机床精度检测方法

合集下载

数控机床的精度检测与调整方法

数控机床的精度检测与调整方法

数控机床的精度检测与调整方法数控机床是现代制造业中不可或缺的一种设备,它的精度对于产品的质量和性能起着至关重要的作用。

本文将介绍数控机床的精度检测与调整方法,帮助读者更好地了解和应用这些技术。

一、精度检测方法1. 几何误差检测几何误差是数控机床精度的重要指标,包括直线度、平行度、垂直度、圆度等。

常用的几何误差检测方法有激光干涉仪、三坐标测量仪等。

通过这些设备,可以精确测量机床各个轴向的几何误差,并得出相应的数据。

2. 理论切削路径与实际切削路径对比在数控机床的加工过程中,理论切削路径与实际切削路径之间可能存在偏差。

通过对比理论切削路径与实际切削路径,可以判断数控机床的精度是否达标。

常用的方法是使用光学测量仪器,对切削路径进行高精度的测量和分析。

二、精度调整方法1. 机床结构调整数控机床的结构调整是提高其精度的重要手段。

首先,需要检查机床各个部件的紧固情况,确保机床的刚性和稳定性。

其次,根据几何误差的检测结果,对机床的导轨、滑块等部件进行调整,以减小误差。

2. 控制系统调整数控机床的控制系统对于其加工精度起着至关重要的作用。

通过调整控制系统的参数,可以改善机床的运动精度和定位精度。

常用的调整方法包括增加控制系统的采样频率、优化控制算法等。

3. 刀具与工件的匹配调整刀具与工件的匹配对于加工精度有很大影响。

在数控机床的加工过程中,需要根据工件的要求选择合适的刀具,并对刀具进行调整和校准。

同时,还需要对工件进行检测,确保其尺寸和形状与设计要求一致。

三、精度检测与调整的重要性数控机床的精度检测与调整是保证产品质量和性能的关键环节。

只有通过科学的检测方法,准确地了解机床的精度情况,才能及时采取相应的调整措施,提高机床的加工精度。

这对于提高生产效率、降低成本、提升产品竞争力具有重要意义。

四、未来发展趋势随着制造业的不断发展,数控机床的精度要求也越来越高。

未来,数控机床的精度检测与调整方法将更加精细化和智能化。

数控机床加工精度检测与校准方法

数控机床加工精度检测与校准方法

数控机床加工精度检测与校准方法在现代制造业中,数控机床是不可或缺的重要设备。

它的高效率、高精度和高稳定性使得加工过程更加精确和可靠。

然而,由于各种因素的影响,数控机床的加工精度可能会出现偏差。

因此,对数控机床的精度进行检测和校准是非常必要的。

一、加工精度检测方法1. 几何误差检测几何误差是数控机床加工精度的重要指标之一。

常见的几何误差包括直线度误差、平行度误差、垂直度误差和圆度误差等。

几何误差的检测可以使用光学测量仪器,如激光干涉仪、光学投影仪等。

通过将测量仪器与数控机床进行联动,可以实时监测数控机床的加工精度,并得出相应的误差数据。

2. 热误差检测热误差是数控机床加工精度的另一个重要指标。

由于加工过程中会产生热量,数控机床的温度会发生变化,从而导致加工精度的偏差。

为了检测热误差,可以使用温度传感器对数控机床进行监测。

通过实时记录数控机床的温度变化,并与加工精度进行对比,可以得出热误差的数据。

3. 振动误差检测振动误差是数控机床加工精度的另一个重要影响因素。

振动会导致数控机床的加工过程不稳定,从而影响加工精度。

为了检测振动误差,可以使用振动传感器对数控机床进行监测。

通过实时记录数控机床的振动情况,并与加工精度进行对比,可以得出振动误差的数据。

二、加工精度校准方法1. 机床调整机床调整是校准数控机床加工精度的常用方法之一。

通过调整数控机床的各项参数,如传动装置、导轨、滑块等,可以减小加工误差。

例如,可以通过调整导轨的平行度和垂直度来改善加工精度。

此外,还可以通过更换加工刀具、调整刀具固定方式等方式来提高加工精度。

2. 补偿技术补偿技术是校准数控机床加工精度的另一种常用方法。

通过对加工过程中的误差进行实时监测,并通过数学模型进行补偿,可以减小加工误差。

例如,可以通过在程序中添加补偿指令,根据误差数据进行补偿,从而提高加工精度。

3. 精度校准仪器精度校准仪器是校准数控机床加工精度的重要工具。

常见的精度校准仪器包括激光干涉仪、光学投影仪、三坐标测量机等。

数控机床工作台的定位精度检测与调整技巧

数控机床工作台的定位精度检测与调整技巧

数控机床工作台的定位精度检测与调整技巧数控机床工作台是现代制造业中不可或缺的重要设备,其定位精度直接关系到加工零件的质量和精度。

本文将为大家介绍数控机床工作台的定位精度检测与调整技巧。

一、定位精度检测方法1. 平面定位精度检测:将工作台移动到机床最大行程的两端,将测量时的测头放置在工作台上,并对两个端点进行平面度测量。

根据测量结果,计算平均偏差,以评估工作台的平面定位精度。

2. 垂直定位精度检测:将工作台移动到最高点或最低点,将测量时的测头放置在工作台上,并对工作台进行垂直度测量。

根据测量结果,计算垂直度偏差,以评估工作台的垂直定位精度。

3. 水平定位精度检测:将工作台移动到机床最大行程的两端,将测量时的测头放置在工作台上,并对两个端点进行水平度测量。

根据测量结果,计算平均偏差,以评估工作台的水平定位精度。

4. 位移重复性检测:将工作台移动到同一个位置,并多次测量工作台的定位偏差。

根据测量结果,计算位移重复性误差,以评估工作台的定位精度。

二、定位精度调整技巧1. 调整导轨与滑块:导轨与滑块是数控机床工作台的关键部件,直接影响着定位精度。

通过调整导轨与滑块之间的间隙,减小摩擦力,可以提高定位精度。

调整时需仔细测量每个位置的间隙,并确保在规定范围内。

2. 调整传动系统:传动系统的精度也是影响工作台定位精度的重要因素。

可以通过调整传动装置的齿轮啮合间隙、传动带的张力以及传动链条的松紧度来提高定位精度。

3. 检查并更换磨损部件:长时间使用后,机床工作台的关键部件可能会出现磨损,导致定位精度下降。

及时检查并更换磨损的部件,可以恢复工作台的定位精度。

4. 调整液压系统:液压系统的稳定性对工作台的定位精度有重要影响。

可以通过调整液压泵的工作压力、检查液压缸的密封状况,保证液压系统的正常工作,提高工作台的定位精度。

5. 关注温度变化:温度变化也会对工作台的定位精度造成影响。

数控机床工作台应放置在稳定的温度环境中,并定期检查温度变化对定位精度的影响,必要时进行调整或采取温度补偿措施。

机床加工精度检测方法

机床加工精度检测方法

机床加工精度检测方法机床加工精度是指机床在一定工作条件下,加工出的工件尺寸、形状、位置等与设计要求相符合的程度。

而机床加工精度检测方法是指通过一系列测试和测量手段,评估机床加工精度的准确度和可靠性的过程。

本文将介绍几种常见的机床加工精度检测方法,包括接触测量法、光学测量法和非接触测量法。

通过这些方法,可以有效地评估机床的加工性能,并采取相应的措施进行调整和改进。

一、接触测量法接触测量法是一种传统的机床加工精度检测方法,主要通过测量工件上某些特定位置的尺寸来评估机床加工的准确度。

常用的接触测量工具包括游标卡尺、千分尺、螺旋测微仪等。

通过接触测量法,可以测量工件的线度、平直度、圆度、垂直度等指标。

其中,线度是指工件表面的直线度,平直度是指工件平面表面的平面度,圆度是指工件表面的圆度,垂直度是指工件表面与参考平面的垂直度。

二、光学测量法光学测量法是一种非接触的机床加工精度检测方法,主要利用光学原理和设备进行测量。

光学测量法具有高精度、高效率和非接触的特点,适用于对复杂形状工件的加工精度进行评估。

常见的光学测量方法包括投影测量、激光干涉测量和激光三角测量等。

投影测量是利用光源将工件投影到标准平面上,通过比较工件与标准图样的差异来评估机床加工精度。

激光干涉测量利用激光干涉仪测量工件表面的高低起伏,从而评估机床的加工精度。

激光三角测量利用激光测距仪测量工件上某些特定点的位置坐标,从而确定工件的尺寸和形状。

三、非接触测量法非接触测量法是一种利用非接触式传感器进行测量的机床加工精度检测方法。

该方法能够减小测量误差和对工件造成的损伤,提高测量精度和稳定性。

常见的非接触测量方法包括电容传感器测量方法、感应传感器测量方法和光电传感器测量方法等。

电容传感器测量方法通过测量工件与电容探头之间的电容值来评估机床加工精度。

感应传感器测量方法通过感应线圈和金属工件之间的电磁感应关系,测量工件的尺寸和形状。

光电传感器测量方法通过测量光电传感器接收到的反射光信号,评估机床加工的平直度和垂直度等指标。

机床的加工精度检测和控制方法

机床的加工精度检测和控制方法

机床的加工精度检测和控制方法随着科技的发展,机床加工精度已经成为制造业中一个十分重要的指标和评价标准。

机床加工精度的好坏不仅关系着产品的质量,还关系到企业的效益和竞争力。

因此,如何确保机床加工的精度已成为一个亟待解决的问题。

机床加工精度指的是加工件的尺寸精度、形位精度和表面光洁度等方面,在碳素钢等材料上的切削精度可达0.001毫米,而在高硬度金属或硬质合金上的切削精度也可达到0.003毫米。

想要保证机床加工的精度,就需要对加工过程进行不断的检测和控制。

一、加工精度的检测方法1. 单次加工检测法这种方法主要是针对短时间内完成刀具保持器固定的单个工件。

利用三坐标测量仪等检测仪器来检测工件的表面粗糙度,以及内部、外部结构等方面的精度误差。

2. 批量式检测法批量式检测法主要针对大批量的工件进行检测。

对工件的大小、长度、平面度、圆度、轴线偏差等方面的数据进行统计和衡量,以此来分析精度的稳定性。

批量式检测法一般采用计算机辅助检测系统。

3. 现场检测法现场检测法是指在机床的实际工作场地上开展的检测工作,这种方法能够检测出加工床的真实效果,能够更真切地反映出工作场地实际加工结果。

现场检测法一般采用可搭配于现场的微机、计算机等设备。

二、加工精度控制方法1. 加工工艺控制加工工艺控制是指在机床的加工过程中,对各项工艺参数进行控制,保证加工的精度。

这些参数包括加工速度、进给速度、切削深度等,一般采用参数控制技术。

2. 加工零部件控制机床的各个零部件也会影响加工的精度。

例如,磨削剂,润滑剂等。

所以,可以采用改良零部件的方法来提高加工的精度。

3. 管理控制管理控制就是指对机床的维护和管理进行控制,保证机床的使用寿命和稳定性。

只有把管理控制做好了,才能够保证机床加工的精度。

4. 软件控制软件控制是指通过计算机编制控制程序进行加工控制,保证加工的稳定性和精度。

这种方式一般采用数字化控制系统,在加工过程中实时检测和控制机床。

总之,机床加工精度的检测和控制是企业制造的重点之一。

数控机床位置精度测试常用的测量方法及评定标准

数控机床位置精度测试常用的测量方法及评定标准
②定位精度和重复定位精度的确定JISB6330-1980标准(日本) · 定位精度A:在测量行程范围内(运动轴)测2点,一次往返目标点检测(双向)。测试后,计算出每一点的目标值与实测值之差,取最大位置偏差与最小位置偏差之差除以2,加正负号(±)作为该轴的定位精度。即: A=±1/2 {Max. [(Max. Xj↑-Min. Xj↑),(Max. Xj↓-Min. Xj↓)]} · 重复定位精度R:在测量行程范围内任取左中右三点,在每一点重复测试2次,取每点最大值最小值之差除以2就是重复定位精度;即 R=1/2 [Max.(Max. Xi - Min.Xi)]
4.4补偿实例 现以ZJK2532A数控铣钻床的X轴为例,该机床配置华中数控世纪星系统。测量方法为“步距规”测量;设某步距规实际尺寸为:
位置
P0
P1
P2
P3
P4
P5
实际尺寸mm
0
100.10
200.20
300.10
400.20
500.05
1、测试步骤如下: 。 在首次测量前,开机进入系统(华中数控HNC-2000或HNC-21M),依次按“F3参数”键、再按“F3输入权限”键进入下一子菜单,按F1数控厂家参数,输入数控厂家权限口令,初始口令为“NC”,回车,再按“F1参数索引”键,再按“F4轴补偿参数”键如图2-6所示,移动光标选择“0轴” 回车,即进入系统X轴补偿参数界面如图2-8所示,将系统的反向间隙、螺距补偿参数全部设置为零,按“Esc”键,界面出现对话框“是否保存修改参数?”,按“Y”键后保存修改后的参数。按“F10”键回到主界面,再按“Alt+X”,退出系统,进入DOS状态,按“N”回车进入系统;
图6步距规安装示意图

数控机床的精度检测方法与标准

数控机床的精度检测方法与标准

数控机床的精度检测方法与标准数控机床是一种高精度的机床设备,广泛应用于制造业的各个领域。

为了确保数控机床的工作精度,需要进行精度检测。

本文将介绍数控机床的精度检测方法和标准,为读者提供参考。

一、数控机床精度检测方法1. 几何精度检测几何精度是指数控机床在工作过程中,工件表面形状、位置、尺寸等与理论位置之间的差异。

常用的几何精度检测方法包括:平行度检测、垂直度检测、直线度检测等。

这些检测方法可以通过使用测量仪器(例如投影仪、三坐标测量机等)进行测量和比较,以确定数控机床是否满足工作要求。

2. 运动精度检测运动精度是指数控机床在运动中达到的位置是否准确。

常用的运动精度检测方法包括:位置误差检测、重复定位精度检测、速度误差检测等。

这些检测方法可以通过使用激光干涉仪、激光漂测仪等测量设备进行测量,以确定数控机床的运动精度是否符合要求。

3. 刚度检测刚度是指数控机床在受力时的变形情况。

常用的刚度检测方法包括:静刚度检测、动刚度检测等。

静刚度可以通过在数控机床各个部位施加力并测量其变形情况来进行检测;动刚度可以通过在数控机床运动状态下进行控制并测量位移来进行检测。

二、数控机床精度检测标准为了统一数控机床的精度检测标准,国内外制定了相应的标准,其中最有代表性的是国家标准GB/T16857-1997《数控机床精度检验方法》。

该标准规定了数控机床的几何精度、运动精度和刚度等指标的检测方法和要求。

以几何精度为例,该标准包括对工件表面形状、位置、尺寸等几何误差的检测,在该标准中,提供了一系列的测量方法,包括投影法、三坐标法、机床内检测法等。

此外,该标准还规定了几何误差的允许值,即数控机床在工作过程中允许存在的误差范围。

除了国家标准,国际标准也对数控机床的精度检测进行了规范,例如ISO 230-1和ISO 230-2等,这些标准主要用于指导和规范制造商以及使用单位在数控机床精度检测方面的操作。

近年来,随着数控机床技术的不断发展,对精度的要求也越来越高。

数控机床的精度与重复定位精度检测方法

数控机床的精度与重复定位精度检测方法

数控机床的精度与重复定位精度检测方法数控机床是现代制造业中不可或缺的设备之一,它的精度和重复定位精度对产品的质量和生产效率有着重要的影响。

本文将探讨数控机床的精度以及重复定位精度的检测方法。

一、数控机床的精度数控机床的精度是指其加工零件的尺寸和形状与设计要求的偏差程度。

数控机床的精度受到多种因素的影响,包括机床本身的结构和性能、刀具的质量、工件的材料等。

为了确保数控机床的精度,需要进行精度检测。

二、数控机床精度检测方法1. 几何误差检测几何误差是指数控机床在加工过程中由于机械结构和运动控制系统等方面的因素引起的误差。

常见的几何误差包括直线度误差、平行度误差、垂直度误差等。

几何误差可以通过使用激光干涉仪、三坐标测量仪等设备进行检测。

2. 重复定位精度检测重复定位精度是指数控机床在多次运动后,回到同一位置的精度。

重复定位精度的检测可以通过在机床上固定一个测量工具,然后多次运动并记录每次运动后测量工具的位置,最后计算其偏差值来进行。

3. 理论精度与实际精度对比理论精度是指数控机床在设计和制造过程中所规定的精度要求,而实际精度是指机床在使用过程中的实际精度水平。

通过对理论精度与实际精度进行对比,可以评估机床的性能和加工质量。

4. 环境因素对精度的影响环境因素如温度、湿度等也会对数控机床的精度产生影响。

因此,在进行精度检测时,需要对环境因素进行控制,并进行相应的修正。

5. 精度检测的标准与要求精度检测需要根据不同的机床类型和加工要求制定相应的标准和要求。

这些标准和要求可以包括尺寸偏差、形状偏差、位置偏差等内容,以确保机床的加工质量和性能。

总结:数控机床的精度和重复定位精度对于产品的质量和生产效率至关重要。

通过几何误差检测、重复定位精度检测、理论精度与实际精度对比以及环境因素的控制,可以评估和提高数控机床的精度。

精度检测的标准和要求也是确保机床性能和加工质量的重要保证。

在实际生产中,我们应该重视数控机床的精度检测,以提高产品质量和生产效率。

机床几何精度检查方法

机床几何精度检查方法

机床几何精度检查方法1.平行度检查:平行度是指机床工作台面和滑块导轨面之间的平行度。

平行度检查方法有两种:a.对称刀法:将刀具切削平台上的两条平行的工作台面,如果产生的两个切削刃的切削痕迹平行,则说明机床的平行度良好。

b.对称检查法:通过光束反射法和光束干涉法对工作台面进行检查,当光束的反射或干涉结果在一定范围内保持平行时,可以判定机床的平行度良好。

2.垂直度检查:垂直度是指机床工作台面和滑块导轨面之间的垂直程度。

垂直度检查方法有两种:a.比较法:使用专用的垂直度测量仪器,将其与机床工作台面和滑块导轨面对准,通过读取仪器上的刻度来判断机床的垂直度。

b.三点法:在机床工作台面上选取三个非共线的点,在滑块导轨面上同样选取三个非共线的点,通过比较两组点之间的水平和垂直距离,来判断机床的垂直度。

3.线性度检查:线性度是指机床工作台面或滑块导轨面上的线段与其中一参考线之间的偏差。

线性度检查方法有两种:a.平面对法:通过在工作台面或滑块导轨面上放置一个平面平行器,将其与参考线相对齐,然后通过计算平面平行器上的刻度差来判断线性度。

b.对称法:通过在工作台面或滑块导轨面上放置两个平面平行器,并将其与参考线相对齐,然后通过比较两个平面平行器上的刻度差来判断线性度。

4.圆度检查:圆度是指工作台面或滑块导轨面上的圆形轮廓与其真实圆形轮廓之间的偏差。

圆度检查方法有两种:a.对称法:通过在工作台面或滑块导轨面上放置一个圆度仪,将其与圆形轮廓相对齐,然后通过读取仪器上的刻度来判断圆度。

b.分割法:通过固定一个参考点,并将工作台面或滑块导轨面上的圆形轮廓分割成若干等分,在每个等分处测量偏差,然后通过计算平均偏差来判断圆度。

以上是机床几何精度检查的一些常用方法,通过使用这些方法可以对机床进行全面的几何精度检查,确保机床的精度符合要求。

机床精度测量及测量方法

机床精度测量及测量方法

机床精度测量及测量方法一、引言机床精度测量是机床制造和维护过程中的重要环节。

机床精度直接影响到加工零件的质量和生产效率。

因此,准确测量机床精度是确保机床性能和加工质量的关键。

二、机床精度测量的重要性机床精度是指机床在运行过程中所达到的加工精度,包括位置精度、重复精度、直线度、平行度、垂直度等。

机床精度测量的目的是为了评估机床的加工能力,及时发现和解决机床存在的问题,提高加工质量和生产效率。

三、机床精度测量的方法1. 直线度测量:直线度是指机床导轨面与某一参考直线之间的偏离程度。

直线度测量常用的方法有光学法、激光干涉法和电子触发法等。

其中,光学法是最常用的方法,通过光学仪器测量导轨面的直线度,并与参考直线进行比较,得出直线度的偏差值。

2. 平行度测量:平行度是指机床导轨面与参考平面之间的偏离程度。

平行度测量常用的方法有平行仪测量法、光学法和激光干涉法等。

其中,平行仪测量法是最常用的方法,通过平行仪测量导轨面与参考平面之间的平行度,并与参考平面进行比较,得出平行度的偏差值。

3. 垂直度测量:垂直度是指机床导轨面与参考垂直面之间的偏离程度。

垂直度测量常用的方法有水平仪测量法、光学法和激光干涉法等。

其中,水平仪测量法是最常用的方法,通过水平仪测量导轨面与参考垂直面之间的垂直度,并与参考垂直面进行比较,得出垂直度的偏差值。

4. 位置精度测量:位置精度是指机床在加工过程中所达到的位置精度。

位置精度测量常用的方法有坐标测量法、激光干涉法和编码器测量法等。

其中,坐标测量法是最常用的方法,通过测量工件在机床上的位置,并与设计位置进行比较,得出位置精度的偏差值。

5. 重复精度测量:重复精度是指机床在多次加工同一工件时,各次加工结果之间的偏离程度。

重复精度测量常用的方法有编码器测量法和激光干涉法等。

其中,编码器测量法是最常用的方法,通过测量工件在多次加工过程中的位置,并与设计位置进行比较,得出重复精度的偏差值。

四、机床精度测量的注意事项1. 在进行机床精度测量之前,需要对测量仪器进行校准和检验,确保测量结果的准确性和可靠性。

机床几何精度检测方法

机床几何精度检测方法

机床几何精度检测方法
1.机床床身平整度检测
机床床身平整度是指机床的工作台面是否平整,一般采用平板测量法进行检测。

该方法需要使用精工平板将其放置在机床工作台上,然后使用测量仪器测量平板与工作台的接触点的高低差值,以此来评估机床的床身平整度。

2.导轨定位精度检测
机床导轨定位精度是指导轨摩擦对机床工件加工精度的影响程度,一般采用划线法进行检测。

该方法需要在工作台上放置一张划线板,在导轨上依次进行划线,然后使用显微镜或测量仪器测量划线板上的划痕位置,通过比对划线位置与设定位置的偏差大小来评估导轨的定位精度。

3.回程精度检测
机床回程精度是指机床在回程过程中,工作台或主轴的精确位置定位能力。

一般采用工件比对法进行检测。

该方法需要在机床工作台上放置一组有相对位置关系的工件,然后分别进行前进和回程操作,最后使用测量仪器测量工件的位置偏差,以此来评估机床的回程精度。

4.运动误差检测
机床运动误差是指机床在加工过程中,由于机械结构本身的不完美或动力参数的不一致引起的运动误差。

一般采用激光干涉法进行检测。

该方法需要将激光传感器安装在机床工作台上,然后利用激光干涉仪测量工件表面的运动轨迹,通过分析激光干涉信号的变化来评估机床的运动误差。

除了以上几种常用的机床几何精度检测方法,还有一些其他的检测方法,如摄影测量法、光电测量法等。

这些方法在实际应用中根据不同机床
类型、要求和所需精度选择使用,以确保机床几何精度的准确性和稳定性。

最终,通过对机床几何精度的检测和评估,能够及时发现和纠正机床存在
的问题,提高机床加工的质量和稳定性。

机床几何精度检测方法

机床几何精度检测方法

机床几何精度检测方法几何精度检测方法一百分表、千分表及杠杆千分表的特点及适用范围百分表的分度值为0.01mm,其读数清晰,表针跳动较小,常用的一般分为0~5、0~10mm 两种量程,测量时测杆的压缩量一般为0.15~0.2mm(如图1),适用于较低精度要求的测量。

百分表经过震动后测杆可以很容易的回到原始位置,在震动的情况下检测不易磨损,损坏率低。

千分表(指常用的指针式或压杆式千分表)的分度值为0.001mm,因其比百分表的放大比更大,分度值更小,测量的精确度更高,适用于较高精度要求的测量。

千分表受到震动后测量杆不容易恢复到原始位置,可能会影响到检测数据的真实性,因此在震动较小的情况下使用较好(如图2)。

杠杆千分表体积小巧,测杆可以按需转动,并能以正反两个方向测量工件,因此常用于间78隙较小的槽、孔、浮动件(如测量丝杠远端跳动)等千分表难以测量的情况,其测杆压缩量一般为0.03~0.06mm(如图3),灵敏度高。

同样杠杆千分表适合在震动小的情况下使用。

另外杠杆千分表不适合长期在压缩量较大的情况下工作,因为压缩量过大会造成测量数据失真,误差变大,而且会加快杠杆千分表各部件的磨损,使其老化,失去作用,因此在测量空间允许的情况下,一般优先选用千分表或百分表。

图1 百分表图2 千分表79图3 杠杆千分表二测量前提说明1. 本说明所有图示均以Carver600G为例;2. 在检测前应保证测量所用仪器可以正常使用;3. 在检测前应保证测量所用工具以及被测部分的清洁;4. 在测量过程中移动各轴时,进给速度不能过大,一般为1.8m/min左右;5. 本说明所指方向(即前、后、左、右)均为人站立在机床正面,面对机床时(如图4)。

图480三、各精度指标的检测方法1.检测、调整床身水平度1.1 所需工具水平仪(刻度值为0.02mm)、活动扳手1.2准备工作1)检查水平仪精度是否符合标准将水平仪水平放置,读出气泡位置,然后将水平仪原地旋转180°,比较旋转前后水平仪气泡位置。

数控机床的主轴精度与刚度检测方法

数控机床的主轴精度与刚度检测方法

数控机床的主轴精度与刚度检测方法随着工业技术的不断发展,数控机床在现代制造业中扮演着重要的角色。

而数控机床的主轴精度与刚度则是影响加工质量和效率的关键因素之一。

本文将介绍数控机床主轴精度与刚度的检测方法。

一、主轴精度检测方法1. 几何误差测量法几何误差是指数控机床主轴在运动过程中由于各种因素引起的误差,包括圆度误差、直线度误差、角度误差等。

几何误差测量法是通过使用测量仪器对主轴进行测量,得出误差值,从而评估主轴的精度。

2. 振动分析法振动分析法是通过对主轴振动信号进行分析,得出主轴的振动情况,从而判断主轴的精度。

常用的振动分析仪器有加速度计、振动传感器等。

3. 磨损检测法主轴磨损是主轴精度下降的主要原因之一。

通过使用显微镜等仪器观察主轴表面的磨损情况,可以评估主轴的精度。

二、主轴刚度检测方法1. 弯曲刚度测量法弯曲刚度是指主轴在受到外力作用时的变形情况,是主轴刚度的一个重要指标。

通过在主轴上施加一定的力,测量主轴的变形情况,可以评估主轴的刚度。

2. 阻尼比测量法阻尼比是指主轴在受到外界扰动时,恢复稳定状态所需要的时间。

通过对主轴进行扰动,并测量主轴的振动衰减情况,可以评估主轴的刚度。

3. 频率响应法频率响应法是通过施加不同频率的激励信号,测量主轴的振动响应情况,从而得出主轴的刚度。

常用的频率响应仪器有激光干涉仪、频谱分析仪等。

总结:数控机床的主轴精度与刚度是影响加工质量和效率的重要因素。

准确评估主轴的精度与刚度,对于提高加工质量和效率具有重要意义。

本文介绍了几种常用的主轴精度与刚度检测方法,包括几何误差测量法、振动分析法、磨损检测法、弯曲刚度测量法、阻尼比测量法和频率响应法。

这些方法可以帮助制造商和用户评估主轴的性能,并采取相应的措施进行调整和改进。

通过不断提高数控机床主轴的精度与刚度,可以提高加工质量和效率,推动制造业的发展。

数控机床加工精度检测方法与控制

数控机床加工精度检测方法与控制

数控机床加工精度检测方法与控制数控机床作为现代制造业中重要的加工设备之一,其加工精度已经成为影响产品质量的重要因素之一。

为确保数控机床的加工精度,必须进行严格的检测和控制。

本文将介绍数控机床加工精度检测的方法和控制的重要性。

首先,数控机床加工精度的检测方法主要包括以下几种。

1.标准零件法:通过加工一组具有一定精度要求的标准零件,并测量其尺寸、形状和位置公差,来评估数控机床的加工精度。

2.零件配对法:将加工出的零件和标准零件进行配对,并通过测量其配对误差,来评估数控机床的加工精度。

3.物理检测法:采用测量仪器检测数控机床加工出的零件的尺寸、形状和位置公差,常用的物理检测方法包括三坐标测量和轮廓测量等。

4.工艺性能检测法:将数控机床加工出的零件进行装配,并结合装配工艺进行性能测试,通过测试结果的良品率和合格品率来评估数控机床的加工精度。

上述方法中,标准零件法和零件配对法是常用的定量评价数控机床加工精度的方法,可直观地反映出实际加工效果与设计要求之间的差距。

而物理检测法和工艺性能检测法则可以更加全面地评估加工精度和产品质量。

其次,控制数控机床加工精度的重要性不言而喻。

精度控制与加工质量密切相关,直接影响产品的性能、寿命和可靠性。

此外,高精度的加工也可以极大地提高产品的市场竞争力和附加值。

因此,为了确保数控机床的加工精度,必须采取有效的控制措施。

1.优化加工工艺:通过优化加工工艺的参数和流程,减小工序误差和插补误差,提高数控机床的加工精度。

2.精密的加工刀具选择:选择合适的刀具材料和几何形状,提高切削性能和加工质量。

3.数控系统的精度校正:定期对数控系统进行校正,修正机床轴向误差、传动间隙和系统误差,保证数控机床的加工精度。

4.质量控制体系的实施:建立完善的质量控制体系,包括质量管理、过程控制、检测监控等,确保数控机床加工精度的稳定性和一致性。

综上所述,数控机床加工精度的检测方法和控制措施对于保证产品质量和提高市场竞争力具有重要意义。

机床加工精度检测方法

机床加工精度检测方法

机床加工精度检测方法简介:机床加工精度是评估机床性能和加工质量的重要指标之一。

为了确保机床加工过程中的精度和质量,需要对机床进行精度检测。

本文将介绍几种机床加工精度检测的常用方法,包括几何误差检测、表面质量检测、加工工艺检测以及传感器技术应用等。

一、几何误差检测1.1 直线度检测直线度是指加工工件的运动轴线与理想直线之间的误差。

常见的直线度检测方法有光学投影仪、激光干涉仪和三坐标测量机等。

这些设备可以实时检测加工工件的轴线偏差,提供精确的直线度测量结果。

1.2 圆度检测圆度是指加工工件圆周轮廓与理想圆之间的误差。

圆度检测方法包括光学测量、电感测量和激光测量等。

通过测量工件圆周轮廓和理想圆之间的差异,可以评估工件的圆度。

1.3 平行度检测平行度是指加工工件表面与参考面之间的平行误差。

平行度检测常用的方法包括光学投影、电感测量和三坐标测量等。

这些方法可以提供高精度的平行度检测结果,帮助评估工件加工质量。

二、表面质量检测2.1 表面粗糙度检测表面粗糙度是指加工工件表面的凹凸不平程度。

常见的表面粗糙度检测方法有激光干涉仪、那米尔扫描仪和白光干涉仪等。

通过测量工件表面的高低差,可以评估工件的表面质量。

2.2 表面硬度检测表面硬度是指材料表面对压痕的抵抗能力。

常见的表面硬度检测方法有洛氏硬度计、维氏硬度计和布氏硬度计等。

这些方法通过测量压痕的尺寸和深度来评估工件的表面硬度。

三、加工工艺检测3.1 切削力检测切削力是指加工工件在切削过程中所受到的力。

常见的切削力检测方法包括力传感器、电流测量和应变测量等。

这些方法可以提供准确的切削力检测结果,帮助评估加工工艺的合理性。

3.2 速度检测速度是指机床在加工过程中的运行速度。

常见的速度检测方法包括速度传感器、编码器和振动传感器等。

这些方法可以实时监测机床的运行速度,提供加工过程的精确控制。

四、传感器技术应用传感器技术在机床加工精度检测中起着重要的作用。

通过将传感器与机床连接,可以实时监测机床的状态和精度。

机床几何精度检测方法

机床几何精度检测方法

机床几何精度检测方法1.反光镜法反光镜法是一种直观、简单、易于操作的机床几何误差检测方法。

反光镜法的原理是通过光线的反射和折射来观察被测几何体的形状和位置,从而判断机床的误差。

其具体操作为,将两个相机安装在测试工件和标准工件上,使两个相机的视场交叠。

然后将标准工件和测试工件放置在机床上,通过视场交叠来观察机床工件的几何误差。

2.激光干涉仪法激光干涉仪法是一种高精度的机床几何误差检测方法。

利用激光干涉仪检测装置可以精确测量机床轴向和回转精度误差。

具体操作为,在机床上安装激光干涉仪,通过激光的干涉产生干涉纹,然后通过对干涉纹的测量来计算机床的几何误差。

激光干涉仪法可以实现非接触式测量,准确度高,适用于各种类型的机床。

3.气测法气测法是一种常用的表面平直度和平面度误差检测方法。

具体操作为,在被测工件上加压一定的气体,然后通过感应器测量气体压力变化的方式来检测工件的平直度和平面度误差。

气测法的优点是适用于各种形状和尺寸的工件,操作简单,测量结果准确。

4.测微仪法测微仪法是一种常用的直线度误差检测方法。

其原理是通过测量多个不同位置处的直线度误差,然后通过数据处理来评估机床的直线度误差。

测微仪法的操作简单,测量范围广,准确度较高。

5.数字测量方法数字测量方法是一种使用数字测量仪器对机床进行几何误差检测的方法。

常用的数字测量仪器包括坐标测量机、激光扫描仪、三角块等。

通过使用数字测量仪器,可以实现对机床几何误差进行高精度、高效率的检测。

以上介绍了几种常用的机床几何精度检测方法,每种方法都有其独特的优点和适用范围。

通过选择合适的检测方法,可以对机床几何精度进行准确评估,帮助提高机床的加工精度。

机床精度测量报告

机床精度测量报告

机床精度测量报告1. 背景和目的机床精度是衡量机床性能的重要指标之一,直接影响着工件加工的质量和精度。

为了评估机床的精度,我们进行了一系列的测量实验。

本报告旨在总结机床精度测量的方法和结果,并对其进行分析和评价。

2. 测量方法本次测量我们采用了以下几种常用的机床精度测量方法:2.1 几何误差测量通过测量机床各轴的直线度、圆度、垂直度、平行度等几何误差,可以获得机床运动系统的误差情况。

2.2 加工试件测量将加工试件固定在机床上,然后采用测量设备对试件进行测量。

通过对试件的尺寸和位置误差进行测量,可以间接反映出机床的加工精度。

2.3 运动控制系统测量通过运动控制系统的测量,可以评估机床的位置控制精度、速度控制精度以及转矩控制精度等指标。

3. 测量结果经过多次测量,我们得到了以下结果:- 机床X轴的直线度误差为0.02mm;- 机床Y轴的圆度误差为0.005mm;- 机床Z轴的垂直度误差为0.03°;- 机床主轴的转矩控制精度为±2%;- 机床的加工试件尺寸误差在0.01mm以内。

4. 结果分析和评价根据以上测量结果,我们可以得出以下结论:- 机床X轴的直线度误差较小,能够满足大部分工件的加工要求;- 机床Y轴的圆度误差在可接受范围内,但需要注意对于特殊要求的工件;- 机床Z轴的垂直度误差较大,可能影响工件的垂直度和平行度;- 机床主轴的转矩控制精度较高,能够满足大多数工件的加工需求;- 机床的加工试件尺寸误差较小,能够保证工件的尺寸精度。

综合分析上述测量结果,我们认为该机床在大部分加工任务中精度能够满足要求,但对于垂直度和平行度要求较高的工件,可能需要进行额外的校正和调整。

5. 结论和建议根据测量结果和分析,我们得出以下结论和建议:- 机床的加工精度整体上符合要求,但仍需要进一步优化和改进;- 针对机床存在的几何误差,需要进行定期校准和调整;- 对于需要高精度加工的工件,建议在机床设备上增加相应的辅助装置;- 加强对机床的维护和保养,保证机床的长期稳定运行。

机床精度检测方法

机床精度检测方法

大型数控机床验收的几个问题对集机、电、液、气于一体的进口大型数控机床(含加工中心)的验收,无论是预验收、还是最终验收,都是十分重要的。

它是对机床设计、制造、安装调试的质量,特别是对机床精度的总体检验。

它直接关系到机床的功能、可靠性、加工精度和综合加工能力。

然而在实际验收中,常常会出现一些带有技术性或管理性的问题。

如果不能得到及时的正确处理,将会影响到机床的验收质量。

1 定位精度的检测检测机床的定位精度,常用标准有两种:·德国VDI/DGQ3441标准(机床运行精度和定位精度的统计方法)。

·美国AMT标准(美国机械制造技术协会制定)。

用两个标准,测量数据的整理均采用数理统计方法。

即沿平行于坐标轴的某一测量轴线选取任意几个定位点(一般为5~15个),然后对每个定位点重复进行多次定位(一般为5~13次)。

可单向趋近定位点,也可以从两个方向分别趋近,然后对测量数据进行统计处理,求出算术平均值。

进而求出平均值偏差、标准差、分散度。

分散度代表重复定位精度,它和平均值偏差一起构成定位精度,两者之和是在任意两点间定位时可能达到的最大定位偏差。

由于被测坐标轴长度不尽相同,因而其定位精度的线性允差的给定方式不应是单一的,而应有所区别。

国标GB10931-89数字控制机床位置精度的评定方法中规定,轴线定位精度线性允差的给定方式主要有以下几种:·在全行程上规定允差;·根据被测对象长度分段规定允差;·用局部公差方式规定允差;既规定局部公差,同时也规定全行程允差。

东方汽轮机厂从德国科堡(COBURG)公司进口工作台5m×17m的数控龙门铣床(下称龙门铣),共有X、Y、Z、W四个坐标轴。

只有Z轴长度小于2m、最长的X轴全行程为17.70m;从意大利贝拉尔蒂(BRERADI)公司进口的镗杆直径250mm的落地式数控镗铣床,X轴(立柱移动)长23m,Y轴(镗头升降)长7m。

机床加工过程中的精度检测技术

机床加工过程中的精度检测技术

机床加工过程中的精度检测技术机床加工过程中的精度检测技术在实际生产中扮演着非常重要的角色。

精度检测技术可以帮助企业保证产品质量,提高生产效率,降低生产成本,并满足客户的需求。

在本文中,我们将探讨机床加工过程中常用的精度检测技术,以及其应用。

一、坐标测量法坐标测量法是机床加工过程中最常用的精度检测技术之一。

它通过使用坐标测量设备,如三坐标测量机,测量工件上的特定点的位置,从而确定工件的几何尺寸和形状的精度。

坐标测量法的原理是利用传感器测量工件上的各个点的坐标值,并与设计图纸的理论值进行比较,从而确定工件的偏差。

常见的坐标测量法包括点测量法、线测量法和面测量法。

在机床加工过程中,通过使用坐标测量法可以及时发现并纠正加工误差,保证产品的精度和几何形状的符合要求。

二、光学测量法光学测量法是一种利用光学原理进行精度检测的技术。

它通过使用光学测量仪器,如投影仪、冲洗仪和激光干涉仪,对工件进行扫描和测量。

光学测量法的原理是利用光线的反射、折射和干涉现象来测量工件的尺寸和形状。

光学测量法具有高精度、非接触和实时性好等特点,广泛应用于机床加工过程中的精度检测。

在机床加工过程中,光学测量法可以用于检测工件的平面度、圆度、直线度、垂直度等参数,帮助企业提高产品质量和生产效率。

三、振动测量法振动测量法是一种通过测量工件在加工过程中的振动情况来判断其精度的技术。

振动测量法可以用于检测工件的表面光洁度、尺寸误差和形状精度等参数。

振动测量法的原理是利用振动传感器测量工件振动的幅度、频率和相位等参数,并与理论值进行比较,从而确定工件的精度。

在机床加工过程中,振动测量法可以帮助企业及时发现并解决加工中的振动问题,提高工件的表面质量和精度。

总结:机床加工过程中的精度检测技术是确保产品质量的关键环节。

坐标测量法、光学测量法和振动测量法是机床加工过程中常用的精度检测技术。

这些技术通过测量工件的尺寸、形状和振动等参数,帮助企业及时发现并纠正加工误差,提高产品质量和生产效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大型数控机床验收的几个问题
对集机、电、液、气于一体的进口大型数控机床(含加工中心)的验收,无论是预验收、还是最终验收,都是十分重要的。

它是对机床设计、制造、安装调试的质量,特别是对机床精度的总体检验。

它直接关系到机床的功能、可靠性、加工精度和综合加工能力。

然而在实际验收中,常常会出现一些带有技术性或管理性的问题。

如果不能得到及时的正确处理,将会影响到机床的验收质量。

1 定位精度的检测
检测机床的定位精度,常用标准有两种:
·德国VDI/DGQ3441标准(机床运行精度和定位精度的统计方法)。

·美国AMT标准(美国机械制造技术协会制定)。

用两个标准,测量数据的整理均采用数理统计方法。

即沿平行于坐标轴的某一测量轴线选取任意几个定位点(一般为5~15个),然后对每个定位点重复进行多次定位(一般为5~13次)。

可单向趋近定位点,也可以从两个方向分别趋近,然后对测量数据进行统计处理,求出算术平均值。

进而求出平均值偏差、标准差、分散度。

分散度代表重复定位精度,它和平均值偏差一起构成定位精度,两者之和是在任意两点间定位时可能达到的最大定位偏差。

由于被测坐标轴长度不尽相同,因而其定位精度的线性允差的给定方式不应是单一的,而应有所区别。

国标GB10931-89数字控制机床位置精度的评定方法中规定,轴线定位精度线性允差的给定方式主要有以下几种:
·在全行程上规定允差;
·根据被测对象长度分段规定允差;
·用局部公差方式规定允差;
既规定局部公差,同时也规定全行程允差。

东方汽轮机厂从德国科堡(COBURG)公司进口工作台5m×17m的数控龙门铣床(下称龙门铣),共有X、Y、Z、W四个坐标轴。

只有Z轴长度小于2m、最长的X轴全行程为17.70m;从意大利贝拉尔蒂(BRERADI)公司进口的镗杆直径
250mm的落地式数控镗铣床,X轴(立柱移动)长23m,Y轴(镗头升降)长7m。

这些坐标的轴线定位精度的线性允差值均按全行程允差给定。

龙门铣X轴全行程允差为P=14+L/250(µm) (1)
式中L——测量行程全长,mm
P——定位允许偏差,µm
X轴实际测量行程L=17210mm。

共测11点,点间距为1721mm。

按公式(1)计算,其最大允差值为
P=14+17210/250=82.84µm=0.093(mm) (2)
因为给定的是全行程允差,只要其任意长度上的允差等于或小于P值,定位精度都是合格的。

上例说明,对于龙门铣、落地镗铣床、重型转子数控车床,X轴这样长的坐标轴,仅仅在全行程上规定允差是不够的。

而应按线性允差给定方式d规定允差:既规定局部公差,同时也规定全行程允差。

由于有了任意长度上的定位允差,如任意2000mm,不仅可满足常用工作长度上的定位精度,也有利于提高全行程的定位精度。

由此可知,订购机床时知道坐标轴定位精度的线性允差的给定方式,根据工艺需要提出所购机床线性允差的给定方式,并列入合同条款是非常重要的。

2 关于负荷运转试验
负荷试验是检验机床是否达到设计规定的承载能力,及其在负荷状态下各机构工作是否正常,其工作的平稳性、准确性、可靠性是否达到规定要求的重要手段。

有人担心负荷试验会损坏机床,降低甚至破坏机床精度。

根据标准规定,负荷试验前后均应检验机床的几何精度。

工作精度试验亦放在负荷试验后进行。

其目的均是对机床的进一步检验。

如前述龙门铣、负荷试验是在极限状态下进行的。

滑枕伸出1m(技术规范规定,滑枕伸出1m可传递额定功率),功率达120kW(额定功率95kW)。

试验后测试滑枕两个方向的垂直度,其误差值比静态时还小了。

从美国莫林(MOLINE)公司
进口的MF195型数控多头钻床,按规定装上10只Ø38mm钻头做加工100只孔的负荷试验。

完成后用10只Ø25mm钻头,做连续钻削500只孔的钻削精度试验。

精度要求(Ø25+0.125-0.05)mm,实测为
(Ø25+0.020)mm。

实践证明,负荷试验不会损坏机床,不会降低机床精度。

对于预验收时已做过负荷试验,对整体发运到用户的小型机床或加工中心,最终验收时可考虑免做。

而对于解体发运到用户的大型机床,最终验收时负荷试验不可免做。

因为重新安装、调试、试车和预验收时的环境等条件已不相同。

预验收合格,不能等同于最终验收合格。

3 关于几何精度的检验器具
数控机床几何精度基本上都要比普通机床高,普通机床用的检具、量具,往往因自身精度低,满足不了检测要求。

如龙门铣,检测附件铣头HS350C主轴在0°、90°、180°、270°相对于滑枕的垂直度时,允差0.02mm/500mm。

用科堡机床公司带的长1050mm、
Ø105mm的检验棒,其各向母线直线度误差均小于0.005mm。

从罗马尼亚阿莫斯(ARMUS)机床公司进口的数控5m立车,铣刀架滑枕需检测同样精度。

自制一检验棒,母线直线度误差大于0.03mm,超出检测精度值,无法使用。

在检测龙门铣铣头相对工作台的垂直度,如检测意大利贝拉尔蒂镗床立柱移动相对于工作台的垂直度时,需用1.5m×2m、直线度误差≤0.01mm、角度误差为2″的直角尺。

针对这一普遍存在的问题,解决办法有两个:
·在机床订货时提出哪些量检具由制造厂提供,列入合同条款。

·用切削加工替代精度检验。

对于那些必须检而又无替代量检具的精度项目,如图1 HSD350C精检项目,可采用切削加工方法替代。

将试件放在坐标测量仪上,测量其相关平面的垂直度。

4 床身导轨纵向直线度的调整
大型数控机床,如数控龙门铣床、落地式镗铣床,重型数控转子车床等,其床身较长,多由数段组成。

其床身导轨在垂直平面内直线度的调整,一般都按
机床精度检验标准规定调成中凸曲线。

把导轨人为地调成中凸形状,其实质是一种预载。

用预载产生的预应力,抵抗工作台、工件的重力及切削加工产生的垂直切削分力,使工作台或刀架拖板在切削过程中处于水平状态,进而保证工件加工面的平直度。

大型数控机床安装在恒温环境中,如上述调成中凸形状,使用中是没有问题的。

但安装在常温环境中,如环境温度为0~5℃或5~10℃时,其导轨该如何调整?由于环境温度变化,床身上、下有温度差存在,形成自上而下的温度梯度。

夏季导轨上表面温度高,下表面温度低。

温度差t1-t2使上表面伸长大于下表面,呈上拱形状。

而到冬季,刚好相反。

由于t2-t1的温度差存在,下表面的收缩大于上表面,导轨呈下挠形状。

机床维修实践也证实了这一点:温度较高时(夏天)导轨上拱;温度较低时(冬天),导轨凹心。

1996年7月安装龙门铣床时,基准导轨在垂直面内的直线度调成中凸0.076mm。

其当时导轨上表面温度为28℃,下表面为26.5℃。

1997年11下旬复测基准导轨在垂直面内的直线度误差,导轨下挠0.31mm。

此时导轨上表面温度为10℃,下面为5℃。

为克服由于导轨上下温差所导致的导轨直线度误差,可使用数段成一体的床身,不使用其连接处用螺栓产生塑性变形,使其成为弹性的连接。

环境温度变化时能伸缩自如,目的是使床身连接处成为铰交点,使每段床身成为转角不连续的简支梁。

这样才能使导轨调成中凸更方便,而每段床身变形也更自如。

如某龙门铣床床身全长35m,每段长7m,共5段,高度为700mm。

上下表面温差Δt=5℃。

床身是在自由状态下调平的,温差引起的变形为
d=aL2·Dt/(8H)=8.7×10-6×70002×5/(8×700)=0.3806
式中d——温差引起的变形,mm
a——铸铁线膨胀系数,取a=8.7×10-6
L——每段床身长度,mm
H——床身高度,mm
Dt——上、下表面温差,℃
其理论计算值和复测值基本相符。

当最大温差值Δt=1.5℃,导轨呈中凸
机床导轨下挠值太大,将影响机床的运行精度,如产生低速重载下的爬行。

为此,将导轨调成微凸。

h=0.03mm这个微凸值,在环境温度较低时(冬季)机床运行精度得到保证。

而当环境温度较高时(夏季)呈中凸最大值。

dmax=0.03+(dL·Dt)/(8H)=0.144mm,其对加工精度亦不构成影响,因为在重力、切削力作用下,中凸值会明显减小,从而保证了一年四季机床的运行精度。

相关文档
最新文档