右平移12π个单位后得到sin 26y x πϕ⎛⎫=-+ ⎪⎝⎭为偶函数, ,62k k Z ππϕπ∴-=+∈,即2,3k k Z πϕπ=+∈, ||2πϕ<,3ϕπ∴=-,()sin 23f x x π⎛⎫∴=-⎪⎝⎭, 对于A ,55sin 2sin 10121232f ππππ⎛⎫⎛⎫=⨯-==≠ ⎪ ⎪⎝⎭⎝⎭,故()f x 不关于点5(,0)12π对称,故A 错误; 对于B ,sin 2sin 001663f πππ⎛⎫⎛⎫=⨯-==≠± ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,令222,232k x k k Z πππππ-+≤-≤+∈,解得5,1212k x k k Z ππππ-+≤≤+∈, 当0k =时,51212x ππ-≤≤,故()f x 在,]1212π5π[-单调递增,故C 正确; 对于D ,由C 选项可知,()f x 在5[,]1212ππ单调递增,故D 错误.故选:ABD. 【点睛】本题考查正弦型函数的性质,可通过代入验证的方法判断对称轴和对称中心,利用整体换元可求单调区间.5.D解析:D 【分析】利用正弦函数的单调性可判断AD 选项的正误;利用正切函数的单调性可判断C 选项的正误;利用余弦函数的单调性可判断B 选项的正误. 【详解】对于A 选项,因为正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增, 且01122ππ<-<<,则sin1sin 1cos12π⎛⎫>-=⎪⎝⎭,A 选项错误; 对于B 选项,因为余弦函数cos y x =在()0,π上为减函数,23233cos cos cos 555πππ⎛⎫-== ⎪⎝⎭,1717cos cos cos 444πππ⎛⎫-== ⎪⎝⎭, 3045πππ<<<,则3cos cos 54ππ<,即2317cos cos 54ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,当900x -<<时,正切函数tan y x =单调递增, 因为9052470-<-<-<,所以,()()tan 52tan 47-<-,C 选项错误;对于D 选项,因为正弦函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,因为021018πππ-<-<-<,所以,sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 选项正确. 故选:D. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间;(2)利用函数的单调性直接解答.6.B解析:B 【分析】根据函数的奇偶性与周期性判断各个选项. 【详解】sin y x =是偶函数,但不是周期函数,A 错误;对函数()f x =0>得tan x <<,33k x k k Z ππππ-<<+∈,定义域关于原点对称,()()f x f x -==-=-,函数是奇函数,B 正确;tan 6y ax π⎛⎫=+ ⎪⎝⎭的最小正周期是a π,C 错误;记()g x cos(sin )x =,定义域是R ,()()cos sin cos(sin )cos(sin )()g x x x x f x -=-=-==⎡⎤⎣⎦,()f x 是偶函数,D 错误.故选:B . 【点睛】关键点点睛:本题考查函数的奇偶性与周期性.判断奇偶性一般用奇偶性的定义进行判断.tan y x ω=的最小正周期是T πω=,sin()y x ωϕ=+的最小正周期是2πω.7.D解析:D 【分析】利用奇函数的性质判断A ,分别求3f π⎛⎫⎪⎝⎭和23f π⎛⎫⎪⎝⎭判断大小,取特殊值验证的方法判断C ,分区间计算一个周期内的最小值,判断选项D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修四第一章三角函數測試題班別 姓名 分數一、選擇題1.已知cos α=12,α∈(370°,520°),則α等於( )A .390°B .420°C .450°D .480° 2.若sin x ·tan x <0,則角x の終邊位於( )A .第一、二象限B .第二、三象限C .第二、四象限D .第三、四象限 3.函數y =tan x 2是( )A .週期為2πの奇函數B .週期為π2の奇函數C .週期為πの偶函數D .週期為2πの偶函數4.已知函數y =2sin(ωx +φ)(ω>0)在區間[0,2π]の圖象如圖,那麼ω等於( )A .1B .2C.12D.13 5.函數f (x )=cos(3x +φ)の圖象關於原點成中心對稱,則φ等於( )A .-π2B .2k π-π2(k ∈Z ) C .k π(k ∈Z )D .k π+π2(k ∈Z )6.若sin θ+cos θsin θ-cos θ=2,則sin θcos θの值是( )A .-310B.310C .±310D.347.將函數y =sin x の圖象上所有の點向右平行移動π10個單位長度,再把所得各點の橫坐標伸長到原來の2倍(縱坐標不變),所得圖象の函數解析式是( )A .y =sin ⎝⎛⎭⎫2x -π10 B .y =sin ⎝⎛⎭⎫2x -π5 C .y =sin ⎝⎛⎭⎫12x -π10 D .y =sin ⎝⎛⎭⎫12x -π20 8.在同一平面直角坐標系中,函數y =cos ⎝⎛⎭⎫x 2+3π2(x ∈[0,2π])の圖象和直線y =12の交點個數是 ( )A .0B .1C .2D .4 9.已知集合M =⎩⎨⎧⎭⎬⎫x |x =k π2+π4,k ∈Z ,N ={x |x =k π4+π2,k ∈Z }.則( )A .M =NB .M NC .N MD .M ∩N =∅10.設a =sin5π7,b =cos 2π7,c =tan 2π7,則 ( ) A .a <b <cB .a <c <bC .b <c <aD .b <a <c二、填空題11.已知一扇形の弧所對の圓心角為54°,半徑r =20 cm ,則扇形の周長為________ cm.12.方程sin πx =14x の解の個數是________.13.已知函數f (x )=2sin(ωx +φ)の圖象如圖所示,則f (7π12)=________.14.已知函數y =sin πx3在區間[0,t ]上至少取得2次最大值,則正整數t の最小值是________.三、解答題15.已知f (α)=sin 2(π-α)·cos (2π-α)·tan (-π+α)sin (-π+α)·tan (-α+3π).(1)化簡f (α); (2)若f (α)=18,且π4<α<π2,求cos α-sin αの值;(3)若α=-31π3,求f (α)の值.16.求函數y =3-4sin x -4cos 2x の最大值和最小值,並寫出函數取最值時對應のx の值.17.設函數f (x )=sin(2x +φ)(-π<φ<0),y =f (x )圖象の一條對稱軸是直線x =π8.(1)求φ;(2)求函數y =f (x )の單調增區間; (3)畫出函數y =f (x )在區間[0,π]上の圖象.18.在已知函數f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)の圖象與x 軸の交點中,相鄰兩個交點之間の距離為π2,且圖象上一個最低點為M ⎝⎛⎭⎫2π3,-2. (1)求f (x )の解析式; (2)當x ∈⎣⎡⎦⎤π12,π2時,求f (x )の值域.19.如下圖所示,函數y =2cos(ωx +θ)(x ∈R ,ω>0,0≤θ≤π2)の圖象與y 軸交於點(0,3),且該函數の最小正週期為π.(1)求θ和ωの值;(2)已知點A (π2,0),點P 是該函數圖象上一點,點Q (x 0,y 0)是P A の中點,當y 0=32,x 0∈[π2,π]時,求x 0の值.必修四第一章三角函數測試題(答案)1、答案 B2、答案 B3、答案 A4、答案 B解析 由圖象知2T =2π,T =π,∴2πω=π,ω=2.5、解析 若函數f (x )=cos(3x +φ)の圖象關於原點成中心對稱,則f (0)=cos φ=0, ∴φ=k π+π2(k ∈Z ).答案 D6、答案 B 解析 ∵sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=2, ∴tan θ=3.∴sin θcos θ=sin θcos θsin 2θ+cos 2θ=tan θtan 2θ+1=310. 7、答案 C解析 函數y =sin x y =sin ⎝⎛⎭⎫x -π10y =sin ⎝⎛⎭⎫12x -π10.8、答案 C 解析 函數y =cos ⎝⎛⎭⎫x 2+3π2=sin x2,x ∈[0,2π], 圖象如圖所示,直線y =12與該圖象有兩個交點.9、答案 B解析 M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x =2k +14π,k ∈Z,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x =k +24π,k ∈Z. 比較兩集合中分式の分子,知前者為奇數倍π,後者為整數倍π.再根據整數分類關係,得M N .選B.10、答案 D 解析 ∵a =sin5π7=sin(π-5π7)=sin 2π7.2π7-π4=8π28-7π28>0. ∴π4<2π7<π2.又α∈⎝⎛⎭⎫π4,π2時,sin α>cos α.∴a =sin 2π7>cos 2π7=b . 又α∈⎝⎛⎭⎫0,π2時,sin α<tan α.∴c =tan 2π7>sin 2π7=a .∴c >a .∴c >a >b . 11、答案 6π+40解析 ∵圓心角α=54°=3π10,∴l =|α|·r =6π.∴周長為(6π+40) cm.12、答案 7 解析 在同一坐標系中作出y =sin πx 與y =14x の圖象觀察易知兩函數圖象有7個交點,所以方程有7個解.13、答案 0解析 方法一 由圖可知,32T =5π4-π4=π,即T =2π3,∴ω=2πT =3.∴y =2sin(3x +φ),將(π4,0)代入上式sin(3π4+φ)=0. ∴3π4+φ=k π,k ∈Z ,則φ=k π-3π4,k ∈Z . ∴f (7π12)=2sin(7π4+k π-3π4)=0.方法二 由圖可知,32T =5π4-π4=π,即T =2π3.又由正弦圖象性質可知,f (x 0)=-f (x 0+T2),∴f (7π12)=f (π4+π3)=-f (π4)=0.14、答案 8解析 T =6,則5T 4≤t ,∴t ≥152,∴t min =8.15、解 (1)f (α)=sin 2α·cos α·tan α(-sin α)(-tan α)=sin α·cos α.(2)由f (α)=sin αcos α=18可知(cos α-sin α)2=cos 2α-2sin αcos α+sin 2α=1-2sin αcos α=1-2×18=34.又∵π4<α<π2,∴cos α<sin α,即cos α-sin α<0.∴cos α-sin α=-32.(3)∵α=-31π3=-6×2π+5π3,∴f ⎝⎛⎭⎫-31π3=cos ⎝⎛⎭⎫-31π3·sin ⎝⎛⎭⎫-31π3 =cos ⎝⎛⎭⎫-6×2π+5π3·sin ⎝⎛⎭⎫-6×2π+5π3=cos 5π3·sin 5π3=cos(2π-π3)·sin(2π-π3) =cos π3·⎝⎛⎭⎫-sin π3=12·⎝⎛⎭⎫-32=-34.16、解 y =3-4sin x -4cos 2x =4sin 2x -4sin x -1 =4⎝⎛⎭⎫sin x -122-2,令t =sin x ,則-1≤t ≤1, ∴y =4⎝⎛⎭⎫t -122-2 (-1≤t ≤1). ∴當t =12,即x =π6+2k π或x =5π6+2k π(k ∈Z )時,y min =-2;當t =-1,即x =3π2+2k π (k ∈Z )時,y max =7.17、解 (1)∵x =π8是函數y =f (x )の圖象の對稱軸,∴sin ⎝⎛⎭⎫2×π8+φ=±1. ∴π4+φ=k π+π2,k ∈Z . ∵-π<φ<0,∴φ=-3π4.(2)由(1)知φ=-3π4,因此y =sin ⎝⎛⎭⎫2x -3π4. 由題意得2k π-π2≤2x -3π4≤2k π+π2,k ∈Z .∴函數y =sin ⎝⎛⎭⎫2x -3π4の單調增區間為⎣⎡⎦⎤k π+π8,k π+5π8,k ∈Z . (3)由y =sin ⎝⎛⎭⎫2x -3π4,知18、解 (1)由最低點為M ⎝⎛⎭⎫2π3,-2得A =2. 由x 軸上相鄰兩個交點之間の距離為π2,得T 2=π2,即T =π,∴ω=2πT =2ππ=2. 由點M ⎝⎛⎭⎫2π3,-2在圖象上得2sin ⎝⎛⎭⎫2×2π3+φ=-2,即sin ⎝⎛⎭⎫4π3+φ=-1,故4π3+φ=2k π-π2(k ∈Z ), ∴φ=2k π-11π6(k ∈Z ).又φ∈⎝⎛⎭⎫0,π2,∴φ=π6,故f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)∵x ∈⎣⎡⎦⎤π12,π2,∴2x +π6∈⎣⎡⎦⎤π3,7π6, 當2x +π6=π2,即x =π6時,f (x )取得最大值2;當2x +π6=7π6,即x =π2時,f (x )取得最小值-1,故f (x )の值域為[-1,2].19、解 (1)將x =0,y =3代入函數y =2cos(ωx +θ)中, 得cos θ=32,因為0≤θ≤π2,所以θ=π6. 由已知T =π,且ω>0,得ω=2πT =2ππ=2.(2)因為點A (π2,0),Q (x 0,y 0)是P A の中點,y 0=32,所以點P の座標為(2x 0-π2,3). 又因為點P 在y =2cos(2x +π6)の圖象上,且π2≤x 0≤π,所以cos(4x 0-5π6)=32,且7π6≤4x 0-5π6≤19π6,從而得4x 0-5π6=11π6,或4x 0-5π6=13π6,即x 0=2π3,或x 0=3π4.。