最新。信息安全数学基础习题答案

合集下载

信息安全数学基础第一章-第1章习题解答

信息安全数学基础第一章-第1章习题解答

39 设a, b 是任意两个不全为零的整数,
(i) 若m是任一整数,则[am, bm]=[a, b]m。
(ii) [a, 0]=0 。
证明:(i) 设 L= [a, b],则 a L, b L,进而
am Lm, bm Lm,即Lm是am, bm的公倍数。
所以[am, bm] Lm= [a, b]m。
所以a (2j-i-1) ,但 j-i < d0,得到矛盾。
说明
r1, r2 ,
,
rd
0
互不相同。
1
从而,1, r1 1, r2 1, , rd0 1 1
是2d 被 a 除后,d0个不同的最小非负余数。 最后,由
2d0 s 1 2d0 2s 2s 2s 1 2s (2d0 1) (2s 1)
37 设a, b 是两个不同的整数,证明如果整数n > 1 满足n|(a2-b2) 和 n | (a+b),n | (a-b),则n是合数。 证明:由已知及a2-b2=(a+b)(a-b)得
n|(a+b)(a-b)。 若 n 是素数,根据1.4定理2, n|(a+b) 或 n|(a-b), 与已知条件矛盾。所以n是合数。
(an , b)=(aan-1 , b)=(an-1 , b)=(aan-2 , b) = (an-2 , b)=…= (a2 , b)=(aa , b)= (a , b)= 1
(b,an) =(an , b)=1,类似的
(bn , an)=(bbn-1 , an)=(bn-1 , an)=(bbn-2 , an)
21 证明:n >1 时, 1+ 1 +1+ + 1 不是整数。
23
n
1 通分后,2 这一项的分子变为奇数k,其余各项的

信息安全数学基础课后答案(陈恭亮著)清华大学出版社

信息安全数学基础课后答案(陈恭亮著)清华大学出版社

性除可的数整
章一第
案答题 习础基学数全安息信
2
)7492 *1 -2 773 ( * )347 - (+74 92 *802= )528 *3 - 7492 ( *802+528 * )911 - (= )2 74 * 1 - 528 ( * )9 11 - (+ 27 4 *9 8= )3 53 *1 -274 ( *98+3 53 *03 -= ) 911 *2 -35 3 ( * ) 03 - (+ 91 1 *9 2= )511 *1 -911 ( *9 2+511 -= )4 *82 -51 1 ( *1 -4= 3 * 1 - 4 = 1�解� 2� 155= t 6 2 2 1 - = s 以所 3 161 * )6221 - (+98 53 *155= ) 31 6 1 * 2 - 9 8 5 3 ( * 1 5 5+ 3 1 6 1 * ) 4 2 1 - (= ) 36 3 *4 -3 161 ( * )4 21 - (+ 36 3 *5 5= )1 61 *2 -363 ( *55+1 61 *41 -= )14 *3 -161 ( *41 -14 *31= )83 *1 -14 ( * 31+83 -= )3 *21 -8 3 ( *1 -3= 2 * 1 - 3 = 1�解� 1� �23 2 =� ) 1 + n ( 2 , n 2�以所 2 *n=n2 2 + n 2 * 1 = ) 1 + n ( 2�解� 2� 1 =� 1 - t 2 , 1 + t 2�以所 1 *2=2 1+2 * )1 - t (=1 - t2 2 + ) 1 - t 2 ( * 1 = 1 + t 2�解� 1� �92 2 =� 2 8 2 , 2 0 2�以所 2 *2=4 2+ 4 * 9=8 3 4+8 3 * 1=2 4 8 3+2 4 * 1=0 8 24+08 *2=202 0 8 + 2 0 2 * 1 = 2 8 2�解� 2� 5 = ) 5 8 , 5 5 (以所 5 * 5= 5 2 5+ 5 2 * 1= 0 3 5 2+ 0 3 * 1= 5 5 0 3 + 5 5 * 1 = 5 8�解� 1� �82 。个多穷无有数素的 3 + k 4 如形�确正论结原 。立成不设假以所�式形的 3 + k 4 为即�数素的式形 1 - k 4 为 N i p� N 以所 ) n ,… , 2 , 1 = i ( np *… *2p *1 p* 3≥ 1-np *… *2p *1 p*4= N 造构 1-k4=1-`k4=3+k4 为因 np ,… ,2p ,1p 为记�个限有有只数素的 3 + k 4 如形设假 法证反�明证� 3 1 。他其证可理同 。证得论结�立成不设假此因�数的 1 - k 3 出得能不�式形的 1 + k 3 是还的到

最新信息安全数学基础期末考试试卷及答案(A卷)

最新信息安全数学基础期末考试试卷及答案(A卷)

信息安全数学基础期末考试试卷及答案(A 卷)一、 填空题(本大题共8小题,每空2分,共24分)1. 两个整数a ,b ,其最大公因数和最小公倍数的关系为 ________________。

2. 给定一个正整数m ,两个整数a ,b 叫做模m 同余,如果______________,记作(mod )a b m ≡;否则,叫做模m 不同余,记作_____________。

3. 设m ,n 是互素的两个正整数,则()mn ϕ=________________。

4. 设1m >是整数,a 是与m 互素的正整数。

则使得1(mod )ea m ≡成立的最小正整数e 叫做a 对模m 的指数,记做__________。

如果a 对模m 的指数是()m ϕ,则a 叫做模m 的____________。

5. 设n 是一个奇合数,设整数b 与n 互素,如果整数n 和b 满足条件________________,则n 叫做对于基b 的拟素数。

6. 设,G G '是两个群,f 是G 到G '的一个映射。

如果对任意的,a b G ∈,都有_______________,那么f 叫做G 到G '的一个同态。

7. 加群Z 的每个子群H 都是________群,并且有0H =<>或H =______________。

8. 我们称交换环R 为一个域,如果R 对于加法构成一个______群,*\{0}R R =对于乘法构成一个_______群。

二、计算题(本大题共 3小题,每小题8分,共24分)1. 令1613,a = 3589b =。

用广义欧几里德算法求整数,s t ,使得(,)sa tb a b +=。

2. 求同余方程22(mod 67)x ≡-的解数。

3. 计算3模19的指数19ord (3)。

三、解同余方程(本大题共2小题,每小题10分,共20分)1. 求解一次同余方程1714(mod 21)x ≡。

信息安全数学基础课后答案完整版Word版

信息安全数学基础课后答案完整版Word版

第一章参考答案(1) 5,4,1,5.(2) 100=22*52, 3288=23*3*137.(4) a,b可以表示成多个素因子的乘积a=p1p2––pr, b=q1q2––qs,又因为(a,b)=1,表明a, b没有公共(相同)素因子. 同样可以将a n, b n表示为多个素因子相乘a n=(p1p2––pr)n, b n=(q1q2––qs)n明显a n, b n也没有公共(相同)素因子.(5)同样将a, b可以表示成多个素因子的乘积a=p1p2––pr, b=q1q2––qs,a n=(p1p2––pr)n, b n=(q1q2––qs)n,因为a n| b n所以对任意的i有, pi的n次方| b n,所以b n中必然含有a的所有素因子, 所以b中必然含有a的所有素因子, 所以a|b.(6)因为非零a, b, c互素,所以(a, b)=(a, c)=1,又因为a=p1p2––pr,b=q1q2––qs, ab=p1p2––prq1q2––qs, 又因为a, b, c互素, 所以a, b, c中没有公共(相同)素因子, 明显ab和c也没有公共(相同)素因子.所以(ab, c)= (a, b)(a, c).(7)2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,9 7,101,103,107, 109, 113, 127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199.(11)对两式进行变形有21=0(mod m), 1001=0(mod m),可以看出要求满足的m即使求21和1001的公约数, 为7和1.(12)(70!)/(61!)= 62*63*––*70=(-9)*(-8)*––*(-1)=-9!=-362880=1(mod 71). 明显61!与71互素, 所以两边同乘以61!, 所以70!=61!(mod 71).(13)当n为奇数时2n=(-1)n=-1=2(mod 3), 两边同时加上1有2n+1=0(mod 3), 所以结论成立.当n为偶数时2n=(-1)n=1(mod 3), 两边同时加上1有2n+1=2(mod 3), 所以结论成立.(14)第一个问:因为(c,m)=d, m/d为整数.假设ac=k1m+r, bc=k2m+r,有ac=k1d(m/d)+r, bc=k2d(m/d)+r所以ac=bc(mod m/d),因为(c,m/d)=1,所以两边可以同除以一个c, 所以结论成立.第二个问题:因为a=b(mod m), 所以a-b=ki *mi,a-b是任意mi的倍数,所以a-b是mi 公倍数,所以[mi]|a-b.(利用式子:最小公倍数=每个数的乘积/最大公约数, 是错误的, 该式子在两个数时才成立)(15)将整数每位数的值相加, 和能被3整除则整数能被3整除, 和能被9整除则整数能被9整除, (1)能被3整除, 不能被9整除,(2)都不能,(3)都不能,(4)都不能第二章答案(5)证明:显然在群中单位元e满足方程x2=x, 假设存在一个元素a满足方程x2=x, 则有a2=a, 两边同乘以a-1有a=e. 所以在群中只有单位元满足方程x2=x.(6)证明:因为群G中每个元素都满足方程x2=e, 所以对群中任意元素a,b 有aa=e, bb=e, (ab)2=abab=e. 对abab=e, 方程两边左乘以a, 右乘以b有aababb=(aa)ba(bb)=ba=aeb=ab, 有ab=ba, 所以G是交换群.(7)证明:充分性:因为在群中对任意元素a,b有(ab)2=a2b2即abab=aabb, 方程两边左乘以a的逆元右乘以b的逆元, 有a-1ababb-1= a-1aabbb-1, 有ab=ba, 所以G是交换群.必要性:因为群G是交换群, 所以对任意元素a,b有ab=ba, 方程两边左乘以a右乘以b有abab=aabb, 有(ab)2=a2b2.(8)证明:因为xaaba=xbc,所以x-1xaxbaa-1b-1=x-1xbca-1b-1,所以存在唯一解x=a-1bca-1b-1使得方程成立。

信息安全数学基础答案第一二三四五六七八章2

信息安全数学基础答案第一二三四五六七八章2

第一章(1)5,4,1,5.(2)100=22*52, 3288=23*3*137.(4)a,b可以表示成多个素因子的乘积a=p1p2––p r, b=q1q2––q s,又因为(a, b)=1,表明a, b 没有公共(相同)素因子. 同样可以将a n, b n表示为多个素因子相乘a n=(p1p2––p r)n, b n=(q1q2––q s)n明显a n, b n也没有公共(相同)素因子.(5)同样将a, b可以表示成多个素因子的乘积a=p1p2––p r, b=q1q2––q s, a n=(p1p2––p r)n, b n=(q1q2––q s)n,因为a n| b n所以对任意的i有, p i的n次方| b n, 所以b n中必然含有a的所有素因子, 所以b中必然含有a的所有素因子, 所以a|b.(6)因为非零a, b, c互素,所以(a, b)=(a, c)=1,又因为a=p1p2––p r, b=q1q2––q s, ab=p1p2––p r q1q2––q s, 又因为a, b, c互素, 所以a, b, c中没有公共(相同)素因子, 明显ab和c 也没有公共(相同)素因子.所以(ab, c)= (a, b)(a, c).(7)2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107, 109, 113, 127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199.(11)对两式进行变形有21=0(mod m), 1001=0(mod m),可以看出要求满足的m即使求21和1001的公约数, 为7和1.(12)(70!)/(61!)= 62*63*––*70=(-9)*(-8)*––*(-1)=-9!=-362880=1(mod 71). 明显61!与71互素, 所以两边同乘以61!, 所以70!=61!(mod 71).(13)当n为奇数时2n=(-1)n=-1=2(mod 3), 两边同时加上1有2n+1=0(mod 3), 所以结论成立.当n为偶数时2n=(-1)n=1(mod 3), 两边同时加上1有2n+1=2(mod 3), 所以结论成立. (14)第一个问:因为(c,m)=d, m/d为整数.假设ac=k1m+r, bc=k2m+r,有ac=k1d(m/d)+r, bc=k2d(m/d)+r所以ac=bc(mod m/d),因为(c,m/d)=1,所以两边可以同除以一个c, 所以结论成立.第二个问题:因为a=b(mod m), 所以a-b=k i*m i,a-b是任意m i的倍数,所以a-b是m i公倍数,所以[m i]|a-b.(利用式子:最小公倍数=每个数的乘积/最大公约数, 是错误的, 该式子在两个数时才成立)(15)将整数每位数的值相加, 和能被3整除则整数能被3整除, 和能被9整除则整数能被9整除, (1)能被3整除, 不能被9整除,(2)都不能,(3)都不能,(4)都不能第二章(5)证明:显然在群中单位元e满足方程x2=x, 假设存在一个元素a满足方程x2=x, 则有a2=a, 两边同乘以a-1有a=e. 所以在群中只有单位元满足方程x2=x.(6)证明:因为群G中每个元素都满足方程x2=e, 所以对群中任意元素a,b有aa=e, bb=e, (ab)2=abab=e. 对abab=e, 方程两边左乘以a, 右乘以b有aababb=(aa)ba(bb)=ba=aeb=ab, 有ab=ba, 所以G是交换群.(7)证明:充分性:因为在群中对任意元素a,b有(ab)2=a2b2即abab=aabb, 方程两边左乘以a的逆元右乘以b的逆元, 有a-1ababb-1= a-1aabbb-1, 有ab=ba, 所以G是交换群.必要性:因为群G是交换群, 所以对任意元素a,b有ab=ba, 方程两边左乘以a右乘以b有abab=aabb, 有(ab)2=a2b2.(8)证明:因为xaaba=xbc,所以x-1xaxbaa-1b-1=x-1xbca-1b-1,所以存在唯一解x=a-1bca-1b-1使得方程成立。

信息安全数学基础习题答案

信息安全数学基础习题答案

信息安全数学基础习题答案信息安全数学基础习题答案1.简答题 a) 什么是信息安全?信息安全是指保护信息的机密性、完整性和可用性,以防止未经授权的访问、使用、披露、干扰、破坏或篡改信息的行为。

b) 什么是加密?加密是指通过对信息进行转换,使其无法被未经授权的人理解或使用的过程。

加密算法通常使用密钥来对信息进行加密和解密。

c) 什么是对称加密算法?对称加密算法是一种使用相同的密钥进行加密和解密的算法。

常见的对称加密算法有DES、AES等。

d) 什么是非对称加密算法?非对称加密算法是一种使用不同的密钥进行加密和解密的算法。

常见的非对称加密算法有RSA、ECC等。

e) 什么是哈希函数?哈希函数是一种将任意长度的数据映射为固定长度的输出的函数。

哈希函数具有单向性,即很难从哈希值逆推出原始数据。

2.选择题 a) 下列哪种算法是对称加密算法? A. RSA B. AES C. ECC D.SHA-256答案:B. AESb) 下列哪种算法是非对称加密算法? A. DES B. AES C. RSA D. SHA-256答案:C. RSAc) 下列哪种函数是哈希函数? A. RSA B. AES C. ECC D. SHA-256答案:D. SHA-2563.计算题 a) 使用AES算法对明文进行加密,密钥长度为128位,明文长度为64位。

请计算加密后的密文长度。

答案:由于AES算法使用的是128位的块加密,所以加密后的密文长度也为128位。

b) 使用RSA算法对明文进行加密,密钥长度为1024位,明文长度为64位。

请计算加密后的密文长度。

答案:由于RSA算法使用的是非对称加密,加密后的密文长度取决于密钥长度。

根据经验公式,RSA算法中加密后的密文长度为密钥长度的一半。

所以加密后的密文长度为1024/2=512位。

c) 使用SHA-256哈希函数对一个长度为128位的明文进行哈希计算,请计算哈希值的长度。

答案:SHA-256哈希函数的输出长度为256位。

信息安全数学基础答案

信息安全数学基础答案

信息安全数学基础答案【篇一:信息安全数学基础习题答案】xt>第一章整数的可除性1.证明:因为2|n 所以n=2k , k?z5|n 所以5|2k ,又(5,2)=1,所以5|k 即k=5 k1 ,k1?z 7|n 所以7|2*5 k1 ,又(7,10)=1,所以7| k1 即k1=7 k2,k2?z 所以n=2*5*7 k2 即n=70 k2, k2?z因此70|n32.证明:因为a-a=(a-1)a(a+1)3当a=3k,k?z 3|a 则3|a-a3当a=3k-1,k?z 3|a+1 则3|a-a3当a=3k+1,k?z 3|a-1 则3|a-a3所以a-a能被3整除。

3.证明:任意奇整数可表示为2 k0+1, k0?z22(2 k0+1)=4 k0+4 k0+1=4 k0 (k0+1)+1由于k0与k0+1为两连续整数,必有一个为偶数,所以k0(k0+1)=2k2所以(2 k0+1)=8k+1 得证。

34.证明:设三个连续整数为a-1,a,a+1 则(a-1)a(a+1)= a-a3由第二题结论3|(a-a)即3|(a-1)a(a+1)又三个连续整数中必有至少一个为偶数,则2|(a-1)a(a+1)又(3,2)=1所以6|(a-1)a(a+1) 得证。

5.证明:构造下列k个连续正整数列:(k+1)!+2, (k+1)!+3, (k+1)!+4,……, (k+1)!+(k+1), k?z对数列中任一数 (k+1)!+i=i[(k+1)k…(i+1)(i-1)…2*1+1],i=2,3,4,…(k+1) 所以i|(k+1)!+i即(k+1)!+i为合数所以此k个连续正整数都是合数。

1/26.证明:因为191<14 ,小于14的素数有2,3,5,7,11,13经验算都不能整除191所以191为素数。

1/2因为547<24 ,小于24的素数有2,3,5,7,11,13,17,19,23经验算都不能整除547所以547为素数。

信息安全数学基础 课后习题答案,裴定一,徐详 编著 ,人民邮电出版社

信息安全数学基础 课后习题答案,裴定一,徐详 编著 ,人民邮电出版社

·
·
(1

1 ql
)
= (q1
q1 · · · ql − 1) · · · (ql
− 1)
=
s ϕ(s)
2.10 (1)
n = pt11 · · · ptrr ,p1 < p2 < · · · < pr.
Ç ϕ(n)
=
n(1

1 p1
)
··
·
(1

1 pr
),
´ ϕ(n)
=
1 2
n

r
(1 −
i=1
Q=
12 · 22 · · · · ·
p−1 2
2
=
(−1)
p−1 2
(p

1)!

(−1)
p+1 2
(mod p)
3.7
−2 p
=
−1 p
·
2 p
=
(−1)
p−1 2
·
(−1)
p2 −1 8
=
t1
É ´ ≥ t2, a + b = pt2 (pt1−t2 a1 + b1)
ordp(a + b) ≥ t2 =min{ordp(a),ordp(b)},
´ t1> t2, pt1−t2 a1 + b1 = 0, (p, pt1−t2 a1 + b1) = 1,
Á¸Ï ¦
³ « 1.6 1, 2, · · · , n
£
£ 6v − 1|u
3.1 1, 1, 1, 1, 1, −1, 1
إ إ 3.3
i)
5 227

信息安全数学基础习题答案.pdf

信息安全数学基础习题答案.pdf

“信息安全数学基础”习题答案第一章1、证明: (1)|()|()()|a b b ma m Z c d d nc n Z bd acmn mn Z ac bd ⇒=∈⇒=∈∴=∈∵,,,即。

(2)12111112|,|,,|11(3)|(),,k k k k a b a b a b a b c b c b c c c c ∴−+++∵ ,根据整除的性质及递归法,可证得:,其中为任意整数。

2、证明:1-2(2)(3,5)13|5|15|,(15,7)17|105|a a a a a =∴=∴∵∵∵根据例题的证明结论知:,又且,又,且,。

3、证明:1n p n p n >>因为,且是的最小素因数,若假设n/p 不是素数,则有121223131312,2,,,,2,,k k n p p p p k p p p p k n p p p p n p p n n p n n p =×××≥≥==×≥∴≥≤>> (其中为素数且均)若,则即,与题设矛盾,所以假设不成立,即为素数得证。

7、证明:首先证明形如6k -1的正整数n 必含有6k -1形式的素因子,这显然是成立的。

因为如果其所有素因数均为6k +1形式,则12,(61,1,2,,)j i i n p p p p k i j =×××=+= ,从而得到n 是形如6k +1形式的正整数,这与题设矛盾。

其次,假设形如6k -1的素数为有限个,依次为1212,,6s s q q q n q q q = ,考虑整数-1, 则n 是形如6k -1的正整数,所以n 必有相同形式的素因数q ,使得使得q = q j (1≤j ≤s )。

由整数的基本性质(3)有:12|(6)1s q q q q n −= ,这是不可能的。

故假设错误,即存在无穷多个形如4k -1的素数得证。

2n3n最小非负余数最小正余数绝对值最小余数最小非负余数最小正余数绝对值最小余数3 0、1 1、3 0、1 0、1、2 1、2、3 -1、0、14 0、1 1、4 0、1 0、1、3 1、3、4 -1、0、1 8 0、1、4 1、4、8 1,0 0、1、3、5、7 1、3、5、7、8 3、1、-3、-1、0 10 0、1、4、5、6、9 1、4、5、6、9、10 -4、-1、0、1、4、5 0,1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8,10-5,-4,-3,-2,-1,0,1,2,3,413、解: (1)259222137222376(222,259)37372592221,1,1s t =×+=×⇒==−×∴==−(2)139571316827136821316823122(1395,713)31317136821713(13957131)2713(1)1395,1,2s t =×+=×+=×⇒==−×=−−×=×+−×∴=−=16、解: (1)(112,56)5611256[112,56]112(112,56)=×== (2)(67,335)6767335[67,335]335(67,335)=×== (3)(1124,1368)411241368[1124,1368]384408(1124,1368)=×==(7,4)1,0,7(1)4211,24410,1,2,771||1000142||100040,1,1427c s t k x k k k y k x k y x kk y k ==∴×−+×=∴=−=⎧=−=−⎪⎪=±±⎨⎪==⎪⎩≤⎧∴≤⎨≤⎩=−⎧∴=±±⎨=⎩∵ 而不定方程的一切解为: 其中,又方程的全部解为 ,其中 ,第二章1、解:(1) 错误。

最新。信息安全数学基础习题答案

最新。信息安全数学基础习题答案

最新。

信息安全数学基础习题答案信息安全数学基础习题答案第⼀章整数的可除性1.证明1:因为2|n 所以n=2k , k1Z5|n 所以5|2k ,⼜(5,2)=1,所以5|k 即k=5 k1,k11Z7|n 所以7|2*5 k1 ,⼜(7,10)=1,所以7| k1即k1=7 k2,k21Z所以n=2*5*7 k2即n=70 k2, k21Z因此70|n证明2:n是2、5、7的公倍数,所以[2,5,7]|n,⼜知2、5、7互素,所以[2,5,7]=2*5*7=70,即70|n。

2.证明:因为a3-a=(a-1)a(a+1)当a=3k,k22(mod)a b p≡Z 3|a 则3|a3-a当a=3k-1,k p a b-Z 3|a+1 则3|a3-a当a=3k+1,k p a b+Z 3|a-1 则3|a3-a所以a3-a能被3整除。

3.证明:任意奇整数可表⽰为2 k0+1, k022(mod)≡Za b p(2 k0+1)2=4 k02+4 k0+1=4 k0 (k0+1)+1由于k0与k0+1为两连续整数,必有⼀个为偶数,所以k0 (k0+1)=2k所以(2 k0+1)2=8k+1 得证。

4.证明:设三个连续整数为a-1,a,a+1 则(a-1)a(a+1)= a3-a由第⼆题结论3|(a3-a)即3|(a-1)a(a+1)⼜三个连续整数中必有⾄少⼀个为偶数,则2|(a-1)a(a+1)⼜(3,2)=1 所以6|(a-1)a(a+1) 得证。

5.证明:构造下列k个连续正整数列:(k+1)!+2, (k+1)!+3, (k+1)!+4,……, (k+1)!+(k+1), k p a b-Z对数列中任⼀数 (k+1)!+i=i[(k+1)k…(i+1)(i-1)…2*1+1], i=2,3,4,…(k+1)所以i|(k+1)!+i 即(k+1)!+i为合数所以此k个连续正整数都是合数。

6.证明:因为1911/2<14 ,⼩于14的素数有2,3,5,7,11,13经验算都不能整除191 所以191为素数。

信息安全数学基础习题集一

信息安全数学基础习题集一

信息安全数学基础习题集一信息安全数学基础----习题集一一、填空题1、设a=18、b=12,c=27,求a、b、c的最小公倍数[a,b,c]= .2、求欧拉函数φ(3000)= .3、设m=9,则模m的最小非负简化剩余系={ }.4、设m=11,则模m的所有平方剩余= .5、设m=22,则模m的所有原根个数= .6. 设m,n是互素的两个正整数,则φ(mn)=________________。

7. 设m是正整数,a是满足m?a的整数,则一次同余式:ax≡b (mod m)有解的充分必要条件是_________________ 。

8. 设 m 是一个正整数,a是满足____________的整数,则存在整数a’,1≤a’<m ,使得aa’≡1 (mod m)。

9. 设a∈Z,(a,m)=1, 如果同余方程x2≡a(mod m)__________, 则a 叫做模m的平方剩余.10. 设a,m∈Z,m>1,(a,m)=1, 则使得a e≡1(mo d m)成立的最小正整数e叫做a 对模m的__________.二、判断题(在题目后面的括号中,对的画“√”,错的画“×”)1、若k是任意正整数, 则(ak,bk)=(a,b). ()2、设a1,a2,…,a n是n个不全为零的整数,则a1,a2,…,a n与a1, |a2|, |a3|,…, |a n|的公因数相同()3、设m是正整数, 若m│ab, 则m│a或m│b. ()4、设m为正整数, a,b为整数, a≡b(mod m), d│b且d>0, 则ad ≡bd(mod md).()5、{1,-3,8,4,-10}是模5的一个完全剩余系. ()6、设m是素数, 模m的最小非负完全剩余系和最小非负简化剩余系中元素个数相等. ()7、设p=17为奇素数, 模p的平方剩余和平方非剩余的数量各为8. ()8、一次同余方程9x≡1(mod 24)有解. ()9、设p是素数, g是模p的原根, 若g x≡1(mod p), 则x是p?1的整数倍.()10、设m>1,(a,m)=1, 则1=a0,a,a2, …, a ord m(a)?1构成模m 的简化剩余系.()11. b≠0, 则(0,b)=|b|. ()12. 设a,b是两个互素正整数, 那么a│m,b│m, 则ab│m. ()13. 设m是一个正整数, a,b,d都不为0,若ad≡bd(modm)。

信息安全数学基础课后答案

信息安全数学基础课后答案

信息安全数学基础课后答案1、8.如果直角三角形的三条边为2,4,a,那么a的取值可以有()[单选题] *A. 0个B. 1个C. 2个D. 3个(正确答案)2、向量与向量共线的充分必要条件是()[单选题] *A、两者方向相同B、两者方向相同C、其中有一个为零向量D、以上三个条件之一成立(正确答案)3、2005°角是()[单选题] *A、第二象限角B、第二象限角(正确答案)C、第二或第三象限角D、第二或第四象限角4、若39?27?=321,则m的值是()[单选题] *A. 3B. 4(正确答案)C. 5D. 65、22.如果|x|=2,那么x=()[单选题] *A.2B.﹣2C.2或﹣2(正确答案)D.2或6、4.小亮用天平称得牛奶和玻璃杯的总质量为0.3546㎏,用四舍五入法将0.3546精确到0.01的近似值为()[单选题] *A.0.35(正确答案)B.0.36C.0.354D.0.3557、38.如果m2+m=5,那么代数式m(m﹣2)+(m+2)2的值为()[单选题] *A.14(正确答案)B.9C.﹣1D.﹣68、第三象限的角的集合可以表示为()[单选题] *A. {α|180°<α<270°}B. {α|180°+k·360°<α<270°+k·360°}(正确答案)C. {α|90°<α<180°}D. {α|90°+k·360°<α<180°+k·360°}9、10.若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长[单选题] *A. 12(正确答案)B. 13C. 15D. 1410、下列表示正确的是()[单选题] *A、0={0}B、0={1}C、{x|x2 =1}={1,-1}(正确答案)D、0∈φ11、已知sina<0且cota>0,则是()[单选题] *、第一象限角B、第一象限角C、第三象限角(正确答案)D、第四象限角12、9.已知关于x,y的二元一次方程组的解满足x+y=8,则k的值为( ) [单选题] * A.4B.5C.-6D.-8(正确答案)13、二次函数y=3x2-4x+5的一次项系数是()。

《信息安全数学基础》部分课后习题答案

《信息安全数学基础》部分课后习题答案

《信息安全数学基础》课后作业及答案第1章课后作业答案 (2)第2章课后作业答案 (6)第3章课后作业答案 (13)第4章课后作业答案 (21)第5章课后作业答案 (24)第6章课后作业答案 (27)第7章课后作业答案 (33)第8章课后作业答案 (36)第9章课后作业答案 (40)第10章课后作业答案 (44)第11章课后作业答案 (46)第12章课后作业答案 (49)第13章课后作业答案 (52)第1章课后作业答案习题1:2, 3, 8(1), 11, 17, 21, 24, 25, 312. 证明:存在整数k,使得5 | 2k + 1,并尝试给出整数k的一般形式。

证明k = 2时,满足5 | 2k + 1。

5 | 2k + 1,当且仅当存2k + 1 = 5q。

k, q为整数。

即k = (5q– 1)/2。

只要q为奇数上式即成立,即q = 2t + 1,t为整数即,k = 5t + 2,t为整数。

3. 证明:3 3k + 2,其中k为整数。

证明因为3 | 3k,如果3 | 3k + 2,则得到3 | 2,矛盾。

所以,3 3k + 2。

8. 使用辗转相除法计算整数x, y,使得xa + yb = (a, b):(1) (489, 357)。

解489 = 357×1 + 132,357 =132 × 2 + 93,132 = 93 × 1 + 39,93 = 39 × 2 + 15,39 = 15 × 2 + 9,15 = 9 × 1 + 6,9 = 6 × 1 + 3,6 = 3 × 2 + 0,所以,(489, 357) = 3。

132 = 489 – 357×1,93 = 357 – 132 × 2 = 357 – (489 – 357×1) × 2 = 3 × 357 – 2 ×489,39 = 132 – 93 × 1 = (489 – 357×1) – (3 × 357 – 2 ×489) × 1 = 3 ×489 – 4× 357,15 = 93 – 39 × 2 = (3 × 357 – 2 × 489) – (3 ×489 – 4× 357) × 2 = 11× 357 – 8 × 489,9 = 39 – 15 × 2 = (3 ×489 – 4× 357) – (11× 357 – 8 × 489) × 2 = 19 × 489 – 26× 357,6 = 15 – 9 × 1 = (11× 357 –8 × 489) – (19 × 489 – 26× 357) = 37 ×357 – 27 × 489,3 = 9 – 6 × 1 = (19 × 489 – 26× 357) – (37 × 357 – 27 × 489) = 46 ×489 – 63 × 357。

信息安全数学基础习题第三章答案.doc

信息安全数学基础习题第三章答案.doc

信息安全数学基础习题答案第三章.同余式1.(1)解:因为(3,7)=1 | 2 故原同余式有一个解又3x ≡1(mod7) 所以 特解x 0`≡5(mod7)同余式3x ≡2(mod7)的一个特解x 0≡2* x 0`=2*5≡3(mod7)所有解为:x ≡3(mod7)(2)解:因为(6,9)=3 | 3故原同余式有解又2x ≡1(mod3) 所以 特解x 0`≡2(mod3)同余式2x ≡1(mod3)的一个特解x 0≡1* x 0`=1*2≡2(mod3)所有解为:x ≡2+3t (mod9)t=0,1,2所以解分别为x ≡2,5, 8(mod9)(3)解:因为(17,21)=1 | 14 故原同余式有解又17x ≡1(mod 21) 所以 特解x 0`≡5(mod 21)同余式17x ≡14(mod 21)的一个特解x 0≡14* x 0`=14*5≡7(mod 21) 所有解为:x ≡7(mod 21)(4)解:因为(15,25)=5 不整除9,故原同余式无解2.(1)解:因为(127,1012)=1 | 833 故原同余式有解又127x ≡1(mod1012) 所以 特解x 0`≡255(mod1012)同余式127x ≡833(mod1012)的一个特解x 0≡833* x 0`=833*255≡907(mod1012) 所有解为:x ≡907(mod1012)3.见课本3.2例14.设a,b,m 是正整数,(a,m )=1,下面的方法可以用来求解一次同余方程ax ≡b(mod m)(3)6x ≡7(mod 23)解:依据题意可知,原式与(a%m)x ≡-b[m/a](mod m)同解即与5x ≡-7*3(mod 23)同解,化简得5x ≡2(mod 23).重复使用上述过程,5x ≡2(mod 23)->3x ≡-8(mod 23)->2x ≡10(mod 23)->x ≡5(mod 23). x ≡5(mod 23)即为方程的解。

信息安全数学基础课后答案完整版

信息安全数学基础课后答案完整版

第一章参考答案(1)5,4,1,5.(2)100=22*52, 3288=23*3*137.(4)a,b可以表示成多个素因子的乘积a=p1p2––p r, b=q1q2––q s,又因为(a, b)=1,表明a, b没有公共(相同)素因子. 同样可以将a n, b n表示为多个素因子相乘a n=(p1p2––p r)n, b n=(q1q2––q s)n明显a n, b n也没有公共(相同)素因子.(5)同样将a, b可以表示成多个素因子的乘积a=p1p2––p r, b=q1q2––q s,a n=(p1p2––p r)n,b n=(q1q2––q s)n,因为a n| b n所以对任意的i有, p i的n次方| b n, 所以b n中必然含有a的所有素因子, 所以b中必然含有a的所有素因子, 所以a|b. (6)因为非零a, b, c互素,所以(a, b)=(a, c)=1,又因为a=p1p2––p r, b=q1q2––q s, ab=p1p2––p r q1q2––q s, 又因为a, b, c互素, 所以a, b, c中没有公共(相同)素因子, 明显ab和c也没有公共(相同)素因子.所以(ab, c)= (a, b)(a, c).(7)2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107, 109, 113, 127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199. (11)对两式进行变形有21=0(mod m), 1001=0(mod m),可以看出要求满足的m 即使求21和1001的公约数, 为7和1.(12)(70!)/(61!)= 62*63*––*70=(-9)*(-8)*––*(-1)=-9!=-362880=1(mod 71). 明显61!与71互素, 所以两边同乘以61!, 所以70!=61!(mod 71).(13)当n为奇数时2n=(-1)n=-1=2(mod 3), 两边同时加上1有2n+1=0(mod 3), 所以结论成立.当n为偶数时2n=(-1)n=1(mod 3), 两边同时加上1有2n+1=2(mod 3), 所以结论成立.(14)第一个问:因为(c,m)=d, m/d为整数.假设ac=k1m+r, bc=k2m+r,有ac=k1d(m/d)+r, bc=k2d(m/d)+r所以ac=bc(mod m/d),因为(c,m/d)=1,所以两边可以同除以一个c, 所以结论成立.第二个问题:因为a=b(mod m), 所以a-b=k i*m i,a-b是任意m i的倍数,所以a-b是m i公倍数,所以[m i]|a-b.(利用式子:最小公倍数=每个数的乘积/最大公约数, 是错误的, 该式子在两个数时才成立)(15)将整数每位数的值相加, 和能被3整除则整数能被3整除, 和能被9整除则整数能被9整除, (1)能被3整除, 不能被9整除,(2)都不能,(3)都不能,(4)都不能第二章答案(5)证明:显然在群中单位元e满足方程x2=x, 假设存在一个元素a满足方程x2=x, 则有a2=a, 两边同乘以a-1有a=e. 所以在群中只有单位元满足方程x2=x. (6)证明:因为群G中每个元素都满足方程x2=e, 所以对群中任意元素a,b 有aa=e, bb=e, (ab)2=abab=e. 对abab=e, 方程两边左乘以a, 右乘以b有aababb=(aa)ba(bb)=ba=aeb=ab, 有ab=ba, 所以G是交换群.(7)证明:充分性:因为在群中对任意元素a,b有(ab)2=a2b2即abab=aabb, 方程两边左乘以a的逆元右乘以b的逆元, 有a-1ababb-1= a-1aabbb-1, 有ab=ba, 所以G是交换群.必要性:因为群G是交换群, 所以对任意元素a,b有ab=ba, 方程两边左乘以a右乘以b有abab=aabb, 有(ab)2=a2b2.(8)证明:因为xaaba=xbc,所以x-1xaxbaa-1b-1=x-1xbca-1b-1,所以存在唯一解x=a-1bca-1b-1使得方程成立。

简明信息安全数学基础答案

简明信息安全数学基础答案

简明信息安全数学基础答案【篇一:信息安全数学基础答案】,4,1,5.(2) 100=22*52, 3288=23*3*137.(4) a,b可以表示成多个素因子的乘积a=p1p2––pr, b=q1q2––qs,又因为(a, b)=1,表明a, b没有公共(相同)素因子. 同样可以将an, bn表示为多个素因子相乘an=(p1p2––pr)n, bn=(q1q2––qs)n明显an, bn也没有公共(相同)素因子.(5)同样将a, b可以表示成多个素因子的乘积a=p1p2––pr,b=q1q2––qs, an=(p1p2––pr)n, bn=(q1q2––qs)n,因为an| bn所以对任意的i有, pi的n次方| bn, 所以bn中必然含有a的所有素因子, 所以b中必然含有a的所有素因子, 所以a|b.(6)因为非零a, b, c互素,所以(a, b)=(a, c)=1,又因为a=p1p2––pr, b=q1q2––qs, ab=p1p2––prq1q2––qs, 又因为a, b, c互素, 所以a, b, c中没有公共(相同)素因子, 明显ab和c也没有公共(相同)素因子.所以(ab, c)= (a, b)(a, c).(7)2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83, 89,97,101,103,107, 109, 113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,1 99.(11)对两式进行变形有21=0(mod m), 1001=0(mod m),可以看出要求满足的m即使求21和1001的公约数, 为7和1.(12) (70!)/(61!)= 62*63*––*70=(-9)*(-8)*––*(-1)=-9!=-362880=1(mod 71). 明显61!与71互素, 所以两边同乘以61!, 所以70!=61!(mod 71).(13)当n为奇数时2n=(-1)n=-1=2(mod 3), 两边同时加上1有2n+1=0(mod 3), 所以结论成立.当n为偶数时2n=(-1)n=1(mod 3), 两边同时加上1有2n+1=2(mod 3), 所以结论成立.(14)第一个问:因为(c,m)=d, m/d为整数.假设ac=k1m+r,bc=k2m+r,有ac=k1d(m/d)+r, bc=k2d(m/d)+r所以ac=bc(modm/d),因为(c,m/d)=1,所以两边可以同除以一个c, 所以结论成立.第二个问题:因为a=b(mod m), 所以a-b=ki*mi,a-b是任意mi的倍数,所以a-b是mi公倍数,所以[mi]|a-b.(利用式子:最小公倍数=每个数的乘积/最大公约数, 是错误的, 该式子在两个数时才成立)(15)将整数每位数的值相加, 和能被3整除则整数能被3整除,和能被9整除则整数能被9整除, (1)能被3整除, 不能被9整除,(2)都不能,(3)都不能,(4)都不能第二章(1)判断方法:分别验证1.对运算是否封闭, 2.对任意的a, b, c是否满足结合律, 3.对任意a是否存在单位元, 4.对任意a是否存在逆元. 可以得出在(1)-(6)中(2),(3),(6)构成群, (1)不满足结合律, (4)不存在单位元, (5)不满足结合律.(5)证明:显然在群中单位元e满足方程x2=x, 假设存在一个元素a满足方程x2=x, 则有a2=a, 两边同乘以a-1有a=e. 所以在群中只有单位元满足方程x2=x.(6)证明:因为群g中每个元素都满足方程x2=e, 所以对群中任意元素a,b有aa=e, bb=e, (ab)2=abab=e. 对abab=e, 方程两边左乘以a, 右乘以b有aababb=(aa)ba(bb)=ba=aeb=ab, 有ab=ba, 所以g是交换群.(7)证明:充分性:因为在群中对任意元素a,b有(ab)2=a2b2即abab=aabb, 方程两边左乘以a的逆元右乘以b的逆元, 有a-1ababb-1= a-1aabbb-1, 有ab=ba, 所以g是交换群.,b有ab=ba, 方程两边左乘以a右乘以b有abab=aabb, 有(ab)2=a2b2.(9)证明:对群中任意元素a,b有ab(ab)-1=e, 方程两边先左乘以a的逆元有b(ab)-1=a-1, 在左乘以b的逆元有(ab)-1=b-1a-1, 所以结论成立.(12)证明:显然mz是群z的一个非空子集, 验证封闭性, 结合律, 单位元, 逆元, 得出mz是一个群, 所以mz是z的子群.(因为对mz中任意元素am, bm有am-bm=(a-b)m, 因为a-b∈z, 所以(a-b)m∈mz, 所以mz是群z的一个子群).(13)证明:设群g的两个子群为g1, g2, 则对任意a,b∈g1∩g2有ab-1∈g1, ab-1∈g2, 所以ab-1∈g1∩g2, 所以g1∩g2也是g的子群.(14)证明:设g是一个群, 对任意a,b∈g, 存在一个g到h的映射f,并且f(ab)=f(a)f(b).对任意f(a),f(b)∈h有f(a)f(b)=f(ab)∈h, 所以h满足运算的封闭性. 对任意f(a),f(b),f(c)有(f(a)f(b))f(c)=f(ab)f(c)=f((ab)c), f(a)(f(b)f(c))=f(a)f(bc)=f(a(bc)), 又因为(ab)c=a(bc), 所以(f(a)f(b))f(c)=f(a)(f(b)f(c)), 所以h满足结合律. 对任意f(a)∈h, 有f(ae)=f(a)=f(a)f(e), 所以f(e)是h的单位元, 对任意的f(a)∈h, 有f(aa-1)=f(e)=f(a)f(a-1), 所以f(a)的逆元为f(a-1). 所以h是一个群.(16)证明:设a到a-1的一一映射为f.充分性:对任意g中a,b有f(a)=a-1, f(b)=b-1, f(ab)=(ab)-1又因为f同构, 所以f(ab)=f(a)f(b)=(ab)-1=a-1b-1=(ba)-1, 由(ab)-1=(ba)-1有ba=ab, 所以g是交换群.必要性由上反推可得.第三章(2)第一个问题:设该有限群为g, 对任意阶大于2的元素a∈g, 有an=e, n为使得上式成立的最小正整数且n2. 明显在群中存在一个a-1, 且a≠a-1(若相等则a2=e, 与a的阶大于2矛盾), 有(a-1)n=e, 所以a-1的阶也大于2. 综上对任意阶大于2的元素a, 存在a-1的阶也大于2. 所以结论成立.第二个问题:因为在群g中只有e的阶为1, 在由上个结论有阶大于2的元素个数为偶数, 由已知条件g的阶为偶数可知结论成立.(5)对a生成一个阶为n的循环群g, am生成的循环群的阶为n/(n,m)=n. 又因为am∈g所以am也生成g.(6)设g的阶为n, 由已知可得g为一个群, 有由g与g同态可知f(e)为g的单位元,f(g) ∈g, 且对任意gk∈g, 有f(gk)=(f(g))k, 所以g 中任意元素都可以由f(g)生成表示成(f(g))k, 当k=n时有(f(g))n=f(gn)=f(e), 所以g也是也是一个循环群.(8)13阶:e的阶为1, 其他元素阶为13, 生成元g1到g12.16阶:e的阶为1, g2阶为8, g4阶为4, g6阶为8, g8阶为2,g10的阶为8, g12的阶为4, g14的阶为8, 其余的g到g15的阶为16且是生成元.(9)先分别求出15阶和20阶的正因子为3,5和2,4,5,10所以15阶的生成元为g3, g5, 20阶的生成元为g2, g4, g5, g10.(10)略(11)因为p是素数, 所以阶为p的群为循环群(3.3推论3), 又因为任意同阶的有限循环群同构(3.2定理2), 所以结论成立.(13)由题意可知am=e, bn=e, m,n为使得上式成立的最小正整数, 又因为ab=ba, 所以(ab)mn=amnbmn=e, 又因为(m,n)=1, 假设存在i使得(ab)i=e,有(ab)mi=e,有bmi=e,有mi|n,有i|n,同理i|m,所以i|mn,所以mn是使得(ab)i=e成立的最小整数,结论成立。

《信息安全数学基础》(许春香 著) 课后习题答案 电子科技大学出版社

《信息安全数学基础》(许春香 著) 课后习题答案 电子科技大学出版社

www.kh 课d后a答案w网.com
必要性:因为群 G 是交换群, 所以对任意元素 a,b 有 ab=ba, 方程两边左乘以 a 右乘 以 b 有 abab=aabb, 有(ab)2=a2b2. (9) 证明:对群中任意元素 a,b 有 ab(ab)-1=e, 方程两边先左乘以 a 的逆元有 b(ab)-1=a-1, 在 左乘以 b 的逆元有(ab)-1=b-1a-1, 所以结论成立. (12) 证明:显然 mZ 是群 Z 的一个非空子集, 验证封闭性, 结合律, 单位元, 逆元, 得出 mZ 是一个群, 所以 mZ 是 Z 的子群. (因为对 mZ 中任意元素 am, bm 有 am-bm=(a-b)m, 因为 a-b∈Z, 所以(a-b)m∈mZ, 所以 mZ 是群 Z 的一个子群). (13) 证明:设群 G 的两个子群为 G1, G2, 则对任意 a,b∈G1∩G2 有 ab-1∈G1, ab-1∈G2, 所 以 ab-1∈G1∩G2, 所以 G1∩G2 也是 G 的子群. (14) 证明:设 G 是一个群, 对任意 a,b∈G, 存在一个 G 到 H 的映射 f,并且 f(ab)=f(a)f(b). 对任意 f(a),f(b)∈H 有 f(a)f(b)=f(ab)∈H, 所以 H 满足运算的封闭性. 对任意 f(a),f(b),f(c)有 (f(a)f(b))f(c)=f(ab)f(c)=f((ab)c), f(a)(f(b)f(c))=f(a)f(bc)=f(a(bc)), 又 因 为 (ab)c=a(bc), 所 以 (f(a)f(b))f(c)=f(a)(f(b)f(c)), 所以 H 满足结合律. 对任意 f(a)∈H, 有 f(ae)=f(a)=f(a)f(e), 所以 f(e)是 H 的单位元, 对任意的 f(a)∈H, 有 f(aa-1)=f(e)=f(a)f(a-1), 所以 f(a)的逆元为 f(a-1). 所以 H 是一个群. (16) 证明:设 a 到 a-1 的一一映射为 f.

信息安全数学基础习题答案

信息安全数学基础习题答案
所以n=2*5*7 k2 即n=70 k2, k2 Z
因此70|n
2.证明:因为a3-a=(a-1)a(a+1)
当a=3k,k Z 3|a 则3|a3-a
当a=3k-1,k Z 3|a+1 则3|a3-a
当a=3k+1,k Z 3|a-1 则3|a3-a
所以a3-a能被3整除。
3.证明:任意奇整数可表示为2 k0+1, k0 Z
(2 k0+1)2=4 k02+4 k0+1=4 k0 (k0+1)+1
由于k0与k0+1为两连续整数,必有一个为偶数,所以k0 (k0+1)=2k
所以(a+b,4)=4
37.证明:反证法
假设n为素数,则n| a2- b2=(a+b)(a-b)
由1.4定理2知n|a+b或n|a-b,与已知条件矛盾
所以假设不成立,原结论正确,n为合数。
40.证明:(1)假设是21/2有理数,则存在正整数p,q,使得21/2=p/q,且(p, q)=1
=13*41-14*(161-3*41)
=-14*161+55*(363-2*161)
=55*363+(-124)*(1613-4*363)
=(-124)*1613+551*(3589-2*1613)
所以(2t+1,2t-1)=1
(2)解:2(n+1)=1*2n+2
2n=n*2
所以(2n,2(n+1))=2
32.(1)解:1=3-1*2
=3-1*(38-12*3)
=-38+13*(41-1*38)

信息安全数学基础证明题答案

信息安全数学基础证明题答案

信息安全数学基础习题答案第一章整数的可除性5.证明:构造下列k个连续正整数列:(k+1)!+2, (k+1)!+3, (k+1)!+4,… (k+1)!+(k+1), k∈Z对数列中任一数(k+1)!+i=i[(k+1)k…(i+1)(i-1)…2*1+1], i=2,3,4,…(k+1)所以i|(k+1)!+i 即(k+1)!+i为合数所以此k个连续正整数都是合数。

13.证明:反证法(这个直接构造法是错误的)假设形如4k+1的素数只有有限个,记为p1, p2,…, p n构造N=4*p1*p2*…*p n+1≥3*p1*p2*…*p n所以N>p i (i=1,2,…,n)所以N为4k+1形式的素数,(错误在于,N只是不能被4k+1的素数整除,但并不能说明,N不能被其他形式的素数整除)所以假设不成立。

原结论正确,形如4k+1的素数有无穷多个。

反证法(费马小定理)1.假设形如4k+1的素数只有有限个,记为p1, p2,…, p n设m= p1*p2*…*p n,设q=4m2+1> p n, 是合数,则存在素数p,使得p|q所以有4m2=1(mod p),p不能整除2m,则(p,2m)=1。

由费马小定理得(2m)p-1=1(mod p)(q-1)(p-1)/2=1(mod p)因为p|q,所以(-1) (p-1)/2=1(mod p)所以4| (p-1)所以p是4k+1型的素数,且不p i中,与假设矛盾。

所以形如4k+1的素数有无穷多个。

2.课堂上讲过的方法37.证明:反证法假设n为素数,则n| a2- b2=(a+b)(a-b)由1.4定理2知n|a+b或n|a-b,与已知条件矛盾所以假设不成立,原结论正确,n为合数。

40.证明:(1)假设是21/2有理数,则存在正整数p,q,使得21/2=p/q,且(p, q)=1 平方得:p2=2q2, 即2|p2,所以p=2m, m∈N因此p2=4m2=2q2 q2=2m2 q=2n, n∈N则(p, q)=(2m,2n)=2(m, n)≥2与(p, q)=1矛盾所以假设不成立,原结论正确,21/2不是有理数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信息安全数学基础习题答案第一章整数的可除性1.证明1:因为2|n 所以n=2k , k1Z5|n 所以5|2k ,又(5,2)=1,所以5|k 即k=5 k1,k11Z7|n 所以7|2*5 k1 ,又(7,10)=1,所以7| k1即k1=7 k2,k21Z所以n=2*5*7 k2即n=70 k2, k21Z因此70|n证明2:n是2、5、7的公倍数,所以[2,5,7]|n,又知2、5、7互素,所以[2,5,7]=2*5*7=70,即70|n。

2.证明:因为a3-a=(a-1)a(a+1)当a=3k,k22(mod)a b p≡Z 3|a 则3|a3-a当a=3k-1,k p a b-Z 3|a+1 则3|a3-a当a=3k+1,k p a b+Z 3|a-1 则3|a3-a所以a3-a能被3整除。

3.证明:任意奇整数可表示为2 k0+1, k022(mod)≡Za b p(2 k0+1)2=4 k02+4 k0+1=4 k0 (k0+1)+1由于k0与k0+1为两连续整数,必有一个为偶数,所以k0 (k0+1)=2k所以(2 k0+1)2=8k+1 得证。

4.证明:设三个连续整数为a-1,a,a+1 则(a-1)a(a+1)= a3-a由第二题结论3|(a3-a)即3|(a-1)a(a+1)又三个连续整数中必有至少一个为偶数,则2|(a-1)a(a+1)又(3,2)=1 所以6|(a-1)a(a+1) 得证。

5.证明:构造下列k个连续正整数列:(k+1)!+2, (k+1)!+3, (k+1)!+4,……, (k+1)!+(k+1), k p a b-Z对数列中任一数 (k+1)!+i=i[(k+1)k…(i+1)(i-1)…2*1+1], i=2,3,4,…(k+1)所以i|(k+1)!+i 即(k+1)!+i为合数所以此k个连续正整数都是合数。

6.证明:因为1911/2<14 ,小于14的素数有2,3,5,7,11,13经验算都不能整除191 所以191为素数。

因为5471/2<24 ,小于24的素数有2,3,5,7,11,13,17,19,23经验算都不能整除547 所以547为素数。

由737=11*67 ,747=3*249 知737与747都为合数。

8.解:存在。

eg:a=6,b=2,c=99.证明:反证,设n/p是合数,n/p= k1k2, k1>p, k2>p,则n=p k1k2> n3,所以p< n1/3,矛盾。

10.证明:p1 p2 p3|n,则n= p1 p2 p3k,k p a b+N+又p1≤ p2≤p3,所以n= p1 p2 p3k≥p13 即p13≤n1/3p1为素数则p1≥2,又p1≤ p2≤p3,所以n= p1 p2 p3k≥2 p2 p3≥2p22即p2≤(n/2)1/2得证。

11.解:小于等于5001/2的所有素数为2,3,5,7,11,13,17,19,依次删除这些素数的倍数可得所求素数:12.证明:反证法假设3k+1没有相同形式的素因数,则它一定只能表示成若干形如3k-1的素数相乘。

(3 k1+1)(3 k2+1)=[( 3 k1+1) k2+ k1]*3+1 显然若干个3k+1的素数相乘,得到的还是3k+1的形式,不能得出3k-1的数,因此假设不成立,结论得证。

同理可证其他。

13.证明:反证法假设形如4k+3的素数只有有限个,记为p1, p2,…, p n因为4k+3=4k`-1=4k-1 构造N=4*p1*p2*…*p n-1≥3*p1*p2*…*p n所以N>p i (i=1,2,…,n)N为4k-1形式的素数,即为4k+3的形式,所以假设不成立。

原结论正确,形如4k+3的素数有无穷多个。

21.证:令此合数为S ,根据此合数的结构特点,我们可构造一个整数M ,使MS 不是整数,从而证明S 不是整数。

(1)k-1k 00k-1011111+++++M=2357k 2234n,p n n n 2,M M M MS=M++++++23n nM M 357M=235723p n 2MS S k S p n M M M pp =⋅⋅⋅≤=⋅⋅⋅⋅⋅=∴令取这里是使最大的整数,是不大于的最大奇数。

则在1,2,3,,中必存在一个所以由知,,,必为整数,显然不是整数。

不是整数,从而不是整数。

28.(1)解:85=1*55+30 55=1*30+25 30=1*25+5 25=5*5 所以(55,85)=5(2)解:282=1*202+80 202=2*80+42 80=1*42+38 42=1*38+4 38=9*4+2 4=2*2所以(202,282)=2 29.(1)解:2t+1=1*(2t-1)+2 2t-1=(t-1)*2+1 2=2*1所以(2t+1,2t-1)=1 (2)解:2(n+1)=1*2n+2 2n=n*2所以(2n,2(n+1))=2 32.(1)解:1=3-1*2 =3-1*(38-12*3) =-38+13*(41-1*38) =13*41-14*(161-3*41) =-14*161+55*(363-2*161) =55*363+(-124)*(1613-4*363) =(-124)*1613+551*(3589-2*1613) =551*3589+(-1226)*1613j sj-1 sj tj-1 tj qj rj rj+1 1 0 3589 1613 1 1 0 0 1 2 1613 363 2 0 1 1 -2 4 363 161 3 1 -4 -2 9 2 161 41 4 -4 9 9 -20 3 41 38 5 9 -31 -20 69 1 38 3 6 -31 40 69 -89 12 3 2 7 40 -511 -89 1137 1 2 1 8-5115511137-122621所以s=-1226 t=551 (3589,1613)=1(2)解:1=4-1*3=4-1*(115-28*4)=-115+29*(119-1*115)=29*119+(-30)*(353-2*119)=-30*353+89*(472-1*353)=89*472+(-119)*(825-1*472)=(-119)*825+208*(2947-3*825)=208*2947+(-743)*(3772-1*2947)=951*2947+(-743)*3772所以s=951 t=-743(3)j sj-1 sj tj-1 tj qj rj rj+11 0 37516 200411 1 0 0 1 1 20041 174752 0 1 1 -1 1 17475 25663 1 -1 -1 2 6 2566 20794 -1 7 2 -13 1 2079 4875 7 -8 -13 15 4 487 1316 8 39 15 -73 3 131 947 39 -125 -73 234 1 94 378 -125 164 234 -307 2 37 209 164 -453 -307 848 1 20 1710 -453 617 848 -1155 1 17 311 617 -1070 -1155 2003 5 3 212 -1070 5967 2003 11170 1 2 113 5967 7037 11170 -9167 2 1 0 所以,s=7037 t=-916736.证明:因为(a,4)=2 所以a=2*(2m+1) m Z所以a+b=4m+2+4n+2=4(m+n)+4=4(m+n+1)即4|a+b所以(a+b,4)=437.证明:反证法假设n为素数,则n| a2- b2=(a+b)(a-b)由1.4定理2知n|a+b或n|a-b,与已知条件矛盾所以假设不成立,原结论正确,n为合数。

40.证明:(1)假设是21/2有理数,则存在正整数p,q,使得21/2=p/q,且(p, q)=1平方得:p2=2q2, 即2|p2,所以p=2m, m N因此p2=4m2=2q2 q2=2m2 q=2n, n N则(p, q)=(2m,2n)=2(m, n)≥2与(p, q)=1矛盾所以假设不成立,原结论正确,21/2不是有理数。

(2)假设是71/2有理数,则存在正整数m,n,使得71/2=p/q,且(m, n)=1平方得:m2=2n2, 即7|m2 →7|m同理可知:7|n, n=7 k0所以(m, n)=(7k,7 k0)=7(k, k0)≥7 与已知矛盾故原结论正确,71/2不是有理数。

(3)同理可证171/2不是有理数。

41.证明:假设log 210是有理数,则存在正整数p, q,使得log 210=p/q,且(p, q )=12p/q=10 2p=2q(2*5)q=2p5q=2p-q所以只有当q=p=0是成立,所以假设不成立 故原结论正确,log 210是无理数。

同理可证log 37,log 1521都是无理数。

44.令1212n=p p p s s ααα,若存在i k α=,则取11121211a=p p p p p ,p k k sk k s k b ααααα-+-+=。

n=k ab ∴否则设,0i i iik kq r r α=+≤<,则1212121212121212121212n=p p p =(p p p )(p p p ),p p p ,p p p k k k q q q q q q r r r r r r s s s s q q q a a a s sk s s s s s b +++=令a=n=k ab ∴121211212d=p p p ,d |a,k r ,,k r 0,1,s k s ss d ββββββββ≤≤∴====∴=设若则矛盾。

50.(1)解:因为8=23, 60=22*3*5 所以[8,60]=23*3*5=120 51.(4)解:(471179111011001,4111831111011000)= 410470*********1000=1011000[471179111011001,4111831111011000]= 4111471179111831111011001第二章.同余1.解:(1)其中之一为1,11,3,13,5,15,15,7,17 (2)其中之一为0,10,20,30,40,50,60,70,80(3).(1)或(2)中的要求对模10不能实现。

因为某个数加10不改变奇偶性。

2.证明:(m-i)2=m 2-2mi+ i 2∴(m-i)2≡i 2mod m当m>2时,因为(m-1)2=m 2-2m+1=m(m-2)+1所以(m-1)2≡1(mod m)即1与(m-1)2在同一个剩余类中,故02,12,…,(m-1)2一定不是模m 的完全剩余系。

相关文档
最新文档