第八章概率论

合集下载

概率论第8章

概率论第8章

三、极大似然估计法(最先出现的是概率最大的)
定义
总体 的概率函数为 f x , 为未知参数

x1 , x 2 , , x n 是取自总体
的一个样本观察值,
如 = ˆ时, x1 , x 2 , , x n 被取到的概率最大,
即使似然函数
L 取到极大值。则称
ˆ为 的
x 1 x
, x 0 ,1
p 的似然函数为 L xi , p

i 1
n
p
xi
1 p 1 x
i
p
xi
i 1
n
1 p n x
i 1
n
i
令y

n
x i,得:
i 1
ln L x i , p y ln p n y ln 1 p 由对数似然方程 d ln L dp y p n y 1 p 0
参数估计
在实际问题中,对于一个总体ξ往往是 仅知其分布的类型,而其中所含的一个或 几个参数的值却是未知的,因此只有在确 定这些参数后,才能通过其分布来计算概 率,如何确定这些参数的数值呢?这就是 统计推断中的“参数估计”问题。
本章只研究总体分布是连续型或离散型两种情
形。为简便起见,我们引入一个对这两种情形通
2
这说明 是 的无偏估计
. S 是 的无偏估计。
2 2
~2 2 2 2 但 S 不是 的无偏估计。因此,一 般用 S 作为 的估计, ~2 2 但在 n 很大时, S 与 S 相差不大,这时二者就 不加以 区别了。
例2
设总体 有 E , D
2
, 1 , 2 , , n 是 的样本,

概率论与数理统计第8章

概率论与数理统计第8章

实验目的
通过实际数据验证概率论与数理统计中的理论 和方法,提高对理论知识的理解和应用能力。
01
1. 数据收集
从相关领域获取实际数据,确保数据 质量和代表性。
03
3. 理论应用
根据实验目的选择合适的理论和方法,进行 数据分析和解读。
05
02
实验方法
收集相关领域的实际数据,运用概率论与数 理统计中的理论和方法进行分析,如概率分 布、参数估计、假设检验等。
无偏性、有效性和一致性。
有效性
在所有无偏估计量中,有效性 是指方差最小的估计量。
点估计
用样本统计量来估计未知参数 的过程。
无偏性
估计量的期望值等于被估计的 参数值。
一致性
随着样本容量的增加,估计量 的值应趋近于被估计的参数值。
区间估计
区间估计
根据样本数据推断未知参数的可能取值范围。
置信区间和置信水平
本章内容主要包括贝叶斯推断的基本概念、贝叶斯推断的数学基础、贝叶斯推断 在参数估计和假设检验中的应用,以及贝叶斯推断的优缺点和与其他统计方法的 比较。
学习目标
01
掌握贝叶斯推断的基本原理和方法,理解贝叶斯推 断的数学基础。
02
学会使用贝叶斯方法进行参数估计和假设检验,了 解贝叶斯推断在实践中的应用。
案例总结
总结案例分析的成果,提炼出具有指导意义的结论和建议,为实际工 作提供参考和借鉴。
THANKS FOR WATCHING
感谢您的观看
置信区间是参数可能取值的范围,置信水平是该区间包含参数真 值的概率。
区间估计的步骤
确定置信水平、构造合适的统计量、计算置信区间。
假设检验的基本概念与步骤
假设检验

概率论与数理统计 第8章

概率论与数理统计  第8章
后所生产的灯管中抽取 25 只,测得平均寿命为 1675 小时。 问采用新工艺后,灯管寿命是否有显著性提高?
现在的问题就是要判别新产品的寿命是服从 μ >1500 的
正态分布,还是服从 μ ≤1500的正态分布? 若是前者,我们 就说新产品的寿命有显著性提高;若是后者,就说新产品的 寿命没有显著性提高。
定义 1 将对总体提出的某种假设称为原假设,记为 H 0 ; 将与原假设矛盾的假设称为备择假设,记为 H 1 。
在例 8-1 中,我们把涉及的两种情况用假设的形式表示
出来,第一个假设 μ ≤1500 表示采用新工艺后产品平均寿命没 有显著性提高,第二个假设 μ >1500 表示采用新工艺后产品平
均寿命有显著性提高。第一个假设为原假设,即“ H 0 :μ
定义 8 给定犯第一类错误的概率不大于 α 所作的假设 检验称为显著性检验,称 α 为显著性水平。 例 8-2 某车间用一台包装机包装食盐,每袋食盐的净 重是一个随机变量,它服从正态分布。当包装机正常时,其 均值为 0.5kg ,标准差为 0.015kg 。某日开工后为检查包装 机工作是否正常,随机地抽取它所包装的食盐 9 袋,称得样 本均值 ������ X =0. 511kg ,问在显著性水平 α =0.05 下,这 天包装机工作是否正常。
由于无论是第一类错误还是第二类错误都是作假设检验 时的随机事件,因此在假设检验中它们都有可能发生。我们 当然希望尽可能使犯两类错误的概率都很小,但一般来说, 当样本的容量固定时,若刻意地减少犯一类错误的概率,则 犯另一类错误的概率往往会增大。若要使两类错误的概率都 减小,就需增大样本的容量。在给定样本容量的情况下,我 们总是对犯第一类错误的概率加以控制,使它不大于 α , 而不关心犯第二类错误的概率 β是增大了还是减小了,这样 的假设检验就是显著性检验。

概率论与数理统计第八章假设检验

概率论与数理统计第八章假设检验
当总体分布函数完全未知或只知其形式、但 不知其参数的情况,为推断总体的性质,提出 某些关于总体的假设。
为判断所作的假设是否正确, 从总体中抽取 样本, 根据样本的取值, 按一定的原则进行检 验, 然后, 作出接受或拒绝所作假设的决定.
整理课件
2
我们主要讨论的假设检验的内容有
参数检验 总体均值、均值差的检验 总体方差、方差比的检验
H0: Θ0 vs H1: Θ1,
根据样本,构造一个检验统计量T 和检验法则: 若与T的取值有关的一个小概率事件W发生,则 否定H0,否则接受H0,而且要求
P(W|H0)
此时称W为拒绝域,整为理课检件 验水平。
11
例 3. 某厂生产的螺钉,按标准强度为68克/mm2,
而实际生产的螺钉强度 X 服从 N ( ,3.6 2 ). 若 E ( X ) = = 68, 则认为这批螺钉符合要求,否
7
所以我们否定H0, 认为隧道南的路面发生交 通事故的概率比隧道北大.
做出以上结论也有可能犯错误。这是因为 当隧道南北的路面发生交通事故的概率相同, 而3起交通事故又都出现在隧道南时, 我们才犯 错误。这一概率正是P=0.043.
于是, 我们判断正确的概率是1-0.043=95.7%
整理课件
8
假设检验中的基本概念和检验思想 (1) 根据问题的背景, 提出原假设
再作一个备择假设
H1: p> 0.35. 在本问题中,如果判定H0不对,就应当承认H1.
检验: 三起交通事故的发生是相互独立的, 他们
之间没有联系.
如果H0为真, 则每一起事故发生在隧道南的 概率都是0.35, 于是这三起交通事故都发生在隧
道南的概率是
P= 0.353 ≈ 0.043.

《概率论与数理统计》第八章1假设检验的基本概念

《概率论与数理统计》第八章1假设检验的基本概念
单侧检验 H0 : 0 1000, H1 : 1000
2. 从某批矿砂中,抽取10样本,检验这批砂矿的含 铁量是否为3%?
双侧检验 H0 : 0 3%, H1 : 3%
3.某学校学生英语平均分65分, 先抽取某个班的平均 分,看该成绩是否显著高于全校整体水平?
单侧检验 H0 : 0 65, H1 : 65
0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512, 问机器是否正常?
分析 以 和 分别表示这一天袋装糖的净重
总体X 的均值和标准差,
由长期实践表明标准差比较稳定, 我们就设
0.015,于是 X ~ N(, 0.0152 ),这里 未知. 问题 问题是根据样本值判断 0.5 还是 0.5 .

以,原假
设H
不正确
0

对于这两种解释,哪种解释比较合理呢?
我们需要判断以上两种假设谁对谁错,并给出判断的理由
以上例子属于参数检验(parametric test) 的问题,(如针对总体均值,总体方差等参数的假 设检验)。
另外还有非参数检验(Nonparametric test) 的问题,如关于总体服从某种分布(如正态分布, 泊松分布)的假设检验。
4. 拒绝域与临界点
拒绝域W1: 拒绝原假设 H0 的所有样本值 (x1, x2, ···, xn)所组成的集合.
W1 W1 :拒绝原假设H0的检验统计量的取值范围.
临界点(值):拒绝域的边界点(值) (相应于检验统计量的值).
如: 在前面例4中,拒绝域 {u :| u | u / 2 }.
5. 双边备择假设与双边假设检验
之 下 做 出 的.
2. 检验统计量

概率论课件_高教版_第八章_方差分析与回归分析

概率论课件_高教版_第八章_方差分析与回归分析

MS A 168.00 F 20.56 MS e 8.17
查附表在f1=3,f2=12时, F0.05=3.49,F0.01=5.95 实得 F> F0.01或 P<0.01,说明药剂处理有统计意义。
四、单因素方差分析模型参数的估计 当方差分析结果为否定原假设时,就需要估计模型的有 关参数 ,下面就讨论方差分析模型参数的估计。 单因素方差分析的模型 为 xij i ij i 1,2, , r 2 ~ N ( 0 , ), 且相互独立 j 1,2, , m ij 其中为总以平均效应, i为因素A的第i个水平Ai 对试验指标 的作用; ij为随机因素对试验指标 值的影响。需要估计的 参数 有 , i , 2。不难证明这些参数的 极大似然估计量为: 1 r m 1 m 1 r m ˆ i xij ˆ xij xij rm i 1 j 1 m j rm i 1 j 1 1 r m 1 2 2 ˆ ˆ) ( xij SSe rm i 1 j 1 rm
Tr
T

xr
x
其中xij是因素A第i水平下第j次重复试验结果 , m r m r T T Ti xij xi T xij Ti x . m rm j 1 i 1 j 1 i 1
单因素方差分析的统计模型
试验数据xij满足 xij i ij i 1,2,, r 2 ~ N ( 0 , ),且相互独立 j 1,2,, m ij 其中为总以平均效应, i为因素A的第i个水平Ai 对试验指 标的作用 ; ij为随机因素对试验指标 值的影响。
鸡重/g-1000
60 80 1 2 12 9 28
Ti

概率论与数理统计第8章

概率论与数理统计第8章
Fn (x1, x2,...,xn;t1,t2,...,tn ) = Fn (xt j1 , xt j2 ,...,xt jn ;t j1 , t j2 ,...,t jn )
(2)相容性 对m<n,有
Fm(x1, x2,...,xm;t1,t2,...,tm ) = Fn (x1, x2,...,xm,,...;t1,t2,...,tn )
X (t) =
t
当 = T ,t = 1,2,3,...
2. 例8.1.1的随机相位正弦波
X (t) = a cos(bt + )
3.某路公交车的客流情况{(X(t), Y(t));t0<t< t1}, (X(t), Y(t))表示t时刻起点与终点站的候车人数.
§8.2 随机过程的分布函数和数字特征
+
)]
2
= a2 cos2 (bt + x)
1
dx
0
2
= a2 2 2 cos(2bt + 2x) +1dx = a2
2 0
2
2
DX (t) =
X2
(t )
=
a2 2
设X(t1)和X(t2)是随机过程在任意二个时刻t1和t2 时的状态. 定义8.2.7 称X(t1)和X(t2)的二阶混合原点矩
RX (t1,t2 ) = E[X (t1)X (t2 )]
X
(1)
=
1
2
=H
,
=T
于是,X(0.5),X(1)的概率分布分别为
X (0.5) 0
1
Pk
1
1
22
X (1) -1
2
Pk
1
1

概率论第八章8.1 假设检验的基本原理

概率论第八章8.1  假设检验的基本原理

0.12 0.1 0.08 0.06
α/2
0.04 0.02 60 62.5 65 67.5 70 72.5 75
α/2
H0 真
0. 12 0. 1 0. 08 0. 06 0. 04 0. 02
β
H0 不真
67 .5 70 72 .5 75 77 .5 80 82 .5
注 1º 一般,作假设检验时,先控制犯第一 一般,作假设检验时, 类错误的概率α,在此基础上使 β 尽量 一般要增大样本容量. 地小. 地小.要降低 β 一般要增大样本容量. 不真时,参数值越接近真值, 越大. 当H0不真时,参数值越接近真值,β 越大. 注 2º 备择假设可以是单侧,也可以双侧. 备择假设可以是单侧,也可以双侧. 引例2中的备择假设是双侧的. 引例2中的备择假设是双侧的.若根据以 往生产情况, =68.现采用了新工艺 现采用了新工艺, 往生产情况,µ0=68.现采用了新工艺,关 心的是新工艺能否提高螺钉强度, 心的是新工艺能否提高螺钉强度,µ越大 越好.此时可作如下的右边假设检验: 越好.此时可作如下的右边假设检验: H0 : µ = 68; H1 : µ > 68
拒绝 H0
第一类错误
(弃真) 弃真)
正确
犯第一类错误的概率通常记为 α 犯第二类错误的概率通常记为 β
任何检验方法都不能完全排除犯错 误的可能性. 误的可能性.理想的检验方法应使犯两类 错误的概率都很小, 错误的概率都很小,但在样本容量给定的 情形下,不可能使两者都很小,降低一个, 情形下,不可能使两者都很小,降低一个, 往往使另一个增大. 往往使另一个增大. 假设检验的指导思想是控制犯第一类 然后,若有必要, 错误的概率不超过α, 然后,若有必要,通 过增大样本容量的方法来减少 β .

概率论第八章

概率论第八章

n = 15, x = 10.48, α = 0.05, s = 0.237, 查表得 tα / 2 ( n 1) = t0.025 (14) = 2.1448
x 0 10.48 10.5 ≈ 0.327 ∈ (2.1448 , 2.1448) t= = s / n 0.237 / 15
故接受 H 0 , 认为金属棒的平均长度 无显著变化 .
故接受 H 0 , 认为该机工作正常 .
二. σ 未知
2
步骤: 、 步骤:1、提出假设 H0 : = 0 H1 : ≠ 0
X 0 ~ t(n 1) 2、H0成立时,选用检验统计量 T = 、 成立时, S n
3、对于给定的显著性水平 α ,由 P{ T > tα } = α 、 由此得到拒绝域W; 查表确定临界值 tα (n 1) ,由此得到拒绝域 ;
(n 1)S2
σ
2 0
~ χ 2 (n 1),
(n 1)S2 α (n 1)S2 α P ≤ k1 = , P ≥ k2 = , 2 2 2 σ0 2 σ0
P {拒绝H 0 | H 0为真} = P {小概率事件 A | H 0为真} = α
(2) 当原假设 H0 不真 而观察值却落入接受域 不真, 而观察值却落入接受域, 的判断, 称做第二类错误 第二类错误, 而作出了接受 H0 的判断 称做第二类错误 又叫 取伪错误, 取伪错误 犯第二类错误的概率记为
2 1 2 2
,
当H 0为真时 , t ~ t ( n1 + n2 2).
由P
1 2 =δ
{ t ≥ k} = α
( x y) δ
得 k = tα / 2 ( n1 + n2 2).
故拒绝域为

《概率论与数理统计教学课件》8第八章—正态总体均值和方差的假设检验

《概率论与数理统计教学课件》8第八章—正态总体均值和方差的假设检验
0
真)
P1 2
(
x y
11
k)
k t (n1 n2 2)
sw
n1 n2
2
概率统计
在显著性水平 下, H0 的拒绝域:
x y
sw
11
t (n1 n2 2)
2
n1 n2
注:

2 1
2 2
2
未知时
检验假设

H0 : 1 -2 (或1 2 ), H0 : 1 2 (或1 2 ),
2
概率统计
所以拒绝H 0 ,可认为这两种轮胎的耐磨性有显著差异。
注: ▲ 用两种不同的方法得到了两种不同的结论,那么
究竟应该采取哪一个结论比较合理呢?
显然,应该采取第二种方法得出的结论是合理的
因为数据配对的方法是针对同一架飞机的,它是 排除了因飞机之间的试验条件的不同而对数据产 生的干扰,所以它是直接反映了这两种轮胎的耐 磨性的显著差异的情况,因此,应采取第二种方 法得出的结论,即可认为这两种轮胎的耐磨性有 显著差异。
概率统计
按单个正态总体中当 2 未知时,关于 的假设检验
的计算公式,可得 H0 的拒绝域为:
C { t t t (n 1)}
2
经计算 d 320 , s2 89425 ,
t
d s
320 2.83 89425
n
8
t (n 1) t0.05 (7) 2.365
2
2
因为: t 2.83 t0.05 (7) 2.365
为已知常数,显著水平为
概率统计
Q 检验统计量
(X Y)
~ N (0,1)
2 1
2 2
n1 n2

《概率论与数理统计教学课件》8第八章置信区间与假设检验之间的关系及p值

《概率论与数理统计教学课件》8第八章置信区间与假设检验之间的关系及p值
验问题 :
H0 : 0, H1 : 0 也有类似的对应关系 . 若已求得单侧置信区间 ( ( X1, X2, , Xn ), ), 则当0 ( ( x1, x2, , xn ), ) 时接受 H0;
当0 ( ( x1, x2, , xn ), ) 时拒绝 H0 . 反之, 若已求得检验问题 H0 : 0 , H1 : 0
若 0 ( , ), 则接受 H0; 若 0 ( , ), 则拒绝 H0 .
反之 ,对于任意的0 , 考虑显著性水平为 的假设检验问题:
H0 : 0, H1 : 0 .
假设它的接受域为
( x1, x2, , xn ) 0 ( x1, x2, , xn ). 即有 P0 { ( X1, X2 , , Xn ) 0 ( X1, X2 , , Xn )} 由0 的任意性,

拒绝H
,再
0

0.01也要拒绝H0,但不
能知道将再降低一些是否也要拒绝H0. 而p值法
给出了拒绝 H0的最小显著性水平 . 因此p值法比
临界值法给出了有关拒绝域的更多的信息.
二、典型例题
例2 用p值法检验本章第一节例2 的检验问题
H 0 : 0 0.545, H1 : 0 0.05 解 用Z检验法 , 现在检验统计量Z x 0 的观察
(, ( X1, X2 , , Xn ))与显著水平为 的左边检 验问题 H0 : 0, H1 : 0 有类似的对应关系. 若已求得单侧置信区间 (, ( X1 , X2 , , Xn )),
则当0 (, ( x1, x2, , xn ))时接受 H0; 当0 (, ( x1, x2, , xn ))时拒绝 H0.
那么在检验问题
H0 : 0, H1 : 0中 p值 P0 {t t0 } t0右侧尾部面积, 如图3;

浙江大学 概率论第八章课件

浙江大学 概率论第八章课件

·右边检验 H0: µ≤µ0 ;H1:µ >µ0, 由P{T≥tα(n −1)} =α, 得水平为α的拒绝域为 T≥ tα(n−1)
α
某厂生产镍合金线,其抗拉强度的均值为10620(kg/mm2)。今 改进工艺后生产一批镍合金线,抽取10根,测得抗拉强度为 10512,10623,10668,10554,10776,10707,10557,10581,10666 ,10670。认为抗拉强度服从正态分布,取α=0.05 ,问新生产的 镍合金线的抗拉强度是否比过去生产的合金线抗拉强度要高?
解:H0:µ=112.6;H1:µ≠112.6 因为σ未知,所以用t检验。 n=7,α=0.05,拒绝域为 |t|≥t0.025(6)=2.4469 这里
x = 112.8, s = 1.135
112.8 − 112.6 | t |=| |= 0.466 < 2.4469 1.135 / 7
∴接受H0,认为间接测温无系统偏差。
H 1 : µ1 < µ 2
拒绝域为 t ≤ −tα ( n1 + n2 − 2)
比较甲,乙两种安眠药的疗效。将20名患者分成两组, 每组10人.其中10人服用甲药后延长睡眠的时数分别 为1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6, 4.6, 3.4。另10人服用乙药后延长睡眠的时数分别 为0.7, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, 0.8, 0.0, 2.0。若服用两种安眠药后增加的睡眠时数服 从方差相同的正态分布.试问两种安眠药的疗效有无 显著性差异?(α=0.10) 解: 因为两个总体方差未知但相等,所以用t检验。
Q X 是µ的无偏估计。如果假设为真,

概率论与数理统计第八章资料

概率论与数理统计第八章资料
当=2或3时,认为白球占3 4 即选择使观察结果概率较大的参数。
设(x1,..., xn )为总体的一组样本观察值。 要选取总体分布中未知参数的估计值, 使得 作为参数时,上述样本出现的可能性最大。 这种方法称为最大似然法。 若是离散型随机变量
P( xi ) p(xi, )
则样本x1,
...,
2
令 1=X 2
解得 = 2X 1 1 X
矩估计的优点:直接、简便
缺点:未充分利用分布信息
(二)最大似然法 两人射击,一人打中,一人没打中,认为打中者 技术较好。
某事件发生的概率为0.01或0.1,若一次试验中该 事件发生了,认为其概率为0.1 例5 在一个袋中有许多黑球与白球,其数量比为1:3 或3:1,通过抽样判断黑球多还是白球多。
解:有放回地抽取3个球, 若取到0个或1个白球,认为袋中黑球多。 若取到2个或3个白球,认为袋中白球多。
用表示取到的白球个数 若白球占1 4,则的分布为
0 1 2 3 P 27 27 9 1
64 64 64 64 若白球占3 4,则的分布为
0 1 2 3 P 1 9 27 27
64 64 64 64 可见,当=0或1时,认为白球占1 4
利用
ai2
a
2 j
2aia

j
3
ai
2
a1
a2
a3
2
i1
a12
a
2 2
a
2 3
2a1a 2
2a1a 3
2a 2a3
a12
a
2 2
a32
a12
a
2 2
a12 a32
a
2 2
a32
3

概率论与数理统计第八章课后习题及参考答案

概率论与数理统计第八章课后习题及参考答案

概率论与数理统计第八章课后习题及参考答案1.设某产品指标服从正态分布,它的均方差σ已知为150h ,今从一批产品中随机抽查26个,测得指标的平均值为1637h .问在5%的显著性水平,能否认为这批产品的指标为1600h ?解:总体X ~)150,(2μN ,检验假设为0H :1600=μ,1H :1600≠μ.采用U 检验法,选取统计量nX U /00σμ-=,当0H 成立时,U ~)1,0(N ,由已知,有1637=x ,26=n ,05.0=α,查正态分布表得96.1025.0=u ,该检验法的拒绝域为}96.1{>u .将观测值代入检验统计量得2577.142.293726/150********==-=u ,显然96.12577.1<=u ,故接受0H ,即可认为这批产品的指标为1600h .2.正常人的脉搏平均为72次/min ,现某医生从铅中毒患者中抽取10个人,测得其脉搏(单位:次/min)如下:54,67,68,78,70,66,67,70,65,69设脉搏服从正态分布,问在显著性水平05.0=α下,铅中毒患者与正常人的脉搏是否有显著性差异?解:本题是在未知方差2σ的条件下,检验总体均值72=μ.取检验统计量为nS X T /0μ-=,检验假设为0H :720==μμ,1H :72≠μ.当0H 成立时,T ~)1(-n t ,由已知,有4.67=x ,93.5=s ,05.0=α,查t 分布表得262.2)9(025.0=t ,将观测值代入检验统计量得45.288.16.410/93.5724.67/0-=-=-=-=n s x t μ,显然)9(262.2447.2025.0t t =>=,故拒绝0H ,即铅中毒患者与正常人的脉搏有显著性差异.3.测定某溶液中的水分,得到10个测定值,经统计%452.0=x ,22037.0=s ,该溶液中的水分含量X ~),(2σμN ,μ与2σ未知,试问在显著性水平05.0=α下该溶液水分含量均值μ是否超过5%?解:这是在总体方差2σ未知的情况下,关于均值μ的单侧检验.检验假设为0H :%5.0≤μ,1H :%5.0>μ.此假设等价于检验假设0H :%5.0=μ,1H :%5.0>μ.由于2σ未知,取检验统计量为nS X T /0μ-=.当0H 成立时,T ~)1(-n t ,拒绝域为)}1(/{0-≤-n t n s x αμ,将观测值代入检验统计量得709.1)5.052.0(10/0=-=-=ns x t μ,由05.0=α,查t 分布表得833.1)9(05.0=t ,显然)9(833.1709.105.0t t =<=,所以接受0H ,即该溶液水分含量均值μ是否超过5%.4.甲、乙两个品种作物,分别用10块地试种,产量结果97.30=x ,79.21=y ,7.2621=s ,1.1222=s .设甲、乙品种产量分别服从正态分布),(21σμN 和),(22σμN ,试问在01.0=α下,这两种品种的产量是否有显著性差异?解:这是在方差相等但未知的情况下检验两正态总体的均值是否相等的问题.检验假设为0H :21μμ=,1H :21μμ≠.由题可知,22221σσσ==未知,因此取检验统计量nm n m mn S n S m YX T +-+-+--=)2()1()1(2221,当0H 为真时,T ~)2(-+n m t ,该检验法的拒绝域为)}2({2/-+>n m t t α.由题设,10==n m ,97.30=x ,79.21=y ,7.2621=s ,1.1222=s .将其代入检验统计量得n m n m mn S n S m yx t +-+-+--=)2()1()1(222166.4201810101.1297.26979.2197.30=⨯⨯⨯+⨯-=,由01.0=α,查t 分布表得878.2)18()2(005.02/==-+t n m t α.显然)18(878.266.4005.0t t t =>=,因此,拒绝0H ,即这两种品种的产量有显著性差异.5.某纯净水生产厂用自动灌装机装纯净水,该自动灌装机正常罐装量X ~)4.0,18(2N ,现测量某厂9个罐装样品的灌装量(单位:L)如下:0.18,6.17,3.17,2.18,1.18,5.18,9.17,1.18,3.18在显著性水平05.0=α下,试问:(1)该天罐装是否合格?(2)罐装量精度是否在标准范围内?解:(1)检验罐装是否合格,即检验均值是否为18,故提出假设0H :18=μ,1H :18≠μ,由于方差224.0=σ已知,取检验统计量为nX U /00σμ-=,当0H 为真时,U ~)1,0(N ,该检验法的拒绝域为}{2/αu u ≥.由题可知,9=n ,18=x ,将其代入检验统计量得09/4.01818/00=-=-=n x u σμ,由05.0=α,查标准正态分布表得96.1025.0=u ,显然,025.096.10u u =<=,故接受0H ,即该天罐装合格.(2)检验罐装量精度是否在标准范围内,即检验假设0H :224.0≤σ,1H :224.0>σ,此假设等价于0H :224.0=σ,1H :224.0>σ.由于18=μ已知,选取检验统计量为∑=-=n i i X12202)18(1σχ,当0H 为真时,2χ~)(2n χ,该检验法的拒绝域为)}({22n αχχ≥.由已知计算得625.6)18(112202=-=∑=n i i x σχ,查2χ分布表得307.18)10(205.0=χ,由此知)10(307.18625.6205.02χχ=<=,故接受0H ,即罐装量精度在标准范围内.6.某厂生产某型号电池,其寿命长期以来服从方差221600h =σ的正态分布,现从中抽取25只进行测量,得222500h s =,问在显著性水平05.0=α下,这批电池的波动性较以往有无显著变化?解:这是在均值未知的条件下,对正态总体方差的检验问题.检验假设为0H :202σσ=,1H :202σσ≠,其中160020=σ,取检验统计量为222)1(σχS n -=.当0H 为真时,2χ~)(2n χ,对于给定的显著性水平,该检验法的拒绝域为)}1({22/12-≤-n αχχ或)}1({22/2-≥n αχχ.将观测值25002=s 代入检验统计量得5.371600250024)1(222=⨯=-=σχs n .对于05.0=α,查2χ分布表得401.12)24()1(2975.022/1==--χχαn ,364.39)24()1(2025.022/==-χχαn ,由于)24(364.395.37401.12)24(2025.022975.0χχχ=<=<=,故接受0H ,即这批电池的波动性较以往无显著变化.7.某工厂生产一批保险丝,从中任取10根试验熔化时间,得60=x ,8.1202=s ,设熔化时间服从正态分布),(2σμN ,在01.0=α下,试问熔化时间的方差是否大于100?解:本题是在均值未知的条件下,检验2σ是否大于100,是关于2σ的单侧检验问题.检验假设为0H :1002≥σ,1H :1002<σ,此假设等价于0H :1002=σ,1H :1002<σ,这是左侧检验问题,取检验统计量为2022)1(σχS n -=,当0H 为真时,2χ~)(2n χ,该检验法的拒绝域为)}1({212-≤-n αχχ.将10=n ,10020=σ,8.1202=s ,代入上述统计量得87.101008.1209)1(2022=⨯=-=σχs n .对于01.0=α,查2χ分布表得0879.2)9(299.0=χ,显然)9(0879.287.10299.02χχ=>=,接受0H ,即熔化时间的方差大于100.本题如果将检验假设设为0H :1002≤σ,1H :1002>σ,即进行右侧检验,统计量得选取如上,则该检验法的拒绝域为)}1({22-≥n αχχ.对于01.0=α,查2χ分布表得666.21)9(201.0=χ,显然)9(666.2187.10201.02χχ=<=,接受0H ,即熔化时间的方差不大于100.注:若选取的显著性水平为3.0=α,用MATLAB 计算得6564.10)9(23.0=χ,从而有)9(6564.1087.1023.02χχ=<=,则应拒绝原假设,即熔化时间的方差大于100.上述结果说明了在观测值接近临界值时,原假设不同的取法会导致检验结果的不一样,如果用-p 值检验法则可避免上述矛盾.8.设有两个来自不同正态总体的样本,4=m ,5=n ,60.0=x ,25.2=y ,07.1521=s ,81.1022=s .在显著性水平05.0=α下,试检验两个样本是否来自相同方差的总体?解:记两正态总体为),(211σμN 和),(222σμN ,其中1μ和2μ未知.检验假设为0H :2221σσ=,1H :2221σσ≠.取检验统计量为2221S S F =,当0H 为真时,F ~)1,1(--n m F ,该检验法的拒绝域为)}1,1({2/1--≤-n m F F α或)}1,1({2/--≥n m F F α.由题可知,05.0=α,4=m ,5=n ,将观测值代入检验统计量得39.181.1007.152221===s s F ,查F 分布表得98.9)4,3()1,1(025.02/1==---F n m F α,066.010.151)3,4(1)4,3()1,1(025.0975.02/====--F F n m F α.由此知)4,3(98.939.1066.0)4,3(025.0975.0F F =<<=,观测值没有落入拒绝域内,接受0H ,即两个样本来自相同方差的总体.9.某厂的生产管理员认为该厂第一道工序加工完的产品送到第二道工序进行加工之前的平均等待时间超过90min .现对100件产品的随机抽样结果的平均等待时间为96min ,样本标准差为30min .问抽样的结果是否支持该管理员的看法?(05.0=α).解:这是非正态总体均值的检验问题,用X 表示第一道工序加工完的产品送到第二道工序进行加工之前的等待时间,设其均值为μ,依题意,检验假设为0H :90≤μ,1H :90>μ.由于100=n 为大样本,故用U 检验法.总体标准差σ未知,用样本标准差S 代替.取检验统计量为100/90S X U -=,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{αu u >.由题可知,96=x ,30=s ,100=n .对于05.0=α,查标准正态分布表得645.105.0==u u α.将观测值代入检验统计量得2100/309096100/90=-=-=s x u ,显然,05.0645.12u u =>=,故拒绝0H ,即平均等待时间超过90分钟,也即支持该管理员的看法.10.一位中学校长在报纸上看到这样的报道:“这一城市的初中学生平均每周看8h 电视.”她认为她所领导的学校,学生看电视时间明显小于该数字.为此,她向学校的100名初中学生作了调查,得知平均每周看电视的时间5.6=x h ,样本标准差为2=s h ,问是否可以认为校长的看法是对的?(05.0=α)解:初中生每周看电视的时间不服从正态分布,这是非正态总体均值的假设检验问题.检验假设为0H :8=μ,1H :8<μ.由于100=n 为大样本,故用U 检验法,取检验统计量为nS X U /μ-=,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{αu u -<.由题可知,5.6=x ,2=s ,100=n .对于05.0=α,查标准正态分布表得645.105.0==u u α.将观测值代入检验算统计量得5.7100/285.6-=-=u ,显然,05.0645.15.7u u -=-<-=,故拒绝0H ,即初中生平均每周看电视的时间少于8小时,这位校长的看法是对的.11.已知某种电子元件的使用寿命X (单位:h)服从指数分布)(λE .抽查100个元件,得样本均值950=x h .能否认为参数001.0=λ?(05.0=α)解:X ~)(λE ,λ1)(=X E ,21)(λ=X D ,由中心极限定理知,当n 充分大时,近似地有n X n X U )1(/1/1-=-=λλλ~)1,0(N .由题可知001.00=λ,检验假设可设为0H :0λλ=,1H :0λλ≠.取检验统计量为n X n X U )1(/1/1000-=-=λλλ,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{2/αu u ≤.由题知,100=n ,950=x ,05.0=α,查标准正态分布表知96.1025.02/==u u α.将观测值代入检验统计量得5.0-=u ,显然,025.096.15.0u u =<=,故接受0H ,即可以认为参数001.0=λ.12.某地区主管工业的负责人收到一份报告,该报告中说他主管的工厂中执行环境保护条例的厂家不足60%,这位负责人认为应不低于60%,于是他在该地区众多的工厂中随机抽查了60个厂家,结果发现有33家执行了环境保护条例,那么由他本人的调查结果能否证明那份报告中的说法有问题?(05.0=α)解:设执行环境保护条例的厂家所占的比率为p ,则检验假设为0H :6.0≥p ,1H :6.0<p ,上述假设等价于0H :6.0=p ,1H :6.0<p .引入随机变量⎩⎨⎧=.,0,,1条例抽到的厂家为执行环保例抽到的厂家执行环保条X 则X ~),1(p B ,p X E =)(,)1()(p p X D -=,由中心极限定理,当0H 为真时,统计量60/)6.01(6.06.0/)1(000--=--=X n p p p X U 近似地服从)1,0(N .对于显著性水平05.0=α,查标准正态分布表得645.105.0==u u α,由此可知05.0}645.160/)6.01(6.06.0{≈-<--X P .以U 作为检验统计量,该检验法的拒绝域为}645.1{05.0-=-<u u .将55.06033==x 代入上述检验统计量,得791.060/)6.01(6.06.055.0/)1(000-=--=--=n p p p x u ,显然,05.0645.1791.0u u -=->-=,故接受0H ,即执行环保条例的厂家不低于60%,也即由他本人的调查结果证明那份报告中的说法有问题.13.从选取A 中抽取300名选民的选票,从选取B 中抽取200名选民的选票,在这两组选票中,分别有168票和96票支持所选候选人,试在显著性水平05.0=α下,检验两个选区之间对候选人的支持是否存在差异.解:这是检验两个比率是否相等的问题,检验假设为0H :21p p =,1H :21p p ≠.取检验统计量为⎪⎭⎫ ⎝⎛+--=m n p p p pU 11)ˆ1(ˆˆˆ21,其中)(1ˆ2121m n Y Y Y X X X mn p ++++++++= 是21p p p ==的点估计.当0H 为真时,近似地有U ~)1,0(N .由题可知300=n ,168=n μ,200=m ,96=m μ,又56.0300168ˆ1==p ,48.020096ˆ2==p ,528.0500264ˆ==++=m n p m n μμ.由此得统计量的观测值为755.11201472.0528.048.056.0=⨯⨯-=u ,由05.0)96.1(==>αU P ,得拒绝域为}96.1{>u ,因为96.1755.1<=u ,故接受0H ,即两个选区之间对候选人的支持无显著性差异.。

概率论与数理统计教程 第8章

概率论与数理统计教程 第8章
fe=nr
MSe= Se/fe
总和
ST
fT=n1
对给定的,可作如下判断:
若F F1 (fA ,fe) ,则说明因子A不显著。 该检验的p值也可利用统计软件求出,若 以Y记服从F(fA ,fe)的随机变量,则检验的 p 值为 p=P(YF)。
如果 F >F1 (fA ,fe),则认为因子A显著;
由定理8.1.2,若H0成立,则检验统计量F服从自由度为fA和fe的F分布,因此拒绝域为W={FF1 (fA ,fe)},通常将上述计算过程列成一张表格,称为方差分析表。
表8.1.3 单因子方差分析表
来源
平方和
自由度
均方和
F比
因子
SA
fA=r1
MSA= SA/fA
F= MSA/ MSe
误差
Se
第八章 方差分析与回归分析
§8.1 方差分析 §8.2 多重比较 §8.3 方差齐性分析 §8.4 一元线性回归 §8.5 一元非线性回归
§8.1 方差分析
8.1.1 问题的提出 实际工作中我们经常碰到多个正态总体均值的比较问题,处理这类问题通常采用所谓的方差分析方法。
例8.1.1 在饲料养鸡增肥的研究中,某研究所提出三种饲料配方:A1是以鱼粉为主的饲料,A2是以槐树粉为主的饲料,A3是以苜蓿粉为主的饲料。为比较三种饲料的效果,特选 24 只相似的雏鸡随机均分为三组,每组各喂一种饲料,60天后观察它们的重量。试验结果如下表所示:
模型(8.1.3)可以改写为 (8.1.8) 假设(8.1.1)可改写为 H0 :a1 =a2 =…=ar =0 (8.1.9)
8.1.5 参数估计
在检验结果为显著时,我们可进一步求出总均值 、各主效应ai和误差方差 2的估计。

概率论习题答案第8章答案

概率论习题答案第8章答案

=
(n −1)s 2
σ
2 0
(其中σ 0
= 0.04% ),拒绝域为
{χ 2

χ2 1−α
2
(n
−1)} ∪{χ 2

χα2 (n 2
− 1)}
查表得
χ
2 0.025
(9)
= 19.023,
χ
2 0.975
(9)
=
2.7 ,算得 χ 2
=
7.701 ,它没有落在拒绝域中,故接受
原假设 H 0 .
5.本题是在显著性水平α = 0.05 下检验假设:
计算结果列表如下
i
vi
pi
np i
vi − npˆ i
(vi − npˆ i )2 / npˆ i
1
9
1/6
10.5
-1.5
0.2143
2
10
1/6
10.5
-0.5
0.02381
3
11
1/6
10.5
0.5
0.02381
4
8
1/6
10.5
-2.5
0.5952
5
13
1/6
10.5
2.5
0.5952
6
12

由于 n1, n2 很大,故有 t0.025 (218) ≈ z0.025 = 1.96 将 x = 2805, y = 2680, 以上数据代入上式
计算可得 | t |= 8.206 > 1.96 ,故拒绝原假设 H 0 ,可以认为两个总体的平均值有显著差异,即
两种枪弹在速度方面有显著差异. 综上所述,两种枪弹在速度方面有显著差异但在均匀性方面没有显著差异.

概率论第八章 置信区间

概率论第八章 置信区间

试问机器是否正常 (给定显著性水平 0.05)
解 : 设X ~ N ( , ), 此是在 0.015已知条件下 ,
2
判断均值 0.5
还是 0.5的问题, 为此
1)提出假设 H 0 : 0.5; H1 : 0.5;
2)显著性水平 0.05, 样本容量 n9
装糖重总体 X 的均值和标准差, 已知 0.015, 则 X ~ N ( , 0.0152 ), 其中 未知.
问题: 根据样本值判断 0.5 还是 0.5 .
提出两个对立假设H 0 : 0 0.5 和 H1 : 0 . 再利用已知样本作出判断是接受假设 H0 ( 拒绝 假设 H1 ) , 还是拒绝假设 H0 (接受假设 H1 ). 如果作出的判断是接受 H0, 则 0 ,
又如, 对于正态总体提出数学期望等于 0 的 假设等. 假设检验就是根据样本对所提出的假设作 出判断: 是接受, 还是拒绝.
假设检验问题是统计推断的另一类重要问题. 如何利用样本值对一个具体的假设进行检验?
通常借助于直观分析和理论分析相结合 的做法,其基本原理就是人们在实际问题中经 常采用的所谓实际推断原理:“一个小概率事 件在一次试验中几乎是不可能发生的”.
对实际中需作出判断的 问题, 提出适当的 统计假设, 根据来自总体的样本 X 1 , X 2 , , X n , 选择适当的统计量 , 此统计量需服从熟知的 分 布, 据此分布由小概率原理 可以确定原假设的 拒绝域, 若样本值落入此拒绝域 中, 则拒绝原假 设, 否则接受原假设。
二、假设检验的相关概念
H0:0 H0: 0 H 0: = 0
vs vs vs
H 1: > 0 H 1: < 0 H1: 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P{接受H 0 | H 0为假}=?

PH1 {接受H 0 } ? P{接受H 0 | H1为真} ? ?
在本例中 ,上式可写成
PH1
?? ? ??
x
?
? /
?0
n
? k??? ? ?
??
对于给定的一对 H 0 和 H1 ,总可以找出许多的拒绝域, 比如在本例中当 k 取不同的值时就得到不同的拒绝域. 当然我们希望寻找这样的拒绝域,使得犯两类错误的概
在本例中 ,上式可写成
PH 0
?? ? ??
x
?
? /
?0
n
? k??? ? ?
??
b)第二类错误 (取伪)
原假设 H 0 事实上是假的,但是由于检验统计量的观 察值没有落在拒绝域中 ,从而导致接受 H 0 .这时犯了 “取伪”的错误,即接受了错误的假设, 这一类错误我 们称之为第二类错误.
记犯第二类错误的概率为 ? ,则有
现在的问题是 :依据什么样的法则来决定拒绝还是 接受 H0?
2)我们已经知道 ,样本均值 x 是总体数学期望 ? 的
一个无偏估计,因此当 H 0 为真时, x 与 ? 0 ? 0.5 应该比 较接近.
由于抽样的随机性, x 与 ? 0 之间不可避免地会出 现一定的差异 ,但是如果 | x ? ? 0 | 很大时 ,我们就有 理由怀疑 H 0 的正确性并进而拒绝 H 0 .
率? 与 ? 都很小.但是,已有研究表明,当样本容量给定 后,? 与 ? 中的一个减小时,另一个却随着增大,要使它
们同时都很小是不可能的.
基于这种情况 ,奈曼和皮尔逊(Neyman-Pearson) 提出了 如下原则:
在控制第一类错误的概率 ? 的条件下 ,使犯第二 类错误的概率 ? 尽量的小.
这种假设检验问题称为显著性检验问题.称犯第一类 错误的概率? 为显著性水平.
Neyman-Pearson 原则的出发点 :我们提出原假设时是 经过细致调查和考虑的 ,它必须是一个要加以保护的假 设,这样当我们要拒绝它时必须非常慎重 ,一般情况下不 宜轻易拒绝 .
在确定了显著性水平后 ,接下来的任务就是确定拒绝域 .
4)由于在 H0为真的条件下
u ? x ? ? 0 ~ N(0,1) ?/ n
第一节 假设检验的基本概念
先通过一个例题来说明假设检验的基本思想及 由此而形成的一些基本概念 .在本章中我们将不 区别样本和样本值 ,都记为( x1 , x2 ,? , xn ),并且将 总体记为 x .
例 1 某车间用一台包装机包装葡萄糖 .包得的袋 装糖重是一个随机变量,它服从正态分布
N (? ,0.015 2 ) .当机器正常时 ,其均值为 0.5 公斤,随
a)第一类错误 (弃真)
原假设 H0 事实上是真的,但是由于检验统计量的 观察值落入拒绝域中,从而导致拒绝 H0 .这时犯了 “弃真”的错误,即将正确的假设摒弃了,这一类错 误我们称之为第一类错误.
记犯第一类错误的概率为? ,则有
P{拒绝H 0 | H 0为真}=?

PH0 {拒绝H 0 } ? ?
机地抽取它所包装的糖 9 袋,称得净重分别为(公斤) 0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512
问包装机工作是否正常 ?
解 我们按照下列步骤来分析 :
1)看它工作是否正常 ,实际上就是看是否可以认为
? 等于 0.5,如果可以认为 ? 等于 0.5,则表明这天的包 装机工作正常,否则,如果不可以认为 ? 等于 0.5,则表
| u |?
x? ?0 ?/ n
?
0.511 ? 0.5 0.015 / 9
? 2.2 ? 1.96 ?
z0.025
于是拒绝 H 0 ,即认为这天包装机工作不正常 .
综上所述,处理假设检验问题的步骤如下:
1、根据问题的实际情况 ,建立原假设 H 0 及备择 假设 H 1 ;
2、选定检验统计量并分析拒绝域的形式; 3、给定显著性水平? ,并由此确定出拒绝域C ;
这就是一个判断的法则 .
称 u ? x ? ? 0 为检验统计量 ?/ n
| u |? k 为拒绝域的形式 .
在很大的程度上我们可以说 ,确定假设检验的法则的 过程就是确定拒绝域的过程 .
3)可能犯的两类错误
现在假设正数 k已经确定,则当我们使用上面的法则作 判断时,由于检验统计量的随机性 ,不可避免地会导致如 下两类错误 :
由于当 H0为真时 ,统计量
u ? x? ?0 ~ N(0,1) ?/ n
(?0 ? 0.5, ? ? 0.015,n ? 9)
因此当 H 0 为真时 , | u | 不应很大 ,如果很大 ,则拒 绝 H 0 .基于这种想法,我们所要做的就是确定一个正 数 k ,当 | u |? k 时拒绝 H 0 同时接受 H1 ,而在 | u |? k 时接受 H 0
第八章 假设检验(Hypothesis Testing)
假设检验 是另一种有重要理论和应用价值 的统计推断形式 .它的基本任务是 ,在总体的分布 函数完全未知或只知其形式但不知其参数的情况 下,为了推断总体的某些性质 ,首先提出某些关于 总体的假设 ,然后根据样本所提供的信息 ,对所提 假设做出“ 是”或“否”的结论性判断 .假设检 验有其独特的统计思想 ,许多实际问题都可以作 为假设检验问题而得以有效地解决 .
所以由
PH 0
? ? ?
x
?
? /
?0
n
?
? k? ? ?
?
可得
k ? z? 2 .
因而,若| u |? z? ,则拒绝 H 0 ,而若| u |? z? ,则接受 H 0
2
2
称 | u |? z? /2 为拒绝域.
在本例中 ,如果取 ? ? 0.05 ,则有 k ? z0.025 ? 1.96 , 又已知 ? ? 0.015, n ? 9 ,再由样本算得 x ? 0.511 ,有
明这天的包装机工作不正常 .
因此,本例的问题实际上是要我们根据样本所提供的 信息来检验下面的假设 :
H0 : ? ? ? 0 ? H1 : ? ? ? 0
其中 ? 0 ? 0.5 .称 H 0 为原假设(或零假设), H1 为 备择假设.
如果接受 H 0 ,则表明这天的包装机工作正常 , 如果拒绝 H 0 ,则接受 H1 ,此时表明这天的包装机 工作不正常 .
相关文档
最新文档