高三数学检测题试卷

合集下载

2024-2025学年山东省青岛市高三上学期期中数学质量检测试题(含解析)

2024-2025学年山东省青岛市高三上学期期中数学质量检测试题(含解析)

2024-2025学年山东省青岛市高三上学期期中数学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( )6,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}15Q x x =-≤<P Q = A.B.C.D.{}1,2,3{}0,1,2{}1,2,5{}0,1,2,52. 已知,则=( )i22i z =-z A. 2 B. 13. 已知.若,则( )a = ()2a b a+⊥ cos ,a b=A.B.D. 4. 已知等比数列的前n 项和为,且,则“”是“的公比为2”的({}n a n S 31S ma =7m ={}n a )A. 必要不充分条件B. 充分不必要条件C .充要条件D. 既不充分也不必要条件5.此正四棱锥的体积为( )A. B. C.D.6. 已知函数则图象上关于原点对称的点有( )()21,0,22,0,xx f x x x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪-+<⎩()f x A. 1对B. 2对C. 3对D. 4对7. 已知函数,函数的图象各点的横坐标缩()2211cos sin cos 222222x x x xf x =-f (x )小为原来的(纵坐标不变),再向左平移个单位长度,得到函数的图象.若方程12π12y =g (x )在上有两个不同的解,,则的值为( )()21g x m -=7π0,12x ⎡⎤∈⎢⎥⎣⎦1x 2x 12x x +A. B. C. D. π6π3π2π8. 若关于不等式恒成立,则当时,的最小值为( )x ()ln ax x b ≤+1e e a ≤≤1e ln b a +-A. B. C. 1D. 11e+e 1-e二.多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分)9. 已知,则下列结论正确的是()3515ab==A. B. C. D.lg lg a b>a b ab+=1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭49a b +>10. 若数列满足,,,则称数列为斐波那{a n }11a =21a =12n n n a a a --=+3n ≥n +∈N {a n }契数列,又称黄金分割数列,则下列结论成立的是( )A. B. 713a =222n n n a a a -+=+3n ≥n +∈N C.D.135********a a a a a ++++= 24620242025a a a a a ++++= 11. 如图,在边长为4的正方体中,E ,F 分别是棱,的中点,1111ABCD A B C D -11B C 11C D P 是正方形内的动点,则下列结论正确的是()1111D C B AA. 若平面,则点P 的轨迹长度为//DP CEFB. 若P 的轨迹长度为AP =2πC. 若P 是正方形的中心,Q 在线段EF 上,则的最小值为1111D C B A PQ CQ +D. 若P 是棱的中点,则三棱锥的外接球的表面积是11A B P CEF -41π第Ⅱ卷三.填空题(本大题共3小题,每小题5分,共15分)12. 曲线的所有切线中,斜率最小的切线的方程是_______.32374y x x x =+++13. 为测量某塔的高度,在塔旁的水平地面上共线的三点A ,B ,C 处测得其顶点P 的仰角分别为30°,60°,45°,且米,则塔的高度________米.50AB BC ==OP =14. 已知,当,时,是线段的中点,点在所有的线段121A A =2n ≥*N n ∈1n A +1n n A A -P 上,若,则的最小值是________.1n n A A +1A P λ≤λ四.解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15. 已知数列的前项和为,且.{}n a n n S 22n n S a +=(1)求及数列的通项公式;2a {}n a (2)在与之间插入个数,使得这个数依次组成公差为的等差数列,求n a 1n a +n ()2+n n d数列的前项和.1n d⎧⎫⎨⎬⎩⎭n n T 16. 设的内角A ,B ,C 所对的边分别为a ,b ,c ,且有,ABC V π2cos 3b A a c⎛⎫-=+ ⎪⎝⎭(1)求角B :(2)若AC 边上的高,求.h =cos cos A C 17. 如图1,在平行四边形中,,,E 为的中点,ABCD 24AB BC ==60ABC ∠=︒CD 将沿折起,连结,,且,如图2.ADE V AE BD CD 4BD=(1)求证:图2中的平面平面;ADE ⊥ABCE (2)在图2中,若点在棱上,直线与平面F BD AF ABCE 点到平面的距离.F DEC 18. 已知函数,且与轴相切于坐标原点.()sin ln(1)f x x x ax =++-()y f x =x (1)求实数的值及的最大值;a ()f x (2)证明:当时,;π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>(3)判断关于的方程实数根的个数,并证明.x ()0f x x +=19. 对于任意正整数n ,进行如下操作:若n 为偶数,则对n 不断地除以2,直到得到一个奇数,记这个奇数为;若n 为奇数,则对不断地除以2,直到得出一个奇数,记这个n a 31n +奇数为.若,则称正整数n 为“理想数”.n a 1n a =(1)求20以内的质数“理想数”;(2)已知.求m 的值;9m a m =-(3)将所有“理想数”从小至大依次排列,逐一取倒数后得到数列,记的前n 项和{}n b {}n b 为,证明.n S ()*7N 3n S n <∈2024-2025学年山东省青岛市高三上学期期中数学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( )6,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}15Q x x =-≤<P Q = A.B.C.D.{}1,2,3{}0,1,2{}1,2,5{}0,1,2,5【正确答案】B【分析】首先把集合用列举法表示出来,再运用交集的运算进行求解即可.P 【详解】若,,则是的正因数,而的正因数有,,,,61y x =+y ∈N 1x +661236所以,{}6,0,1,2,51P x y y x ⎧⎫=∈=∈=⎨⎬+⎩⎭N N 因为,{}15Q x x =-≤<所以,{}0,1,2P Q ⋂=故选:B.2. 已知,则=( )i22i z =-z A. 2 B. 1【正确答案】C【分析】根据复数的运算法则计算出复数,再计算复数的模.z 【详解】由题意知,()()()i 22i i 22i 22i 22i z +==--+2i 28-=11i 44=-+所以,z ==故选:C.3. 已知.若,则()a = ()2a b a+⊥ cos ,a b =A.B.D. 【正确答案】B【分析】根据向量垂直可得,代入向量夹角公式即可得结果.32a b ⋅=-【详解】因为,且,()2a b a+⊥1a = 则,可得,()2220a a a ab b +⋅=+⋅= 21322a b a⋅=-=-rr r 所以.cos ,a b a b a b⋅===⋅r r r r r r 故选:B.4. 已知等比数列的前n 项和为,且,则“”是“的公比为2”的({}n a n S 31S ma =7m ={}n a )A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件【正确答案】A【分析】利用等比数列的性质,分别判断充分性与必要性即可.【详解】设等比数列的公比为,{}n a q 由,得,()223123111111S a a a a a q a q a q q ma =++=++=++=21q q m ++=当时,,解得或,充分性不成立;7m =217q q ++=2q =3q =-当时,,必要性成立.2q =217q q m ++==所以“”是“的公比为2” 的必要不充分条件.7m ={}n a 故选:A5. 此正四棱锥的体积为( )A. B. C. D. 【正确答案】B【分析】根据正四棱柱及正四棱锥的体积公式可得正四棱锥的高与斜高的关系式,进而可得解.【详解】如图所示,正四棱柱为,正四棱锥,1111ABCD A B C D -1O ABCD -设底边边长,高AB a =1OO =则,1O E ==又正四棱柱的侧面积,114S AB OO =⋅=正四棱锥的侧面积,21142S AB O E a=⋅⋅=则,解得,a=a =所以正四棱锥体积,2113ABCD V S OO =⋅==故选:B.6. 已知函数则图象上关于原点对称的点有( )()21,0,22,0,xx f x x x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪-+<⎩()f x A. 1对 B. 2对C. 3对D. 4对【正确答案】C【分析】作出的图象,再作出函数关于原点对称的图象,进而数形结()f x 1,0,2xy x ⎛⎫=≥ ⎪⎝⎭合判断即可.【详解】作出的图象,再作出函数关于原点对称的图象如图所示.()f x 1,0,2xy x ⎛⎫=≥ ⎪⎝⎭因为函数关于原点对称的图象与图象有三个交点,故1,0,2xy x ⎛⎫=≥ ⎪⎝⎭22,0,y x x x =-+<图象上关于原点对称的点有3对.()fx故选:C7. 已知函数,函数的图象各点的横坐标缩()2211cos sin cos 222222x x x xf x =-f (x )小为原来的(纵坐标不变),再向左平移个单位长度,得到函数的图象.若方程12π12y =g (x )在上有两个不同的解,,则的值为( )()21g x m -=7π0,12x ⎡⎤∈⎢⎥⎣⎦1x 2x 12x x +A. B. C. D. π6π3π2π【正确答案】A【分析】先化简,根据图象变换求出,将方程转化为()f x ()g x ()21g x m -=,由函数图象的对称性求出答案.()12m g x +=()g x 【详解】根据题意可得,()1πcos sin 26f x x x x ⎛⎫=+=+ ⎪⎝⎭所以,()πππsin 2sin 21263g x x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,,7π012x ≤≤ππ3π2332x ∴≤+≤所以在上单调递增,在上单调递减,关于对称,()g x π0,12⎡⎤⎢⎥⎣⎦π7π,1212⎡⎤⎢⎥⎣⎦()g x π12x =且,,()π06g g ⎛⎫== ⎪⎝⎭π112g ⎛⎫= ⎪⎝⎭7π112g ⎛⎫=- ⎪⎝⎭方程等价于有两个不同的解,()21g x m -=()12m g x +=12,x x .12ππ2126x x ∴+=⨯=故选:A.8. 若关于不等式恒成立,则当时,的最小值为( )x ()ln ax x b ≤+1e e a ≤≤1e ln b a +-A.B. C. 1D. 11e +e 1-e【正确答案】C【分析】构建,分析可知的定义域为,且在()()ln f x ax x b=--()f x (0,+∞)()0f x ≤内恒成立,利用导数可得,整理可得,构建(0,+∞)ln 1a b ≤+1e ln ln b a a a +-≥-,利用导数求其最值即可.()1ln ,ee g a a a a =-≤≤【详解】设,()()ln f x ax x b=--因为,可知的定义域为,所以在内恒成立,1e e a ≤≤()f x (0,+∞)()0f x ≤(0,+∞)又因为,()111xf x x x -=-='令,解得;令,解得;f ′(x )>001x <<f ′(x )<01x >可知在内单调递增,在内单调递减,()f x (0,1)(1,+∞)则,可得,则,()()1ln 10f x f a b ≤=--≤ln 1a b ≤+1ln e e b aa +≥=可得,当且仅当时,等号成立,1e ln ln b a a a +-≥-ln 1a b =+令,则,()1ln ,e e g a a a a =-≤≤()111a g a a a '-=-=令,解得;令,解得;()0g a '>1e a <≤()0g a '<11e a <≤可知在内单调递增,在内单调递减,则,()g a (]1,e 1,1e ⎡⎫⎪⎢⎣⎭()()11g a g ≥=即,当且仅当时,等号成立,1eln ln 1b a a a +-≥-≥1,1a b ==-所以的最小值为1.1eln b a +-故选:C.方法点睛:两招破解不等式的恒成立问题(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步:将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.二.多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分)9. 已知,则下列结论正确的是()3515ab==A. B. C. D.lg lg a b>a b ab+=1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭49a b +>【正确答案】ABD【分析】根据指对互化与运算以及指数函数、对数函数单调性即可判断ABC ,利用基本不等式即可判断D.【详解】由题可得,,33log 15log 310a =>=>55log 15log 510b =>=>,即,所以,1515110log 3log 5a b ∴<=<=110a b <<0a b >>对于A ,因为,所以,故A 正确;0a b >>lg lg a b >对于B ,,,故B 正确;15151511log 3log 5log 151a b +=+== a b ab ∴+=对于C ,因为,所以,故C 错误;0a b >>1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭对于D ,因为,,0a b >>111a b +=所以,()11444559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭当且仅当,即时等号成立,这与已知矛盾,所以,故D 正4b aa b =2a b =35a b =49a b +>确.故选:ABD.10. 若数列满足,,,则称数列为斐波那{a n }11a =21a =12n n n a a a --=+3n ≥n +∈N {a n }契数列,又称黄金分割数列,则下列结论成立的是( )A. B. 713a =222n n n a a a -+=+3n ≥n +∈N C.D.135********a a a a a ++++= 24620242025a a a a a ++++= 【正确答案】AC【分析】利用斐波那契数列的定义结合递推关系一一判定选项即可.【详解】对于A ,由题可得,,,,,故A 正确;32a =43a =55a =68a =713a =对于B ,因为,又,21112n n n n n n n n a a a a a a a a ++--=+=++=+12n n n a a a --=+所以,即,故B 错误;21213n n n n n a a a a a +---++=+223n n n a a a +-=+对于C ,2024202320222023202120202023202132a a a a a a a a a a =+=++==++++ ,故C 正确;2023202131a a a a =++++ 对于D ,2025202420232024202220212024202243a a a a a a a a a a =+=++=++++ ,故D 错误.20242022421a a a a a =+++++ 故选:AC.11. 如图,在边长为4的正方体中,E ,F 分别是棱,的中点,1111ABCD A B C D -11B C 11C D P 是正方形内的动点,则下列结论正确的是()1111D C B AA. 若平面,则点P 的轨迹长度为//DP CEFB. 若P 的轨迹长度为AP =2πC. 若P 是正方形的中心,Q 在线段EF 上,则的最小值为1111D C B A PQ CQ +D. 若P 是棱的中点,则三棱锥的外接球的表面积是11A B P CEF -41π【正确答案】ACD【分析】作出相应图形,先证明平面平面,再结合给定条件确定动点轨迹,//BDNM CEF 求出长度即可判断;建立空间直角坐标系,根据题意确定动点轨迹,求解长度即可判断,A B 将平面翻折到与平面共面,连接,与交于点,此时取到CEF 1111D C B A PC EF Q PQ CQ +最小值,利用勾股定理求出即可判断,先找到球心,利用勾股定理得出半径,求,PQ CQ C 出外接球的表面积即可判断.D 【详解】如图,取,的中点为,连接,,11A D 11A B ,N M ,,,,MN DN BD BM NE 11B D所以,又E ,F 分别是棱,的中点,11//MN B D 11B C 11C D 所以,所以,11//EF B D //MN EF 平面,平面,MN ⊄CEF EF ⊂CEF 平面,//MN ∴CEF 因为分别是棱,的中点,所以,且,,N E 11A D 11B C //NE CD NE CD =所以四边形为平行四边形,CDNE 所以,又平面,平面,//ND CE ND ⊄CEF CE ⊂CEF 平面,//ND ∴CEF 又,平面,MN ND N = ,MN ND ⊂BDNM 所以平面平面,//BDNM CEF点P 是正方形内的动点,且平面,1111D C B A //DP CEF 所以点P 的轨迹为线段,由勾股定理得,故正确;MN MN ==A 如图,以为原点,以所在直线为轴,轴,轴,A 1,,AB AD AA x y z 由题意得,设,(0,0,0)A (,,4)P x y,AP ==所以,所以点的轨迹为为圆心,半径为1的个圆,221x y +=P 1A 14所以点P 的轨迹长度为.故错误;1π2π42⋅=B 如图,将平面翻折到与平面共面,CEF 1111DC B A 连接,与交于点,此时取到最小值,PC EF Q PQ CQ+,且,CE CF === 2PE PF ==所以点为的中点,所以Q EFPQ EQ ===所以,CQ ===即的最小值为,故正确;PQ CQ +C如图,连接,交于点,连接,PF 11B D 1O PE 若P 是棱的中点,则,11A B 90FEP ∠= 所以是外接圆的一条直径,所以是外接圆的圆心,FP PEF !1O PEF !过点作平面的垂线,则三棱锥的外接球的球心一定在该垂线上,1O ABCD P CEF -O 连接,设,则,OP 1OO t =2222t R +=连接,,所以,OC 12AC ==()(2224t R -+=所以,解得,()(222224t t +=-+52=t 所以,222541244R =+=所以三棱锥的外接球的表面积为,故正确.P CEF -24π41πS R ==D 故选.ACD方法点睛:三棱锥外接球的半径的求法:(1)先找两个面的外心;(2)过外心作所在平面的垂线,两垂线的交点即为球心;(3)构造直角三角形,利用勾股定理求出半径.有时无须确定球心的具体位置,即只用找一个面的外心,则球心一定在过该外心与所在平面的垂线上.第Ⅱ卷三.填空题(本大题共3小题,每小题5分,共15分)12. 曲线的所有切线中,斜率最小的切线的方程是_______.32374y x x x =+++【正确答案】.430x y -+=【分析】首先求函数的导数,再根据二次函数求最小值,即可求切线的斜率,以及代入切线方程,即可求解.【详解】由题意,223673(1)4y x x x '=++=++所以时,,又时,,1x =-min4y '=1x =-1y =-所以所求切线的方程为,即.14(1)y x +=+430x y -+=故.430x y -+=13. 为测量某塔的高度,在塔旁的水平地面上共线的三点A ,B ,C 处测得其顶点P 的仰角分别为30°,60°,45°,且米,则塔的高度________米.50AB BC ==OP =【正确答案】【分析】设,在,,分别根据锐角三角函数定义求PO h =Rt POA △Rt POB △Rt POC △出,最后利用余弦定理进行求解即可.,,OA OB OC 【详解】设塔的高,PO h =在中,,同理可得,,Rt POA △otan 30OP OA ==OB =OC h =在中,,则,OAC πOBA OBC ∠+∠=cos cos OBA OBC ∠=-∠,22222222OB AB OA OB BC OC OB AB OB BC +-+-∴=-⋅⋅.=h =所以塔的高度为米.故答案为.14. 已知,当,时,是线段的中点,点在所有的线段121A A =2n ≥*N n ∈1n A +1n n A A -P 上,若,则的最小值是________.1n n A A +1A P λ≤λ【正确答案】23【分析】根据中点坐标公式可得,进而可得为等比数列,()*122n n n a a a n +++=∈N {}1n n a a +-即可利用累加法求解,由极限即可求解.121132n n a -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【详解】不妨设点、,设点,()10,0A ()21,0A ()(),0n n A a n *∈N 则数列满足,,,{a n }10a =21a =()*122n n n a a a n +++=∈N 所以,,1212n nn n a a a a +++--=-所以,数列是首项为,公比为的等比数列,{}1n n a a +-211a a -=12-所以,,11111122n n n n a a --+⎛⎫⎛⎫-=⨯-=- ⎪⎪⎝⎭⎝⎭当时,2n ≥()()()2121321110122n n n n a a a a a a a a --⎛⎫⎛⎫=+-+-++-=++-++- ⎪ ⎪⎝⎭⎝⎭ ,1111212113212n n --⎛⎫-- ⎪⎡⎤⎛⎫⎝⎭==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+也满足,故对任意的,.10a =121132n n a -⎡⎤⎛⎫=--⎢⎥⎪⎝⎭⎢⎥⎣⎦n *∈N 121132n n a -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦所以,,故11212lim 1323n n A P ∞-→+⎧⎫⎡⎤⎪⎪⎛⎫=--=⎢⎥⎨⎬ ⎪⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭23λ≥故答案为.23四.解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15. 已知数列的前项和为,且.{}n a n n S 22n n S a +=(1)求及数列的通项公式;2a {}n a (2)在与之间插入个数,使得这个数依次组成公差为的等差数列,求n a 1n a +n ()2+n n d 数列的前项和.1n d⎧⎫⎨⎬⎩⎭n n T 【正确答案】(1),,24a =2n n a =*N n ∈(2)332n nn T +=-【分析】(1)先将代入题干表达式计算出,再将代入题干表达式即可计算1n =12a =2n =出的值,当时,由,可得,两式相减进一步推导即可2a 2n ≥22n n S a +=1122n n S a --+=发现数列是以为首项,为公比的等比数列,从而计算出数列的通项公式;{}n a 22{}n a (2)先根据第题的结果写出与的表达式,再根据题意可得,()1n a 1n a +()11n n n a a n d +-=+通过计算出的表达式即可计算出数列的通项公式,最后运用错位相减法即可计算出n d 1n d ⎧⎫⎨⎬⎩⎭前项和.n n T 【小问1详解】由题意,当时,,解得,1n =111222S a a +=+=12a =当时,,即,解得,2n =2222S a +=12222a a a ++=24a =当时,由,可得,两式相减,可得,2n ≥22n n S a +=1122n n S a --+=122n n n a a a -=-整理,得,∴数列是以2为首项,2为公比的等比数列,12n n a a -={}n a ∴,.1222n n n a -=⋅=*N n ∈【小问2详解】由(1)可得,,,2nn a =112n n a ++=在与之间插入个数,使得这个数依次组成公差为的等差数列,n a 1n a +n ()2+n n d 则有,()11n n na a n d +-=+∴,∴,1211nn n n a a d n n +-==++112n n n d +=∴,1231211123412222n n n n T d d d +=++⋅⋅⋅+=+++⋅⋅⋅+,()2311111123122222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⋅⋅+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭两式相减得,2112311111121111133221122222222212n n n n n n n n n T ++++-+++=+++⋅⋅⋅+-=+-=--∴.332n n n T +=-16. 设的内角A ,B ,C 所对的边分别为a ,b ,c ,且有,ABC V π2cos 3b A a c⎛⎫-=+ ⎪⎝⎭(1)求角B :(2)若AC 边上的高,求.h =cos cos A C【正确答案】(1)π3B =(2)18-【分析】(1)由正弦定理及两角和的正弦公式可得角的大小;B (2)由等面积法可得,再由正弦定理可得的值,再由22b ac =sin sin A C ,可得的值.cos cos()B A C =-+cos cos A C 【小问1详解】因为,π2cos 3b A a c⎛⎫-=+ ⎪⎝⎭由正弦定理可得,12sin cos sin sin 2B A A A C ⎛⎫+=+ ⎪ ⎪⎝⎭即sin cos sin sin sin()B A A B A A B +=++即,sin cos sin sin sin cos cos sin B A A B A A B A B +=++,sin sin sin cos B A A A B =+在三角形中,,sin 0A >,cos 1B B -=即,因为,则π1sin 62B ⎛⎫-= ⎪⎝⎭(0,)B π∈ππ5π,666B ⎛⎫-∈- ⎪⎝⎭可得,则.ππ66B -=π3B =【小问2详解】因为边上的高,AC h =所以①21122ABC S b h b =⋅==又②11sin 22ABC S ac B ac === 由①②可得,22b ac =由正弦定理可得,2sin 2sin sin B A C =结合(1)中可得,π3B =3sin sin 8A C =因为,()1cos cos cos cos sin sin 2B A C A C A C =-+=-+=所以.1311cos cos sin sin 2828A C A C =-=-=-17. 如图1,在平行四边形中,,,E 为的中点,ABCD 24AB BC ==60ABC ∠=︒CD 将沿折起,连结,,且,如图2.ADE VAE BD CD 4BD =(1)求证:图2中的平面平面;ADE ⊥ABCE (2)在图2中,若点在棱上,直线与平面F BD AF ABCE 点到平面的距离.F DEC 【正确答案】(1)证明见解析(2【分析】(1)连接,利用勾股定理证明,再根据线面垂直的判定定BE ,BE DE BE AE ⊥⊥理证得平面,再根据面面垂直的判定定理即可得证;BE ⊥ADE (2)以点为原点,建立空间直角坐标系,利用向量法求解即可.E【小问1详解】连接,BE 由题意,2,60,120AD DE ADE BCE ==∠=︒∠=︒则为等边三角形,ADE V 由余弦定理得,所以2144222122BE ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭BE =则,222222,DE BE BD AE BE BD +=+=所以,,BE DE BE AE ⊥⊥又平面,,,AE DE E AE DE ⋂=⊂ADE 所以平面,BE ⊥ADE 又平面,所以平面平面;BE ⊂ABCE ADE ⊥ABCE 【小问2详解】如图,以点为原点,建立空间直角坐标系,E 则,()()()(()2,0,0,0,,,,0,0,0A B CD E -设,()01DF DB λλ=≤≤故,()((,,1,EC ED DB=-==-,((()1,1,AD AD DF λλ=+=-+-=--因为轴垂直平面,故可取平面的一条法向量为,z ABCE ABCE ()0,0,1m =所以,cos ,m AF m AF m AF⋅===化简得,解得或(舍去),23830λλ+-=13λ=3λ=-所以,1133DF DB ⎛==- ⎝ 设平面的法向量为,DEC (),,n x y z =则有,可取,00n EC x n ED x ⎧⋅=-=⎪⎨⋅=+=⎪⎩)1n =- 所以点到平面FDEC18. 已知函数,且与轴相切于坐标原点.()sin ln(1)f x x x ax =++-()y f x =x (1)求实数的值及的最大值;a ()f x (2)证明:当时,;π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>(3)判断关于的方程实数根的个数,并证明.x ()0f x x +=【正确答案】(1),最大值为0 2a =(2)证明见解析(3)2个,证明见解析【分析】(1)由求出的值,即可得到解析式,再利用导数求出函数的单调(0)0f '=a ()f x 区间,从而求出函数的最大值;(2)依题意即证当时,记,π,π6x ⎡⎤∈⎢⎥⎣⎦1sin ln(1)2x x ++>1()sin ln(1)2m x x x =++-,当时直接说明即可,当,利用导数说明函数的单调π,π6x ⎡⎤∈⎢⎥⎣⎦π5π,66x ⎡⎤∈⎢⎥⎣⎦5π,π6x ⎛⎤∈ ⎥⎝⎦性,即可得证;(3)设,,当时,由(1)知,()()h x f x x =+()1,x ∞∈-+(1,0)x ∈-()(0)0f x f <=则,当时,利用导数说明函数的单调性,结合零点存在性定理判断函()0f x x +<π()0,x ∈数的零点,当时,,令,[π,)x ∈+∞()1ln(1)h x x x ≤++-()1ln(1)(π)l x x x x =++-≥利用导数说明在区间上单调递减,即可得到,从而说明函数在()l x [π,)+∞()0l x <无零点,即可得解.[π,)+∞【小问1详解】由题意知,且,(0)0f =(0)0f '=,1()cos 1f x x a x '=+-+ ,解得,(0)20f a '∴=-=2a =,,()sin ln(1)2f x x x x ∴=++-()1,x ∞∈-+则,1()cos 21f x x x '=+-+当时,,.故,0x ≥cos 1≤x 111x ≤+()0f x '≤所以在区间上单调递减,所以.()f x [0,)+∞()(0)0f x f £=当时,令,10x -<<1()cos 21g x x x =+-+则,21()sin (1)g x x x '=--+,,,sin (0,1)x -∈ 211(1)x >+()0g x '∴<在区间上单调递减,则,()f x '∴(1,0)-()(0)0f x f ''>=在区间上单调递增,则,则.()f x ∴(1,0)-()(0)0f x f <=()()max 00f x f ==综上所述,,的最大值为.2a =()f x 0【小问2详解】因为,()sin ln(1)2f x x x x =++-要证当时,即证,π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>1sin ln(1)2x x ++>记,,1()sin ln(1)2m x x x =++-π,π6x ⎡⎤∈⎢⎥⎣⎦当时,,,π5π,66x ⎡⎤∈⎢⎥⎣⎦1sin 12x ≤≤ln(1)0x +>;1()sin ln(1)02m x x x ∴=++->当时,,5π,π6x ⎛⎤∈ ⎥⎝⎦1()cos 1m x x x '=++记,则,1()()cos 1n x m x x x '==++21()sin 0(1)n x x x '=--<+在区间上单调递减,则,()m x '∴5π,π6⎛⎤ ⎥⎝⎦5π6()065π6m x m ⎛⎫<=+< '+⎝'⎪⎭则在区间上单调递减,()m x 5π,π6⎛⎤⎥⎝⎦,()11()(π)sin πln(π1)ln π1022m x m ∴≥=++-=+->综上所述,当时,.π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>【小问3详解】设,,()()sin ln(1)h x f x x x x x =+=++-()1,x ∞∈-+,1()cos 11h x x x '∴=+-+当时,由(1)知,(1,0)x ∈-()(0)0f x f <=故,()()0f x x f x +<<故在区间上无实数根.()0f x x +=(1,0)-当时,,因此为的一个实数根.0x =(0)0h =0()0f x x +=当时,单调递减,π()0,x ∈1()cos 11h x x x '=+-+又,,(0)10h '=>1(π)20π1h '=-<+存在,使得,∴0(0,π)x ∈()00h x '=所以当时,当时,00x x <<ℎ′(x )>00πx x <<ℎ′(x )<0在区间上单调递增,在区间上单调递减,()h x ∴()00,x ()0,πx ,又,()0(0)0h x h ∴>=(π)ln(π1)π2π0h =+-<-<在区间上有且只有一个实数根,在区间上无实数根.()0f x x ∴+=()0,πx (]00,x 当时,,[π,)x ∈+∞()1ln(1)h x x x ≤++-令,()1ln(1)(π)l x x x x =++-≥,1()1011x l x x x -'∴=-=<++故在区间上单调递减,,()l x [π,)+∞()(π)ln(1π)π13π0l x l ≤=+-+<-<于是恒成立.故在区间上无实数根,()0f x x +<()0f x x +=[π,)+∞综上所述,有2个不相等的实数根.()0f x x +=方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.19. 对于任意正整数n ,进行如下操作:若n 为偶数,则对n 不断地除以2,直到得到一个奇数,记这个奇数为;若n 为奇数,则对不断地除以2,直到得出一个奇数,记这个n a 31n +奇数为.若,则称正整数n 为“理想数”.n a 1n a =(1)求20以内的质数“理想数”;(2)已知.求m 的值;9m a m =-(3)将所有“理想数”从小至大依次排列,逐一取倒数后得到数列,记的前n 项和{}n b {}n b 为,证明.n S ()*7N 3n S n <∈【正确答案】(1)2和5为两个质数“理想数” (2)的值为12或18m(3)证明见解析【分析】(1)根据“理想数”概念,结合列举法可解;(2)分析题意知道必为奇数,则必为偶数,结合整除知识得解;9m a m =-m (3)将数列适当放缩,后分组,结合等比数列求和公式计算即可.【小问1详解】以内的质数为,202,3,5,7,11,13,17,19,故,所以为“理想数”;212=21a =2,而,故不是“理想数”;33110⨯+=1052=3,而,故是“理想数”;35116⨯+=41612=5,而,故不是“理想数”;37122⨯+=22112=7,而,故不是“理想数”;311134⨯+=34172=11,而,故不是“理想数”;313140⨯+=4058=13,而,故不是“理想数”;317152⨯+=52134=17,而,故不是“理想数”;319158⨯+=58292=19和5为两个质数“理想数”;2∴【小问2详解】由题设可知必为奇数,必为偶数,9m a m =-m ∴存在正整数,使得,即:∴p 92p m m =-9921p m =+-,且,921p ∈-Z211p-≥,或,或,解得,或,211p ∴-=213p -=219p-=1p =2p =,或,即的值为12或18.1991821m ∴=+=-2991221m =+=-m 【小问3详解】显然偶数"理想数"必为形如的整数,()*2k k ∈N 下面探究奇数"理想数",不妨设置如下区间:,((((0224462222,2,2,2,2,2,,2,2k k -⎤⎤⎤⎤⎦⎦⎦⎦若奇数,不妨设,1m >(2222,2k k m -⎤∈⎦若为"理想数",则,且,即,且,m (*3112s m s +=∈N )2s >(*213s m s -=∈N )2s >①当,且时,;(*2s t t =∈N )1t >41(31)133t t m -+-==∈Z ②当时,;()*21s t t =+∈N 2412(31)133t t m ⨯-⨯+-==∉Z ,且,(*413t m t -∴=∈N )1t >又,即,22241223t k k--<<1344134k t k-⨯<-≤⨯易知为上述不等式的唯一整数解,t k =区间]存在唯一的奇数"理想数",且,(2222,2k k -(*413k m k -=∈N )1k >显然1为奇数"理想数",所有的奇数"理想数"为,()*413k m k -=∈N 所有的奇数"理想数"的倒数为,∴()*341kk ∈-N 1133134144441k k k ++<=⨯---1212123111111222521n n n n S b b b b b b b +⎛⎫⎛⎫∴=+++<+++++<+++++++ ⎪ ⎪⎝⎭⎝⎭,即.21111171111124431124⎛⎫<⨯++++<+⨯=⎪⎝⎭-- ()*73n S n <∈N 知识点点睛:本题属于新定义的题目,综合了整除,数列的放缩,分组求和和等比数列公式.属于难题.。

高三数学:厦门市2024届高三下学期第二次质量检测试题和答案

高三数学:厦门市2024届高三下学期第二次质量检测试题和答案

厦门市2024届高中毕业班第二次质量检查一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}14A x x =-≤,40x B xx ⎧⎫-=≥⎨⎬⎩⎭,则A B =R ð()A .()0,4B .[)0,4C .[](]3,04,5- D .[)(]3,04,5- 2.已知正项等差数列{}n a 的公差为d ,前n 项和为n S ,且()()22334441,41S a S a =+=+,则d =()A .1B .2C .3D .43.已知,αβ为关于x 的方程2450x x -+=的两个虚根,则αβαβ+=+()A .52B .52-C D .4.已知样本()2,1,3,,4,5x x ∈R 的平均数等于60%分位数,则满足条件的实数x 的个数是()A .0B .1C .2D .35.在平面直角坐标系xOy 中,点P 在直线3410x y ++=上.若向量()3,4a = ,则OP 在a 上的投影向量为()A .34,55⎛⎫-- ⎪⎝⎭B .34,55⎝⎭C .34,2525⎛⎫-- ⎪⎝⎭D .34,2525⎛⎫ ⎪⎝⎭6.设12,F F 分别是双曲线()2222:10,0x y C a b a b-=>>的左、右焦点,P 为双曲线左支上一点,且满足112PF F F =,直线2PF 与C 的一条渐近线垂直,则C 的离心率为()A .53BC .2D 7.已知()()()cos 140sin 110sin 130ααα-︒++=︒-︒,则tan α=()A .33B .33-C D .8.设集合{}1,0,1A =-,(){}12345,,,,,1,2,3,4,5iB x x x x x x A i =∈=,那么集合B 中满足1235413x x x x x ≤++++≤的元素的个数为()A .60B .100C .120D .130二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,部分选对的得3分,有选错的得0分.9.为了预测某地的经济增长情况,某经济学专家根据该地2023年1~6月的GDP 数据y (单位:百亿元)建立了一元线性回归模型,根据最小二乘法得到的经验回归方程为ˆ0.4ˆ2yx a =+,其中解释变量x 指的是1~6月的编号,其中部分数据如表所示:时间1月2月3月4月5月6月编号x 123456y /百亿元1y 2y 3y 11.1075y 6y (参考数据:621796i i y ==∑,()62170i i y y =-=∑),则()A .经验回归直线经过点()3.5,11B .ˆ10.255a=C .根据该模型,该地2023年12月的GDP 的预测值为14.57百亿元D .第4个样本点()44,x y 的残差为0.10310.如图1,扇形ABC 的弧长为12π,半径为AB 上有一动点M ,弧AB 上一点N 是弧的三等分点,现将该扇形卷成以A 为顶点的圆锥,使得AB 和AC 重合,则在图2的圆锥中()(第10题图1)(第10题图2)A .圆锥的体积为216πB .当M 为AB 中点时,线段MN 在底面的投影长为C .存在M ,使得MN AB⊥D .min 3302MN =11.已知()(),f x g x 都是定义在R 上的奇函数,且()f x 为单调函数,()11f >.x ∀∈R ,()()f g x x a -=(a 为常数),()()()()222g f x g f x x ++=+,则()A .()20g =B .()33f <C .()f x x -为周期函数D .()21422n k f k nn=>+∑三、填空题:本题共3小题,每小题5分,共15分.12.已知抛物线2:4C y x =的焦点为F ,点A 在C 上,且5AF =,O 为坐标原点,则AOF △的面积为______.13.已知函数()()()sin 0f x x ωϕω=+>在ππ,36⎡⎤-⎢⎥⎣⎦上单调,π4ππ633f f f ⎛⎫⎛⎫⎛⎫==-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则ω的可能取值为______.14.已知函数()()log 0,0,1ab f x x x a b b =->>≠,若()1f x ≥恒成立,则ab 的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)如图,三棱柱111ABC A B C -中,侧面11ABB A 是边长为2的菱形,1π3ABB ∠=,AC =,M 为11A B 中点,CM =(第15题图)(1)证明:平面ABC ⊥平面11ABB A ;(2)若2BC =,求平面ABC 与平面1ABC 夹角的余弦值.16.(15分)定义:如果三角形的一个内角恰好是另一个内角的两倍,那么这个三角形叫做倍角三角形.如图,ABC △的面积为S ,三个内角A B C 、、所对的边分别为,,a b c ,且222sin S C c b=-.(第16题图)(1)证明:ABC △是倍角三角形;(2)若9c =,当S 取最大值时,求tan B .17.(15分)已知()2,0A ,()2,0B -,P 为平面上的一个动点.设直线,AP BP 的斜率分别为1k ,2k ,且满足1234k k ⋅=-.记P 的轨迹为曲线Γ.(1)求Γ的轨迹方程;(2)直线PA ,PB 分别交动直线x t =于点C D 、,过点C 作PB 的垂线交x 轴于点H .HC HD ⋅ 是否存在最大值?若存在,求出最大值;若不存在,说明理由.18.(17分)若*n ∀∈N ,都存在唯一的实数n c ,使得()n f c n =,则称函数()f x 存在“源数列”{}n c .已知()(]ln ,0,1f x x x =∈.(1)证明:()f x 存在源数列;(2)(ⅰ)若()0f x≤恒成立,求λ的取值范围;(ⅱ)记()f x 的源数列为{}n c ,证明:{}n c 前n 项和53n S <.19.(17分)小明进行投篮训练,已知每次投篮的命中率均为0.5.(1)若小明共投篮4次,在投中2次的条件下,求第二次没有投中的概率;(2)若小明进行两组训练,第一组投篮3次,投中1X 次,第二组投篮2次,投中2X 次,求()12E X X -;(3)记()P i 表示小明投篮()2,3,i i =⋅⋅⋅次,恰有2次投中的概率.在投篮不超过()2n n ≥次的情况下,若小明投中2次,则停止投篮;若投篮n 次后,投中的次数仍不足2次,则不再继续投篮.记Y 表示小明投篮的次数.证明:()()222n i E Y P i +=≥∑.。

2025届济宁市高三数学上学期期中质量检测试卷及答案解析

2025届济宁市高三数学上学期期中质量检测试卷及答案解析

2024~2025学年度第一学期期中教学质量检测高三数学试题2024.11本试卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的考场、座号、姓名、班级填(涂)写在答题卡上,将条形码粘贴在“贴条形码区”.2.做选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再改涂其它答案标号.3.非选择题须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡中各题目指定的区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.否则,该答题无效.4.考生必须保持答题卡的整洁;书写要求字体工整,符号规范,笔迹清楚.一、选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{P x y ==,{Q y y ==,则()R P Q =I ð( )A. ÆB. [)1,+¥C. (),0-¥ D. (],1-¥-【答案】D 【解析】【分析】首先根据偶次方根的被开方数非负求出集合P ,再求出集合Q ,最后根据集合的运算法则计算可得.【详解】由y =可得210x -³,解得1x ³或1x £-,所以{(][),11,P x y ¥¥===--È+,又210x -³,则0y =³,所以{[)0,Q y y ¥===+,所以()R ,0Q =-¥ð,所以()(]R ,1P Q =-¥-I ð.故选:D2. 若复数12i=-z (i 为虚数单位),则z =( )A.21i 55- B.21i 55+ C.33i 55- D.33i 55+【答案】A 【解析】【分析】利用复数的除法化简复数z ,利用共轭复数的定义可得结果.【详解】因为()()12221222555z ++====+--+i i i i i i ,故21i 55z =-,故选:A3. 已知角a 的顶点与原点重合,始边与x 轴正半轴重合,终边经过点()1,2--,则tan 2a =( )A.34B.43C. 34-D. 43-【答案】D 【解析】【分析】利用三角函数定义求解tan a ,使用二倍角公式求解tan 2a .【详解】由三角函数的定义有:2tan 21a -==-,所以22tan 44tan 21tan 33a a a ===---;故选:D .4. 已知函数()f x 的定义域为R ,满足()()()2024f x y f x f y +-+=éùëû,则下列说法正确的是( )A. ()f x 是偶函数 B. ()f x 是奇函数C. ()2024f x +是奇函数 D. ()2024f x +是偶函数【答案】C 【解析】【分析】根据抽象函数,利用奇偶函数的性质直接判断即可.【详解】因为()()()2024f x y f x f y +-+=éùëû,所以令0x y ==,可得()02024f =-,令y x =-,则()()()02024f f x f x ---=,所以()()4048f x f x -=--,则()f x 既不是奇函数又不是偶函数,且()()20242024f x f x -+=-+éùëû,所以()2024f x +是奇函数.故选:C5. 向量()1,2a =r ,()1,1b =-r ,则a r 在b r上的投影向量是( )A.B. C. 11,22æö-ç÷èøD. 12,55æö--ç÷èø【答案】C 【解析】【分析】根据投影向量的定义计算得解.【详解】由题意可知,a r在b r 上的投影向量为:()1111,1,222a b b bb ×æö=-=-ç÷èør r r rr .故选:C .6. 已知函数()21,11,11x x f x x x ì-£ï=í>ï-î,则()()3f f =( )A. 8B. 34-C. 109-D.12【答案】B 【解析】【分析】利用分段函数求值.【详解】因为函数()21,11,11x x f x x x ì-£ï=í>ï-î,所以()113312f ==-,即()()211331224f f f æöæö==-=-ç÷ç÷èøèø,故选:B.7. 已知πcos 5a =,πsin 4b =,3log 2c =,则( )A. b a c <<B. b c a<< C. c a b<< D. c b a<<【答案】D【解析】【分析】根据余弦函数单调性可判断,a b 的大小关系,利用2332>可得3232>>可得,b c 的大小关系,即可得答案.【详解】因为ππ54<,故πππcos cos sin 544>=,即s π4c s πo 5in a b ==>,又2332>,即3232>>333log 3log >\>,即3312,log 2>>,即3l πsin 4og 2b c ==>,故选:D8. 如图,在ABC V中,AC =,AB =,90A Ð=°,若PQ 为圆心为A 的单位圆的一条动直径,则BP CQ ×uuu r uuu r的最大值是( )A. 2B. 4C.D.1【答案】A 【解析】【分析】以A 为坐标原点,,AB AC uuu r uuu r的方向分别为x 轴、y 轴,建立坐标系,设(cos ,sin ),[0,2π)P q q q Î,则(cos ,sin )Q q q --,利用向量的坐标运算及三角恒等变换求解即可.【详解】解:以A 为坐标原点,,AB AC uuu r uuu r的方向分别为x 轴、y 轴,如图所示:则(0,0),A B C ,设(cos ,sin ),[0,2π)P q q q Î,则(cos ,sin )Q q q --,的所以(cos ),(cos ,sin BP CQ q q q q ==---uuu r uuu r,所以cos (cos sin (sin BP CQ q q q q ×=-+-uuu r uuu r1q q =-3sin()1q j =+-,其中tan j =j 为第二象限角),所以当sin()1q j +=时,3sin()1q j +-取最大值,为2.即BP CQ ×uuu r uuu r的最大值为2.故选:A.【点睛】关键点睛:本题的关键是建立坐标系,利用向量的坐标运算求解.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列说法正确的是( )A. 命题“x "ÎR ,210x x ++>”的否定形式是“x $ÎR ,210x x ++£”B. 当()0,πx Î时,4sin sin y x x=+的最小值为4C. tan 25tan 20tan 25tan 201°+°+°°=D. “ππ4k q =±(k ÎZ )”是“π4k q =(k ÎZ )”的必要不充分条件【答案】AC 【解析】【分析】写出命题“x "ÎR ,210x x ++>”的否定形式判断选项A ;求得当()0,πx Î时,4sin sin y x x=+的最小值判断选项B ;求得tan 25tan 20tan 25tan 20°+°+°°的值判断选项C ;求得“ππ4k q =±(k ÎZ )”与“π4k q =(k ÎZ )”的逻辑关系判断选项D.【详解】选项A :命题“x "ÎR ,210x x ++>”的否定形式是“x $ÎR ,210x x ++£”判断正确;选项B :当()0,πx Î时,(]sin 0,1x Î,令sin x t =,则4y t t=+在(]0,1单调递减,最小值为5,则当()0,πx Î时,4sin sin y x x=+的最小值为5.判断错误;选项C :由tan 25tan 201tan 451tan 25tan 20°+°=°=-°°,可得tan 25tan 20tan 25tan 201°+°+°°=.判断正确;选项D :π4k q =(k ÎZ ),可化为ππ4n q =-或πn q =或ππ4n q =+或ππ2n q =+(n ÎZ ),故“ππ4k q =±(k ÎZ )”是“π4k q =(k ÎZ )”的充分不必要条件.判断错误.故选:AC10. 已知函数()cos f x x x =+,则( )A. 函数()f x 在π2,6π3éùêúëû上单调递减B. 函数()f x 的图象关于点5π,06æöç÷èø对称C. 函数()f x 的图象向左平移m (0m >)个单位长度后,所得的图象关于y 轴对称,则m 的最小值是π3D. 若实数m 使得方程()f x m =在[]0,2π上恰好有三个实数解1x ,2x ,3x ,则1238π3x x x ++=【答案】BCD 【解析】【分析】利用辅助角公式化简函数,根据三角函数的单调性、对称性、奇偶性以及图像问题逐个选项判断即可.【详解】()1πcos 2cos 2sin 26f x x x x x x öæö=+=+=+÷ç÷÷èøø,对于A ,令π2π,63x éùÎêúëû,则ππ5π,636x éù+Îêúëû,所以对于函数sin y x =,π5π,36x éùÎêúëû时,有增有减,A 错;令5π6x =,则5π5ππ2sin 0666f æöæö=+=ç÷ç÷èøèø,B 正确;对于C ,平移后,得π2sin 6y x m æö=++ç÷èø,若图象关于y 轴对称,则πππ,Z 62m k k +=+Î,ππ,Z 3m k k =+Î,C 正确;因为[]0,2πx Î,作出()f x 图像如下图所示,由()f x 与y m =有且只有三个交点,所以32πx =,又因为()2f x =时π3x =,且12,x x 关于直线π3x =对称,所以123π8π22π33x x x ++=´+=,D 正确.故选:BCD11. 设数列{}n a 前n 项和为n S ,满足()()214100n n a S -=-,*N n Î且10a >,10n n a a -+¹(2n ³),则下列选项正确的是( )A. 223n a n =-B. 数列n S n ìüíýîþ为等差数列C. 当10n =时,n S 有最大值D. 设12n n n n b a a a ++=,则当8n =或10n =时,数列{}n b 的前n 项和取最大值【答案】BCD 【解析】【分析】对于A ,由n a 和n S 的关系,求出数列{a n }的通项公式,进行判定;对于B ,由等差数列求和公式求出n S ,由定义判断n S n ìüíýîþ是否为等差数列;对于C ,借助二次函数性质判定;对于D ,由n a 的正负判定12n n n n b a a a ++=正负,即可判定最值.【详解】对于A ,当1n =时,()()21114100a a -=-,解得119a =或121a =-,因为10a >,所以119a =,当2n ³时,由()()214100n n a S -=-,*N n Î得()()21114100n n a S ---=-,*N n Î,所以()()()()22111141004100n n n n a a S S -----=---,整理得()()1120n n n n a a a a --+-+=,因为10n n a a ->+,所以120n n a a --+=,即12n n a a --=-,所以数列{a n }是首项为19,公差为2-的等差数列,所以()()1912221n a n n =+-´-=-+,故A 错误;对于B ,由A 可知,()()21192202n n n S n n n -=+´-=-+,所以22020n S n n n n n-+==-+,所以()()11202011n nS S n n n n+-=-++--+=-+,所以数列n S n ìüíýîþ是首项为19,公差为1-的等差数列,故B 正确;对于C ,因为()222010100n S n n n =-+=--+,*N n Î,所以当10n =时,n S 取得最大值,故C 正确;对于D ,由2210n a n =-+>,得*10N 1n n ££Î,,由2210n a n =-+<,得*N 11n n ³Î,,所以当*1,N 8n n ££Î时,120n n n n b a a a ++=>,当9n =时,9910110b a a a =<,当10n =时,101011120b a a a =>,当*11,N n n ³Î时,120nn n n b a a a ++=<,因为()9910113113b a a a ==´´-=-,()()101133b =´-´-=,所以当8n =或10n =时,数列{b n }的前n 项和取最大值.故D 正确.故选:BCD三、填空题:本题共3小题,每小题5分,共15分.12. 已知a ,b 都是正数,且230a b ab +-=,则a b +的最小值为______.【答案】1【解析】【分析】由题意可得213b a+=,从而得12(3)3a ba b b a +=++,利用基本不等式求解即可.【详解】解:因为a ,b 都是正数,且230a b ab +-=,所以213b a+=,所以1211211()()(3(3(313333a b a b a b b a b a +=++=++³+=+=+,当且仅当2a bb a=,即b =时,等号成立,将b =,代入230a b ab +-=,得a b ==时,等号成立.故答案为:1+13. 已知函数()21ln 22xf x x ax =-+在区间()2,+¥上没有零点,则实数a 的取值范围是______.【答案】[)2,-+¥【解析】【分析】根据题意转化为()21ln 022x f x x ax =-+>在区间()2,¥+上恒成立,得到ln22xa x x>-在区间()2,¥+上恒成立,设()ln2,22x g x x x x =->,利用导数求得函数的单调性和最值,即可求解.【详解】因为函数()21ln 22x f x x ax =-+在区间()2,¥+上没有零点,且x 趋向正无穷时,()f x 趋向正无穷,所以()21ln 022xf x x ax =-+>在区间()2,¥+上恒成立,所以ln22xa xx>-在区间()2,¥+上恒成立,设()ln2,22x g x x x x =->,可得2221ln 1ln 222()122x xx g x x x ---=-=¢,因为2x >,ln 02x >,可得21ln 202x x --<,所以()0g x ¢<,所以()g x 在区间()2,¥+上单调递减,所以()()22g x g <=-,所以2a ³-,所以,实数a 的取值范围为[2,)-+¥.故答案为:[2,)-+¥.14. 已知函数e 1()e 1x x f x -=+,()(1)2g x f x =-+,则()g x 的对称中心为______;若12321()()()(n n a g g g g n n n n-=+++×××+(*n ÎN ),则数列{}n a 的通项公式为______.【答案】 ①. (1,2) ②. 42n a n =-【解析】【分析】利用中心对称的定义求出()g x 图象的对称中心,利用函数()g x 的对称性及倒序相加法求出通项.【详解】函数e 1()e 1x x f x -=+的定义域为R ,e 11e ()()e 1e 1x x x x f x f x -----===-++,由()(1)2g x f x =-+,得(1)()2g x f x +=+,则(1)(1)()()224g x g x f x f x -+++=-+++=,因此函数()g x 图象的对称中心是(1,2);由(1)(1)4g x g x -+++=,得()(2)4g x g x +-=,当*n ÎN 时,11((24g g n n+-=,12321()()()(n n a g g g g n n n n -=+++×××+,2122231((((n n n n a g g g g n n n n---=+++×××+,于是24(21)n a n =-,即42n a n =-,所以数列{}n a 的通项公式为42n a n =-.故答案为:(1,2);42n a n =-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知在ABC V 中,角A ,B ,C ,所对的边分别为a ,b ,c,)2cos cos cos b B a C c A =+.(1)求角B ;(2)过点A 作AD BC ∥,连接CD ,使A ,B ,C ,D 四点组成四边形ABCD,若AB =,2AC =,CD =,求AD 长.【答案】(1)π6B =(2)1AD =或2.【解析】【分析】(1)利用正弦定理边化角即可求解;(2)利用余弦定理来求解边边角三角形,得到两解.【小问1详解】由)2cos cos cos b B a C c A =+,结合由正弦定理边化角可得)2sin cos sin cos sin cos B B A C C A ×=+,故()2sin cos B B A C ×=+,而()sin sin 0B A C =+>,所以cos B =B ∈(0,π),所以π6B =.【小问2详解】在ABC V中,2AB AC ==,由正弦定理可得sin sin B ACB AB AC Ð=´=因为AD BC ∥,所以DAC ACB Ð=Ð,即sin DAC Ð=在ACD V 中,因为CD AC <3cos 4DAC Ð===,又因为2AC =,CD =,结合定理可得3cos 4DAC Ð==.的解得1AD =或2.16. 已知数列{}n a 的前n 项和为n S ,22n n a S =+,(*n ÎN ).(1)求数列{}n a 的通项公式;(2)记2log n n c a =,数列n n c a ìüíýîþ的前n 项和为n T ,若关于n 的不等式()()221n n n T n l +-£+恒成立,求实数l 的取值范围.【答案】(1)2n n a = (2)3,2éö+¥÷êëø.【解析】【分析】(1)利用条件,再写一式,两式相减,可证得数列{}n a 是首项为2,公比为2的等比数列,即可求出数列{}n a 的通项公式;(2)求出数列的通项,利用错位相减法求出n T ,再将题意转化为可得()max12nn n l éù+£êúëû,记()12n nn n b +=,求出n b 的最大值,即可得出答案.【小问1详解】由22n n a S =+,可得1122n n a S ++=+,两式相减可得:1122n n n a a a ++-=,所以12n n a a +=,令1n =,可得1122a a =+,所以12a =,所以数列{}n a 是首项为2,公比为2的等比数列,其通项公式为1222n n n a -=´=.【小问2详解】2log 2n n c n ==Q ,2n n n c n a \=.可得212222n n n T =++×××+,则2311122222n n n T +=++×××+,两式相减得:231111122111111222222212nnn n n n n T ++éùæö-êúç÷èøêúëû=+++×××+-=--111211222nn n n n +++æö=--=-ç÷èø,所以222n n n T +=-,因()()()22221n nn n n n T n l ++-=£+,则()12nn n l +£,原题意等价于关于n 的不等式()12nn n l +£恒成立,可得()max12nn n l éù+£êúëû,记()12n nn n b +=,令11n n n n b b b b +-³ìí³î,则()()()()()11112221122n n nn n n n n n n n n+-ì+++³ïïí+-ï³ïî,解得2n =或3,则1234b b b b <=>>×××,即当2n =或3n =时,n b 取到最大值32,可得32l ³,所以实数l 的取值范围3,2éö+¥÷êëø.17. 已知函数()223,02ln ,0x x x f x x x ì+-£=í-+>î(1)请在网格纸中画出()f x 的简图,并写出函数的单调区间(无需证明);(2)定义函数()()2241,2012,022f x x x xg x x x ì--+-££ï=í-<£ïî在定义域内的0x ,若满足()00g x x =,则称0x 为函数()g x 的一阶不动点,简称不动点;若满足()()00g g x x =,则称0x 为函数()gx 的二阶不动点,简称为稳定点.①求函数()g x 的不动点;②求函数()g x 的稳定点.【答案】(1)作图见解析,单增区间为[]1,0-,()0,¥+,()f x 的单减区间为(],1-¥- (2)①23-;②32-,23-和1.【解析】【分析】(1)根据分段函数解析式,画出相应的函数图像,结合函数图像写出单调区间.(2)结合分段函数解析式,由不动点,稳定点的定义计算分析求解.【小问1详解】()f x 的单增区间为[−1,0],(0,+∞),()f x 的单减区间为(],1-¥-.【小问2详解】易知()222,2012,022x x g x x x ---££ìï=í-<£ïî①当020x -££时,()0022g x x =--,令()00g x x =得0022x x --=,解得023x =-;当002x <£时,()200122g x x =-,令()00g x x =得200122x x -=,解得01x =综上所述:函数()g x 的不动点为23-.②当021x -£<-时,()0022g x x =--,且()002g x <£,则()()()()2200000122222242g g x g x x x x =--=---=+令()()00g g x x =得,200024x x x +=,解得032x =-或00x =(舍);当010x -££时,()0022g x x =--,且()020g x -££,则()()()()000022222242g g x g x x x =--=----=+令()()00g g x x =,得0042x x +=,解得023x =-;当002x <£时,()200122g x x =-,且()020g x -<£,则()()2220000112222222g g x g x x x æöæö=-=---=-+ç÷ç÷èøèø,令()()00g g x x =,得2002x x -+=,解得01x =或02x =-(舍)综上所述:函数()g x 的稳定点有3个,分别是32-,23-和1.18. 摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色,如图,某摩天轮最高点距离地面高度为100m ,转盘直径为90m ,均匀设置了依次标号为1~48号的48个座舱.开启后摩天轮按照逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,开始转动min t 后距离地面的高度为m H ,转一周需要24min .(1)求在转动一周的过程中,H 关于t 的函数解析式;(2)若甲、乙两人分别坐在1号和9号座舱里,在运行一周的过程中,求两人距离地面的高度差h (单位:m )关于t 的函数解析式,并求t 为何值时高度差h 最大.(参考公式:sin sin 2cos sin22q jq jq j +--=,cos cos 2sinsin22q jj qq j +--=)【答案】(1)π5545cos12H t =-,[]0,24t Î. (2)π2π45cos 123h t æö=-ç÷èø,[]0,24t Î;8min t =或20mint =【解析】【分析】(1)据题意,设(),π2sin 0H A t B j w j w æö=++>çè£÷ø,由条件确定,,,A B w j 的值;(2)由题意,1号与9号座舱的角度差为π3,不妨假设1号座舱出发早于9号座舱,min t 时1号与9号的高度分别为1H ,9H ,进而求出高度差π2π45cos 123h t æö=-ç÷èø,由余弦函数性质即可求.【小问1详解】设(),π2sin 0H A t B j w j w æö=++>çè£÷ø,则2π12πT w ==,令0t =时,则sin 1j =-,π2j =-,又10010A B A B +=ìí-+=î,解得4555A B =ìí=î,所以πππ45sin 555545cos 12212H t t æö=-+=-ç÷èø,[]0,24t Î.【小问2详解】由题意得:1号与9号座舱的角度差为π3.不妨假设1号座舱出发早于9号座舱,min t 时1号与9号的高度分别为1H ,9H ,则1ππ45sin 55122H t æö=-+ç÷èø,9ππππ5π45sin 5545sin 551223126H t t æöæö=--+=-+ç÷ç÷èøèø,所以高度19πππ5π45sin sin 122126h H H t t æöæö=-=---ç÷ç÷èøèø,由参考公式得,上式π2πππ2π90cos sin 45cos 1236123t t æöæö=-=-ç÷ç÷èøèø从而高度差π2π45cos 123h t æö=-ç÷èø,[]0,24t Î;当π2πcos 1123t æö-=ç÷èø,即π2ππ123t k -=,N k Î时,解得812t k =+,N k Î,又[]0,24t Î,所以8min t =或20min t =,此时高度差h 的最大值为45m .19. 已知 a ÎR ,函数()ln af x x x=+,()ln 2g x ax x =--.(1)当()f x 与()g x 都存在极小值,且极小值之和为0时,求实数a 的值;为(2)若()()()12122f x f x x x ==¹,求证:12112x x a+>.【答案】(1)1 (2)证明见解析【解析】【分析】(1)分别对()f x ,()g x 求导,讨论0a £和0a >,得出()f x 和()g x 的单调性,即可求出()f x ,()g x 的极小值,即可得出答案.(2)令1211,m n x x ==,由()()()12122f x f x x x ==¹可得1ln ln m na m n -=-,要证12112x x a +> ,不妨设0n m <<,所以只要证()2lnm n m n m n ->+,令()1m t t n =>,()()()21ln 11t h t t t t -=->+,对()h t 求导,得出()h t 的单调性,即可证明.小问1详解】()f x ,()g x 定义域均为(0,+)¥,()221,a a xf x x x x-+¢=-+=, 当0a £时,则()0f x ¢>,()f x 在(0,+)¥单调递增,无极值,与题不符;当0a >时,令()=0f x ¢,解得:=x a ,所以()f x 在()0,a 单调递减,在(),a +¥单调递增,∴在=x a 取极小值,且()1ln f a a =+; 又()1g x a x¢=-,当0a £时:()0g x ¢<,()g x 在(0,+)¥单调递减,无极值,与题不符;当0a >时:令()=0g x ¢,解得:1x a=,所以()g x 在10,a æöç÷èø单调递减,在1,a æö+¥ç÷èø单调递增,∴在1x a =取极小值,且11ln g a a æö=-+ç÷èø; 由题:,解得:=1a .【小问2详解】【令1211,m n x x ==,因为12x x ¹,所以m n ¹,由()()()12122f x f x x x ==¹可得:()()1122+ln =2ln =21ln =22+ln =2ax x am m an n a x x -Þ-ìïìïïííïîïïîL L ,(1)-(2)得:()ln ln a m n m n -=-,所以1ln ln m n a m n-=-,要证:12112x x a +> ,只要证:2m n a +> ,只要证:2ln ln m n m n m n-+>-, 不妨设0n m <<,所以只要证:()2lnm n m n m n->+, 即证:21ln 1m m n m n næö-ç÷èø>+,令()1m t t n =>,只要证:()()21ln 11t t t t ->>+,令()()()21ln 11t h t t t t -=->+, ()()()()()()()222221211114111t t t h t t t t t t t +---¢=-=-=+++,所以()h t 在()1,t Î+¥上单调递增,∴, 即有()()21ln 11t t t t ->>+成立,所以12112x x a +>成立.。

福建省七地市2024届高三上学期第一次质量检测数学含答案解析

福建省七地市2024届高三上学期第一次质量检测数学含答案解析

厦门市2024届高中毕业班第一次质量检测数学试题2024.1准考证号__________姓名__________(在此卷上答题无效)本试卷共4页,22小题,满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的学校,班级和姓名填在答题卡上,正确粘贴条形码.2.作答选择题时,用2B 铅笔在答题卡上将对应答案的选项涂黑.3.非选择题的答案必须写在答题卡各题目的指定区域内相应位置上,不准使用铅笔和涂改液.4.考试结束后,考生上交答题卡.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 1z z ⋅=+(i 为虚数单位),则||z =() A.12B.22C.1D.2.设集合{}22M x x =-≤≤,{}21xN y y ==+,则M N ⋃=()A.[2,)-+∞ B.(1,2]C.[1,2]D.(1,)+∞3.已知直线l 与曲线3y x x =-在原点处相切,则l 的倾斜角为()A.π6B.π4 C.3π4 D.5π64.已知a ,b 为单位向量,若||||a b a b +=- ,则a b + 与a b - 的夹角为()A.π3B.π2C.2π3D.3π45.已知()f x 为定义在R 上的奇函数,当0x <时,2()21f x x x =-+,则(2)(0)f f +=()A.2B.1C.8- D.9-6.已知1a x x=+,e e x x b -=+,sin c x x =,则下列结论错误的为()A.[1,1]x ∃∈-,a c> B.[1,1]x ∃∈-,b c>C.[1,1]x ∃∈-,a c <D.[1,1]x ∃∈-,b c<7.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状把数分成许多类,如图所示的1,5,12,22被称为五边形数,将所有的五边形数从小到大依次排列,则其第8个数为()151222A.51B.70C.92D.1178.已知函数()f x 的定义域为R ,x ∀,y ∈R ,(1)(1)()()f x f y f x y f x y ++=+--,若(0)0f ≠,则(2024)f =()A.2- B.4- C.2D.4二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数π()2sin 23f x x ⎛⎫=- ⎪⎝⎭,则()A.()f x 的最小正周期为π2B.()f x 的图象关于点2π,03⎛⎫⎪⎝⎭成中心对称C.()f x 在区间π0,3⎡⎤⎢⎣⎦上单调递增D.若()f x 的图象关于直线0x x =对称,则01sin 22x =10.已知甲、乙两组数据分别为:20,21,22,23,24,25和a ,23,24,25,26,27,若乙组数据的平均数比甲组数据的平均数大3,则()A.甲组数据的第70百分位数为23B.甲、乙两组数据的极差相同C.乙组数据的中位数为24.5D.甲、乙两组数据的方差相同11.设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,过1F 的直线与C 交于A ,B 两点,若122F F =,且2ABF △的周长为8,则()A.2a = B.C 的离心率为14C.||AB 可以为πD.2BAF ∠可以为直角12.如图所示,在五面体ABCDEF 中,四边形ABCD 是矩形,ABF △和DCE △均是等边三角形,且AB =(0)EF x x =>,则()A.//EF 平面ABCDB.二面角A EF B --随着x 的减小而减小C.当2BC =时,五面体ABCDEF 的体积(x)V 最大值为272D.当32BC =时,存在x 使得半径为32的球能内含于五面体ABCDEF 三、填空题:本大题共4小题,每小题5分,共20分.13.若π3sin 45α⎛⎫+=- ⎪⎝⎭,则πcos 4α⎛⎫-= ⎪⎝⎭_________.14.《九章算术》、《数书九章》、《周髀算经》是中国古代数学著作,甲、乙、丙三名同学计划每人从中选择一种来阅读,若三人选择的书不全相同,则不同的选法有_________种.15.已知平面α的一个法向量为(1,0,1)n = ,且点(1,2,3)A 在α内,则点(1,1,1)B 到α的距离为_________.16.设ABC 是面积为1的等腰直角三角形,D 是斜边AB 的中点,点P 在ABC 所在的平面内,记PCD与PAB 的面积分别为1S ,2S ,且121S S -=.当||PB =||||PA PB >时,||PA =_________;记PA PB a -=,则实数a 的取值范围为_________.四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2cos cos 2a B ab A c +=.(1)求a ;(2)若2π3A =,且ABC 的周长为2+,求ABC 的面积.18.如图,在四棱锥E ABCD -中,//AD BC ,22AD BC ==,AB =,AB AD ⊥,EA ⊥平面ABCD ,过点B 作平面BD α⊥.(1)证明:平面//α平面EAC ;(2)已知点F 为棱EC 的中点,若2EA =,求直线AD 与平面FBD 所成角的正弦值.19.已知数列{}n a 的前n 项和为n S ,2124a a ==,当*n ∈N ,且2n ≥时,1132n n n S S S +-=-.(1)证明:{}n a 为等比数列;(2)设()()111n n n n a b a a +=--,记数列{}n b 的前n 项和为n T ,若21172m m T -+>⨯,求正整数m 的最小值.20.已知甲、乙两支登山队均有n 名队员,现有新增的4名登山爱好者a b c d ,,,将依次通过摸出小球的颜色来决定其加入哪支登山队,规则如下:在一个不透明的箱中放有红球和黑球各2个,小球除颜色不同之外,其余完全相同先由第一名新增登山爱好者从箱中不放回地摸出1个小球,再另取完全相同的红球和黑球各1个放入箱中;接着由下一名新增登山爱好者摸出1个小球后,再放入完全相同的红球和黑球各1个,如此重复,直至所有新增登山爱好者均摸球和放球完毕.新增登山爱好者若摸出红球,则被分至甲队,否则被分至乙队.(1)求,,a b c 三人均被分至同一队的概率;(2)记甲,乙两队的最终人数分别为1n ,2n ,设随机变量12X n n =-,求()E X .21.已知函数1()ln 1x f x a x x -=-+有两个极值点1x ,2x .(1)求实数a 的取值范围;(2)证明:()()2121221f x f x a a x x a -->--.22.在平面直角坐标系xOy 中,点(1,0)P ,点A 为动点,以线段AP 为直径的圆与y 轴相切,记A 的轨迹为Γ,直线AP 交Γ于另一点B .(1)求Γ的方程;(2)OAB 的外接圆交Γ于点C (不与O ,A ,B 重合),依次连接O ,A ,C ,B 构成凸四边形OACB ,记其面积为S .(i )证明:ABC 的重心在定直线上;(ii )求S 的取值范围.厦门市2024届高中毕业班第一次质量检测数学试题2024.1准考证号__________姓名__________(在此卷上答题无效)本试卷共4页,22小题,满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的学校,班级和姓名填在答题卡上,正确粘贴条形码.2.作答选择题时,用2B 铅笔在答题卡上将对应答案的选项涂黑.3.非选择题的答案必须写在答题卡各题目的指定区域内相应位置上,不准使用铅笔和涂改液.4.考试结束后,考生上交答题卡.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 1z z ⋅=+(i 为虚数单位),则||z =() A.12B.22C.1D.【答案】B 【解析】【分析】先求出复数z ,再求||z .【详解】由i 1z z ⋅=+,得()i 11z -=,即()()()i 1111i i 1i 1i 122z --===------,所以||2z ==,故选:B2.设集合{}22M x x =-≤≤,{}21xN y y ==+,则M N ⋃=()A.[2,)-+∞B.(1,2]C.[1,2]D.(1,)+∞【答案】A 【解析】【分析】由指数函数值域求集合N ,应用集合并运算求结果.【详解】由题设{|1}N y y =>,故M N ⋃={}{}221{|2}x x y y x x -≤≤⋃=≥-.故选:A3.已知直线l 与曲线3y x x =-在原点处相切,则l 的倾斜角为()A.π6B.π4C.3π4 D.5π6【答案】C 【解析】【分析】利用导数几何意义求直线的斜率,进而确定倾斜角.【详解】由231y x '=-,则0|1x y ='=-,即直线l 的斜率为1-,根据倾斜角与斜率关系及其范围知:l 的倾斜角为3π4.故选:C4.已知a ,b 为单位向量,若||||a b a b +=- ,则a b + 与a b - 的夹角为()A.π3B.π2C.2π3 D.3π4【答案】B 【解析】【分析】根据已知,应用向量数量积的运算律求()()a b a b +⋅-即可判断夹角大小.【详解】由题意22()()0a b a b a b +⋅-=-= ,则a b + 与a b - 的夹角为π2.故选:B5.已知()f x 为定义在R 上的奇函数,当0x <时,2()21f x x x =-+,则(2)(0)f f +=()A.2B.1C.8- D.9-【答案】D 【解析】【分析】根据奇函数的定义求解即可.【详解】当0x <时,2()21f x x x =-+,所以()()()2222219f -=--⨯-+=,因为()f x 为定义在R 上的奇函数,所以()()229f f =--=-,且()00f =,所以(2)(0)9f f +=-故选:D6.已知1a xx=+,e e x x b -=+,sin c x x =,则下列结论错误的为()A.[1,1]x ∃∈-,a c >B.[1,1]x ∃∈-,b c >C.[1,1]x ∃∈-,a c <D.[1,1]x ∃∈-,b c<【答案】D 【解析】【分析】举例即可判断ABC ;再根据基本不等式及三角函数的性质即可判断D.【详解】对于A ,当π6x =时,π63626π64a =+>+=,13222c =+=,此时a c >,所以[1,1]x ∃∈-,a c >,故A 正确;对于B ,当0x =时,2b =,c =b c >,所以[1,1]x ∃∈-,b c >,故B 正确;对于C ,当π6x =-时,π606πa =--<,13122c =-+=,此时a c <,所以[1,1]x ∃∈-,a c <,故C 正确;对于D ,当[]1,1x ∈-时,2e e x x b -=≥=+,当且仅当e e x x-=,即0x =时取等号,πsin 2sin 3c x x x ⎛⎫=+=+ ⎪⎝⎭,由[]1,1x ∈-,得πππ1,1333x ⎡⎤+∈-++⎢⎥⎣⎦,而ππππ1π,012332<+<<-+<,所以当π3x +,即π6x =时,πsin 2sin 23c x x x ⎛⎫=+=+= ⎪⎝⎭,所以2≤c ,当且仅当π6x =时取等号,而π06≠,所以[1,1]x ∀∈-,b c >,故D 错误.故选:D.7.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状把数分成许多类,如图所示的1,5,12,22被称为五边形数,将所有的五边形数从小到大依次排列,则其第8个数为()151222A.51B.70C.92D.117【答案】C 【解析】【分析】根据题图及前4个五边形数找到规律,即可得第8个数.【详解】由题图及五边形数知:后一个数与前一个数的差依次为4,7,10,13,16,19,22, ,所以五边形数依次为1,5,12,22,35,51,70,92, ,即第8个数为92.故选:C8.已知函数()f x 的定义域为R ,x ∀,y ∈R ,(1)(1)()()f x f y f x y f x y ++=+--,若(0)0f ≠,则(2024)f =()A.2-B.4- C.2D.4【答案】A 【解析】【分析】利用赋值法对,x y 进行赋值结合函数的周期可得答案.【详解】令0x y ==,得()()()()11000f f f f ⋅=-=,即()10f =,令0x =,得()()()()110f f y f y f y ⋅+=--=,得()()-=f y f y ,所以函数()f x 为偶函数,令1x y ==,得()()()2220ff f =-,令1x y ==-,得()()()()()202020f f f f f =--=-,()()2220f f ∴=,()()20f f ∴=或()()20f f =-,若()()20f f =,解得()00f =与已知()00f ≠矛盾,()()20f f ∴=-,即()()2222f f =,解得()22f =,()02f =-,令1y =,得()()()()1211f x f f x f x +⋅=+--,()()()2111f x f x f x ∴+=+--,()()11f x f x ∴+=--,()()2f x f x ∴+=-,∴()()4f x f x +=,所以函数()f x 的周期为4.()()202402f f ∴==-.故选:A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数π()2sin 23f x x ⎛⎫=-⎪⎝⎭,则()A.()f x 的最小正周期为π2B.()f x 的图象关于点2π,03⎛⎫⎪⎝⎭成中心对称C.()f x 在区间π0,3⎡⎤⎢⎣⎦上单调递增D.若()f x 的图象关于直线0x x =对称,则01sin 22x =【答案】BC 【解析】【分析】根据正弦型函数的性质,结合代入法、整体法逐一判断各项正误.【详解】由π()2sin 23f x x ⎛⎫=-⎪⎝⎭,最小正周期2ππ2T ==,A 错;由2π2ππ()2sin 20333f ⎛⎫=⨯-= ⎪⎝⎭,即2π,03⎛⎫⎪⎝⎭是对称中心,B 对;由π0,3x ⎡⎤∈⎢⎥⎣⎦,则πππ2[,]333x -∈-,显然()f x 在区间π0,3⎡⎤⎢⎥⎣⎦上单调递增,C 对;由题意00ππ5π2π2π326x k x k -=+⇒=+,故01sin 22x =±,D 错.故选:BC10.已知甲、乙两组数据分别为:20,21,22,23,24,25和a ,23,24,25,26,27,若乙组数据的平均数比甲组数据的平均数大3,则()A.甲组数据的第70百分位数为23B.甲、乙两组数据的极差相同C.乙组数据的中位数为24.5D.甲、乙两组数据的方差相同【答案】BD 【解析】【分析】根据已知平均数的关系求得28a =,再由极差、中位数、方差求法判断各项正误即可.【详解】由题设,2021222324252324252627366a ++++++++++=-,所以28a =,甲组数据中670% 4.2⨯=,故第70百分位数为24,A 错;甲乙组数据的极差都为5,B 对;乙组数据从小到大为23,24,25,26,27,28,故其中位数为252625.52+=,C 错;由上易知:甲的平均数为22.5,乙的平均数为25.5,所以甲的方差为2222221(2.5 1.50.50.5 1.5 2.5)6⨯+++++=3512,乙的方差为2222221(2.5 1.50.50.5 1.5 2.5)6⨯+++++=3512,故两组数据的方差相同,D 对.故选:BD11.设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,过1F 的直线与C 交于A ,B 两点,若122F F =,且2ABF △的周长为8,则()A.2a = B.C 的离心率为14C.||AB 可以为πD.2BAF ∠可以为直角【答案】AC 【解析】【分析】根据已知可得1c =、2a =,进而有12e =,结合椭圆性质求相交弦长的范围及焦点三角形内角的范围判断各项的正误.【详解】由12221F F c c ==⇒=,如下图2ABF △周长为482a a =⇒=,故2223b a c =-=,所以,椭圆离心率为12e =,A 对,B 错;当AB x ⊥轴,即AB 为通径时2min 2||3b AB a==,且||24AB a <=,所以3||4AB ≤<,故||AB 可以为π,C 对;由椭圆性质知:当A 为椭圆上下顶点时2BAF ∠最大,此时222222c 41os 2a a F c a BA +∠-==,且2(0,π)BAF ∈∠,故2max π)3(BAF =∠,即2BAF ∠不可能为直角,D 错.故选:AC12.如图所示,在五面体ABCDEF 中,四边形ABCD 是矩形,ABF △和DCE △均是等边三角形,且23AB =(0)EF x x =>,则()A.//EF 平面ABCDB.二面角A EF B --随着x 的减小而减小C.当2BC =时,五面体ABCDEF 的体积(x)V 最大值为272D.当32BC =时,存在x 使得半径为32的球能内含于五面体ABCDEF 【答案】ACD 【解析】【分析】A 由线面平行的判定证明;B 设二面角A EF B --的大小为2α,点F 到面ABCD 的距离为h ,则3tan hα=,分析取最小值的对应情况即可判断;C 把五面体ABCDEF 补成直三棱柱FGI EKJ -,取,AB GI 的中点,M H ,设π(0)2FMH θθ∠=<≤,则3cos ,3sin MH FH θθ==,结合()2FGI EKJ F ABIG V x V V --=-并应用导数研究最值;D 先分析特殊情况:ABF △和DCE △所在平面均垂直于面ABCD 时构成正三棱柱ABF DCE -,再借助左视图、正视图研究内切圆半径分析一般情况判断.【详解】A :由题设//BC AD ,AD ⊂面ADEF ,BC ⊄面ADEF ,则//BC 面ADEF ,由面BCEF 面ADEF EF =,BC ⊂面BCEF ,则//BC EF ,BC ⊂面ABCD ,EF ⊄面ABCD ,则//EF 平面ABCD ,对;B :设二面角A EF B --的大小为2α,点F 到面ABCD 的距离为h ,则3tan hα=,点F 到面ABCD 的距离,仅在面FAB ⊥面ABCD 时取得最大值,当EF x BC ==时tan α取最小值,即α取最小值,即二面角A EF B --取最小值,所以EF x =∈(0,)+∞,二面角先变小后变大,错;C :当2BC =,如图,把五面体ABCDEF 补成直三棱柱FGI EKJ -,分别取,AB GI 的中点,M H ,易得FH ⊥面ABCD ,3FM =,设π(02FMH θθ∠=<≤,则3cos ,3sin MH FH θθ==,()2ABCDEFFGI EKJ F ABIG V x V V V --==-=113sin (26cos )23sin 3cos 23θθθθ⨯⨯+-⨯⨯⨯cos θθθ=+,令()cos f θθθθ=+,则()2f θθθ'=+,令2()02cos cos 10f θθθ'=⇒+-=,可得1cos 2θ=或cos 1θ=-(舍),即π3θ=,π03θ<<,()0f θ'>,()f θ递增,ππ32θ<≤,()0f θ'<,()f θ递减,显然π3θ=是()f θ的极大值点,故max 127()2222f θ=+=.所以五面体ABCDEF 的体积(x)V 最大值为272,C 对;D :当32BC =时,ABF △和DCE △所在平面均垂直于面ABCD 时构成正三棱柱ABF DCE -,此时正三棱柱内最大的求半径342r =<,故半径为2的球不能内含于五面体ABCDEF ,对于一般情形,如下图示,左图为左视图,右图为正视图,由C 分析结果,当五面体ABCDEF 体积最大时,其可内含的球的半径较大,易知,当π3FMH ∠=时,3339,22FH IH IF ===,设FIG 的内切圆半径为1r ,则113313922222r ⨯⨯=⨯⨯,可得12r =>,另外,设等腰梯形EFMN 中圆的半径为2r ,则213π33tan434r r ==>=所以,存在x 使半径为2的球都能内含于五面体ABCDEF ,对.故选:ACD【点睛】关键点点睛:对于C 通过补全几何体为棱柱,设π(02FMH θθ∠=<≤得到五面体ABCDEF 的体积关于θ的函数;对于D 从特殊到一般,结合几何体视图研究内切圆判断最大半径是否大于2为关键.三、填空题:本大题共4小题,每小题5分,共20分.13.若π3sin 45α⎛⎫+=- ⎪⎝⎭,则πcos 4α⎛⎫-= ⎪⎝⎭_________.【答案】35-##0.6-【解析】【分析】应用诱导公式有ππππcos cos[()]sin()4424ααα⎛⎫-=+-=+ ⎪⎝⎭,即可求值.【详解】ππππ3cos cos[()sin()44245ααα⎛⎫-=+-=+=- ⎪⎝⎭.故答案为:35-14.《九章算术》、《数书九章》、《周髀算经》是中国古代数学著作,甲、乙、丙三名同学计划每人从中选择一种来阅读,若三人选择的书不全相同,则不同的选法有_________种.【答案】24【解析】【分析】先求出三人选书没有要求的选法,再排除三人选择的书完全相同的选法即可.【详解】若三人选书没有要求,则有3327=种,若三人选择的书完全相同,则有3种,所以三人选择的书不全相同,不同的选法有27324-=种.故答案为:24.15.已知平面α的一个法向量为(1,0,1)n =,且点(1,2,3)A 在α内,则点(1,1,1)B 到α的距离为_________.【答案】【解析】【分析】由题设得(0,1,2)BA =,应用向量法求点面距离即可.【详解】由题设(0,1,2)BA = ,则点(1,1,1)B 到α的距离为||||BA n n ⋅==16.设ABC 是面积为1的等腰直角三角形,D 是斜边AB 的中点,点P 在ABC 所在的平面内,记PCD与PAB 的面积分别为1S ,2S ,且121S S -=.当||PB =||||PA PB >时,||PA =_________;记PA PB a -=,则实数a 的取值范围为_________.【答案】①.②.(2)5【解析】【分析】以D 为原点,AB为x 轴正方向建立直角坐标系,设00(,)P x y ,根据已知得001||||12y x =-、2200(1)10x y -+=,即可得04x =,0||1y =,应用两点距离公式求||PA ;根据PA PB a -=确定P 的轨迹曲线,并写出方程,利用曲线性质列不等式求参数范围.【详解】以D 为原点,AB为x 轴正方向建立直角坐标系,设00(,)P x y ,则101||2S x =,20||S y =,所以001||||12x y -=,则001||||12y x =-,当||PB =,||||PA PB >时,00x >,即22200||(1)10PB x y =-+=,所以22001(1)(1)102x x -+-=,即200512320x x --=,可得04x =(负值舍),则0||1y =,故||PA ==若0PA PB a -=>,结合双曲线定义知:P 在以,A B 为焦点的双曲线上,但不含顶点,该双曲线为22221()1()22x y a a -=-,即22224414x y a a -=-,双曲线顶点的横坐标的绝对值小于半焦距1,则双曲线与曲线1||||12x y -=有交点,即双曲线的渐近线和曲线1||||12x y -=有交点,则双曲线的渐近线斜率的绝对值小于12,所以221115160424165a a <<⇒<<⇒<<,故4525a <<,所以实数a的取值范围为(,2)5.,(2)5【点睛】关键点点睛:第二空,注意P 在以,A B 为焦点的双曲线上,但不含顶点,将问题化为双曲线的渐近线斜率的绝对值小于12为关键.四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2cos cos 2a B ab A c +=.(1)求a ;(2)若2π3A =,且ABC 的周长为2+,求ABC 的面积.【答案】(1)2a =;(2)4.【解析】【分析】(1)应用正弦边角关系及和角正弦公式有sin()2sin a A B C +=,再由三角形内角性质即可求边长;(2)应用余弦定理及已知得224b c bc ++=且b c +=1bc =,最后应用面积公式求面积.【小问1详解】由题设(cos cos )2a a B b A c +=,由正弦定理有(sin cos sin cos )2sin a A B B A C +=,所以sin()2sin a A B C +=,而πA B C +=-,故sin 2sin a C C =,又sin 0C >,所以2a =.【小问2详解】由(1)及已知,有2222241cos 222b c a b c A bc bc +-+-===-,可得224b c bc ++=,又2a b c ++=+,即b c +=,所以2()541b c bc bc bc +-=-=⇒=,故13sin 24ABC S bc A ==△.18.如图,在四棱锥E ABCD -中,//AD BC ,22AD BC ==,AB =,AB AD ⊥,EA ⊥平面ABCD ,过点B 作平面BD α⊥.(1)证明:平面//α平面EAC ;(2)已知点F 为棱EC 的中点,若2EA =,求直线AD 与平面FBD 所成角的正弦值.【答案】(1)证明见详解(2)277【解析】【分析】(1)利用三角形相似及等量代换得AC BD ⊥,利用线面垂直得EA BD ⊥,进而得BD ⊥平面EAC ,结合已知条件得证;(2)利用空间向量法可求【小问1详解】设AC 与BD 的交点为O ,连接OF ,因为AD BC ∥,且AB AD ⊥,所以AB BC ⊥,因为22AD =,所以1AD =,AB =,AB AD ⊥,且AB =,2BC =,AB BC ⊥,所以ABD BCA ,所以ABD BCA ∠=∠,所以BAC ABD BAC BCA ∠+∠=∠+∠,因为AB BC ⊥,所以90BAC BCA ∠+∠=︒,所以90BAC ABD ∠+∠=︒,即90BAO ABO ∠+∠=︒,所以90AOB ∠=︒,所以AO OB ⊥,即AC BD ⊥,因为EA ⊥平面ABCD ,BD ⊂平面ABCD ,所以EA BD ⊥,因为EA AC A = ,,EA AC ⊂平面EAC ,所以BD ⊥平面EAC ,又因为平面BD α⊥,且B ∉平面EAC ,所以平面//α平面EAC 【小问2详解】因为AB AD ⊥,EA ⊥平面ABCD ,所以,,AB AD EA 两两垂直,如图,以A 为原点,,,AB AD EA 分别为x 轴,y 轴,z 轴,建立空间直角坐标系A xyz -,则()0,0,0A ,()0,1,0D ,()()(),0,0,2,2,0B E C ,所以())())0,1,0,,0,2,0,2AD BD BC BE ====,因为点F 为棱EC 的中点,所以()1,1,122BF BC BE ⎛⎫=+= ⎪ ⎪⎝⎭,设平面FBD 的一个法向量为(),,n x y z =,则00BD n BF n ⎧⋅=⎪⎨⋅=⎪⎩,所以0202y x y z +=++=⎪⎩,取2x =,得y z =-=,所以平面FBD的一个法向量为(2,n =-,记直线AD 与平面FBD 所成角为θ,则27sin cos ,7AD n AD n AD n θ⋅===,所以直线AD 与平面FBD 所成角的正弦值为277.19.已知数列{}n a 的前n 项和为n S ,2124a a ==,当*n ∈N ,且2n ≥时,1132n n n S S S +-=-.(1)证明:{}n a 为等比数列;(2)设()()111n n n n a b a a +=--,记数列{}n b 的前n 项和为n T ,若21172m m T -+>⨯,求正整数m 的最小值.【答案】(1)证明见解析;(2)3.【解析】【分析】(1)由题设112()n n n n S S S S +--=-,结合已知得到12n n a a +=在*n ∈N 上都成立,即可证结论;(2)由(1)得()()122121nn n n b +=--,裂项相消法求n T ,根据不等式关系得221m ->,即可确定正整数m 的最小值.【小问1详解】当2n ≥时,1111322()n n n n n n n S S S S S S S +-+-=-⇒-=-,即12n n a a +=,又2124a a ==,故12n n a a +=在*n ∈N 上都成立,且12a =,所以{}n a 是首项、公比均为2的等比数列.【小问2详解】由(1)知:2n n a =,则()()1121121212121n n n n n n b ++==-----,所以11111111212121211111133712n n n n n n T -++=-+-+--=----+-+- ,则21211117221712m m m m T -+-+=-+>⨯-⨯,即2121722182m m m -+-⨯-⨯<-=,所以221m ->,可得m>2,而*m ∈N ,故3m ≥,正整数m 的最小值为3.20.已知甲、乙两支登山队均有n 名队员,现有新增的4名登山爱好者a b c d ,,,将依次通过摸出小球的颜色来决定其加入哪支登山队,规则如下:在一个不透明的箱中放有红球和黑球各2个,小球除颜色不同之外,其余完全相同先由第一名新增登山爱好者从箱中不放回地摸出1个小球,再另取完全相同的红球和黑球各1个放入箱中;接着由下一名新增登山爱好者摸出1个小球后,再放入完全相同的红球和黑球各1个,如此重复,直至所有新增登山爱好者均摸球和放球完毕.新增登山爱好者若摸出红球,则被分至甲队,否则被分至乙队.(1)求,,a b c 三人均被分至同一队的概率;(2)记甲,乙两队的最终人数分别为1n ,2n ,设随机变量12X n n =-,求()E X .【答案】(1)215;(2)3835.【解析】【分析】(1)由题意,,,a b c 三人均被分至同一队,即三人同分至甲队或乙队,分别求出a 被分至甲队即a 摸出红球的概率、b 被分至甲队即b 摸出红球的概率、c 被分至甲队即c 摸出红球的概率,再应用条件概率公式及互斥事件加法求,,a b c 三人均被分至同一队的概率;(2)根据题意有X 可能取值为4,2,0,分析X 各对应值的实际含义,并求出对应概率,进而求期望即可.【小问1详解】,,a b c 三人均被分至同一队,即三人同分至甲队或乙队,记事件A =“a 被分至甲队”,事件B =“b 被分至甲队”,事件C =“c 被分至甲队”,当a 即将摸球时,箱中有2个红球和2个黑球,则a 被分至甲队即a 摸出红球的概率为1()2P A =;当a 被分至甲队时,箱中有2个红球和3个黑球,则b 被分至甲队即b 摸出红球的概率为2(|)5P B A =;当,a b 均被分至甲队时,箱中有2个红球和4个黑球,则c 被分至甲队即c 摸出红球的概率为1(|)3P C AB =;所以121()()(|)255P AB P A P B A ==⨯=,则111()()(|)5315P ABC P AB P C AB ==⨯=,同理知:新增登山爱好者,,a b c 均被分至乙队的概率也为115,所以,,a b c 三人均被分至同一队的概率为215.【小问2详解】由题设,X 可能取值为4,2,0,4X =为新增的4名登山爱好者被分至同一队,则22224(4)24567105P X ⨯⨯⨯==⨯=⨯⨯⨯,2X =为新增的4名登山爱好者中有3名均被分至同一队,其余1名被分至另一队,设新增的第(1,2,3,4)k k =名登山爱好者被单独分至甲队或乙队,则123339(1)2456770P P k ⨯⨯⨯===⨯=⨯⨯⨯,223339(2)2456770P P k ⨯⨯⨯===⨯=⨯⨯⨯,322434(3)2456735P P k ⨯⨯⨯===⨯=⨯⨯⨯,422252(4)2456721P P k ⨯⨯⨯===⨯=⨯⨯⨯,所以12347(2)15P X P P P P ==+++=,X 0=为新增的4名登山爱好者中各有2名被分至甲队和乙队,则52(0)1(2)(4)105P X P X P X ==-=-==,所以475238()4201051510535E X =⨯+⨯+⨯=.21.已知函数1()ln 1x f x a x x -=-+有两个极值点1x ,2x .(1)求实数a 的取值范围;(2)证明:()()2121221f x f x a a x x a -->--.【答案】(1)1(0,2;(2)证明见解析.【解析】【分析】(1)利用导数,结合()f x 的极值点个数,得到0a >且1x ,2x 是22(1)0ax a x a +-+=的两个不同根,列不等式组求参数范围;(2)设1201x x <<<,应用分析法将问题化为证11212211ln 21x x x x x x -<+,令12(0,1)x t x =∈,则证11ln 21t t t -<+,再由12a =对应()f x 单调性即可证结论.【小问1详解】由题设22222(1)()(1)(1)a ax a x a f x x x x x +-+'=-=++且0x >,若0a ≤,则()0f x '<在(0,)+∞上恒成立,即()f x 递增,不可能有两个极值点,不符;故0a >,又()f x 有两个极值点,则1x ,2x 是22(1)0ax a x a +-+=的两个不同正根,所以()()22Δ4144120100a a a a aa ⎧=--=->⎪-⎪->⎨⎪>⎪⎩,可得102a <<,即实数a 的取值范围是1(0,2.【小问2详解】由(1)102a <<且122(1)a x x a-+=,121=x x ,不妨设1201x x <<<,则()()1212f x f x x x -=-1212121211ln ln 11x x a x a x x x x x ----+++-112212122()ln (1)(1)x x x a x x x x x --++=-121212121212ln (ln ln )21x a x a x x a x x x x x x x x -=-=--+++-,要证()()2121221f x f x a a x x a -->--,需证1212ln ln 1211x x a x x a --->--,即1212ln ln 1x x a x x a ->--,只需证121212ln ln 2x x x x x x ->-+,即11212211ln 21x x x x x x -<+,令12(0,1)x t x =∈,则证11ln 21t t t -<+,由(1),12a =时2212(1)(1)02ax a x a x +-+=-≥,即()0f x '≥,所以11()ln 21x f x x x -=-+在(0,)+∞上递增,又01t <<,故()(1)0f t f <=,即11ln 21t t t -<+,综上,()()2121221f x f x a a x x a -->--.【点睛】关键点点睛:第二问,设1201x x <<<,应用分析法将问题转化为证11212211ln 21x x x x x x -<+为关键.22.在平面直角坐标系xOy 中,点(1,0)P ,点A 为动点,以线段AP 为直径的圆与y 轴相切,记A 的轨迹为Γ,直线AP 交Γ于另一点B .(1)求Γ的方程;(2)OAB 的外接圆交Γ于点C (不与O ,A ,B 重合),依次连接O ,A ,C ,B 构成凸四边形OACB ,记其面积为S .(i )证明:ABC 的重心在定直线上;(ii )求S 的取值范围.【答案】(1)24y x=(2)证明见详解;32,2⎛⎫+∞ ⎪ ⎪⎝⎭【解析】【分析】(1)设(),A x y ,根据已知条件列出方程化简即得;(2)(i )因为,,,O A B C 四点共圆,设该圆的方程为220x y dx ey +++=,联立22204x y dx ey y x ⎧+++=⎨=⎩,得()42416160y d y ey +++=,结合重心公式可得证;(ii )记,OAB ABC △△的面积分别为12,S S ,用已知条件分别表示出12,S S ,进而表示出面积为S 的表达式,然后利用导数求最值即得.【小问1详解】设(),A x y ,则线段AP 的中点坐标为1,22x y +⎛⎫ ⎪⎝⎭,因为以线段AP 为直径的圆与y 轴相切,所以1122x AP +==,化简,得24y x =.【小问2详解】(i )因为,,,O A B C 四点共圆,设该圆的方程为220x y dx ey +++=,联立22204x y dx ey y x⎧+++=⎨=⎩,消去x ,得()42416160y d y ey +++=,即()()3416160y y d y e +++=,所以123,,y y y 即为关于y 的方程()3416160y d y e +++=的3个根,则()()()()312341616y d y e y y y y y y +++=---,因为()()()()()32123123122313123y y y y y y y y y y y y y y y y y y y y y ---=-+++++-,由2y 的系数对应相等得,1230y y y ++=,即()123103y y y ++=,因为ABC 的重心的纵坐标为()12313y y y ++,所以ABC 的重心在定直线0y =上.(ii )记,OAB ABC △△的面积分别为12,S S ,由已知得直线AB 的斜率不为0设直线AB :1x my =+,联立241x xy y m =+=⎧⎨⎩,消去x ,得2440y my --=,所以12124,4y y m y y +=⋅=-,所以1121122S OP y y =⋅⋅-==,由(i )得,()3124y y y m =-+=-,所以()22233114444x y m m ==⨯-=,即()24,4C m m -,因为()212122444AB x x m y y m =++=++=+,点C 到直线AB的距离d =,所以()22211448122S AB d m m =⋅⋅=⋅+=-,所以)221281181S S S m m =+=-=+-不妨设0m >,且A 在第一象限,即120,0y y ><,340y m =-<,依次连接O ,A ,C ,B 构成凸四边形OACB ,所以()3122y y y y =-+<,即122y y -<,又因为124y y ⋅=-,2242y y <,即222y <,即20y <<,所以122244m y y y y =+=->+=,即24m >,即218m >,所以)218116S m m=+-=,设t =,则324t >,令()()2161f t t t =-,则()()()2221611614816f t t t t t '='=-+--,因为324t >,所以()248160f t t -'=>,所以()f t 在区间32,4∞⎛⎫+ ⎪ ⎪⎝⎭上单调递增,所以()323242f t f ⎛⎫>= ⎪ ⎪⎝⎭,所以S 的取值范围为32,2∞⎛⎫+ ⎪ ⎪⎝⎭【点睛】第二问:(i )关键是把证明ABC 的重心在定直线上转化为方程根的问题,利用韦达定理以及重心公式可得.(ii )关键是把四边形OACB 拆成两个三角形,然后用相同的变量分别表示两个三角形的面积以及变量的取值范围的确定,进而得到四边形OACB 面积的表达式,然后利用导数求最值即得.。

河北省石家庄市2024届高三教学质量检测(三)数学试卷

河北省石家庄市2024届高三教学质量检测(三)数学试卷

石家庄市2024年普通高中学校毕业年级教学质量检测(三)数学(本试卷满分150分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数2ii z -=,则|z |=()A.B.C.3D.5【答案】B 【解析】【分析】根据复数的除法运算化简复数,再求复数的模长即可.【详解】由已知得2i (2i)i 2i 112i i i i 1z --+====--⨯-,所以z ==,故选:B.2.已知圆221:1C x y +=和圆2226890C x y x y +--+=:,则两圆公切线的条数为()A.1B.2C.3D.4【答案】C 【解析】【分析】根据圆与圆的位置关系求两圆圆心距及两圆半径,从而可判断两圆位置关系,即可得公切线条数.【详解】圆221:1C x y +=的圆心为()10,0C ,半径11r =,圆2226890C x y x y +--+=:的圆心()23,4C ,半径24r =,则12125C C r r ===+,故两圆外切,则两圆公切线的条数为3.故选:C.3.已知等差数列{}n a 的前n 项和为195,1,627n S a S a ==+,则5S =()A.25 B.27C.30D.35【答案】A 【解析】【分析】借助等差数列及其前n 项和的性质计算可得公差,结合等差数列求和公式计算即可得.【详解】设等差数列{}n a 的公差为d ,则有()()1117894262a a d a d ++⨯++=,又11a =,则()()62714914d d =⨯+++,解得2d =,则()511425252S ++⨯⨯==.故选:A.4.已知双曲线()2222:10,0y x C a b a b-=>>其上焦点到双曲线的一条渐近线的距离为3,则双曲线C 的渐近线方程为()A.y =B.33y x =±C.32y x =±D.233y x =±【答案】B 【解析】【分析】设双曲线()2222:10,0y x C a b a b-=>>的上焦点为(0,)c ,由题意可得3=,可求b ,由已知可求a ,可求渐近线方程.【详解】设双曲线()2222:10,0y x C a b a b-=>>的上焦点为(0,)c ,双曲线的渐近线方程为0by ax ±=,由点到直线的距离公式可得3b ===,又双曲线()2222:10,0y x C a b a b-=>>a =所以双曲线C 的渐近线方程为30y ±=,即3y x =±.故选:B.5.设,,αβγ是三个不同的平面,,m l 是两条不同的直线,则下列命题为真命题的是()A.若,,m l αβαβ⊥⊂⊥,则m l ∥B.若,,m l αβαβ⊂⊂ ,则m l∥C.若,,m l m αβαβ⊥⋂=⊥,则l β⊥ D.若,,l m l m αβγ⋂=⊥ ,则αγ⊥【答案】D 【解析】【分析】根据线面位置关系依次讨论各选项即可得答案.【详解】对于A 选项,若,,m l αβαβ⊥⊂⊥,则//l α或l ⊂α,无法确定m 与l 的关系,错误;对于B 选项,根据面面平行的性质定理,缺少m l ∥的条件,它们可能平行或异面,错误;对于C 选项,根据面面垂直的性质定理,缺少条件l ⊂α,,l β平行、相交或l β⊂均有可能,错误;对于D 选项,若,,l m l m αβγ⋂=⊥ ,则l γ⊥,由面面垂直的判定定理可得αγ⊥,正确.故选:D6.某项活动在周一至周五举行五天,现在需要安排甲、乙、丙、丁四位负责人值班,每个人至少值班一天,每天仅需一人值班,已知甲不能值第一天和最后一天,乙要值班两天且这两天必须相邻,则不同安排方法的种数为()A.24B.10C.16D.12【答案】D 【解析】【分析】分乙值前两天,乙值后两天及乙不值第一天和最后一天进行讨论即可得.【详解】若乙值前两天,则甲有两种选择,共有1222C A 4=,若乙值后两天,则甲有两种选择,共有1222C A 4=,若乙不值第一天和最后一天,共有1222C A 4=,共有44412++=种不同安排方法.故选:D .7.已知角,αβ满足()1tan ,2sin cos sin 3αβαβα==+,则tan β=()A.13B.16C.17D.2【答案】C 【解析】【分析】借助()βαβα=+-对已知化简,可求出()tan αβ+的值,再由()()tan tan βαβα=+-可解.【详解】因为()2sin cos sin βαβα=+,即()()2sin cos sin αβααβα⎡⎤+-=+⎣⎦,所以()()()2sin cos 2cos sin cos sin αβααβααβα+-+=+,整理得()()2sin cos 3cos sin αβααβα+=+,变形得()31tan tan 22αβα+==,所以()()()tan tan 1tan tan 1tan tan 7αβαβαβααβα+-⎡⎤=+-==⎣⎦++.故选:C8.已知抛物线2:8C y x =的焦点为F ,斜率为()0k k >的直线过F 与C 交于,P Q 两点,若FP FQ -=,则k 的值为()A.1B.C.2D.3【答案】C 【解析】【分析】设出直线方程,联立曲线后得到横坐标有关韦达定理,结合焦半径公式计算即可得解.【详解】由2:8C y x =可得()2,0F ,则():2PQ l y k x =-,()11,P x y ,()22,Q x y ,联立()228y k x y x⎧=-⎨=⎩,得()22224840k x k x k -++=,42421664641664640k k k k ∆=++-=+>,212224884k x x k k++==+,124x x =,由焦半径公式可得1122p FP x x =+=+,2222pFQ x x =+=+,则12FP FQ x x -=-=,则有21284422k x k ++==+,22284422k x k -+==+,21224254x x k ⎛⎫=+-= ⎪⎝⎭,解得2k =±,又0k >,故2k =.故选:C.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某校“五一田径运动会”上,共有12名同学参加100米、400米、1500米三个项目,其中有8人参加“100米比赛”,有7人参加“400米比赛”,有5人参加“1500米比赛”,“100米和400米”都参加的有4人,“100米和1500米”都参加的有3人,“400米和1500米”都参加的有3人,则下列说法正确的是()A.三项比赛都参加的有2人B.只参加100米比赛的有3人C.只参加400米比赛的有3人D.只参加1500米比赛的有1人【答案】ABD 【解析】【分析】根据总人数和各个项目的人数,可求出三项比赛都参加的人数,从而可判定各选项.【详解】根据题意,设A ={x x 是参加100米的同学},B ={x x 是参加400米的同学},C ={x x 是参加1500米的同学},则()()()card 8,card 7,card 5,A B C ===且()()()card 4,card 3,card 3,A B A C B C === 则()()()card 128754332A B C ⎡⎤=-++-++=⎣⎦ ,所以三项比赛都参加的有2人,只参加100米比赛的有3人,只参加400米比赛的有2人,只参加1500米比赛的有1人.故选:ABD10.函数()()ππ4sin 02,22f x x ωϕωϕ⎛⎫=+<≤-<< ⎪⎝⎭的部分图象如图所示,则下列说法中正确的是()A.π6ϕ=-B.()f x 的图象关于直线πx =对称C.()12π4cos 23f x x ⎛⎫=- ⎪⎝⎭D.若方程()2f x =在()0,m 上有且只有5个根,则26π,10π3m ⎛⎤∈ ⎥⎝⎦【答案】ACD 【解析】【分析】根据图象可求得函数()f x 的解析式,再根据三角函数的性质依次判断各选项.【详解】对于A ,由()02f =-,得4sin 2ϕ=-,即1sin 2ϕ=-,又ππ22ϕ-<<,π6ϕ∴=-,故A 正确;对于C ,又()f x 的图象过点π,03⎛⎫⎪⎝⎭,则π03f ⎛⎫= ⎪⎝⎭,即ππsin 036ω⎛⎫-= ⎪⎝⎭,πππ36k ω∴-=,即得132k ω=+,k ∈Z ,又02ω<≤,12ω∴=,所以()1ππ12π12π4sin 4sin 4cos 2622323f x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-=+-=- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,故C 正确;对于B ,因为()1π4sin 26f x x ⎛⎫=-⎪⎝⎭,而()ππππ4sin 4sin 263f ⎛⎫=-== ⎪⎝⎭故直线πx =不是函数()f x 的对称轴,故B 错误;对于D ,由()2f x =,得12π1cos 232x ⎛⎫-=⎪⎝⎭,解得2π4πx k =+或2π4π3k +,Z k ∈,方程()2f x =在()0,m 上有5个根,从小到大依次为:2π14π26π,2π,,6π,333,而第7个根为10π,所以26π10π3m <≤,故D 正确.故选:ACD.11.如图,在棱长为2的正方体1111ABCD A B C D -中,M 为11B C 的中点,则下列说法正确的有()A.若点O 为BD 中点,则异面直线MO 与1CC 所成角的余弦值为5B.若点N 为线段BC 上的动点(包含端点),则MN DN +C.若点P 为CD 的中点,则平面AMP 与四边形11CDD C D.若点Q 在侧面正方形11ADD A 内(包含边界)且1MQ AC ⊥,则点Q 【答案】BD 【解析】【分析】取BC 中点E ,连接,,ME MO OE ,OME ∠为异面直线MO 与1CC 所成角,可判断A ;将侧面11BCC B 延BC 旋转至与平面ABCD 共面,根据两点间线段最短可判断B ;对于C ,如图以点D 为原点,以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,取11A B 靠近1B 的四等分点,则可证明//MF AP ,判断C ;并确定点Q 的轨迹为直线1x z +=在正方形11ADD A 内的线段,判断D.【详解】对于A ,取BC 中点E ,连接,,ME MO OE ,则1//CC ME ,所以OME ∠为异面直线MO 与1CC 所成角,在Rt OEM △中,25cos 5ME OME OM ∠==,故A 错误;对于B ,将侧面11BCC B 延BC 旋转至与平面ABCD 共面,如图连接DM ,交BC 与点N ,此时MN DN +最小,且MN DN DM +===B 正确;对于C ,如图,以点D 为原点,以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,则()()()2,0,0,0,1,0,1,2,2,A P M 因为平面//ABCD 平面1111D C B A ,所以平面AMP 与平面1111D C B A 的交线为过点M 且平行于AP 的直线,取11A B 靠近1B 的四等分点F ,连接FM ,并延长交11C D 于点S ,连接SP ,交1CC 于点T ,由32,,22F ⎛⎫⎪⎝⎭,所以()11,,0,2,1,02MF AP ⎛⎫=-=- ⎪⎝⎭ ,则12MF AP =-,则//MF AP ,所以MF 为平面AMP 与平面1111D C B A 的交线,则SP 为平面AMP 与平面11CDD C 的交线,所以TP 为平面AMP 与四边形11CDD C 的交线,由于11Rt Rt FB M SC M ≅ ,所以1112SC FB ==,又1Rt Rt SC T PCT ,所以43CT =,则53PT ==,故C 错误;对于D ,因为点Q 在侧面正方形11ADD A 内,设(),0,Q x z ,则()()12,2,2,1,2,2A C MQ x z =--=---,因为1MQ AC ⊥,所以()()214220x z -----=,化简为1x z +=,则点Q 的轨迹为直线1x z +=在正方形11ADD A,故D 正确.故选:BD【点睛】关键点睛:本题选项D 为空间动点轨迹的探索问题,解答本题的关键是利用空间直角坐标系探索出动点的轨迹.三、填空题:本题共3小题,每小题5分,共15分.12.为了解全市高三学生的体能素质情况,在全市高三学生中随机抽取了1000名学生进行体能测试,并将这1000名学生的体能测试成绩整理成如下频率分布直方图.则直方图中实数a 的值为______.【答案】0.015【解析】【分析】利用直方图直方块总面积为1,进行运算解出a 即可.【详解】由直方图可知:组距为10,所以()100.0050.0200.0400.0201a ⨯++++=,解得0.015a =.故答案为:0.015.13.给定函数()()21,f x x x g x x x=+=+,用()M x 表示()(),f x g x 中的较大者,记()()(){}max ,M x f x g x =.若函数()y M x =的图象与y a =有3个不同的交点,则实数a 的取值范围是______.【答案】()10,2,4⎛⎫+∞ ⎪⎝⎭【解析】【分析】在同一坐标系下画出()()21,f x x x g x x x=+=+的图象,求出交点坐标;结合图象再做出满足条件的直线y a =,进而求出a 的取值范围即可.【详解】由()()()2221010x x x x f x x x x x x ⎧+≤-≥⎪=+=⎨---<<⎪⎩或,()1g x x x =+,因为()()(){}max ,M x f x g x =,所以图象变为:其中()()2max1104x xx +=-≤≤,当且仅当12x =-时取最大值;且设两函数在第一象限的交点为P ,即当0,0x y >>,()()21f x x xg x x x ⎧=+⎪⎨=+⎪⎩,解得:()1,2P ,由题意y a =与函数()y M x =的图象有3个不同的交点,由数形结合易知:10a 4<<,或2a >,故答案为:()10,2,4∞⎛⎫⋃+ ⎪⎝⎭.14.已知数列{}n a 满足:12211,2,2n n n a a a a a ++==-=,定义:()mod4a b ≡表示整数a 除以4的余数与整数b 除以4的余数相同,例:()()19mod4,622mod4≡≡.设()()42,0mod4,123mod4kk k k a b k a ⎧⎪≡=⎨≡⎪⎩或或,其中*k ∈N ,数列{}n b 的前n 项和为n S ,则4b =______;满足2024m S ≥的m 最小值为______.【答案】①.2②.40【解析】【分析】由12211,2,2n n n a a a a a ++==-=,可得当n 为4的倍数时,n a 也是4的倍数,当n 不为4的倍数时,n a 也不是4的倍数,则得当k 是4的倍数时,42kk b =,当k 不是4的倍数时,k b k =,即可得4b ,取()*4n s s =∈N,计算出nS后,再计算40S 及39S 即可得解.【详解】由212n n n a a a ++-=,则3415a =+=,410212a =+=,则1a 、2a 、3a 都不是4的倍数,4a 是4的倍数,5432a a a =+,不是4的倍数,65443252a a a a a =+=+,不是4的倍数,76543434321042125a a a a a a a a a =+=+++=+,不是4的倍数,87643434322410522912a a a a a a a a a =+=+++=+,是4的倍数,依次可得当n 为4的倍数时,n a 也是4的倍数,当n 不为4的倍数时,n a 也不是4的倍数,由()()42,0mod4,123mod4kk k k a b k a ⎧⎪≡=⎨≡⎪⎩或或,则有当k 是4的倍数时,42kk b =,当k 不是4的倍数时,k b k =,则44422b ==;当()*4n s s =∈N,12123256722snS=+++++++++ ()212344222484s s s =+++++++++-+++ ()()()212144442122ss s s s -+⨯+=+--21221822222622s s s s s s s ++=++---=+-,当40n =,即10s =时,有14021610226002048226462024S =⨯+-=+-=>,01040394264622646102416222024S b S =-=-=-=<,故满足2024m S ≥的m 最小值为40.故答案为:2;40.【点睛】关键点点睛:本题关键点在于借助题意,得到当k 是4的倍数时,42kkb =,当k 不是4的倍数时,k b k =,从而可通过计算当()*4n s s =∈N 时的n S .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC 中,角、、A B C 所对的边分别为,4,9a b c c ab ==、、.(1)若2sin 3C =,求sin sin A B ⋅的值;(2)求ABC 面积的最大值.【答案】(1)14(2)【解析】【分析】(1)根据正弦定理可得sin ,sin 66a bA B ==,从而可求sin sin A B ⋅的值;(2)利用基本不等式可得22218a b ab +≥=,再根据余弦定理可得cos C 的范围,从而可得sin C 的范围,结合三角形面积公式,即可得ABC 面积的最大值.【小问1详解】由正弦定理6sin sin sin c b a C B A ===,可得sin ,sin 66a bA B ==,91sin sin 66364a b A B ∴⋅=⋅==【小问2详解】9ab = ,22218a b ab ∴+≥=,由余弦定理可得2222161cos 2189a b c ab C ab +--=≥=,1cos 19C ∴≤<,()28001cos 81C ∴<-≤,0sin 9C ∴<≤,19sin sin 22S ab C C ∴==≤,当且仅当3a b ==时,等号成立,此时ABC 面积取得最大值16.在推动电子制造业高质量发展的大环境下,某企业统筹各类资源,进行了积极的改革探索.下表是该企业每月生产的一种核心产品的产量()315x x ≤≤(件)与相应的生产总成本y (万元)的四组对照数据.x57911y200298431609企业研究人员建立了y 与x 的两种回归模型,利用计算机算得近似结果如下:经验回归方程①:311733ˆx y =+;经验回归方程②:26860ˆ1yx =-.其中经验回归方程①的残差图如图所示(残差=观测值-预测值):(1)在下表中填写经验回归方程②的残差,根据残差分析,判断哪一个经验回归方程更适宜作为y 关于x 的回归方程,并说明理由;x57911y200298431609ˆe(2)从该企业在过去几年生产的该产品中随机抽取100件,优等品有60件,合格品有40件.每件优等品利润为20万元,每件合格品利润为15万元.若视频率为概率,该企业某月计划生产12件该产品,记优等品件数为X ,总利润为Y .(ⅰ)求Y 与X 的关系式,并求()E X 和()E Y ;(ⅱ)记该月的成本利润率p ,在(1)中选择的经验回归方程下,求p 的估计值.(结果保留2位小数)附:成本利润率=总利润总成本.【答案】(1)残差数据表见解析,经验回归方程①更适宜作为y 关于x 的回归方程(2)(ⅰ)1805Y X =+,()7.2E X =,()216E Y =;(ⅱ)0.29【解析】【分析】(1)先列出经验回归方程②的残差数据表以及经验回归方程②的残差图,对比回归方程①进行选择,并给出理由即可;(2)对于(ⅰ),先求出优等品的概率,分析得出()12,0.6X B ~,进而得出求Y 与X 的关系式,并解出()E X 和()E Y 即可;对于(ⅱ),由(ⅰ)知总利润为216万元,总成本估计值319ˆ12173743y =+=(万元),再求出p 的估计值即可.【小问1详解】经验回归方程②的残差数据如下表:x57911y200298431609ˆe 2018-21-21经验回归方程②的残差图如图所示:经验回归方程①更适宜作为y 关于x 的回归方程.(以下理由或其他合理的理由,说出一条即可得分):理由1:经验回归方程①这4个样本点的残差的绝对值都比经验回归方程②的小.理由2:经验回归方程①这4个样本的残差点落在的带状区域比经验回归方程②的带状区域更窄.理由3:经验回归方程①这4个样本的残差点比经验回归方程②的残差点更贴近x 轴.【小问2详解】(ⅰ)由题意知,每件产品为优等品的概率0600.6100P ==,则()12,0.6X B ~,因此()120.67.2E X =⨯=,由()2015125180Y X X X =+⨯-=+,则()()5180216E Y E X =+=;(ⅱ)由(ⅰ)知总利润为216万元,总成本估计值319ˆ12173743y =+=(万元),则2160.29749p =≈.17.已知函数()()()211ln 02f x x a x a x a =-++>.(1)讨论函数()f x 的单调性;(2)当2a =时,若函数()()211e 2x g x f x x -=-+,求函数()g x 极值点的个数.【答案】(1)答案见解析(2)2【解析】【分析】(1)求导得()()21x a x af x x'-++=,分类讨论当01a <<,1a >,1a =时分别确定导函数的符合从而得函数单调性即可;(2)求导得()12e 3x g x x --+'=,令()12e 3x h x x-=-+,求导确定其单调性与最值,从而可得()g x 的单调与极值情况.【小问1详解】()()()211x a x a a f x x a x x-++=-++='()()1,0x x a x x --=>,当01a <<时,当()()0,,1,x a x ∞∈∈+时,()()0,f x f x '>单调递增;当(),1x a ∈时,()()0,f x f x '<单调递减.当1a >时,当()()0,1,,x x a ∞∈∈+时,()()0,f x f x '>单调递增;当()1,x a ∈时,()()0,f x f x '<单调递减;当1a =时,()()0,f x f x '≥在()0,∞+单调递增.【小问2详解】2a =时,()()112e32ln ,e 3x x g x x x g x x--=-+-+'=,设()()()11222e3,e ,x x h x h x h x x x--=-+-''=在区间()0,∞+单调递增.因为()()1110,2e 02h h ''=-=-,所以存在唯一()01,2x ∈使得()00h x '=,当()00,x x ∈时,()()0,h x h x '<单调递减,即()g x '单调递减;当()0,x x ∞∈+时,()()0,h x h x '>单调递增,即()g x '单调递增.()10g '=,且()g x '在()01,x 单调递减,所以()00g x '<,又()2e 20g ='->因此()g x '在区间()0,2x 存在唯一零点t当()()0,1,,x x t ∞∈∈+时,()()0,g x g x '>单调递增;当()1,x t ∈时,()()0,g x g x '<单调递减;所以()g x 极值点为1,t ,因此()g x 极值点个数为2.18.如图,在五棱锥S ABCDE -中,平面SAE ⊥平面AED ,,AE ED SE AD ⊥⊥.(1)证明:SE ⊥平面AED ;(2)若四边形ABCD 为矩形,且1,3SE AB AD ===,2BN NC =.当直线DN 与平面SAD 所成的角最小时,求三棱锥D SAE -体积.【答案】(1)证明见解析(2)34【解析】【分析】(1)借助面面垂直的性质定理与线面垂直的判定定理推导即可得;(2)建立适当空间直角坐标系,借助空间向量可得当直线DN 与平面SAD 所成的角最小时EAD ∠的大小,结合体积公式计算即可得解.【小问1详解】因为平面SAE ⊥平面,,AED DE EA DE ⊥⊂平面AED ,平面SAE 平面AED AE =,所以DE ⊥平面SAE ,又SE ⊂平面SAE ,所以DE SE ⊥,又因为,SE AD ED AD D ⊥= ,且,AD DE ⊂平面AED ,所以SE ⊥平面AED ;【小问2详解】以E 为坐标原点,分别以,,EA ED ES 为,,x y z轴建立空间直角坐标系,设π0,2EAD θθ⎛⎫⎛⎫∠=∈ ⎪ ⎪⎝⎭⎝⎭,则()()()3cos ,0,0,0,3sin ,0,0,0,1A D S θθ,可得CD 与y 轴夹角为θ,所以()sin ,cos ,0DC θθ=,()1cos ,sin ,03CN DA θθ==-,()sin cos ,cos sin ,0DN DC CN θθθθ=+=+-,()()3cos ,0,1,0,3sin ,1SA SD θθ=-=- ,平面SAD 的法向量记为(),,n x y z =,由00n SA n SD ⎧⋅=⎪⎨⋅=⎪⎩,得3cos 03sin 0x z y z θθ-=⎧⎨-=⎩,令3sin cos z θθ=,得()sin ,cos ,3sin cos n θθθθ=,22cos ,DN n =,即26cos ,13DN n =,当π4θ=时,等号成立,此时,直线DN 与平面SAD 的所成的角取得最小值,此时119313344D SAE ADE V S SE -=⋅=⋅⋅= .19.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12(F F O 为坐标原点,直线l 与C 交于,A B 两点,点A 在第一象限,点B 在第四象限且满足直线OA 与直线OB 的斜率之积为14-.当l 垂直于x 轴时,1232F A F B =- .(1)求C 的方程;(2)若点P 为C 的左顶点且满足(0,0)OP OA OB λμλμ=+<<,直线PA 与OB 交于1B ,直线PB 与OA交于1A .①证明:22λμ+为定值;②证明:四边形11AB A B 的面积是AOB 面积的2倍.【答案】(1)2214x y +=(2)①证明见解析;②证明见解析【解析】【分析】(1)取l 垂直x 轴特殊情况研究,由直线OA 与直线OB 的斜率之积为14-,且1232F A F B ⋅=- 求出A 点坐标,再代入椭圆方程待定系数法求解即可;(2)①由OP OA OB λμ=+建立,,P A B 坐标之间关系,利用,,P A B 在椭圆上及直线OA 与直线OB 的斜率之积为14-消去1122,,,x y x y ,即可得证;②设()()()()1122133144,,,,,,,,:A x y B x y A x y B x y l x my n =+,利用韦达定理将直线OA 与直线OB 的斜率之积为14-表示出来即可得到,m n 的关系2224n m =+,再表示出AOB 面积11sin 2S OA OB AOB =⋅⋅∠,四边形11AB A B 的面积2111sin 2S A A B B AOB =⋅⋅∠;若要证212S S =,只需证112A A B B OA OB ⋅=⋅.转化为证明3142122y y y y y y -⋅-=⋅,由题将,y y 34用12,y y 表示,化简即可.【小问1详解】当l 垂直x 轴时,由直线OA 与直线OB 的斜率之积为14-,故11:,:22OA y x OB y x ==-,设()()()2,,2,0A t t B t t t ->,则22212343332F A F B t t t ⋅=--=-=- ,解得2t =,即22A ⎫⎪⎪⎝⎭,则222221123a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1a b ==,故C 的方程为2214x y +=;【小问2详解】(2)①设()()()1122,,,,2,0A x y B x y P -,由OP OA OB λμ=+ 知121220x x y y λμλμ-=+⎧⎨=+⎩①②,将224+⨯①②得()()22121244x x y y λμλμ+++=,即()()()2222221122121244244xy x y x x y y λμλμ+++++=.由,A B 为C 上点,则2222112244,44x y x y +=+=.又直线OA 与直线OB 的斜率之积为14-,故121214y y x x =-,即121240x x y y +=.因此221λμ+=;②由题直线l 斜率不为0,设()()()1122:,,,,,2,0l x my n A x y B x y P =+-由①联立2244x y x my n⎧+=⎨=+⎩,消去x 得()()222224240,Δ1640m y mny n m n+++-==+->,212122224,44mn n y y y y m m -+=-=++,由()()12121212440x x y y my n my n y y +=+++=,即()()()()2212121212440my n my n y y m y y mn y y n +++=++++=,即2224n m =+.因此有()()22212121212122244,,42m n y y y y y y y y y y n n n-+=-=-=+-=.AOB 面积11sin 2S OA OB AOB =⋅⋅∠,四边形11AB A B 的面积2111sin 2S A A B B AOB =⋅⋅∠,即若要证212S S =,只需证112A A B B OA OB ⋅=⋅.设()()133144,,,A x y B x y ,故只需证3142122y y y y y y -⋅-=⋅即可.直线12122:2,:x xPA x y OB x y y y +=-=,联立解得()12124122212122222y y y y y x y y x y n y y y ==+--+,同理得()12123211121212222y y y y y x y y x y n y y y ==+--+.故()()()()()2222123142121212222212121224222482824n n y y n y y y y y y y y y y n n n y y n y y y y n n ++⋅--⋅-=⋅⋅=⋅⋅=⋅+-----+-+故问题得证.【点睛】关键点点睛:本题解题的关键是将212S S =表示为112A A B B OA OB ⋅=⋅后将同一直线上的弦长比值问题转化为纵坐标的比值问题,即证明3142122y y y y y y -⋅-=⋅,而,y y 34可以用12,y y 表示出来,从而达到消元化简的目的.。

2024届高三数学模拟检测(广东专用,2024新题型)(考试版)

2024届高三数学模拟检测(广东专用,2024新题型)(考试版)

2024年高考第三次模拟考试
高三数学(广东专用)
(考试时间:120分钟试卷满分:150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.
3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.
4.测试范围:高考全部内容
5.考试结束后,将本试卷和答题卡一并交回.
一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题
目要求的)
2168πcm
C.3
部选对的得6分,部分选对的得部分分,有选错的得0分)

对称


单调递减
与平面ABP夹角的余弦值.
2 21
y
b
+=的焦距为2,1F 的周长为8.。

重庆市2024届高三第三次联合诊断检测数学试卷(解析版)

重庆市2024届高三第三次联合诊断检测数学试卷(解析版)

2024年重庆市高考数学三诊试卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知集合2{|10}A x x =-=,集合{}1,1,3B a a =+-,若A B ⊆,则=a ()A.1-B.0C.1D.2【答案】B 【解析】【分析】利用子集的概念求解.【详解】集合{}2{|10}1,1A x x =-==-,集合{}1,1,3B a a =+-,若A B ⊆,又11a a +>-,所以1111a a +=⎧⎨-=-⎩,解得0.a =故选:B2.设复数z 满足2i 1z z -=,则z 的虚部为()A.13B.13-C.3D.3-【答案】A 【解析】【分析】设复数i(,R)z a b a b =+∈,根据题意,列出方程,结合复数相等,求得b 的值,即可求解.【详解】设复数i(,R)z a b a b =+∈,因为复数z 满足2i 1z z -=,可得()22i i i 1a b a b +--=,即()22i 1a b b a -+-=,则21a b -=,20b a -=,解得13b =,所以复数z 的虚部为13.故选:A.3.已知一种服装的销售量(y 单位:百件)与第x 周的一组相关数据统计如表所示,若两变量x ,y 的经验回归方程为ˆ 1.37.9yx =-+,则=a ()x 12345y66a31A.2B.3C.4D.5【答案】C 【解析】【分析】根据统计图表中的数据,求得样本中心,代入回归直线方程,即可求解.【详解】解:由统计图表中的数据,可得()11234535x =⨯++++=,()116663155a y a +=⨯++++=,即样本中心为16(3,5a +,因为两变量,x y 的经验回归方程为ˆ 1.37.9yx =-+,则161.337.95a+-⨯+=,解得 4.a =故选:C.4.若圆锥的母线长为2,且母线与底面所成角为π4,则该圆锥的侧面积为()A.B.2πC. D.4π【答案】C 【解析】【分析】根据题意,求得圆锥底面圆的半径,结合圆锥的侧面积公式,即可求解.【详解】圆锥的母线长为2,母线与底面所成角为π4,所以底面圆的半径为2sin π4r ==,所以该圆锥的侧面积为π2S ==侧.故选:C5.重庆某高校去年招收学生来自成渝地区2400人,除成渝外的西部地区2000人,中部地区1400人,东部地区1800人,港澳台地区400人.学校为了解学生的饮食习惯,拟选取40人作样本调研,为保证调研结果的代表性,则从该校去年招收的成渝地区学生中不同的抽样结果种数为()A.402400C B.242400C C.122400C D.102400C 【答案】C 【解析】【分析】根据分层抽样的性质计算即可。

湖南省长沙市第一中学2025届高三上学期阶段性检测(一) 数学试题[含答案]

湖南省长沙市第一中学2025届高三上学期阶段性检测(一) 数学试题[含答案]

长沙市一中2024—2025学年度高三阶段性检测(一)数学试卷时量:120分钟总分:150分一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,集合,则( ){||1}A x x =<∣{B x y ==∣A B = A .B .C .D .(1,1)-(0,1)[0,1)(1,)+∞2.已知复数z 满足,则复数在复平面内对应的点位于( )i 12i z =-+z A .第一象限B .第二象限C .第三象限D .第四象限3.已知一个古典概型,其样本空间中共有12个样本点,其中事件A 有6个样本点,事件B 有4个样本点,事件有8个样本点,则( )A B +()P AB =A .B .C .D .231213164.己知等差数列的前5项和,且满足,则等差数列的公差为( ){}n a 535S =5113a a ={}n a A . B .C .1D .33-1-5.已知的展开式中的系数为80,则m 的值为( )51(2)my x y x ⎛⎫+-⎪⎝⎭24x y A .B .2C .D .12-1-6.如图,正方形中,是线段上的动点,且,则ABCD 2,DE EC P = BE (0,0)AP x AB y AD x y =+>>的最小值为( )11x y+A .B .C D .47.设,则下列关系正确的是( )0.033,ln1.03,e 1103a b c ===-A .B .C .D .a b c >>b a c >>c b a >>c a b>>8.已知,则1tan 1tan()tan 6,tan tan 3222tan 2αβαβπαβαβαβ⎛⎫⎪--⎡⎤⎛⎫-+-=-=⎪ ⎪⎢⎥-⎣⎦⎝⎭ ⎪⎝⎭( )cos(44)αβ+=A . B . C . D .7981-79814981-4981二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.尽管目前人类还无法准确预报地震,但科学家经过研究,已经对地震有所了解,例如,地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为,则下列说法正确的是( )lg 4.8 1.5E M =+A .地震释放的能量为焦耳时,地震里氏震级约为七级15.310B .八级地震释放的能量约为七级地震释放的能量的6.3倍C .八级地震释放的能量约为六级地震释放的能量的1000倍D .记地震里氏震级为,地震释放的能量为,则数列是等比数列(1,2,,9,10)n n = an {}an 10.已知双曲线的左、右焦点分别为,点P 在双曲线的右支上,现有四2222:1(0,0)x y C a b a b-=>>12,F F 个条件:①;②;③平分;④点P 关于原点对称的点为Q ,且120PF PF ⋅=1260F F P ∠=︒PO 12F PF ∠,能使双曲线C 的离心率为)12||PQ F F =1+A .①②B .①③C .②③D .②④11.如图,是底面直径为2高为1的圆柱的轴截面,四边形绕逆时针旋转ABCD 1OO 1OO DA 1OO 到,则( )(0)θθπ≤≤111OO D A A .圆柱的侧面积为 B .当时,1OO 4π0θπ<<11DD A C⊥C .当时,异面直线与所成的角为D .3πθ=1A D 1OO 4π1A CD △三、填空题(本题共3小题,每小题5分,共15分)12.如图,某景区共有A ,B ,C ,D ,E 五个景点,相邻景点之间仅设置一个检票口供出入,共有7个检票口,工作人员为了检测检票设备是否正常,需要对每个检票口的检票设备进行检测若不重复经过同一个检票口,依次对所有检票口进行检测,则共有___________种不同的检测顺序.13.已知函数在上是增函数,且,则的取()sin ()f x x ωω=∈R 7,212ππ⎛⎫ ⎪⎝⎭3244f f ππ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭12f π⎛⎫- ⎪⎝⎭值的集合为___________.14.斜率为1的直线与双曲线交于两点A ,B ,点C 是曲线E 上的一点,满足2222:1(0,0)x y E a b a b -=>>和的重心分别为的外心为R ,记直线的斜率为,,AC BC OAC ⊥△OBC △,,P Q ABC △,,OP OQ OR 123,,k k k 若,则双曲线E 的离心率为___________.1238k k k =-四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)设函数.2()ln ()f x x ax x a =-++∈R (1)若,求函数的单调区间;1a =()f x (2)设函数在上有两个零点,求实数a 的取值范围(其中e 是自然对数的底数)()f x 1,e e ⎡⎤⎢⎥⎣⎦16.(15分)如图,已知四棱柱的底面为平行四边形,四边形为矩形,平面1111ABCD A B C D -ABCD 11CC D D 平面为线段的中点,且.11CC D D ⊥,ABCD E 1CD BE CE =(1)求证:平面;AD ⊥11BB D D(2)若,直线与平面的余弦4,2AB AD ==1A E 11BB D D 1D AB D --值.17.(15分)软笔书法又称中国书法,是我国的国粹之一,琴棋书画中的“书”指的正是书法.作为我国的独有艺术,软笔书法不仅能够陶冶情操,培养孩子对艺术的审美还能开发孩子的智力,拓展孩子的思维与手的灵活性,对孩子的身心健康发展起着重要的作用.近年来越来越多的家长开始注重孩子的书法教育.某书法培训机构统计了该机构学习软笔书法的学生人数(每人只学习一种书体),得到相关数据统计表如下:书体楷书行书草书隶书篆书人数2416102010(1)该培训机构统计了某周学生软笔书法作业完成情况,得到下表,其中.60a ≤认真完成不认真完成总计男生5aa女生总计60若根据小概率值的独立性检验可以认为该周学生是否认真完成作业与性别有关,求该培训机构学习0.10α=软笔书法的女生的人数.(2)现从学习楷书与行书的学生中用分层随机抽样的方法抽取10人,再从这10人中随机抽取4人,记4人中学习行书的人数为X ,求X 的分布列及数学期望.参考公式及数据:.22(),()()()()n ad bc n a b c d a b c d a c b d χ-==+++++++α0.100.050.01x α2.7063.8416.63518.(17分)已知椭圆的左、右焦点分别为为椭圆C 上一点,且到的距离2222:1(0)x y C a b a b+=>>12,,(2,3)F F A 12,F F 之和为8.(1)求椭圆C 的标准方程;(2)设B 为A 关于原点O 的对称点,斜率为k 的直线与线段(不含端点)相交于点Q ,与椭圆C 相交于AB 点M ,N ,若为常数,求与面积的比值.2||||||MN AQ BQ ⋅AQM △AQN △19.(17分)设满足以下两个条件的有穷数列为阶“曼德拉数列”:12,,,n a a a (2,3,4,)n n =①;②.1230n a a a a ++++= 1231n a a a a ++++= (1)若某阶“曼德拉数列”是等比数列,求该数列的通项(,用k ,n 表示);()*2k k ∈N n a 12n k ≤≤(2)若某阶“曼德拉数列”是等差数列,求该数列的通项(,用k ,n 表示);()*21k k +∈N n a 121n k ≤≤+(3)记n 阶“曼德拉数列”的前k 项和为,若存在,使,试{}n a (1,2,3,,)k S k n = {1,2,3,,}m n ∈ 12m S =问:数列能否为n 阶“曼德拉数列”?若能,求出所有这样的数列;若不能,请说明理{}(1,2,3,,)i S i n = 由.长沙市一中2024—2025学年度高三阶段性检测(一)数学参考答案一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.C【解析】,故.故选C .{11},{0}A xx B x x =-<<=≥∣∣{01}[0,1)A B x x =≤<= ∣2.D【解析】,212i (12i)ii 12i 2i 2i i iz z z -+-+⋅=-+⇒===+⇒=-所以复数在复平面内对应的点位于第四象限,故选D z 3.D【解析】根据概率公式计算可得;由概率的加法公式可614182(),(),()122123123P A P B P A B ====+==知,代入计算可得()()()()P A B P A P B P AB +=+-1()6P AB =故选:D 4.D【解析】,解得,故选D 5151151035;413S a d a a d a =+==+=13,1d a ==5.A 【解析】,55511(2)(2)(2)my x y x y my x y x x ⎛⎫+-=-+- ⎪⎝⎭在的展开式中,由,51(2)x y x-155455(2)()(1)2r r r r r r r r x C x y C x y -----=-⋅令,得r 无解,即的展开式没有的项;424r r -=⎧⎨=⎩51(2)x y x -24x y 在的展开式中,由,5(2)my x y -555155(2)()(1)2rr r r r r r r myC x y mC x y ---+-=-⋅令,解得,5214r r -=⎧⎨+=⎩3r =即的展开式中的项的系数为,5(2)my x y -24x y 35335(1)240mC m --⋅=-又的展开式中的系数为80,5(2)()x my x y +-24x y 所以,解得,故选A .4080m -=2m =-6.C【解析】正方形中,,则,ABCD 2DE EC = 2233AD AE ED AE CD AE AB =+=+=-而,则,AP x AB y AD =+ 2233AP xAB y AE AB x y AB y AE ⎛⎫⎛⎫=+-=-+ ⎪ ⎪⎝⎭⎝⎭又点B,P ,E 共线,于是,即,而,213x y y ⎛⎫-+= ⎪⎝⎭13yx +=0,0x y >>因此,1111443333y x y x x y x y y x ⎛⎫⎛⎫+=++=++≥+=⎪ ⎪⎝⎭⎝⎭当且仅当,即时取等号,3x y y x=y ==所以当时,.x y ==11x y +故选:C 7.C【解析】记.()e 1,(0)xf x x x =--≥因为,所以当时,,所以在上单调递增函数,()e 1xf x '=-0x >()0f x '>()f x (0,)+∞所以当时,,即,所以.0x >()(0)0f x f >=1xe x ->0.03e 10.03->记.()ln(1),(0)g x x x x =+-≥因为,所以在上单调递增函数,1()1011xg x x x-'=-=<++()g x (0,)+∞所以当时,,即,所以.0x >()(0)0g x g <=ln(1)x x +<ln1.030.03<所以.记.c b >()ln(1),(0)1xh x x x x=+-≥+因为,所以当时,,2211()1(1)(1)x h x x x x '=-=+++0x >()0h x '>所以在上单调递增函数,()h x (0,)+∞所以当时,,即,所以.0x >()(0)0h x h >=ln(1)1x x x +>+0.033ln1.0310.03103>=+所以,综上所述:.b a >c b a >>故选:C 8.A【解析】,1tan 1tan()tan 622tan 2αβαβαβαβ⎛⎫⎪--⎡⎤-+-=⎪⎢⎥-⎣⎦ ⎪⎝⎭.2221tan 2tan 2216tan1tan 22αβαβαβαβ--⎛⎫- ⎪+= ⎪-- ⎪-⎝⎭,2221tan 2tan2cos()226sin()1tan 2αβαβαβαβαβ--⎛⎫-+ ⎪-= ⎪-- ⎪-⎝⎭,221tan2cos()2cos()126,6sin()sin()cos()1tan 2αβαβαβαβαβαβαβ-⎛⎫+ ⎪--=⨯=⎪---- ⎪-⎝⎭,11sin(),sin cos cos sin 33αβαβαβ-=-=又因为,所以,tan tan 32παβ⎛⎫-= ⎪⎝⎭sin cos 3cos sin αβαβ=则,所以11cos sin ,sin cos 62αβαβ==2sin()sin cos cos sin 3αβαβαβ+=+=.241cos(22)12sin ()1299αβαβ+=-+=-⨯=.2179cos(44)2cos (22)1218181αβαβ+=+-=⨯-=-故选:A二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.ACD【解析】对于A:当时,由题意得,15.310E =15.3lg104.8 1.5M =+解得,即地震里氏震级约为七级,故A 正确;7M =对于B:八级地震即时,,解得,8M =1lg 4.8 1.5816.8E =+⨯=16.8110E =所以,16.81.5115.3101010 6.310E E ==>≠所以八级地震释放的能量约为七级地震释放的能量的倍,故B 错误;1.510对于C:六级地震即时,,解得,6M =2lg 4.8 1.5613.8E =+⨯=13.8210E =所以,16.83113.821010100010E E ===即八级地震释放的能量约为六级地震释放的能量的1000倍,故C 正确;对于D:由题意得,lg 4.8 1.5(1,2,,9,10)n a n n =+= 所以,所以4.8 1.510n n a += 4.8 1.5(1) 6.31.511010n nn a ++++==所以,即数列是等比数列,故D 正确;6.31.5 1.51 4.81.5101010nn n n a a +++=={}an 故选:ACD 10.AD【解析】③平分且为中线,可得,PO 12F PF ∠PO 12PF PF =点P 在双曲线的右支上,所以不成立;若选①②:可得,1212120,60,2PF PF F F P F F c ⋅=∠=︒=21,PF c PF ==,即离心率为,成立;2c a -=1c e a ===+若选②④:,点P 关于原点对称的点为Q ,1260F F P ∠=︒且,可得四边形为矩形,12||PQF F =12F QF P 即可得,1212,2PF PF F F c ⊥=12,PF c PF ==,即离心率为,成立;2c a -=1c e a ===+故选:AD 11.BC【解析】对于A,圆柱的侧面积为,A 错误;1OO 2112ππ⨯⨯=对于B,因为,所以,又,0θπ<<11DD D C ⊥111DD A D ⊥所以平面,所以,B 正确;1DD ⊥11A D C 11DD A C ⊥对于C,因为,所以就是异面直线与所成的角,因为,所以111A D OO ∥11DA D ∠1A D 1OO 113DO D π∠=为正三角形,所以,因为,所以,C 正确;11DO D △1111DD A D ==111A D DD ⊥114DA D π∠=对于D,作,垂足为E ,连接,所以平面,所以.1D E DC ⊥1A E DC ⊥11A D E 1A E DC ⊥在中,11Rt A D E △1A E ==≤=,所以,D 错误.1111222A CD S DC A E =⨯⨯≤⨯=△()1maxA CDS =△故选:BC .三、填空题(本题共3小题,每小题5分,共15分)12.32【解析】如图将5个景区抽象为5个点,见7个检票口抽象为7条路线,将问题化归为不重复走完7条路线,即一笔画问题,从B 或E 处出发的线路是奇数条,其余是偶数条,可以判断只能从B 或E 处出发才能不重复走完7条路线,由于对称性,只列出从B 处出发的路线情形即可.①走路线:3126547,3126745,3147526,3147625,3156247,3157426,共6种;BA ②走路线:4137526,4137625,4265137,4267315,4562137,4573126,共6种;BC ③走路线:7513426,7543126,7621345,7624315,共4种;BE 综上,共有种检测顺序.()266432⨯++=故答案为:3213.11,2⎧⎫⎨⎬⎩⎭【解析】由可知,,得,3244f f ππ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭32442T nT πππ+=-=,21T n n π=∈+Z 所以,2||42n Tπω==+又函数在上是增函数,()sin ()f x x ωω=∈R 7,212ππ⎛⎫⎪⎝⎭所以,即,所以,7212212T πππ≥-=6T π≥||12ω≤所以,的可能取值为.ω2,6,10±±±当时,由解得,0ω>2222k x k πππωπ-+≤≤+22,22k k x k ππππωωωω-+≤≤+∈Z 经检验,,6,10时不满足题意;2ω=当时,由解得,0ω<2222k x k πππωπ-+≤≤+22,22k k x k ππππωωωω+≤≤-+∈Z 经检验,时满足题意.2,6ω=--所以,的可能取值为.12f π⎛⎫-⎪⎝⎭1sin ,sin 11262122f f ππππ⎛⎫⎛⎫-==-==⎪ ⎪⎝⎭⎝⎭故答案为:11,2⎧⎫⎨⎬⎩⎭14【解析】若直线与双曲线有两个交点G ,H ,设G ,H 的中点为K ,y kx m =+22221x y a b -=联立方程组,整理得,22221y kx m x y ab =+⎧⎪⎨-=⎪⎩()22222222220b a k x a kmx a m a b ----=可得,则,22222G H a km x x b a k +=-22222G H K x x a kmx b a k+==-又由在直线上,可得,(),K K K x y y kx m =+22222222K a km b my m b a k b a k =+=--所以,所以,22K OKK y b k x ka ==22GH OK b k k a ⋅=即直线l 与双曲线相交线的中点与原点的连线的斜率与直线l 的斜率之积为定值,22b a如图所示,取的中点M ,N ,,AC BC 因为的重心P 在中线上,的重心Q 在中线上,OAC △OM OBC △ON所以,可得,12,OP OM OQ ON k k k k k k ====22$OM AC ON BCb k k k k a⋅=⋅=即,2122AC BCb k k k k a⋅=⋅=又由,可得,可得AC BC ⊥1AC BCk k ⋅=-22122b k k a ⎛⎫⋅=- ⎪⎝⎭因为,且的外心为,点R ,则R 为线段的中点,AC BC ⊥ABC △AB 可得,因为,所以,22OR ABb k k a ⋅=1AB k =22OR b k a=所以,所以,3212328b k k k a ⎛⎫=-=- ⎪⎝⎭ba =所以c e a ===.四、解答题(本题共6小题,共70分)15.解:(1)当时,的定义域为,1a =2()ln ,()f x x x x f x =-++(0,)+∞,2121()21x x f x x x x-++'=-++=令,则,解得,()0f x '>2210x x --<01x <<令,则,解得.()0f x '<2210x x -->1x >∴函数的单调递增区间为,单调递减区间为.()f x (0,1)(1,)+∞(2)令,则.2()ln 0f x x ax x =-++=ln xa x x=-令,其中,ln ()x g x x x =-1,e e x ⎡⎤∈⎢⎥⎣⎦则.2221ln ln 1()1x xx x x g x x x⋅-+-'=-=令,解得,令,解得.()0g x '>1e x <≤()0g x '<11ex ≤<的单调递减区间为,单调递增区间为,()g x ∴1,1e ⎡⎫⎪⎢⎣⎭(1,e].min ()(1)1g x g ∴==又,函数在上有两个零点,111e ,(e)e e ee g g ⎛⎫=+=-⎪⎝⎭()f x 1,e e ⎡⎤⎢⎥⎣⎦的取值范围是.a ∴11,e e ⎛⎤- ⎥⎝⎦16.解:(1)在中,E 为线段的中点,且,所以,1BCD △1CD BE CE =1D E CE BE ==所以为直角三角形,且,所以,111,2BE CD BCD =△190CBD ∠=︒1D B BC ⊥因为底面为平行四边形,,所以,ABCD AD BC ∥1AD D B ⊥又因为四边形为矩形,所以,11CC D D 1D D DC ⊥因为平面平面,平面平面平面,11CC D D ⊥ABCD 11CC D D 1,ABCD DC D D =⊂11CC D D 所以平面,1D D ⊥ABCD 因为平面,所以,AD ⊂ABCD 1AD D D ⊥因为平面,11111,,D D D B D D D D B =⊂ 11BB D D 所以平面.AD ⊥11BB D D (2)因为平面平面,所以,AD ⊥11,BB D D BD ⊂11BB D D AD BD ⊥由(1)知平面,又平面,所以,11,D D AD D D ⊥⊥ABCD BD ⊂ABCD 1D D BD ⊥所以两两垂直,1,,DA DB DD 以D 为坐标原点,所在直线为x 轴,所在直线为y 轴,DA DB所在直线为z 轴,建立如图所示的空间直角坐标系,1DD 在中,,所以,Rt ADB △4,2AB AD ==DB ==设,则,1(0)DD t t =>1(0,0,0),(2,0,0),(2,0,),,(0,2t D A A t E B ⎛⎫- ⎪⎝⎭所以,1,(2,2t A E AB ⎛⎫=--=- ⎪⎝⎭易知平面的一个法向量为,11BB D D (2,0,0)DA =设直线与平面所成的角为,1A E 11BB D D θ则,解得111sin cos ,||A E DAA E DA A E DA θ⋅====t =所以,11(0,0,(2,0,D AD =-设平面的法向量为1ABD (,,)m x y z =则,令,12020AB m x AD m x⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ x =m = 易知平面的一个法向量为,ABCD (0,0,1)n =则,cos ,||||m n m n m n ⋅===易知二面角是锐角,故二面角1D AB D --1D AB D --17.解:(1)根据题意,完成列联表如下:认真完成不认真完成总计男生45a 5a a女生4605a -205a -80a-总计602080由题意可得,2244802060555516 2.7066020(80)15(80)a a a a a a a a χ⎡⎤⎛⎫⎛⎫⨯--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦==≥⨯⨯⨯--得.57.38a >易知a 为5的倍数,且,所以,60a ≤60a =所以该培训机构学习软笔书法的女生有(人).806020-=(2)因为学习软笔书法的学生中学习楷书与行书的人数之比为,24:163:2=所以用分层随机抽样的方法抽取的10人中,学习楷书的有(人),学习行书的有310632⨯=+(人),210432⨯=+所以X 的所有可能取值为0,1,2,3,4,,4312266464444101010C C C C C 151808903(0),(1),(2)C 21014C 21021C 2107P X P X P X ============.134644441010C C C 2441(3),(4)C 21035C 210P X P X =======X 的分布列为:X 01234P114821374351210所以.183418()0123414217352105E X =⨯+⨯+⨯+⨯+⨯=18.解:(1)由椭圆的定义得,所以.1228AF AF a +==4a =又为椭圆C 上一点,所以,(2,3)A 22491a b+=将代入,得,4a =212b =所以椭圆C 的标准方程为.2211612x y +=(2)因为B 为A 关于原点O 的对称点,所以,直线的方程为.()2,3B --AB 32y x =设,则直线的方程为,()()2,311Q t t t -<<MN ()32y t k x t -=-联立得,可得,22116123(2)x y y t k x t ⎧+=⎪⎨⎪-=-⎩()2222438(32)4(32)480k x kt k x t k ++-+--=由点Q 在椭圆内,易知,0∆>不妨令,则,()()1122,,,M x y N x y 221212228(23)4(32)48,4343kt k t k x x x x k k ---+=⋅=++所以.()()()()()()222222222121212224811612(32)||11443k k t k MN kx x k x x x x k⎡⎤++--⎣⎦⎡⎤=+-=++-=⎣⎦+又,()2||||131AQ BQ t ⋅==-所以为常数,()()()222222224811612(32)||||||13431k k t k MN AQ BQ k t ⎡⎤++--⎣⎦=⋅+-则需满足为常数,22221612(32)1k t k t+---(此式为与t 无关的常数,所以分子与分母对应成比例)即,解得.221612(32)k k +=-12k =-将代入,可得,得,12k =-1228(23)43kt k x x k -+=+124x x t +=1222x x t +=所以Q 为的中点,MN 所以.||1||AQM AQNS MQ S NQ ==△△19.解:(1)设等比数列的公比为q .1232,,,,(1)k a a a a k ≥ 若,则由①得,得,1q ≠()21122101k k a q a a a q-+++==- 1q =-由②得或.112a k =112a k=-若,由①得,,得,不可能.1q =120a k ⋅=10a =综上所述,.1q =-或.11(1)2n n a k -∴=-11(1)2n n a k-=--(2)设等差数列的公差为d ,12321,,,,(1)k a a a a k +≥ ,123210k a a a a +++++= ,112(21)(21)0,02k k dk a a kd +∴++=+=即,120,k k a a d ++=∴=当时,“曼德拉数列”的条件①②矛盾,0d =当时,据“曼德拉数列”的条件①②得,0d >,()23211212k k k k a a a a a a ++++++==-+++ ,即,(1)122k k kd d -∴+=1(1)d k k =+由得,即,10k a +=110(1)a k k k +⋅=+111a k =-+.()*111(1),211(1)(1)n n a n n n k k k k k k k∴=-+-⋅=-∈≤++++N 当时,同理可得,0d <(1)122k k kd d -+=-即.1(1)d k k =-+由得,即,10k a +=110(1)a k k k -⋅=+111a k =+.()*111(1),211(1)(1)n n a n n n k k k k k k k∴=--⋅=-+∈≤++++N 综上所述,当时,,0d >()*1,21(1)n n a n n k k k k∴=-∈≤++N 当时,.0d <()*1,21(1)n n a n n k k k k=-+∈≤++N (3)记中非负项和为A ,负项和为B ,则,12,,,n a a a 0,1A B A B +=-=得,即.1111,,2222k A B B S A ==--=≤≤=1(1,2,3,,)2k S k n ≤= 若存在,使,由前面的证明过程知:{1,2,3,,}m n ∈ 12m S =,且. 12120,0,,0,0,0,,0m m m n a a a a a a ++≥≥≥≤≤≤ 1212m m n a a a +++++=- 若数列为n 阶“曼德拉数列”,{}(1,2,3,,)i S i n = 记数列的前k 项和为,则.{}(1,2,3,,)i S i n = k T 12k T ≤,1212m m T S S S ∴=+++≤又,1211,02m m S S S S -=∴==== .12110,2m m a a a a -∴===== 又,1212m m n a a a +++++=- ,12,,,0m m n S S S ++∴≥ ,123123n n S S S S S S S S ∴++++=++++ 又与不能同时成立,1230n S S S S ++++= 1231n S S S S ++++= ∴数列不为n 阶“曼德拉数列{}(1,2,3,,)i S i n =。

湖南省长沙市2025届高三上学期阶段性检测(一)数学试题含答案

湖南省长沙市2025届高三上学期阶段性检测(一)数学试题含答案

长沙市2024—2025学年度高三阶段性检测(一)数学试卷(答案在最后)时量:120分钟总分:150分一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}1A x x =<,集合{B x y ==,则A B = ()A.()1,1- B.()0,1 C.[)0,1 D.()1,+∞【答案】C 【解析】【分析】求解绝对值不等式和函数定义域解得集合,A B ,再求交集即可.【详解】根据题意,可得{}{}11,0A x x B x x =-<<=≥,故{01}[0,1)A B x x ⋂=≤<=.故选:C .2.已知复数z 满足i 12i =-+z ,则复数z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D 【解析】【分析】根据复数的除法运算法则、结合共轭复数的定义、复数在复平面内对应点的特征进行求解即可.【详解】i 12i =-+z 212i (12i)i2i i iz -+-+⋅⇒===+2i z ⇒=-,所以复数z 在复平面内对应的点位于第四象限,故选:D3.已知一个古典概型,其样本空间中共有12个样本点,其中事件A 有6个样本点,事件B 有4个样本点,事件A B +有8个样本点,则()P AB =()A.23B.12C.13D.16【答案】D 【解析】【分析】依题意计算可得()12P A =,()13P B =,()23P A B +=,再由概率的加法公式计算即可得1()6P AB =.【详解】根据概率公式计算可得()61122P A ==,()41123P B ==,()82123P A B +==;由概率的加法公式可知()()()()P A B P A P B P AB +=+-,代入计算可得1()6P AB =故选:D4.已知等差数列{}n a 的前5项和535S =,且满足5113a a =,则等差数列{a n }的公差为()A.-3B.-1C.1D.3【答案】D 【解析】【分析】根据题意得到5151035S a d =+=,511413a a d a =+=,解得答案.【详解】5151035S a d =+=;511413a a d a =+=,解得3d =,11a =.故选:D5.已知()512my x y x ⎛⎫+- ⎪⎝⎭的展开式中24x y 的系数为80,则m 的值为()A.2- B.2C.1- D.1【答案】A 【解析】【分析】根据题意可得55511(2)(2)(2)my x y x y my x y x x ⎛⎫+-=-+-⎪⎝⎭,利用二项式展开式的通项公式1C r n r rr n T ab -+=求出24x y 的项的系数,进而得出结果.【详解】55511(2)(2)(2)my x y x y my x y x x ⎛⎫+-=-+- ⎪⎝⎭,在51(2)x y x-的展开式中,由155455(2)()(1)2r r r r r r r r x C x y C x y -----=-⋅,令424r r -=⎧⎨=⎩,得r 无解,即51(2)x y x -的展开式没有24x y 的项;在5(2)my x y -的展开式中,由555155(2)()(1)2rrr r r r r r myC x y mC x y ---+-=-⋅,令5214r r -=⎧⎨+=⎩,解得r =3,即5(2)my x y -的展开式中24x y 的项的系数为35335(1)240mC m --⋅=-,又5(2)()x my x y +-的展开式中24x y 的系数为80,所以4080m -=,解得2m =-.故选:A.6.如图,正方形ABCD 中,2,DE EC P = 是直线BE 上的动点,且(0,0)AP x AB y AD x y =+>>,则11x y+的最小值为()A. B. C.43+ D.4【答案】C 【解析】【分析】根据给定图形,用,AB AE 表示向量AD,再利用共线向量定理的推论,结合“1”的妙用求解即得.【详解】正方形ABCD 中,2DE EC =,则2233AD AE ED AE CD AE AB =+=+=- ,而AP xAB y AD =+ ,则(22)()33A B x AE A x P AB y AB y E y A --=++=,又点,,B P E 共线,于是2()13x y y -+=,即13y x +=,而0,0x y >>,因此313111)(444()333x y x x y y x y x y ++=+=+++≥+,当且仅当3x y y x =,即3332y -==时取等号,所以当33,22x y ==时,11x y +取得最小值43+.故选:C 7.设3103a =,ln1.03b =,0.03e 1=-c ,则下列关系正确的是()A.a b c >>B.b a c >>C.c b a >>D.c a b>>【答案】C 【解析】【分析】构造函数()()e 1,0xf x x x =--≥.利用导数判断单调性,证明出0.03e 10.03->.构造函数()()()ln 1,0g x x x x =+-≥.利用导数判断单调性,证明出ln1.030.03<,得到c b >;构造函数()()()ln 1,01xh x x x x =+-≥+.利用导数判断单调性,证明出3ln1.03103>,即为b a >.即可得到答案.【详解】记()()e 1,0xf x x x =--≥.因为()e 1xf x '=-,所以当0x >时,()0f x '>,所以()f x 在0,+∞上单调递增函数,所以当0x >时,()()00f x f >=,即1x e x ->,所以0.03e 10.03->.记()()()ln 1,0g x x x x =+-≥.因为()11011x g x x x-'=-=<++,所以在0,+∞上单调递增函数,所以当0x >时,()()00g x g <=,即()ln 1x x +<,所以ln1.030.03<.所以c b >.记()()()ln 1,01xh x x x x=+-≥+.因为()()()2211111x h x x x x '=-=+++,所以当0x >时,()0h x '>,所以()h x 在0,+∞上单调递增函数,所以当0x >时,()()00h x h >=,即()ln 11x x x +>+,所以0.033ln1.0310.03103>=+.所以b a >.综上所述:c b a >>.故选:C8.已知()1tan 1tan tan 622tan 2⎛⎫⎪--⎡⎤-+-=⎪⎢⎥-⎣⎦ ⎪⎝⎭αβαβαβαβ,tan tan 32⎛⎫-= ⎪⎝⎭παβ,则()cos 44+=αβ()A.7981-B.7981C.4981-D.4981【答案】A 【解析】【分析】结合二倍角公式和两角和差公式化简即可求得.【详解】()1tan 1tan tan 622tan 2⎛⎫ ⎪--⎡⎤-+-= ⎪⎢⎥-⎣⎦ ⎪⎝⎭αβαβαβαβ,222612tan 2tan 21tan1tan 22αβαβαβαβ--⎛⎫ ⎪+= ⎪-- ⎪-⎝⎭-.()()2221tan 2tan 2cos 2261n2si ta n αβαβαβαβαβ--⎛⎫-+ ⎪-= ⎪-- ⎪-⎝⎭,()()221tan 2cos 21s 6ta i 2n n αβαβαβαβ-⎛⎫+ ⎪-= ⎪-- ⎪-⎝⎭,()()()2cos 16c sin os αβαβαβ-⨯=--,()1sin 3αβ-=,1sin cos cos sin 3αβαβ-=,又因为tan tan 32⎛⎫-=⎪⎝⎭παβ,所以sin cos 3cos sin αβαβ=,则11cos sin ,sin cos 62αβαβ==,所以()2sin sin cos cos sin 3αβαβαβ+=+=()()241cos 12sin 129922αβαβ=-=-⨯=++.()()2179cos 442cos 221218181αβαβ+=+-=⨯-=-.故选:A二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.尽管目前人类还无法准确预报地震,但科学家经过研究,已经对地震有所了解,例如,地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg E =4.8+1.5M ,则下列说法正确的是()A.地震释放的能量为1015.3焦耳时,地震里氏震级约为七级B.八级地震释放的能量约为七级地震释放的能量的6.3倍C.八级地震释放的能量约为六级地震释放的能量的1000倍D.记地震里氏震级为n (n =1,2,···,9,10),地震释放的能量为a n ,则数列{a n }是等比数列【答案】ACD 【解析】【分析】根据所给公式,结合指对互化原则,逐一分析各个选项,即可得答案.【详解】对于A :当15.310E =时,由题意得15.3lg10 4.8 1.5M =+,解得7M =,即地震里氏震级约为七级,故A 正确;对于B :八级地震即8M =时,1lg 4.8 1.5816.8E =+⨯=,解得16.8110E =,所以16.81.5115.3101010 6.310E E ==>≠,所以八级地震释放的能量约为七级地震释放的能量的 1.510倍,故B 错误;对于C :六级地震即6M =时,2lg 4.8 1.5613.8E =+⨯=,解得13.8210E =,所以16.83113.821010100010E E ===,即八级地震释放的能量约为六级地震释放的能量的1000倍,故C 正确;对于D :由题意得lg 4.8 1.5n a n =+(n =1,2,···,9,10),所以 4.81.510n n a +=,所以 4.81.5(1)6.31.511010n n n a ++++==所以6.31.5 1.51 4.81.5101010nn n n a a +++==,即数列{a n }是等比数列,故D 正确;故选:ACD10.已知双曲线2222:1x y C a b-=()0,0a b >>的左、右焦点分别为1F ,2F ,点P 在双曲线的右支上,现有四个条件:①120PF PF ⋅=;②1260F F P ∠=︒;③PO 平分12F PF ∠;④点P 关于原点对称的点为Q ,且12PQ F F =,能使双曲线C的离心率为1+)A.①②B.①③C.②③D.②④【答案】AD 【解析】【分析】对各个选项进行分析,利用双曲线的定义找到a,c 的等量关系,从而确定离心率.【详解】③PO 平分12F PF ∠且PO 为中线,可得12PF PF =,点P 在双曲线的右支上,所以不成立;若选①②:120PF PF ⋅=,1260F F P ∠=︒,122F F c =可得2PF c =,1PF =,2c a -=,即离心率为1c e a ===+,成立;若选②④:1260F F P ∠=︒,点P 关于原点对称的点为Q ,且12PQ F F =,可得四边形12F QF P 为矩形,即12PF PF ⊥,122F F c =可得2PF c =,1PF =,2c a -=,即离心率为1c e a ===+,成立;故选:AD11.如图,ABCD 是底面直径为2高为1的圆柱1OO 的轴截面,四边形1OO DA 绕1OO 逆时针旋转()0θθπ≤≤到111OO D A ,则()A.圆柱1OO 的侧面积为4πB.当0θπ<<时,11DD AC ⊥C.当3πθ=时,异面直线1A D 与1OO 所成的角为4πD.1A CD 【答案】BC 【解析】【分析】对于A ,由圆柱的侧面积公式可得;对于B ,由线面垂直的判定定理和性质定理可得;对于C ,由题知,11DO D 为正三角形,根据异面直线所成的角的定义计算得解;对于D ,作1D E DC ⊥,由线面垂直的判定定理和性质定理得1A E DC ⊥.在11Rt A D E 中,1A E ==≤=【详解】对于A ,圆柱1OO 的侧面积为2112ππ⨯⨯=,A 错误;对于B ,因为0θπ<<,所以11DD D C ⊥,又111DD A D ⊥,所以1DD ⊥平面11A D C ,所以11DD AC ⊥,B 正确;对于C ,因为111//A D OO ,所以11DA D ∠就是异面直线1A D 与1OO 所成的角,因为113DO D π∠=,所以11DO D 为正三角形,所以1111DD A D ==,因为111A D DD ⊥,所以114DA D π∠=,C 正确;对于D ,作1D E DC ⊥,垂足为E ,连接1A E ,所以DC ⊥平面11A D E ,所以1A E DC ⊥.在11Rt A D E 中,1A E ==≤=1111222A CD S DC A E =⨯⨯≤⨯= ,所以()1maxA CD S = ,D 错误.故选:BC.三、填空题(本题共3小题,每小题5分,共15分)12.如图,某景区共有,,,,A B C D E 五个景点,相邻景点之间仅设置一个检票口供出入,共有7个检票口,工作人员为了检测检票设备是否正常,需要对每个检票口的检票设备进行检测.若不重复经过同一个检票口,依次对所有检票口进行检测,则共有____________种不同的检测顺序.【答案】32【解析】【分析】将5个景区抽象为5个点,见7个检票口抽象为7条路线,将问题化归为不重复走完7条路线,即一笔画问题,分析可得只能从B 或E 处出发才能不重复走完7条路线,再用列举法列出所有可能结果,即可得解.【详解】如图将5个景区抽象为5个点,见7个检票口抽象为7条路线,将问题化归为不重复走完7条路线,即一笔画问题,从B 或E 处出发的线路是奇数条,其余是偶数条,可以判断只能从B 或E 处出发才能不重复走完7条路线,由于对称性,只列出从B 处出发的路线情形即可.①走BA 路线:3126547,3126745,3147526,3147625,3156247,3157426,共6种;②走BC 路线:4137526,4137625,4265137,4267315,4562137,4573126,共6种;③走BE 路线:7513426,7543126,7621345,7624315,共4种;综上,共有()266432⨯++=种检测顺序.故答案为:3213.已知函数()()sin f x x ωω=∈R 在π7π,212⎛⎫ ⎪⎝⎭上是增函数,且π3π244f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则π12f ⎛⎫- ⎪⎝⎭的取值的集合为______.【答案】11,2⎧⎫⎨⎬⎩⎭【解析】【分析】由π3π244f f ⎛⎫⎛⎫-=⎪ ⎪⎝⎭⎝⎭可得2π42n T ω==+,由函数在π7π,212⎛⎫ ⎪⎝⎭上是增函数可得12ω≤,然后对ω的取值逐一验证,然后可得π12f ⎛⎫- ⎪⎝⎭取值.【详解】由π3π244f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭可知,3πππ2442T nT +=-=,得π,21T n n =∈+Z ,所以2π42n Tω==+,又函数()()sin f x x ωω=∈R 在π7π,212⎛⎫⎪⎝⎭上是增函数,所以7πππ212212T ≥-=,即6πT ≥,所以12ω≤,所以,ω的可能取值为2,6,10±±±.当0ω>时,由ππ2π2π22k x k ω-+≤≤+解得π2ππ2π,22k k x k ωωωω-+≤≤+∈Z ,经检验,2,6,10ω=时不满足题意;当0ω<时,由ππ2π2π22k x k ω-+≤≤+解得π2ππ2π,22k k x k ωωωω+≤≤-+∈Z ,经检验,2,6ω=--时满足题意.所以,12f π⎛⎫-⎪⎝⎭的可能取值为ππ1ππsin ,sin 11262122f f ⎛⎫⎛⎫-==-== ⎪ ⎪⎝⎭⎝⎭.故答案为:11,2⎧⎫⎨⎬⎩⎭【点睛】本题综合考查了三角函数的单调性、最值、周期之间的关系,关键在于能从已知中发现周期的所满足的条件,然后根据周期确定ω的可能取值,再通过验证即可求解.14.斜率为1的直线与双曲线2222:1x y E a b-=(0,0a b >>)交于两点,A B ,点C 是曲线E 上的一点,满足AC BC ⊥,OAC 和OBC △的重心分别为,P Q ,ABC V 的外心为R ,记直线OP ,OQ ,OR 的斜率为1k ,2k ,3k ,若1238k k k =-,则双曲线E 的离心率为______.【解析】【分析】根据直线与双曲线的性质,得出二级结论斜率之积为定值22b a ,取,AC BC 的中点,M N ,得到2122AC BC b k k k k a ⋅=⋅=,再由AC BC ⊥,22OR b k a=,结合所以1238k k k =-,求得b a =c e a ==.【详解】若直线y kx m =+与双曲线22221x ya b-=有两个交点,G H ,设,G H 的中点为K ,联立方程组22221y kx mx y a b =+⎧⎪⎨-=⎪⎩,整理得222222222()20b a k x a kmx a m a b ----=,可得22222G H a km x x b a k +=-,则22222G H K x x a kmx b a k+==-,又由(,)K K K x y 在直线y kx m =+上,可得22222222K a km b my m b a k b a k=+=--,所以22K OKK y b k x ka ==,所以22GH OK b k k a⋅=,即直线l 与双曲线相交线的中点与原点的连线的斜率与直线l 的斜率之积为定值22b a,如图所示,取,AC BC 的中点,M N ,因为OAC 的重心P 在中线OM 上,OBC △的重心Q 在中线ON 上,所以1OP OM k k k ==,2OQ ON k k k ==,可得22OM AC ON BCb k k k k a⋅=⋅=,即2122AC BCb k k k k a⋅=⋅=,又由AC BC ⊥,可得1AC BCk k ⋅=-,可得22122()b k k a⋅=-因为AC BC ⊥,且ABC V 的外心为点R ,则R 为线段AB 的中点,可得22OR ABb k k a ⋅=,因为1AB k =,所以22OR b k a=,所以2321238()b k ak k =-=-,所以b a =,所以c e a ===.【点睛】知识方法:求解圆锥曲线的离心率的常见方法:1、定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ;2、齐次式法:由已知条件得出关于,a c 的二元齐次方程或不等式,然后转化为关于e 的一元二次方程或不等式,结合离心率的定义求解;3、特殊值法:根据特殊点与圆锥曲线的位置关系,利用取特殊值或特殊位置,求出离心率问题.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.设函数()()2ln f x x ax x a =-++∈R .(1)若1a =,求函数()f x 的单调区间;(2)设函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上有两个零点,求实数a 的取值范围.(其中e 是自然对数的底数)【答案】(1)单调递增区间为()0,1,单调递减区间为()1,+∞(2)e11,e ⎛⎤- ⎥⎝⎦【解析】【分析】(1)根据题意,求导可得()f x ',即可得到结果;(2)根据题意,由条件可得ln x a x x =-,构造函数()ln x g x x x =-,其中1,e e x ⎡⎤∈⎢⎥⎣⎦,转化为最值问题,即可求解.【小问1详解】当1a =时,()()2ln ,f x x x x f x =-++的定义域为()0,∞+,()212121x x f x x x x-++=-++=',令()0f x '>,则2210x x --<,解得01x <<,令()0f x '<,则2210x x -->,解得1x >.∴函数()f x 的单调递增区间为()0,1,单调递减区间为()1,+∞.【小问2详解】令()2ln 0f x x ax x =-++=,则ln xa x x=-.令()ln x g x x x =-,其中1,e e x ⎡⎤∈⎢⎥⎣⎦,则()2221ln ln 11x x x x x g x x x ⋅-+-=-='.令()0g x '>,解得1e x <≤,令()0g x '<,解得11ex ≤<.()g x ∴的单调递减区间为1,1e ⎡⎫⎪⎢⎣⎭,单调递增区间为(]1,e ,()min ()11g x g ∴==.又()111e ,e e e e e g g ⎛⎫=+=- ⎪⎝⎭,函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上有两个零点,a ∴的取值范围是e 11,e ⎛⎤-⎥⎝⎦.16.如图,已知四棱柱1111ABCD A B C D -的底面ABCD 为平行四边形,四边形11CC D D 为矩形,平面11CC D D ⊥平面,ABCD E 为线段1CD 的中点,且BE CE =.(1)求证:AD ⊥平面11BB D D ;(2)若4,2AB AD ==,直线1A E 与平面11BB D D 所成角的正弦值为155,求二面角1D AB D --的余弦值.【答案】(1)证明见解析(2)55【解析】【分析】(1)先根据直角三角形的性质和平行线的性质得到1D B BC ⊥,再根据面面垂直和线面垂直的性质定理结合平面11CC D D ⊥平面ABCD 得到1AD D D ⊥,最后根据线面垂直的判定定理证明即可.(2)建立空间直角坐标系,设()10DD t t =>,利用已知条件和线面角的坐标公式求出t ,再利用面面角的坐标公式求解即可.【小问1详解】在1BCD 中,E 为线段1CD 的中点,且BE CE =,所以1D E CE BE ==,所以112BE CD =,1BCD 为直角三角形,且190CBD ∠=︒,所以1D B BC ⊥,因为底面ABCD 为平行四边形,AD BC ∥,所以1AD D B ⊥,又因为四边形11CC D D 为矩形,所以1D D DC ⊥,因为平面11CC D D ⊥平面ABCD ,平面11CC D D 平面1,ABCD DC D D =⊂平面11CC D D ,所以1D D ⊥平面ABCD ,因为AD ⊂平面ABCD ,所以1AD D D ⊥,因为11111,,D D D B D D D D B =⊂ 平面11BB D D ,所以AD ⊥平面11BB D D .【小问2详解】因为AD ⊥平面11,BB D D BD ⊂平面11BB D D ,所以AD BD ⊥,由(1)知11,D D AD D D ⊥⊥平面ABCD ,又BD ⊂平面ABCD ,所以1D D BD ⊥,所以1,,DA DB DD 两两垂直,以D 为坐标原点,DA 所在直线为x 轴,DB 所在直线为y 轴,1DD 所在直线为z 轴,建立如图所示的空间直角坐标系,在Rt ADB △中,4,2AB AD ==,所以DB ==,设()10DD t t =>,则()()()()10,0,0,2,0,0,2,0,,,0,2t D A A t E B ⎛⎫- ⎪⎝⎭,所以()1,2,2t A E AB ⎛⎫=--=- ⎪⎝⎭,易知平面11BB D D 的一个法向量为D =2,0,0,设直线1A E 与平面11BB D D 所成的角为θ,则111sin cos ,5A E DAA E DA A E DAθ⋅====,解得t =,所以((110,0,,2,0,D AD =-,设平面1ABD 的法向量为 =s s ,则12020AB m x AD m x ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,令x =)m = ,易知平面ABCD 的一个法向量为()0,0,1n = ,则cos,5m nm nm n⋅===,易知二面角1D AB D--是锐角,故二面角1D AB D--的余弦值为5.17.软笔书法又称中国书法,是我国的国粹之一,琴棋书画中的“书”指的正是书法.作为我国的独有艺术,软笔书法不仅能够陶冶情操,培养孩子对艺术的审美还能开发孩子的智力,拓展孩子的思维与手的灵活性,对孩子的身心健康发展起着重要的作用.近年来越来越多的家长开始注重孩子的书法教育.某书法培训机构统计了该机构学习软笔书法的学生人数(每人只学习一种书体),得到相关数据统计表如下:书体楷书行书草书隶书篆书人数2416102010(1)该培训机构统计了某周学生软笔书法作业完成情况,得到下表,其中60a≤.认真完成不认真完成总计男生5a a女生总计60若根据小概率值0.10α=的独立性检验可以认为该周学生是否认真完成作业与性别有关,求该培训机构学习软笔书法的女生的人数.(2)现从学习楷书与行书的学生中用分层随机抽样的方法抽取10人,再从这10人中随机抽取4人,记4人中学习行书的人数为X,求X的分布列及数学期望.参考公式及数据:()()()()()22,n ad bcn a b c da b c d a c b dχ-==+++++++.α0.100.050.01xα2.7063.841 6.635【答案】(1)20(2)分布列见解析,()85E X=【解析】【分析】(1)由已知数据完成列联表,根据独立性检验的结论列不等式求出a 的值,可得女生人数;(2)由分层抽样确定两组人数,根据X 的取值计算相应的概率,得分布列,计算数学期望.【小问1详解】根据题意,完成列联表如下:认真完成不认真完成总计男生45a5a a女生4605a -205a -80a-总计602080由题意可得()()2244802060555516 2.7066020801580a a a a a a a a χ⎡⎤⎛⎫⎛⎫⨯--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦==≥⨯⨯⨯--,得57.38a >.易知a 为5的倍数,且60a ≤,所以60a =,所以该培训机构学习软笔书法的女生有806020-=(人).【小问2详解】因为学习软笔书法的学生中学习楷书与行书的人数之比为24:163:2=,所以用分层随机抽样的方法抽取的10人中,学习楷书的有310632⨯=+(人),学习行书的有210432⨯=+(人),所以X 的所有可能取值为0,1,2,3,4,()46410C 1510C 21014P X ====,()3164410C C 8081C 21021P X ====,()2264410C C 9032C 2107P X ====,()1364410C C 2443C 21035P X ====,()44410C 14C 210P X ===.X 的分布列为:X01234P114821374351210所以()1834180123414217352105E X =⨯+⨯+⨯+⨯+⨯=.18.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为()12,,2,3F F A 为椭圆C 上一点,且到1F ,2F 的距离之和为8.(1)求椭圆C 的标准方程;(2)设B 为A 关于原点O 的对称点,斜率为k 的直线与线段AB (不含端点)相交于点Q ,与椭圆C 相交于点,M N ,若2MNAQ BQ⋅为常数,求AQM V 与AQN △面积的比值.【答案】(1)2211612x y +=(2)1【解析】【分析】(1)根据题意,列出关于,,a b c 的方程,代入计算,即可得到结果;(2)根据题意,表示出直线MN 的方程,联立与椭圆的方程,结合韦达定理代入计算,然后代入弦长公式,即可得到结果.【小问1详解】由椭圆的定义得1228AF AF a +==,所以4a =.又()2,3A 为椭圆C 上一点,所以22491a b+=,将4a =代入,得212b =,所以椭圆C 的标准方程为2211612x y +=.【小问2详解】因为B 为A 关于原点O 的对称点,所以()2,3B --,直线AB 的方程为32y x =.设()()2,311Q t t t -<<,则直线MN 的方程为()32y t k x t -=-,联立得()221161232x y y t k x t ⎧+=⎪⎨⎪-=-⎩,可得()()()222243832432480k x kt k x t k ++-+--=,由点Q 在椭圆内,易知Δ0>,不妨令()()1122,,,M x y N x y ,则()12282343kt k x x k -+=+,()221224324843t k x x k --⋅=+,所以()()()()()()()2222222221212122248116123211443k k t k MNkx x k x x x x k ⎡⎤++--⎣⎦⎡⎤=+-=++-=⎣⎦+.又()()()()()2222222332233131AQ BQ t t t t t ⋅=-+-+++=-,所以()()()()2222222248116123213431k k t k MN AQ BQ k t ⎡⎤++--⎣⎦=⋅+-为常数,则需满足()22221612321k t k t+---为常数,(此式为与t 无关的常数,所以分子与分母对应成比例)即()22161232k k +=-,解得12k =-.将12k =-代入()12282343kt k x x k -+=+,可得124x x t +=,得1222x x t +=,所以Q 为MN 的中点,所以1AQM AQNS MQ S NQ== .【点睛】关键点睛:本题主要考查了直线与椭圆相交问题,以及椭圆中三角形面积问题,难度较大,解答本题的关键在于结合弦长公式以及将面积比转化为边长比.19.设满足以下两个条件的有穷数列12,,,n a a a ⋅⋅⋅为()2,3,4,n n =⋅⋅⋅阶“曼德拉数列”:①1230n a a a a +++=⋅⋅⋅+;②1231n a a a a +++⋅⋅⋅+=.(1)若某()*2k k ∈N阶“曼德拉数列”是等比数列,求该数列的通项na(12n k ≤≤,用,k n 表示);(2)若某()*21k k +∈N阶“曼德拉数列”是等差数列,求该数列的通项na (121n k ≤≤+,用,k n 表示);(3)记n 阶“曼德拉数列”{}n a 的前k 项和为()1,2,3,,k S k n =⋅⋅⋅,若存在{}1,2,3,,m n ∈⋅⋅⋅,使12m S =,试问:数列{}()1,2,3,,i S i n =⋅⋅⋅能否为n 阶“曼德拉数列”?若能,求出所有这样的数列;若不能,请说明理由.【答案】(1)()1112n n a k -=-或()1112n n a k-=--(2)()()*1,211n na n n k k k k ∴=-∈≤++N 或()()*1,211n n a n n k k k k=-+∈≤++N (3)不能,理由见解析【解析】【分析】(1)结合曼德拉数列的定义,分公比是否为1进行讨论即可求解;(2)结合曼德拉数列的定义,首先得120,k k a a d ++==,然后分公差是大于0、等于0、小于0进行讨论即可求解;(3)记12,,,n a a a ⋅⋅⋅中非负项和为A ,负项和为B ,则0,1A B A B +=-=,进一步()11,2,3,,2k S k n ≤=⋅⋅⋅,结合前面的结论以及曼德拉数列的定义得出矛盾即可求解.【小问1详解】设等比数列()1232,,,,1k a a a a k ⋅⋅⋅≥的公比为q .若1q ≠,则由①得()21122101kk a q a a a q-++⋅⋅⋅+==-,得1q =-,由②得112a k =或112a k=-.若1q =,由①得,120a k ⋅=,得10a =,不可能.综上所述,1q =-.()1112n n a k -∴=-或()1112n n a k-=--.【小问2详解】设等差数列()12321,,,,1k a a a a k +⋅⋅⋅≥的公差为d ,123210k a a a a ++++⋅⋅⋅+= ,()()11221210,02k k dk a a kd +∴++=+=,即120,k k a a d ++=∴=,当0d =时,“曼德拉数列”的条件①②矛盾,当0d >时,据“曼德拉数列”的条件①②得,()23211212k k k k a a a a a a +++++⋅⋅⋅+==-+++ ,()1122k k kd d -∴+=,即()11d k k =+,由10k a +=得()1101a k k k +⋅=+,即111a k =-+,()()()()*1111,21111n n a n n n k k k k k k k ∴=-+-⋅=-∈≤++++N .当0d <时,同理可得()1122k k kd d -+=-,即()11d k k =-+.由10k a +=得()1101a k k k -⋅=+,即111a k =+,()()()()*1111,21111n n a n n n k k k k k k k ∴=--⋅=-+∈≤++++N .综上所述,当0d >时,()()*1,211n n a n n k k k k ∴=-∈≤++N ,当0d <时,()()*1,211n n a n n k k k k =-+∈≤++N .【小问3详解】记12,,,n a a a ⋅⋅⋅中非负项和为A ,负项和为B ,则0,1A B A B +=-=,得12A =,12B =-,1122k B S A -=≤≤=,即()11,2,3,,2k S k n ≤=⋅⋅⋅.若存在{}1,2,3,,m n ∈⋅⋅⋅,使12m S =,由前面的证明过程知:10a ≥,20a ≥,⋅⋅⋅,0m a ≥,10m a +≤,20m a +≤,⋅⋅⋅,0n a ≤,且1212m m n a a a ++++⋅⋅⋅+=-.若数列{}()1,2,3,,i S i n =⋅⋅⋅为n 阶“曼德拉数列”,记数列{}()1,2,3,,i S i n =⋅⋅⋅的前k 项和为k T ,则12k T ≤.1212m m T S S S ∴=++⋅⋅⋅+≤,又12m S =,1210m S S S -∴==⋅⋅⋅==,12110,2m m a a a a -∴==⋅⋅⋅===.又1212m m n a a a ++++⋅⋅⋅+=-,1m S +∴,2m S +,⋅⋅⋅,0n S ≥,123123n n S S S S S S S S ∴+++⋅⋅⋅+=+++⋅⋅⋅+,又1230n S S S S +++⋅⋅⋅+=与1231n S S S S +++⋅⋅⋅+=不能同时成立,∴数列{}()1,2,3,,i S i n =⋅⋅⋅不为n 阶“曼德拉数列”.【点睛】关键点点睛:第三问的关键是得到10a ≥,20a ≥,⋅⋅⋅,0m a ≥,10m a +≤,20m a +≤,⋅⋅⋅,0n a ≤,且1212m m n a a a ++++⋅⋅⋅+=-,由此即可顺利得解.。

福建省宁德市普通高中2023届高三质量检测数学试题(含答案解析)

福建省宁德市普通高中2023届高三质量检测数学试题(含答案解析)

福建省宁德市普通高中2023届高三质量检测数学试题(含答案解析)福建省宁德市普通高中2023届高三质量检测数学试题(含答案解析)【注意】本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1 至10题为选择题,每小题2分,共20分;第Ⅱ卷为非选择题,共80分。

考试时间120分钟。

第Ⅰ卷(选择题,共20分)一、选择题(本大题共10小题,每小题2分,共20分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 将函数$f(x)= \sin(x-\frac{\pi}{6})+2x$ 的图像上对称的两个点P和Q分别对应于$f(x)=7$ 和$f(x)=-1$,则点P和Q的坐标分别是()A. $\left(\frac{5\pi}{6}, 7\right), \left(\frac{11\pi}{6}, -1\right)$B. $\left(\frac{5\pi}{6}, -1\right), \left(\frac{7\pi}{6}, 7\right)$C. $\left(\frac{5\pi}{6}, 7\right), \left(\frac{7\pi}{6}, -1\right)$D. $\left(\frac{7\pi}{6}, -1\right), \left(\frac{11\pi}{6}, 7\right)$【解析】根据函数图像对称性和点过该函数能确定两个点,即可得到答案为C。

2. 若$\frac{(x+2)^2-1}{x+1}>0$,则实数x的取值范围是()A. $x>2$ 或 $-1<x<-2$B. $x>2$ 或 $-1<x<-2$ 或 $x<-3$C. $x<-3$ 或 $-2<x<-1$D. $x>-3$ 或 $x<-1$ 或 $x<-2$【解析】根据不等式性质和解析式展开,结合一元二次不等式求解可得答案为B。

湖南省长沙市2024-2025学年高三上学期11月月考数学检测试卷(含解析)

湖南省长沙市2024-2025学年高三上学期11月月考数学检测试卷(含解析)

1. 若复数z 满足一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有湖南省长沙市2024-2025学年高三上学期11月月考数学检测试卷一项是符合题目要求的)1i34i z +=-,则z =()A.B.25C.D.【答案】C 【解析】【分析】根据复数除法运算求出复数z ,计算其模,即得答案.【详解】由1i34i z+=-可得()()()()1i 34i 1i 17i 34i 34i 34i 25z+++-+===--+,则z =故选:C2. 已知数列{}n a 的前n 项和22n S n n =-,则345a a a ++等于( )A. 12B. 15C. 18D. 21【答案】B 【解析】【分析】利用52S S -即可求得345a a a ++的值.【详解】因为数列{}n a 的前n 项和22n S n n =-,所以34552=a a a S S ++-()2252522215=-⨯--⨯=.故选:B.3. 抛物线24y x =的焦点坐标为( )A. (1,0)B. (1,0)-的C. 1(0,)16-D. 1(0,)16【答案】D 【解析】【分析】先将抛物线方程化为标准方程,从而可求出其焦点坐标【详解】解:由24y x =,得214x y =,所以抛物线的焦点在y 轴的正半轴上,且124p =,所以18p =,1216p =,所以焦点坐标为1(0,16,故选:D4. 如图是函数()sin y x ωϕ=+的部分图象,则函数的解析式可为( )A. πsin 23y x ⎛⎫=- ⎪⎝⎭B. πsin 3y x ⎛⎫=+ ⎪⎝⎭C. πsin 26y x ⎛⎫=+ ⎪⎝⎭ D. 5πcos 26y x ⎛⎫=-⎪⎝⎭【答案】A 【解析】【分析】观察图象,确定函数()sin y x ωϕ=+的周期,排除B ,由图象可得当5π12x =时,函数取最小值,求ϕ由此判断AC ,结合诱导公式判断D.【详解】观察图象可得函数()sin y x ωϕ=+的最小正周期为2ππ2π36T ⎛⎫=-=⎪⎝⎭,所以2ππω=,故2ω=或2ω=-,排除B ;观察图象可得当π2π5π63212x +==时,函数取最小值,当2ω=时,可得5π3π22π+122k ϕ⨯+=,Z k ∈,所以2π2π+3k ϕ=,Z k ∈,排除C ;当2ω=-时,可得5ππ22π122k ϕ-⨯+=-,Z k ∈,所以π2π+3k ϕ=,Z k ∈,取0k =可得,π3ϕ=,故函数的解析式可能为πsin 23y x ⎛⎫=-⎪⎝⎭,A 正确;5ππππcos 2cos 2sin 26233y x x x ⎛⎫⎛⎫⎛⎫=-=+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,D 错误故选:A.5. 1903年,火箭专家、航天之父康斯坦丁・齐奥尔科夫斯基就提出单级火箭在不考虑空气阻力和地球引力的理想情况下的最大速度v 满足公式:1201lnm m v v m +=,其中12,m m 分别为火箭结构质量和推进剂的质量,0v 是发动机的喷气速度.已知某单级火箭结构质量是推进剂质量的2倍,火箭的最大速度为8km /s ,则火箭发动机的喷气速度为( )(参考数据:ln20.7≈,ln3 1.1,ln4 1.4≈≈)A. 10km /s B. 20km /sC.80km /s 3D. 40km /s【答案】B 【解析】【分析】根据实际问题,运用对数运算可得.【详解】由题意122m m =,122200122lnln 82m m m m v v v m m ++===,得03ln 82v =,故0888203ln3ln 2 1.10.7ln 2v ==≈=--,故选:B6.若83cos 5αβ+=,63sin 5αβ-=,则()cos αβ+的值为( )A. B.C.D.【答案】C 【解析】【分析】已知两式平方相加,再由两角和的余弦公式变形可得.【详解】因为83cos 5αβ=,63sin 5αβ=,所以25(3cos 4)62αβ=,2(3sin )2536αβ=,即所以2259cos co 6s 1042cos ααββ++=,229sin sin +10sin 2536ααββ-=,两式相加得9)104αβ+++=,所以cos()αβ+=,故选:C .7. 如图,一个质点从原点O 出发,每隔一秒随机向左或向右移动一个单位长度,向左的概率为23,向右的概率为13,共移动4次,则该质点共两次到达1的位置的概率为( )A.427B.827C.29D.49【答案】A 【解析】【分析】根据该质点共两次到达1的位置的方式有0101→→→和0121→→→,且两种方式第4次移动向左向右均可以求解.【详解】共移动4次,该质点共两次到达1的位置的方式有0101→→→和0121→→→,且两种方式第4次移动向左向右均可以,所以该质点共两次到达1的位置的概率为211124333332713⨯⨯+⨯⨯=.故选:A.8. 设n S 为数列{a n }的前n 项和,若121++=+n n a a n ,且存在*N k ∈,1210k k S S +==,则1a 的取值集合为( )A. {}20,21-B. {}20,20-C. {}29,11-D. {}20,19-【答案】A 【解析】【分析】利用121++=+n n a a n 可证明得数列{}21n a -和{}2n a 都是公差为2的等差数列,再可求得()2=21n S n n +,有了这些信息,就可以从k 的取值分析并求解出结果.【详解】因为121++=+n n a a n ,所以()()()()()()212342123+41=++++++37+41=212n n n n n S a a a a a a n nn --⋅⋅⋅=++⋅⋅⋅-=+,假设()2=21=210n S n n +,解得=10n 或21=2n -(舍去),由存*N k ∈,1210k k S S +==,所以有19k =或20k =,由121++=+n n a a n 可得,+1223n n a a n ++=+,两式相减得:22n n a a +-=,当20k =时,有2021210S S ==,即210a =,根据22n n a a +-=可知:数列奇数项是等差数列,公差为2,所以()211+11120a a =-⨯=,解得120a =-,当19k =时,有1920210S S ==,即200a =,根据22n n a a +-=可知:数列偶数项也是等差数列,公差为2,所以()202+10120a a =-⨯=,解得218a =-,由已知得123a a +=,所以121a =.故选:A.二、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,至少有两项是符合题目要求,若全部选对得6分,部分选对得部分分,选错或不选得0分)9. 如图,在正方体1111ABCD A B C D -中,点E ,F 分别为1AD ,DB 的中点,则下列说法正确的是( )在A. 直线EF 与11D B 为异面直线B. 直线1D E 与1DC 所成的角为60oC. 1D F AD ⊥D. //EF 平面11CDD C 【答案】ABD 【解析】【分析】直接根据异面直线及其所成角的概念可判断AB ,利用反证法可判断C ,利用线面平行判定定理可判断D.【详解】如图所示,连接AC ,1CD ,EF ,由于E ,F 分别为1AD ,DB 的中点,即F 为AC 的中点,所以1//EF CD ,EF ⊄面11CDD C ,1CD ⊆面11CDD C ,所以//EF 平面11CDD C ,即D 正确;所以EF 与1CD 共面,而1B ∉1CD ,所以直线EF 与11D B 为异面直线,即A 正确;连接1BC ,易得11//D E BC ,所以1DC B ∠即为直线1D E 与1DC 所成的角或其补角,由于1BDC 为等边三角形,即160DC B ∠=,所以B 正确;假设1D F AD ⊥,由于1AD DD ⊥,1DF DD D = ,所以AD ⊥面1D DF ,而AD ⊥面1D DF 显然不成立,故C 错误;故选:ABD.10. 已知P 是圆22:4O x y +=上的动点,直线1:cos sin 4l x y θθ+=与2:sin cos 1l x y θθ-=交于点Q ,则( )A. 12l l ⊥ B. 直线1l 与圆O 相切C. 直线2l 与圆O截得弦长为 D. OQ的值为【答案】ACD 【解析】【分析】选项A 根据12l l ⊥,12120A A B B +=可判断正确;选项B 由圆心O 到1l 的距离不等半径可判断错误;选项C 根据垂直定理可得;选项D 先求出()4sin cos ,4cos sin Q θθθθ-+,根据两点间的距离公式可得.【详解】选项A :因()cos sin sin cos 0θθθθ+-=,故12l l ⊥,A 正确;选项B :圆O 的圆心O 的坐标为()0,0,半径为2r =,圆心O 到1l的距离为14d r ==>,故直线1l 与圆O 相离,故B 错误;选项C :圆心O 到1l 的距离为21d ==,故弦长为l==,故C 正确;选项D :由cos sin 4sin cos 1x y x y θθθθ+=⎧⎨-=⎩得4cos sin 4sin cos x y θθθθ=+⎧⎨=-⎩,故()4cos sin ,4sin cos Q θθθθ+-,故OQ ==,故D 正确故选:ACD11. 已知三次函数()32f x ax bx cx d =+++有三个不同的零点1x ,2x ,()3123x x x x <<,函数()()1g x f x =-也有三个零点1t ,2t ,()3123t t t t <<,则( )A. 23b ac>B. 若1x ,2x ,3x 成等差数列,则23bx a=-C. 1313x x t t +<+D. 222222123123x x x t t t ++=++【答案】ABD 【解析】【分析】对于A ,由题意可得()0f x '=有两个不同实根,则由0∆>即可判断;对于B ,若123,,x x x 成等差数列,则(x 2,f (x 2))为()f x 的对称中心,即可判断;对于C ,结合图象,当0a >和0a <时,分类讨论即可判断;对于D ,由三次函数有三个不同的零点,结合韦达定理,即可判断.【详解】因为()32f x ax bx cx d =+++,则()232f x ax bx c '=++,0a ≠,对称中心,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,对于A ,因为()f x 有三个不同零点,所以()f x 必有两个极值点,即()2320f x ax bx c =++='有两个不同的实根,所以2Δ4120b ac =->,即23b ac >,故A 正确;对于B ,由123,,x x x 成等差数列,及三次函数的中心对称性,可知(x 2,f (x 2))为()f x 的对称中心,所以23bx a=-,故B 正确;对于C ,函数()()1g x f x =-,当g (x )=0时,()1f x =,为则1y =与y =f (x )的交点的横坐标即为1t ,2t ,3t ,当0a >时,画出()f x 与1y =的图象,由图可知,11x t <,33x t <,则1313x x t t +<+,当0a <时,则1313x x t t +>+,故C 错误;对D ,由题意,得()()()()()()32123321231a x x x x x x ax bx cx da x t x t x t ax bx cx d ⎧---=+++⎪⎨---=+++-⎪⎩,整理,得123123122331122331b x x x t t t ac x x x x x x t t t t t t a ⎧++=++=-⎪⎪⎨⎪++=++=⎪⎩,得()()()()2212312233112312233122x x x x x x x x x t t t t t t t t t ++-++=++-++,即222222123123x x x t t t ++=++,故D 正确.故选:ABD.【点睛】关键点点睛:本题D 选项的关键是利用交点式得到三次方程的韦达定理式再计算即可.三、填空题(本大题共3个小题,每小题5分,共15分)12. 已知随机变量X 服从二项分布(),B n p ,若()3E X =,()2D X =,则n =_____.【答案】9【解析】【分析】根据二项分布的期望、方差公式,即可求得答案.【详解】由题意知随机变量X 服从二项分布(),B n p ,()3E X =,()2D X =,则()3,12np np p =-=,即得1,93p n ==,故答案为:913. 已知平面向量a ,b 满足2a = ,1= b ,且b 在a上投影向量为14a - ,则ab + 为______.的【解析】【分析】由条件结合投影向量公式可求a b ⋅ ,根据向量模的性质及数量积运算律求a b +.【详解】因为b 在a上的投影向量为14a - ,所以14b a a a aa ⋅⋅=- ,又2a =,所以1a b ⋅=-,又 1= b ,所以a b +====14. 如图,已知四面体ABCD 体积为32,E ,F 分别为AB ,BC 的中点,G ,H 分别在CD ,AD 上,且G ,H 是靠近D 点的四等分点,则多面体EFGHBD 的体积为_____.【答案】11【解析】【分析】连接,EG ED ,将多面体EFGHBD 被分成三棱锥G EDH -和四棱锥E BFGD -,利用题设条件找到小棱锥底面面积与四面体底面面积的数量关系,以及小棱锥的高与四面体的高的数量关系,结合四面体的体积即可求得多面体EFGHBD 的体积.【详解】如图,连接,EG ED ,则多面体EFGHBD 被分成三棱锥G EDH -和四棱锥E BFGD -.因H 是AD 上靠近D 点的四等分点,则14DHE AED S S = ,又E 是AB 的中点,故11114428DHE AED ABD ABD S S S S ==⨯= ,因G 是CD 上靠近D 点的四等分点,则点G 到平面ABD 的距离是点C 到平面ABD的距离的14,的故三棱锥G EDH -的体积1113218432G EDH C ABD V --=⨯=⨯=;又因点F 是BC 的中点,则133248CFGBCD BCD S S S =⨯= ,故58BFGD BCD S S = ,又由E 是AB 的中点知,点E 到平面BCD 的距离是点A 到平面BCD 的距离的12,故四棱锥E BFGD -的体积51532108216E BFGD A BCD V V --=⨯=⨯=,故多面体EFGHBD 的体积为11011.G EDH E BFGD V V --+=+=故答案为:11.【点睛】方法点睛:本题主要考查多面体的体积求法,属于较难题.一般的求法有两种:(1)分割法:即将多面体通过连线,作面的垂线等途径,将其分成若干可以用公式求解;(2)补形法:即将多面体通过辅助线段构造柱体,锥体或台体,利用整体体积减去个体体积等间接方法求解.四、解答题(本大题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤)15. 设ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin cos 0a B A =.(1)求A ;(2)若sin sin 2sin B C A +=,且ABC V ,求a 的值.【答案】(1)π3A = (2)2a =【解析】【分析】(1)利用正弦定理的边角变换得到tan A =,从而得解;(2)利用正弦定理的边角变换,余弦定理与三角形面积公式得到关于a 的方程,解之即可得解.【小问1详解】因为sin cos 0a B A =,即sin cos a B A =,由正弦定理得sin sin cos A B B A ⋅=⋅,因为sin 0B ≠,所以sin A A =,则tan A =,又()0,πA ∈,所以π3A =.【小问2详解】因为sin sin 2sin B C A +=,由正弦定理得2b c a +=,因为π3A =,所以11sin 22ABC S bc A bc === 4bc =,由余弦定理2222cos a b c bc A =+-⋅,得224b c bc +-=,所以()234b c bc +-=,则()22344a -⨯=,解得2a =.16. 设()()221ln 2f x x ax x x =++,a ∈R .(1)若0a =,求()f x 在1x =处的切线方程;(2)若a ∈R ,试讨论()f x 的单调性.【答案】(1)4230--=x y (2)答案见解析【解析】【分析】(1)由函数式和导函数式求出(1)f 和(1)f ',利用导数的几何意义即可写出切线方程;(2)对函数()f x 求导并分解因式,根据参数a 的取值进行分类讨论,由导函数的正负推得原函数的增减,即得()f x 的单调性.【小问1详解】当0a =时,()221ln 2f x x x x =+,()2(ln 1)f x x x '=+,因1(1),(1)22f f '==,故()f x 在1x =处的切线方程为12(1)2y x -=-,即4230--=x y ;【小问2详解】因函数()()221ln 2f x x ax x x =++的定义域为(0,)+∞,()(2)ln 2(2)(ln 1)f x x a x x a x a x '=+++=++,① 当2a e ≤-时,若10e x <<,则ln 10,20x x a +<+<,故()0f x '>,即函数()f x 在1(0,)e上单调递增;若1e x >,由20x a +=可得2a x =-.则当1e 2a x <<-时,20x a +<,ln 10x +>,故()0f x '<,即函数()f x 在1(,)e 2a-上单调递减;当2a x >-时,ln 10,20x x a +>+>,故()0f x '>,即函数()f x 在(,)2a-+∞上单调递增;② 当20e a -<<时,若1e x >,则ln 10,20x x a +>+>,故()0f x '>,即函数()f x 在1(,)e+∞上单调递增;若12e a x -<<,则ln 10,20x x a +<+>,故()0f x '<,即函数()f x 在1(,)2ea -上单调递减;若02a x <<-,则ln 10,20x x a +<+<,故()0f x '>,即函数()f x 在(0,)2a-上单调递增,③当2ea =-时,()0f x '≥恒成立,函数()f x 在()0,∞+上单调递增,④当0a ≥时,若1e x >,则ln 10,20x x a +>+>,故()0f x '>,即函数()f x 在1(,)e+∞上单调递增;若10e x <<,则ln 10,20x x a +<+>,故()0f x '<,即函数()f x 在1(0,e上单调递减;综上,当2e a <-时,函数()f x 在1(0,)e上单调递增,在1(,)e 2a -上单调递减,在(,)2a -+∞上单调递增;当2ea =-时,函数()f x 在()0,∞+上单调递增;当20e a -<<时,函数()f x 在(0,2a -上单调递增,在1(,2e a -上单调递减,在1(,)e+∞上单调递增;当0a ≥时,函数()f x 在1(0,e 上单调递减,在1(,)e+∞上单调递增.17. 已知四棱锥P ABCD -,底面ABCD 为菱形,,PD PB H =为PC 上的点,过AH 的平面分别交,PB PD 于点,M N ,且BD ∥平面AMHN .(1)证明:MN PC ⊥;(2)当H 为PC 的中点,,PA PC PA ==与平面ABCD 所成的角为60︒,求平面PAM 与平面AMN 所成的锐二面角的余弦值.【答案】(1)证明见详解(2【解析】【分析】(1)根据线面垂直可证BD ⊥平面PAC ,则BD PC ⊥,再根据线面平行的性质定理可证BD ∥MN ,进而可得结果;(2)根据题意可证⊥PO 平面ABCD ,根据线面夹角可知PAC 为等边三角形,建立空间直角坐标系,利用空间向量求面面夹角.【小问1详解】设AC BD O = ,则O 为,AC BD 的中点,连接PO ,因为ABCD 为菱形,则ACBD ⊥,又因为PD PB =,且O 为BD 的中点,则PO BD ⊥,AC PO O = ,,AC PO ⊂平面PAC ,所以BD ⊥平面PAC ,且PC ⊂平面PAC ,则BD PC ⊥,又因为BD ∥平面AMHN ,BD ⊂平面PBD ,平面AMHN 平面PBD MN =,可得BD ∥MN ,所以MN PC ⊥.【小问2详解】因为PA PC =,且O 为AC 的中点,则PO AC ⊥,且PO BD ⊥,AC BD O = ,,AC BD ⊂平面ABCD ,所以⊥PO 平面ABCD ,可知PA 与平面ABCD 所成的角为60PAC ∠=︒,即PAC 为等边三角形,设AH PO G =I ,则,G AH G PO ∈∈,且AH ⊂平面AMHN ,PO ⊂平面PBD ,可得∈G 平面AMHN ,∈G 平面PBD ,且平面AMHN 平面PBD MN =,所以G MN ∈,即,,AH PO MN 交于一点G ,因为H 为PC 的中点,则G 为PAC 的重心,且BD ∥MN ,则23PM PN PG PB PD PO ===,设2AB =,则11,32PA PC OA OC AC OB OD OP ========,如图,以,,OA OB OP 分别为,,x y z 轴,建立空间直角坐标系,则)()22,0,0,3,0,,1,0,,133AP M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,可得()24,1,0,,0,33AM NM AP ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u uu r ,设平面AMN 的法向量()111,,x n y z =,则1111203403n AM y z n NM y ⎧⋅=++=⎪⎪⎨⎪⋅==⎪⎩,令11x =,则110,y z ==,可得(n =,设平面PAM 的法向量()222,,m x y z =,则2222220330m AM y z mAP z ⎧⋅=++=⎪⎨⎪⋅=+=⎩,令2x =,则123,1y z ==,可得)m =u r,可得cos ,n m n m n m⋅===⋅r u rr u r r u r ,所以平面PAM 与平面AMN.18. 已知双曲线22:13y x Γ-=的左、右焦点为1F ,2F ,过2F 的直线l 与双曲线Γ交于A ,B 两点.(1)若AB x ⊥轴,求线段AB 的长;(2)若直线l 与双曲线的左、右两支相交,且直线1AF 交y 轴于点M ,直线1BF 交y 轴于点N .(i )若11F AB F MN S S = ,求直线l 的方程;(ii )若1F ,2F 恒在以MN 为直径的圆内部,求直线l 的斜率的取值范围.【答案】(1)线段AB 的长为6; (2)(i )直线l的方程为2x y =±+;(ii )直线l的斜率的取值范围为33()(44- .【解析】【分析】(1)直接代入横坐标求解纵坐标,从而求出的值;(2)(i )(ii )先设直线和得到韦达定理,在分别得到两个三角形的面积公式,要求相等,代入韦达定理求出参数的值即可.【小问1详解】由双曲线22:13y x Γ-=的方程,可得221,3a b ==,所以1,2a b c ====,所以1(2,0)F -,2(2,0)F ,若AB x ⊥轴,则直线AB 的方程为2x =,代入双曲线方程可得(2,3),(2,3)A B -,所以线段AB 的长为6;【小问2详解】(i )如图所示,若直线l 的斜率为0,此时l 为x 轴,,A B 为左右顶点,此时1,,F A B 不构成三角形,矛盾,所以直线l 的斜率不为0,设:2l x ty =+,1122()A x y B x y ,,(,),联立22132y x x ty ⎧-=⎪⎨⎪=+⎩,消去x 得22(31)1290t y ty -++=,t 应满足222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩,由根与系数关系可得121222129,3131t y y y y t t +=-=--,直线1AF 的方程为110(2)2y y x x -=++,令0x =,得1122y y x =+,点112(0,2y M x +,直线1BF 的方程为220(2)2y y x x -=++,令0x =,得2222y y x =+,点222(0,2y N x +,121122221111|||||2||2|F F F B A A F B F S y F S S F y y y -=⨯-==-,111212221||||||222F M N M F MN N S y y x y y y y x x =-=-=-++ 12122112212121212222(4)2(4)8()||||||44(4)(4)4()16y y y ty y ty y y ty ty ty ty t y y t y y +-+-=-==+++++++,由11F AB F MN S S = ,可得1212212128()||2||4()16y y y y t y y t y y -=-+++,所以21212|4()16|4t y y t y y +++=,所以222912|4()16|43131tt t t t ⨯+-+=--,解得22229484816||431t t t t -+-=-,22916||431t t -=-,解得22021t =,经检验,满足222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩,所以t =所以直线l的方程为2x y =±+;(ii )由1F ,2F 恒在以MN 为直径的圆内部,可得2190F MF >︒∠,所以110F F N M < ,又112211,22(2,)(2,22F y y N x x M F =+=+ ,所以1212224022y y x x +⨯<++,所以121210(2)(2)y y x x +<++,所以1221212104()16y y t y y t y y +<+++,所以2222931109124()163131t t t t t t -+<⨯+-+--,所以22970916t t -<-,解得271699t <<43t <<或43t -<<,经检验,满足222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩,所以直线l的斜率的取值范围为33((44- .【点睛】方法点睛:圆锥曲线中求解三角形面积的常用方法:(1)利用弦长以及点到直线的距离公式,结合12⨯底⨯高,表示出三角形的面积;(2)根据直线与圆锥曲线的交点,利用公共底或者公共高的情况,将三角形的面积表示为12211||||2F F y y ⨯-或121||||2AB x x ⨯-.19. 已知{}n a 是各项均为正整数的无穷递增数列,对于*k ∈N ,设集合{}*k i B i a k =∈<N ∣,设k b 为集合k B 中的元素个数,当k B =∅时,规定0k b =.(1)若2n a n =,求1b ,2b ,17b 的值;(2)若2n n a =,设n b 的前n 项和为n S ,求12n S +;(3)若数列{}n b 是等差数列,求数列{}n a 的通项公式.【答案】(1)12170,1,4b b b === (2)1(1)22n n +-⨯+ (3)n a n =【解析】【分析】(1)根据集合新定义,利用列举法依次求得对应值即可得解;(2)根据集合新定义,求得12,b b ,121222i i i b b b i +++==== ,从而利用分组求和法与裂项相消法即可得解.(3)通过集合新定义结合等差数列性质求出11a =,然后利用反证法结合数列{}n a 的单调性求得11n n a a +-=,利用等差数列定义求解通项公式即可;【小问1详解】因为2n a n =,则123451,4,9,16,25a a a a a =====,所以{}*11i B i a =∈<=∅N ∣,{}*22{1}i B i a =∈<=N ∣,{}*1717{1,2,3,4}i B i a =∈<=N ∣,故12170,1,4b b b ===.【小问2详解】因为2n n a =,所以123452,4,8,16,32a a a a a =====,则**12{|1},{|2}i i B i a B i a =∈<=∅=∈<=∅N N ,所以10b =,20b =,当122i i k +<≤时,则满足i a k <的元素个数为i ,故121222i i i b b b i +++==== ,所以()()()1112345672122822n n n n S b b b b b b b b b b b ++++=++++++++++++ 1212222n n =⨯+⨯++⨯ ,注意到12(1)2(2)2n n n n n n +⨯=-⨯--⨯,所以121321202(1)21202(1)2(2)2n n nS n n ++=⨯--⨯+⨯-⨯++-⨯--⨯ 1(1)22n n +=-⨯+.【小问3详解】由题可知11a ≥,所以1B =∅,所以10b =,若12a m =≥,则2B =∅,1{1}m B +=,所以20b =,11m b +=,与{}n b 是等差数列矛盾,所以11a =,设()*1n n n d a a n +=-∈N,因为{}n a 是各项均为正整数的递增数列,所以*n d ∈N ,假设存在*k ∈N 使得2k d ≥,设k a t =,由12k ka a +-≥得12k a t++≥,由112k k a t t t a +=<+<+≤得t b k <,21t t b b k ++==,与{}n b 是等差数列矛盾,所以对任意*n ∈N 都有1n d =,所以数列{}n a 是等差数列,1(1)n a n n =+-=.【点睛】方法点睛:求解新定义运算有关的题目,关键是理解和运用新定义的概念以及元算,利用化归和转化的数学思想方法,将不熟悉的数学问题,转化成熟悉的问题进行求解.。

河南省濮阳市2024-2025学年高三9月质量检测考试数学试题(含解析)

河南省濮阳市2024-2025学年高三9月质量检测考试数学试题(含解析)

2024—2025学年高三9月质量检测考试数 学全卷满分150分,考试时间120分钟.注意事项:1. 答卷前,考生务必将自己的姓名、班级、考场号、座位号、考生号填写在答题卡上.2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知,i 为虚数单位,为z 的共轭复数,则( )A.B. 4C. 3D.2.已知集合,,则( )A. B. C. D. 3. 半径为4的实心球与半径为2的实心球体积之差的绝对值为( )A.B. C. D.4. 已知向量,,其中,若,则( )A. 40B. 48C. 51D. 625. 已知的内角A ,B ,C 的对边a ,b ,c 成等差数列,且,,则( )A. 5B. C. 4D. 36. 已知点在抛物线C:上,则C 的焦点与点之间的距离为( )A. 4B.C. 2D.7. 已知a ,且,,,则( )24i z =+z 1z -=(){}3log 22M x y x ==+<{}2024x N y y ==M N = ()2,7-()2,3-()0,7()7,+∞1O 2O 224π376π75π215π3()1,54a λ=+ ()2,8b λ=+ 0λ≥a b ∥ ()a ab ⋅+=ABC △20ac =4cos 5B =b =121,34A p p ⎛⎫++ ⎪⎝⎭()220x py p =>()1,2b ∈R 0b ≠1a b ≠-1sin 1a b a bα-=+ab =A.B. C.D. 8. 已知当时,恒成立,则实数a 的取值范围为( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知直线与圆D :有两个交点,则整数m 的可能取值有( )A. 0B. -3C. 1D. 310. 已知对数函数,则下列说法正确的有( )A. 的定义域为B. 有解C. 不存在极值点D. 11. 北京时间2024年8月12日凌晨,第33届法国巴黎奥运会闭幕式正式举行,中国体育代表团以出色的表现再次证明了自己的实力,最终取得了40枚金牌、27枚银牌和24枚铜牌的最佳境外参赛成绩,也向世界展示了中国体育的蓬勃发展和运动员们顽强拼搏的精神.某校社团为发扬奥运体育精神举办了竞技比赛,此比赛共有5名同学参加,赛后经数据统计得到该5名同学在此次比赛中所得成绩的平均数为8,方差为4,比赛成绩,且,则该5名同学中比赛成绩的最高分可能为( )A. 13B. 12C. 11D. 10三、填空题:本题共3小题,每小题5分,共15分.12. 曲线在点处的切线方程为______.13. 被10除的余数为______.14. 在中,若,,三点分别在边,,上(均不在端点上),则,,的外接圆交于一点O ,称为密克点.在梯形ABCD 中,,,M 为CD 的中点,动点P 在BC 边上(不包含端点),与的外接圆交于点Q (异于点P ),则BQ 的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知椭圆C :的焦距为.(1)求C 的标准方程;1cos 1cos αα-+πtan 4α⎛⎫+⎪⎝⎭1sin 1sin αα-+2πtan 42α⎛⎫+ ⎪⎝⎭0x >ln e ln x x x x a -≥(],1-∞(21,e ⎤⎦(],2-∞[)e,+∞y x =22224x y my m +-=-()()log 1x f x x =+()f x ()0,+∞()2f x =()f x ()()()11f x f x x >+>[]0,15x ∈*x ∈N 21e1x y x -=-()1,0203111A B C △1M 1N 1P 11A B 11B C 11C A 111A M P △111B M N △111C N P △60B C ∠=∠=︒22AB AD ==ABP △CMP △()222210x y a b a b +=>>(2)若,直线l :交椭圆C 于E ,F 两点,且,求t 的值.16.(15分)交通强国,铁路先行,每年我国铁路部门都会根据运输需求进行铁路调图,一铁路线l 上有自东向西依次编号为1,2,…,21的21个车站.(1)为调查乘客对调图的满意度,在编号为10和11两个站点多次乘坐列车P 的旅客中,随机抽取100名旅客,得出数据(不完整)如下表所示:车站编号满意不满意合计102840113合计85完善表格数据并计算分析:依据小概率值的独立性检验,在这两个车站中,能否认为旅客满意程度与车站编号有关联?(2)根据以往调图经验,列车P 在编号为8至14的终到站每次调图时有的概率改为当前终到站的西侧一站,有的概率改为当前终到站的东侧一站,每次调图之间相互独立.已知原定终到站编号为11的列车P 经历了3次调图,第3次调图后的终到站编号记为X ,求X 的分布列及均值.附:,其中.0.10.010.0012.7066.63510.82817.(15分)如图,四棱锥的底面为平行四边形,且,.(1)仅用无刻度直尺作出四棱锥的高PH ,写出作图过程并证明;(2)若平面平面PCD ,平面平面PBC ,证明:四边形ABCD 是菱形.18.(17分)已知.(1)证明:是奇函数;5,02A ⎛⎫- ⎪⎝⎭()302x ty t =+>AEF △0.001α=1323()()()()()22n ad bc a b c d a c b d χ-=++++n a b c d =+++αx αP ABCD -AP CP =BP DP =P ABCD -PAB ⊥PAD ⊥()()ln 0x a f x ax a x a -⎛⎫=+>⎪+⎝⎭()f x(2)若,证明在上有一个零点,且.19.(17分)对于一个正项数列,若存在一正实数,使得且,有,我们就称是-有限数列.(1)若数列满足,,,证明:数列为1-有限数列;(2)若数列是-有限数列,,使得且,,证明:.()()()12120f x f x x x =<<()f x (),a +∞0x 2102x x x -≤{}n a λ*n ∀∈N 2n ≥121n n a a a a λ-+++≥ {}n a λ{}n a 11a =21a =()123n n n a a a n --=+≥{}n a {}n a λ0M ∃>*n ∀∈N 2n ≥n a M ≤222111121111n i in a a M a a a a λ=⎛⎫≥+- ⎪+++⎝⎭∑2024—2025学年高三9月质量检测考试数学参考答案1. A 【解析】由,可得.故选A.2. C 【解析】由可得,则;,故,则.故选C.3. A【解析】由题意可知体积之差的绝对值为.故选A.4. C 【解析】因为,,且,故,解得或(舍去),经检验当时,,故.故选C.5. B 【解析】由题意可得,,由余弦定理可得,,解得.故选B.6. D 【解析】因为点在抛物线C 上,所以,整理得,解得或(舍去),故焦点为,故C 的焦点与点之间的距离为故选D.7. D 【解析】由题意可得,解得.24i z =+24i 11i 14z --=-==-=()3log 22x +<029x <+<()2,7M =-20240xy =>()0,N =+∞()0,7M N = 334425632224π4π2πππ33333⨯-⨯=-=()1,54a λ=+ ()2,8b λ=+a b ∥ ()()54218λλ++=⨯0λ=145-0λ=a b ∥ ()()()1,43,121341251a a b ⋅+=⋅=⨯+⨯= 20ac =2b a c =+()2222282cos 24725b ac ac B a c ac ac b =+-=+--=-b =121,34A p p ⎛⎫++⎪⎝⎭()2121234p p p ⎛⎫+=+ ⎪⎝⎭272102p p --=2p =14-()0,1()1,2=1sin 1ab a bα-=+2222sin cos 2sincos1sin 22221sin sin cos 2sin cos 2222a b αααααααααα+++==-+-22222sin cos 1tan π222tan 42sin cos 1tan 222ααααααα⎛⎫⎛⎫++ ⎪ ⎪⎛⎫⎝⎭⎝⎭==+ ⎪⎝⎭⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=故选D.8. A 【解析】由对恒成立,令,则,令,得,当时,,当时,,所以在上单调递减,在上单调递增,所以,即.令,,,当时,;当时,,所以在上单调递减,在上单调递增,所以,所以.故选A.9. AC 【解析】联立,消去x 可得,则,解得故选AC.10. BCD 【解析】对于A 选项,由对数函数的定义知的定义域为,故A 错误.对于B 选项,令,则,即,解得(负值舍去),故B 正确.对于C 选项,,可知,ln e ln x x x x a -≥0x >()ln f x x x =()ln 1f x x ='+()0f x '=1ex =10e x <<()0f x '<1e x >()0f x '>()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭()11e ef x f ⎛⎫≥=-⎪⎝⎭1ln e x x ≥-ln t x x =()1e e t g t t t ⎛⎫=-≥- ⎪⎝⎭()e 1t g t '=-10e t -≤<()0g t '<0t >()0g t '>()g t 1,0e ⎡⎫-⎪⎢⎣⎭()0,+∞()()min 01g t g ==1a ≤22224y xx y my m=⎧⎨+-=-⎩222240y my m -+-=()()222840m m ∆=--->m -<<()f x ()()0,11,+∞ ()log 12x x +=21x x =+210x x --=x =()()()ln 1log 1ln x x f x x x+=+=()()()()2ln 1ln 11ln x x x x f x x x x-+++'=设函数,可知,令,解得,则在上单调递减,在上单调递增,且在上,则的图象为的图象向左平移一个单位长度,易得两者无交点,则无零点,即不存在极值点,故C 正确.对于D 选项,方法一:由的单调性可知,D 正确.方法二:作差有,且,故,D 正确.故选BCD.11. BC 【解析】设该5名同学在此次比赛中所得成绩分别为,,,,,易得,则,且,则,不妨设最大.对于A 选项,若,则不成立,故A 错误;对于B 选项,若,例如7,7,7,7,12,满足题意,故B 正确;对于C 选项,若,例如5,7,8,9,11,满足题意,故C 正确;对于D 选项,若,则,可得,可知该方程组无正整数解,故D 错误.故选BC.12. 【解析】,故时,,故曲线在点处的切线方程为.13. 1 【解析】()ln g x x x =()ln 1g x x ='+()0g x '=1e x =()g x 10,e ⎛⎫⎪⎝⎭1,e⎛⎫+∞ ⎪⎝⎭()0,1()0g x <()()1ln 1y x x =++()g x ()f x '()f x ()f x ()()()()()11log 1log 2x x f x f x x x +-+=+-+()()()2ln 1ln ln 2ln ln 1x x x x x +-⋅+⋅+=()()()()222ln ln 22ln 1ln ln 2ln 122x x x x x x ⎡⎤⎡⎤+++⋅+<<=+⎢⎥⎢⎥⎣⎦⎣⎦()()()11f x f x x >+>1x 2x 3x 4x 5x ()12345185x x x x x x =++++=1234540x x x x x ++++=()()()()()2222212243588814588x s x x x x -+-+-+-+⎡⎤==⎣⎦-()()()()()22222123458888820x x x x x -+-+-+-+-=5x 513x =()()()()2222123488885x x x x -+-+-+-=-512x =511x =510x =()()()()22221234888816x x x x -+-+-+-=12342222123430496x x x x x x x x +++=⎧⎨+++=⎩33y x =-()212e x y x x -'=+1x =3y '=21e 1x y x -=-()1,033y x =-()10201010192891010103910110C 10C 10C 101==-=-⨯+⨯--⨯+,所以被10除的余数为1.14.【解析】如图,延长BA ,CD 交于点E ,则为正三角形.由题设结论,,,的外接圆有唯一公共点,该公共点即为题中的点Q ,故点Q 在的外接圆上.由题意得,,则是直角三角形,故其外接圆半径.在中,由余弦定理可知,,当Q 在线段BD 上,且时,BQ.15. 解:(1)由题意得,,(2分)又,(4分)则,(5分)所以C 的标准方程为.(6分)(2)由题意设,,联立,整理得,(7分)则,,(8分)故.(10分)设直线l 与x 轴的交点为,()9182791010101010C 10C 10C 1⨯-⨯+⨯--=+ 2031-EBC △ABP △CMP △AME △AME △120BAD ∠=︒90BAM ∠=︒AME △1R AD ==ABD △BD ==1QD =1-2c =c =c e a ==2a =2222b a c =-=22142x y +=()11,E x y ()22,F x y 2232142x ty x y ⎧=+⎪⎪⎨⎪+=⎪⎩()2272304t y ty ++-=12232ty y t +=-+()122742y y t =-+12y y -===3,02D ⎛⎫⎪⎝⎭又,则,(11分)故,(12分)解得.(13分)16. 解:(1)补充列联表如下:车站编号满意不满意合计102812401157360合计8515100(3分)零假设为:旅客满意程度与车站编号无关,则,(6分)所以根据小概率值的独立性检验,推断不成立,即认为旅客满意程度与车站编号有关联.(7分)(2)经分析,X 的可能取值为8,10,12,14.(8分);(9分);(10分);(11分),(12分)则X 的分布列为X 8101214P(13分)所以.(15分)17. 解:(1)连接AC ,BD 交于点H ,连接PH ,5,02A ⎛⎫-⎪⎝⎭35422AD ⎛⎫=--= ⎪⎝⎭12122AEF S AD y y =⋅-==△t =0H ()220.001100283571220010.8284060851517x χ⨯⨯-⨯==>=⨯⨯⨯0.001α=0H ()3288327P X ⎛⎫=== ⎪⎝⎭()2214103339P X ⎛⎫==⨯⨯= ⎪⎝⎭()2122123339P X ⎛⎫==⨯⨯= ⎪⎝⎭()31114327P X ⎛⎫===⎪⎝⎭8274929127()8421810121410279927E X =⨯+⨯+⨯+⨯=则PH 是四棱锥的高.(2分)由于该四棱锥底面为平行四边形,故点H 为AC 与BD 的中点.(3分)又,,故有,,(4分)又,AC ,平面ABCD ,故平面ABCD ,即PH 为四棱锥的高.(6分)(2)(方法一)证明:以H 为原点,以、的方向分别为x 轴、z 轴的正方向,以垂直于BC 的直线为y 轴,建立如图所示的空间直角坐标系.(7分)设,,,,.则,,.(8分)设平面PAB 、平面PCD 的法向量分别为,,则,,(9分)令,解得,.所以,.(10分)因为平面平面PCD ,所以,①(11分)同理可得平面PAD 、平面PBC 的一个法向量分别为,.故,即,②(12分)P ABCD -AP CP =BP DP =PH AC ⊥PH BD ⊥AC BD H = BD ⊂PH ⊥P ABCD -BC HP (),,0A a d (),,0B b d -(),,0C a d --(),,0D b d -()0,0,P h (),2,0BA CD a b d ==- (),,BP b d h =- (),,DP b d h =-()1111,,n x y z = ()2222,,n x y z =()11111200a b x dy bx dy hz ⎧-+=⎨-++=⎩()22222200a b x dy bx dy hz ⎧-+=⎨-+=⎩122x x dh ==1112()()x dh y b a h z b a d =⎧⎪=-⎨⎪=+⎩2222()()x dh y b a h z b a d =⎧⎪=-⎨⎪=-+⎩()()()12,,n dh b a h b a d =-+ ()()()22,,n dh b a h b a d =--+PAB ⊥()()2222221240n n d h b a h a b d ⋅=+--+= ()30,,n h d = ()40,,n h d =-22340n n h d ⋅=-= h d =①②联立解得.(13分)因此,.(14分)故,而四边形ABCD 是平行四边形,故四边形ABCD 是菱形.(15分)(方法二)证明:过点H 作交AB 于点E ,交CD 于点F ,过点H 作交BC 于点M ,交AD 于点N ,连接PE ,PF ,PM ,PN ,因为平面ABCD ,AB ,平面ABCD ,所以,.(7分)因为EF ,平面PEF ,所以平面PEF ,又平面PEF ,所以.(8分)易得平面PAB 与平面PCD 的交线平行于AB ,又平面平面PCD ,平面PAB ,所以平面PCD ,又平面PCD ,所以.(10分)因为MN ,平面PMN ,所以平面PMN ,又平面PMN ,所以.(11分)易得平面PAD 与平面PBC 的交线平行于BC ,又平面平面PBC ,平面PBC ,所以平面PAD ,又平面PAD ,所以.(13分)因为H 为平行四边形ABCD 对角线的交点,所以,,所以,所以,(14分)又,所以,所以平行四边形ABCD 是菱形.(15分)18. 证明:(1)易得的定义域为,(2分).由奇函数的定义知是奇函数.(6分)2ab d =AD a b =--AB a b ===--AB AD =EF AB ⊥MN BC ⊥PH ⊥BC ⊂PH AB ⊥PH BC ⊥PH ⊂AB ⊥PE ⊂AB PE ⊥PAB ⊥PE ⊂PE ⊥PF ⊂PE PF ⊥PH ⊂BC ⊥PM ⊂BC PM ⊥PAD ⊥PM ⊂PM ⊥PN ⊂PM PN ⊥HE HF =HM HN =1122PH EF MN ==EF MN =AB EF BC MN ⋅=⋅AB BC =()f x ()(),,a a -∞-+∞ ()()ln x a f x a x x a --⎛⎫--=--- ⎪-+⎝⎭()ln ln x a x a ax ax f x x a x a -+-⎛⎫⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭=--()f x(2)由对称性,不妨取,则,(7分)而.(8分)下证,设,,,,则(当且仅当,,即时取等号).(14分)另一方面,的定义域为,.由对称性,不妨取,则,故在上单调递增.(15分)当时,;当时,.由零点存在定理知在上有一个零点,(16分)故.(17分)19. 证明:(1)当时,;(2分)当时,,(6分)故数列是1-有限数列.(7分)(2)由,得,(9分)31x x =-()()()()()()()23232323ln 0x a x a f x f x a x x x a x a ⎡⎤--+=++=⎢⎥++⎢⎥⎣⎦()()()()()2232323232ln 2x a x a x x f a x x x a x a ⎡⎤-+-+⎛⎫=++⎢⎥ ⎪+++⎝⎭⎢⎥⎣⎦()()2323202x x f f x f x +⎛⎫≥=+ ⎪⎝⎭2x a m -=3x a n -=2x a p +=3x a q +=()()()()()()()()()()22232322323x a x a x a x a m n mn x a x a x a x a pq p q ⎡⎤-+---+-=-⎢⎥++++++⎢⎥⎣⎦()()()()()()2222pq m n mn p q pm qn qm pn p q pq p q pq +-+--++==()()()22323220a x x x x p q pq +-=≥+m n =p q =23x x =()f x ()(),,a a -∞-+∞ ()()()2a f x a x a x a =++-'x a >()0f x a '>>()f x (),a +∞x a →()f x →-∞x →+∞()f x →+∞()f x (),a +∞0x 2102x x x -≤2n =121a a ==2n >122121n n n n n a a a a a a a ----++++>+= {}n a 121n n a a a a λ-+++≥ ()2221211n n a a a a λ-≥+++于是有(13分).(17分)()222212112111nn i i i i a a a a a λ==-≥++++∑∑ ()()2221121121n i i i a a a a a a a λ=-≥+++++++∑ 222112112111n i i i i a a a a a a a a λ=-⎛⎫+⋅-≥ ⎪++⋅⋅⋅+++⋅⋅⋅+⎝⎭=∑222112112111n i i i a M a a a a a a λ=-⎛⎫+⋅- ⎪++⋅⋅⋅+++⋅⋅⋅+⎝⎭∑221112111n a M a a a a λ⎛⎫+- ⎪+=++⎝⎭。

湖北省武汉市2025届高三上学期十月月度检测数学试卷含答案

湖北省武汉市2025届高三上学期十月月度检测数学试卷含答案

2024-2025学年度十月月度检测数学试题(答案在最后)时限:120分钟满分:150分命题人:一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合1{(,)|||},(,)|||A x y y x B x y y x ⎧⎫====⎨⎬⎩⎭,则A B = ()A.{1,1}-B.{(1,1),(1,1)}- C.(0,)+∞ D.(0,1)【答案】B 【解析】【分析】先解方程组,得出点的坐标即可得出交集.【详解】,1y x y x ⎧=⎪⎨=⎪⎩,解得1,1x y =⎧⎨=⎩,或1,1x y =-⎧⎨=⎩,所以{(1,1),(1,1)}A B =- ,故选:B .2.已知函数()*(2),nf x x n =-∈N ,则“1n =”是“()f x 是增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】由当21,n k k =+∈N 时,′≥0,可得()(2)nf x x =-是增函数,即可得到答案.【详解】由()(2)nf x x =-,得()1(2)n f x n x --'=,则当21,n k k =+∈N 时,′≥0,()(2)nf x x =-是增函数,当1n =时,可得()f x 是增函数;当()f x 是增函数时,21,n k k =+∈N ,故“1n =”是“()f x 是增函数”的充分不必要条件.3.函数()sin cos f x a x b x =+图像的一条对称轴为π3x =,则a b =()A.B. C.3D.3-【答案】A 【解析】【分析】直接利用对称性,取特殊值,即可求出a b.【详解】由()()sin cos 0f x a x b x ω=+>的图象关于π3x =对称,可知:2π(0)(3f f =,即sin0cos0=s 3o 2π3i 2πn c s a b a b ++,则a b=故选:A .4.已知随机变量()2~2,N ξσ,且(1)()P P a ξξ≤=≥,则19(0)x a xa x+<<-的最小值为()A.5B.112 C.203D.163【答案】D 【解析】【分析】根据正态分布的对称性求得a ,利用基本不等式求得正确答案.【详解】根据正态分布的知识得12243a a +=⨯=⇒=,则03,30x x <-,19119139(3)103333x x x x x a x x x x x -⎛⎫⎛⎫+=+-+=++ ⎪ ⎪---⎝⎭⎝⎭1161033⎛≥+= ⎝,当且仅当393x x x x -=-,即34x =时取等.故选:D5.已知函数()sin2cos2f x x a x =+,将()f x 的图象向左平移π6个单位长度,所得图象关于原点对称,则()f x 的图象的对称轴可以为().A.π12x = B.π6x =C.π3x =D.5π12x =【答案】D【分析】根据题意找到函数的对称点得()π03f x f x ⎛⎫+-= ⎪⎝⎭,结合特殊值法计算得a =角公式化简得()π2sin 23f x x ⎛⎫=-⎪⎝⎭,最后整体替换计算得到结果;【详解】由题意可得()f x 的图象关于点π,06⎛⎫⎪⎝⎭对称,即对任意x ∈R ,有()π03f x f x ⎛⎫+-=⎪⎝⎭,取0x =,可得()π300322a f f ⎛⎫+=+=⎪⎝⎭,即a =.故()πsin22sin 23f x x x x ⎛⎫=-=- ⎪⎝⎭,令ππ2π32x k -=+,k ∈Z ,可得()f x 的图象的对称轴为5ππ122k x =+,k ∈Z .故选:D .6.设37a =,ln 2b =,3sin 7c =,则()A.b c a >>B.a c b>> C.a b c>> D.b a c>>【答案】D 【解析】【分析】构造函数()πsin (0)2f x x x x =-<<,利用导数探讨单调性并比较,a c ,再利用对数函数单调性比较大小即得.【详解】当π02x <<时,令()sin f x x x =-,求导得()1cos 0f x x '=->,则函数()f x 在π(0,)2上单调递增,有()(0)0f x f >=,即有sin x x >,因此33sin 77a c =>=,显然13ln 2ln 27b a =>=>=,所以b a c >>.故选:D7.已知函数()222cos (sin cos )(0)f x x x x ωωωω=-->的图象关于直线π12x =轴对称,且()f x 在π0,3⎛⎫⎪⎝⎭上没有最小值,则ω的值为()A.12B.1C.32D.2【答案】C 【解析】【分析】先由三角恒等变换化简解析式,再由对称轴方程解得36,2k k ω=+∈Z ,再由()f x 在π0,3⎛⎫⎪⎝⎭上没有最小值得ω范围,建立不等式求解可得.【详解】()()2222cos sin 2sin cos cos f x x x x x x ωωωωω=--+22cos sin21cos2sin2x x x x ωωωω=+-=+π24x ω⎛⎫=+ ⎪⎝⎭,因为()f x 的图象关于直线π12x =轴对称,所以πππ1264f ω⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭故ππππ,642k k ω+=+∈Z ,即36,2k k ω=+∈Z ,当ππ22π42x m ω+=-+,m ∈Z ,0ω>,即当3ππ,8m x m ωω=-+∈Z 时,函数()f x 取得最小值,当1m =时,5π8x ω=为y 轴右侧第1条对称轴.因为()f x 在π0,3⎛⎫⎪⎝⎭上没有最小值,所以5ππ83ω≥,即158ω≤,故由3150628k <+≤,解得11416k -<≤,k ∈Z故0k =,得32ω=.故选:C.8.定义在R上的奇函数()f x ,且对任意实数x 都有()302f x f x ⎛⎫--+=⎪⎝⎭,()12024e f =.若()()0f x f x '+->,则不等式()11e xf x +>的解集是()A.()3,+∞ B.(),3-∞ C.()1,+∞ D.(),1-∞【答案】C【解析】【分析】由()f x 是奇函数,可得()f x '是偶函数,得到()()0f x f x +'>,令()()e xg x f x =,得到()0g x '>,得出()g x 在R 上单调递增,再由()302f x f x ⎛⎫--+= ⎪⎝⎭,求得()f x 的周期为3的周期函数,根据()12024ef =,得到()2e g =,把不等式转化为()()12g x g +>,结合函数的单调性,即可求解.【详解】因为()f x 是奇函数,可得()f x '是偶函数,又因为()()0f x f x '+->,所以()()0f x f x +'>,令()()e x g x f x =,可得()()()e 0xg x f x f x ''=+>⎡⎤⎣⎦,所以()g x 在R 上单调递增,因为()302f x f x ⎛⎫--+=⎪⎝⎭且()f x 是奇函数,可得()()23f x f x f x ⎛⎫+=-=-⎪⎝⎭,则()()3333[()()222f x f x f x f x +=++=-+=,所以()f x 的周期为3的周期函数,因为()()()12024674322e f f f =⨯+==,所以()212e e eg =⨯=,则不等式()11e xf x +>,即为()1e 1e xf x ++>,即()()12g x g +>,又因为()g x 在R 上单调递增,所以12x +>,解得1x >,所以不等式()11ex f x +>的解集为()1,+∞.故选:C .二、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.下列等式成立的是()A.()21sin15cos152︒-︒=B.22sin 22.5cos 22.52︒-︒=-C.1cos28cos32cos62cos582︒︒-︒︒=-D.(3tan10cos502︒︒=-【答案】AB 【解析】【分析】应用倍角正余弦、和差角正余弦公式及诱导公式化简求值,即可判断各项的正误.【详解】A :()21sin15cos1512sin15cos151sin 302︒-︒=-︒︒=-︒=,成立;B:22sin 22.5cos 22.5cos 452︒-︒=-︒=-,成立;C :cos 28cos32cos62cos58cos 28cos32sin 28sin 32cos(2832)︒︒-︒︒=︒︒-︒︒=︒+︒1cos602=︒=,不成立;D:(sin102sin 50cos50sin100tan10cos50cos50cos10cos10cos10︒-︒-︒︒-︒︒-︒=⋅︒=︒︒︒cos101cos10︒=-=-︒,不成立.故选:AB10.已知抛物线()2:20C y px p =>,过C 的焦点F 作直线:1l x ty =+,若C 与l 交于,A B 两点,2AF FB =,则下列结论正确的有()A.2p =B.3AF =C.t =或-D.线段AB 中点的横坐标为54【答案】ABD 【解析】【分析】由直线:1l x ty =+,可知焦点1,0,得p 的值和抛物线方程,可判断A 选项;直线方程代入抛物线方程,由韦达定理结合2AF FB =,求出,A B 两点坐标和t 的值,结合韦达定理和弦长公式判断选项BCD.【详解】抛物线()2:20C y px p =>的焦点F 在x 轴上,过F 作直线:1l x ty =+,可知1,0,则12p=,得2p =,A 选项正确;抛物线方程为24y x =,直线l 的方程代入抛物线方程,得2440y ty --=.设1,1,2,2,由韦达定理有124y y t +=,124y y =-,2AF FB =,得122y y=-,解得12y y =-=12y y ==,124y y t=+,则4t =或4t =-,C 选项错误;则1212,2x x ==,线段AB 中点的横坐标为121252242x x ++==,D 选项正确;12192222AB x x p =++=++=,2293332AF AB ==⨯=,B 选项正确.故选:ABD.11.已知()00,P x y 是曲线33:C x y y x +=-上的一点,则下列选项中正确的是()A.曲线C 的图象关于原点对称B.对任意0x ∈R ,直线0x x =与曲线C 有唯一交点PC.对任意[]01,1y ∈-,恒有012x <D.曲线C 在11y -≤≤的部分与y 轴围成图形的面积小于π4【答案】ACD 【解析】【分析】将x ,y 替换为x -,y -计算即可判断A ;取0x =,可判断有三个交点即可判断B ;利用函数3y x x =-的单调性来得出300y y -的取值范围,再结合()3f x x x =+的单调性进行求解即可判断C ;利用图象的对称性和半圆的面积进行比较即可判断D .【详解】A .对于33x y y x +=-,将x ,y 替换为x -,y -,所得等式与原来等价,故A 正确;B .取0x =,可以求得0y =,1y =,1y =-均可,故B 错误;C .由330000x x y y +=-,[]01,1y ∈-,函数3y x x =-,故213y x '=-,令2130y x '=-=,解得:13x =±,在1,3x ⎡∈--⎢⎣⎦,,13⎤⎥⎣⎦时,0'<y ,函数单调递减,在,33x ⎛⎫∈- ⎪ ⎪⎝⎭时,0'>y ,函数单调递增,所以300,99y y ⎡-∈-⎢⎣⎦,又因为()3f x x x =+是增函数,15289f ⎛⎫=>⎪⎝⎭,所以有012x <,故C 正确;D .当[]00,1y ∈时,3300000x x y y +=-≥,又320002x x x +≥,32000022y y y y -≤-,所以22000x y y ≤-.曲线22x y y =-与y 轴围成半圆,又曲线C 的图象关于原点对称,则曲线C 与y 轴围成图形的面积小于π4,故D 正确.故选:ACD .三、填空题(本大题共3小题,每小题5分,共15分)12.若π,02α⎛⎫∈- ⎪⎝⎭,且πcos2cos 4αα⎛⎫=+ ⎪⎝⎭,则α=__________.【答案】π12-【解析】【分析】化简三角函数式,求出1sin 42πα⎛⎫+= ⎪⎝⎭,根据π,02α⎛⎫∈- ⎪⎝⎭即可求解.【详解】由πcos2cos 4αα⎛⎫=+⎪⎝⎭,得()22cos sin cos sin 2αααα-=-.因为π,02α⎛⎫∈- ⎪⎝⎭,所以cos sin 0αα-≠,则cos sin 2αα+=,则1sin 42πα⎛⎫+= ⎪⎝⎭.由π,02α⎛⎫∈- ⎪⎝⎭,得πππ,444α⎛⎫+∈- ⎪⎝⎭,则ππ46α+=,解得π12α=-.故答案为:π12-.13.海上某货轮在A 处看灯塔B ,在货轮北偏东75︒,距离为A 处看灯塔C ,在货轮的北偏西30︒,距离为海里C 处,货轮由A 处向正北航行到D 处时看灯塔B 在东偏南30︒,则灯塔C 与D 处之间的距离为______海里.【答案】【解析】【分析】由正弦定理和余弦定理求解即可.【详解】如图:由题意75DAB ∠=︒,903060ADB ∠=-︒=︒,所以180756045DBA ∠=︒-︒-︒=︒,在ABD △中,由正弦定理sin sin AD AB ABD ADB =∠∠,即306sin 45sin 60AD =︒︒,所以60AD =,在ADC △中,30DAC ∠=︒,所以20CD =.故答案为:14.若存在实数m ,使得对于任意的[],x a b ∈,不等式2πsin cos 2sin 4m x x x m ⎛⎫+≤-⋅ ⎪⎝⎭恒成立,则b a -取得最大值时,sin2a b+=__________.【答案】2【解析】【分析】以m 为变量,结合一元二次不等式的存在性问题可得1sin 22x ≤,解不等式结合题意得[]()7ππ,π,π,1212a b k k k ⎡⎤⊆-+∈⎢⎥⎣⎦Z ,由此可得答案.【详解】因为2πsin cos 2sin 4m x x x m ⎛⎫+≤-⋅ ⎪⎝⎭恒成立,即2π2sin sin cos 04m x m x x ⎛⎫--⋅+≤ ⎪⎝⎭恒成立,若存在实数m ,使得上式成立,则2πΔ4sin 4sin cos 04x x x ⎛⎫=--≥ ⎪⎝⎭,则πΔ22cos 22sin 222sin 22sin 224sin 202x x x x x ⎛⎫=---=--=-≥ ⎪⎝⎭,可得1sin 22x ≤,可得7ππ2π22π,66k x k k -≤≤+∈Z ,解得7ππππ,1212k x k k -≤≤+∈Z ,由[]()7ππ,π,π,1212a b k k k ⎡⎤⊆-+∈⎢⎥⎣⎦Z ,则b a -取得最大值时()7πππ,π,1212a k bk k =-=+∈Z ,此时()7ππππ1212sin sin ,222k k a b k -+++==∈Z .故答案为:2.【点睛】关键点点睛:双变量问题的解题关键是一次只研究其中一个变量,本题先以m 为变量,转化为存在性问题分析求解.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.已知函数()π4sin cos 6f x x x ⎛⎫=+ ⎪⎝⎭,x ∈R .(1)求函数()f x 的单调减区间;(2)求函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最大值与最小值.【答案】(1)π2ππ,π,63k k k Z ⎡⎤++∈⎢⎥⎣⎦(2)()min 2f x =-,()max 1f x =【解析】【分析】(1)根据三角恒等变换化简函数()f x ,再根据正弦函数的单调性结合整体思想即可得解;(2)由x 的范围求得π26x +的范围,再根据正弦函数的性质即可得解.【小问1详解】解:()2π314sin cos 4sin cos sin cos 2sin 622f x x x x x x x x x ⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭1πcos212sin2cos212sin 21226x x x x x ⎛⎫⎛⎫=+-=+-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭,令ππ3π2π22π,262k x k k +≤+≤+∈Z ,解得π2πππ63k x k +≤≤+,所以函数()f x 的单调减区间为π2ππ,π,63k k k Z ⎡⎤++∈⎢⎥⎣⎦;【小问2详解】解:因为π02x ≤≤,所以ππ7π2666x +≤≤,所以1πsin 2126x ⎛⎫-≤+≤ ⎪⎝⎭,于是π12sin 226x ⎛⎫-≤+≤ ⎪⎝⎭,所以()21f x -≤≤,当且仅当π2x =时,()f x 取最小值()min π22f x f ⎛⎫==- ⎪⎝⎭,当且仅当ππ262x +=,即π6x =时,()f x 取最大值()max π16f x f ⎛⎫== ⎪⎝⎭.16.已知0b >,函数2()((ln )1)f x x x x bx =---在点()(1,)1f 处的切线过点()0,1-.(1)求实数b 的值;(2)证明:()f x 在()0,∞+上单调递增;(3)若对())1,1(x f x a x ∀≥≥-恒成立,求实数a 的取值范围.【答案】(1)1b =(2)证明见解析(3)(,1]-∞【解析】【分析】(1)先求导函数再写出切线方程代入点得出参数值;(2)求出导函数1()2ln 2f x x x x'=+--,再根据导函数求出()(1)10f x f ''≥=>即可证明单调性;(3)根据函数解析式分1x =和1x >两种情况化简转化为ln x x a -≥恒成立,再求()ln (1)h x x x x =->的单调性得出最值即可求出参数范围.【小问1详解】()f x 的定义域为1(0,),()2ln()2f x x bx x'+∞=+--,故(1)1ln f b '=-,又(1)0f =,所以()f x 在点(1,(1))f 处的切线方程为(1ln )(1)y b x =--,将点(0,1)-代入得1ln 1b -=,解得1b =.【小问2详解】由(1)知2()(1)ln f x x x x x =---,则1()2ln 2f x x x x'=+--,令1()()2ln 2g x f x x x x '==+--,则22221121(1)(21)()2x x x x g x x x x x---+'=--==,当01x <<时,()0,()g x g x <'单调递减;当1x >时,()0,()g x g x >'单调递增,所以()(1)10f x f ''≥=>,所以()f x 在(0,)+∞上单调递增.【小问3详解】对())1,1(x f x a x ∀≥≥-恒成立,即对1,(1)(1)ln (1)x x x x x a x ∀≥---≥-恒成立,当1x =时,上式显然恒成立;当1x >时,上式转化为ln x x a -≥恒成立,设()ln (1)h x x x x =->,则11()10x h x x x'-=-=>,所以()h x 在(1,)+∞上单调递增;所以()(1)1h x h >=,故1a ≤,所以实数a 的取值范围为(,1]-∞.17.在ABC V 中,设内角A ,B ,C 所对的边分别为,,a b c .(1)2b a =+,4c a =+,是否存在正整数a *N ,且ABC V 为钝角三角形?若存在,求出a ;若不存在,说明理由.(2)若4,a b c D ===为BC 的中点,E ,F 分别在线段,AB AC 上,且90EDF ︒∠=,CDF θ∠=()090θ︒︒<<,求DEF 面积S 的最小值及此时对应的θ的值.【答案】(1)存在,4a =(2)12-【解析】【分析】(1)分析可知,角C 为钝角,由cos 0C <结合三角形三边关系可求得整数a 的值;(2)由正弦定理可得出()sin 60DF θ=+︒,()sin 150DE θ=︒-,再利用三角形的面积公式和两角和与差的正弦公式化简即可求得结果.【小问1详解】假设存在正整数a 满足题设.ABC V 为钝角三角形,因为a b c <<,所以C 为钝角,根据题设,2b a =+,4c a =+,由余弦定理222cos 2a b c C ab+-=,所以()222(2)(4)1cos 022a a a C a a ++-+-<=<+,得24120a a --<,解得26a -<<.因为**a ∈N N ,所以1a =或4a =,当1a =时,ABC V 不存在,故存在4a =满足题设.所以4a =【小问2详解】如图,因为()90,090EDF CDF θθ∠=︒∠=︒<<︒,所以90BDE θ∠=︒-.在CDF V 中,因为()2sin60sin 60DF θ=︒+︒,所以()3sin 60DF θ=+︒在BDE V 中,因为()2sin 60sin 150DE θ=︒︒-,所以()sin 150DE θ=︒-.所以()()132sin 60sin 150S θθ=⨯+︒︒-,设()()()sin 60sin 150f θθθ=+︒︒-,()090θ︒<<︒,所以11()sin cos cos sin 2222f θθθθθ⎛⎫⎛⎫=++ ⎪⎪⎪⎪⎝⎭⎝⎭2213cos cos sin 444θθθθ+=++化简可得:()1sin 242f θθ=+所以1122S =-当45θ=︒时,S取得最小值12-18.已知椭圆22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,离心率22e =,点,P Q 分别是椭圆的右顶点和上顶点,POQ 的边PQ上的中线长为2.(1)求椭圆的标准方程;(2)过点(2,0)H -的直线交椭圆C 于,A B 两点,若11AF BF ⊥,求直线AB 的方程;(3)直线12,l l 过右焦点2F ,且它们的斜率乘积为12-,设12,l l 分别与椭圆交于点,C D 和,E F .若,M N 分别是线段CD 和EF 的中点,求OMN 面积的最大值.【答案】(1)2212x y +=(2)220x y -+-或220x y ++=(3)8【解析】【分析】(1)根据POQ △的边PQ上中线为2得PQ ==,再联立2222,2c e a b c a ===+即可求解;(2)设直线AB 的方程为(2)(0)y k x k =+≠,1122()A x y B x y ,,(,),联立直线AB 与椭圆方程得1212,x x x x +,再由11AF BF ⊥,即110AF BF ⋅= ,最后代入即可求解;(3)设直线1l 的方程为(1)y k x =+,则直线2l 的方程为1(1)2y x k =-+,分别与椭圆方程联立,通过韦达定理求出中点,M N 的坐标,观察坐标知,MN 的中点坐标1(,0)2T 在x 轴上,则1||||2OMN M N S OT y y =- 整理后利用基本不等式即可得到面积的最值.【小问1详解】由题意,因为(,0),(0,)P a Q b ,POQ △为直角三角形,所以PQ ==.又2222,2c e a b c a ===+,所以1,1a b c ===,所以椭圆的标准方程为2212x y +=.【小问2详解】由(1)知,1(1,0)F -,显然直线AB 的斜率存在,设直线AB 的方程为(2)(0)y k x k =+≠,1122()A x y B x y ,,(,),联立2212(2)x y y k x ⎧+=⎪⎨⎪=+⎩消去y 得,2222(12)8820k x k x k +++-=,所以22222(8)4(12)(82)8(12)0k k k k ∆=-+-=->,即2102k <<.且22121222882,1212k k x x x x k k-+=-=++,因为11AF BF ⊥,所以110AF BF ⋅= ,所以1122(1,)(1,)0x y x y ------=,即12121210x x x x y y ++++=,所以1212121(2)(2)0x x x x k x k x +++++⋅+=,整理得2221212(12)()(1)140k x x k x x k ++++++=,即22222228(1)(82)(12)()1401212k k k k k k k +-+-+++=++,化简得2410k -=,即12k =±满足条件,所以直线AB 的方程为1(2)2y x =+或1(2)2y x =-+,即直线AB 的方程为220x y -+=或220x y ++=.【小问3详解】由题意,2(1,0)F ,设直线1l 的方程为(1)y k x =+,3344(,),(,)C x y D x y ,则直线2l 的方程为1(1)2y x k=-+,5566(,),(,)E x y F x y ,联立2212(1)x y y k x ⎧+=⎪⎨⎪=-⎩消去y 得2222)202142(-=+-+x k x k k ,所以22343422422,1212k k x x x x k k -+==++所以23422,212M x x k x k +==+2(1)12M M k y k x k =-=-+所以2222(,)1212k k M k k -++,同理联立22121(1)2x y y x k ⎧+=⎪⎪⎨⎪=--⎪⎩消去y 得222(12)2140k x x k +-+-=,所以2565622214,1212k x x x x k k -+==++所以5621,212N x x x k +==+21(1)212N N k y x k k =--=+所以221(,)1212k N k k ++,即MN 的中点1(,0)2T .所以221121||11||||||12412212282||||OMN M N k k S OT y y k k k k =-==⨯=⨯+++ ,当且仅当12||||k k =,即22k =±时取等号,所以OMN的面积最大值为8.【点睛】关键点点睛:本题考查待定系数法求椭圆的标准方程,直线与椭圆综合应用问题,利用基本不等式求最值,第三问的解题关键是分类联立直线12,l l 与椭圆方程,求出,M N 的坐标,观察坐标知,MN 的中点坐标1(,0)2T 在x 轴上,则1||||2OMN M N S OT y y =- 整理后利用基本不等式得到面积的最值..19.正整数集{}1,2,3,,3A m m m m n =++++ ,其中,m n +∈∈N N .将集合A 拆分成n 个三元子集,这n 个集合两两没有公共元素.若存在一种拆法,使得每个三元子集中都有一个数等于其他两数之和,则称集合A 是“三元可拆集”.(1)若1,3m n ==,判断集合A 是否为“三元可拆集”,若是,请给出一种拆法;若不是,请说明理由;(2)若0,6m n ==,证明:集合A 不是“三元可拆集”;(3)若16n =,是否存在m 使得集合A 是“三元可拆集”,若存在,请求出m 的最大值并给出一种拆法;若不存在,请说明理由.【答案】(1)是,拆法见解析(2)证明见解析(3)答案见解析【解析】【分析】(1){}2,3,4,,10A = ,可拆成{}{}{}10,7,39,5,48,6,2、、或{}10,6,4、{}{}9,7,28,5,3、;(2)三元可拆集”中所有元素和为偶数,A 中所有元素和为19181712⨯=,与和为偶数矛盾;(3)可以拆成16个三元子集,将这16个三元子集中的最大的数依次记为12316,,,,a a a a ,利用等差数列求和得到1231616648a a a a m ++++≤+ ,结合1231624588a a a a m ++++=+ ,得到不等式,求出152m ≤,当7m =时写出相应的集合A 以及具体拆法,得到答案.【小问1详解】是,{}2,3,4,,10A = ,可拆成{}{}{}10,7,39,5,48,6,2、、或{}10,6,4、{}{}9,7,28,5,3、;【小问2详解】对于“三元可拆集”,其每个三元子集的元素之和为偶数,则“三元可拆集”中所有元素和为偶数;而{}1,2,3,4,,18A = ,A 中所有元素和为19181712⨯=,与和为偶数矛盾,所以集合A 不是“三元可拆集”;【小问3详解】{}1,2,3,,48A m m m m =++++ 有48个元素,可以拆成16个三元子集,将这16个三元子集中的最大的数依次记为12316,,,,a a a a ,则()()()()1231648474633a a a a m m m m ++++≤++++++++ ()28116166482m m +⨯==+;另一方面,A 中所有元素和为()249484811762m m +⨯=+,所以212316481176245882m a a a a m +++++==+ ,所以2458816648m m +≤+,解得152m ≤,即7m ≤;当7m =时,{}8,9,10,,55A = ,可拆为{}{}55,40,1554,38,16、、{}{}{}{}{}{}53,39,1452,35,1751,31,2050,37,1349,25,2448,26,22、、、、、、{}{}{}{}{}{}47,29,1846,27,1945,34,1144,23,2143,33,1042,30,12、、、、、、{}{}41,32,9,36,28,8(拆法不唯一);综上所述,m 的最大值是7.【点睛】关键点点睛:集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数的性质,数列知识等进行结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决.。

广西柳州高级中学2025届高三上学期第五次检测数学试题

广西柳州高级中学2025届高三上学期第五次检测数学试题

广西柳州高级中学2025届高三上学期第五次检测数学试题一、单选题1.函数()f x =的定义域为()A .()1,4B .[)1,4C .()(),14,-∞+∞ D .(](),14,-∞⋃+∞2.已知2nx x ⎛⎫- ⎪⎝⎭的展开式第3项的系数是60,则展开式所有项系数和是()A .-1B .1C .64D .633.2024年巴黎奥运会中国代表队获得金牌榜第一,奖牌榜第二的优异成绩.首金是中国组合黄雨婷和盛李豪在10米气步枪混合团体赛中获得,两人在决赛中14次射击环数如图,则()A .盛李豪的平均射击环数超过10.6B .黄雨婷射击环数的第80百分位数为10.65C .盛李豪射击环数的标准差小于黄雨婷射击环数的标准差D .黄雨婷射击环数的极差小于盛李豪射击环数的极差4.过点()2,1A 的直线在两坐标轴上的截距之和为零,则该直线方程为()A .1x y -=B .3x y +=C .20x y -=或3x y +=D .20x y -=或1x y -=5.质监部门对某种建筑构件的抗压能力进行检测,对此建筑构件实施打击,该构件有,A B 两个易损部位,每次打击后,A 部位损坏的概率为310,B 部位损坏的概率为12,则在第一次打击后就有部位损坏(只考虑A B 、两个易损部分)的条件下,,A B 两个部位都损坏的概率是()A .313B .513C .1720D .3206.已知圆C :()()22349x y -+-=,直线l :230mx y m +--=.则直线l 被圆C 截得的弦长的最小值为()A .BC .D 7.在锐角ABC 中,角,,A B C 所对的边分别为s s ,若113tan tan sin B C bc A+=⋅,且ABC 的外接圆面积为π,则A =()A .π6B .π4C .π3D .π28.将函数()*π()cos N 12g x x ωω⎛⎫=+∈ ⎪⎝⎭的图象上所有点的横坐标变为原来的12,纵坐标变为原来的2倍,得到函数()f x 的图象,若()f x 在π0,2⎛⎫⎪⎝⎭上只有一个极大值点,则ω的最大值为()A .2B .3C .4D .5二、多选题9.如图,在正方体1111ABCD A B C D -中,E F 、分别是11AB BC 、的中点.下列结论正确的是()A .EF 与1BB 垂直B .⊥EF 与平面11BDD BC .EF 与1CD 所成的角为45︒D .//EF 平面1111D C B A10.已知定义在[)0,+∞上的函数()f x 满足当[]0,2x ∈时,()2,0142,12x x f x x x ≤≤⎧=⎨-<≤⎩,当2x >时,满足()()2R f x mf x m =-∈,(m 为常数),则下列叙述中正确的为()A .当12m =时,()31f =B .当[4,6]x ∈时,()f x 的解析式为()222(4),452(6),56m x x f x m x x ⎧-≤≤=⎨--<≤⎩C .当1m >时,()24x m mf x ≥在[)0,+∞上恒成立D .当01m <<时,函数()f x 的图象与直线1*2N n y m n -=∈,在[]0,2n 上的交点个数为21n -11.小明上学有时坐公交车,有时骑自行车,他各记录了50次坐公交车和骑自行车所花的时间,经数据分析得到,坐公交车平均用时10min ,样本方差为9;骑自行车平均用时15min ,样本方差为1.已知坐公交车所花时间X 与骑自行车所花时间Y 都服从正态分布,用样本均值和样本方差估计X ,Y 分布中的参数,并利用信息技术工具画出X 和Y 的分布密度曲线如图所示.若小明每天需在早上8点之前到校,否则就迟到,则下列判断正确的是()A .()2~10,3X N B .若小明早上7:50之后出发,并选择坐公交车,则有60%以上的可能性会迟到C .若小明早上7:42出发,则应选择骑自行车D .若小明早上7:47出发,则应选择坐公交车三、填空题12.记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则99S =.13.“五一”期间人民群众出游热情高涨,某地为保障景区的安全有序,将增派6名警力去A B 、两个景区执勤.要求A 景区至少增派3名警力,B 景区至少增派2名警力,则不同的分配方法的种数为.14.已知点()()2,0,2,0A B -,若圆()()22121x a y a -++--=上存在点M 满足5MA MB ⋅= ,则实数a 的取值范围是.四、解答题15.已知椭圆C :()222210+=>>x y a b a b的焦距为.(1)求C 的标准方程;(2)若5,02A ⎛⎫- ⎪⎝⎭,直线l :()302x ty t =+>交椭圆C 于E ,F 两点,且AEF △,求t 的值.16.近年来我国新能源汽车行业蓬勃发展,新能源汽车不仅对环境保护具有重大的意义,而且还能够减少对不可再生资源的开发,是全球汽车发展的重要方向.“保护环境,人人有责”,在政府和有关企业的努力下,某地区近几年新能源汽车的购买情况如下表所示:年份x20192020202120222023新能源汽车购买数量>(万辆)0.400.701.101.501.80(1)计算y 与x 的相关系数r (保留三位小数);(2)求y 关于x的线性回归方程,并预测该地区2025年新能源汽车购买数量.参考公式()()1nix x y y r --=∑()()()121ˆniii nii x x y y bx x==--=-∑∑, ay bx =- .3.6056≈,()()513.6i i i x x y y =--=∑.17.在如图所示的直四棱柱AFBH DECG -中,连接AB ,FD ,DC ,AG ,BG ,90FAB AHB =∠=︒∠,2==AB AF ,AH HB =.(1)求证:D ,G ,B ,F 四点共面;(2)若AD =BDF 与平面ABG 的夹角的余弦值.18.甲乙两人参加知识竞赛活动,比赛规则如下:两人轮流随机抽题作答,答对积1分且对方不得分,答错不得分且对方积1分;然后换对方抽题作答,直到有领先2分者晋级,比赛结束.已知甲答对题目的概率为45,乙答对题目的概率为p ,答对与否相互独立,抽签决定首次答题方,已知两次答题后甲乙两人各积1分的概率为25.记甲乙两人的答题总次数为()2n n ≥.(1)求p ;(2)当2n =时,求甲得分X 的分布列及数学期望;(3)若答题的总次数为n 时,甲晋级的概率为()n P A ,证明:()()()2388159n P A P A P A ≤++⋅⋅⋅+<.19.已知函数312()(1)21xx f x ax b x -=++-+(其中,a b ∈R ).(1)当0,0a b >=时,证明:()f x 是增函数;(2)证明:曲线()y f x =是中心对称图形;(3)已知0a ≠,设函数312()e ()(1)(1)21x x x g x f x b x b -=+-+-+-+,若()0g x ≥对任意的x ∈R恒成立,求b aa-的最小值.。

山东省烟台市莱州一中2025届高三数学第一次质量检测数学试卷(含答案)

山东省烟台市莱州一中2025届高三数学第一次质量检测数学试卷(含答案)

山东省莱州市莱州一中2025届高三数学第一次质量检测数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A ={x |log 2x ≥0},B ={x |x 2+x−6<0},则(∁R A )∩B 等于( )A. {x |−3<x <1}B. {x |−2<x <2}C. {x |2≤x <3}D. {x |x <2}2.已知实数a ,b ,c ,则下列命题中正确的是( )A. 若a >b ,则ac >bcB. 若a >b >0,c <0,则c a >c bC. 若a >b >c ,a +b +c =0,则c a−c <c b−cD. 若a >b >0,c <0,则b−c a−c <b a3.函数f (x )=2sin |x |−1x 3的部分图象是( )A. B.C. D.4.已知函数f(x)=ln x−a 2x 2−2x 存在单调递减区间,则a 的取值范围是( )A. [−1,+∞)B. (−1,+∞)C. (−∞,−1)D. (−∞,−1]5.若sin (α−π3)= 55,则sin (2α+5π6)的值为( )A. 2 55 B. −2 55 C. 35 D. −356.已知a =20.5,b =log 25,c =log 410,则a ,b ,c 的大小关系为( )A. a <b <cB. a <c <bC. c <a <bD. b <c <a7.在▵ABC 中,点D,E 是线段BC 上的两个动点,且AD +AE =xAB +y 2AC ,则1x +2y 的最小值为().A. 23B. 43C. 2D. 88.已知a ,b ∈R 且ab ≠0,对于任意x ≥0均有(x−a)(x−b)(x−2a−b)≥0,则 ( )A. a <0B. a >0C. b <0D. b >0二、多选题:本题共3小题,共18分。

数学丨浙江省湖州、衢州、丽水2025届高三11月三地市高三教学质量检测试卷数学试卷及答案

数学丨浙江省湖州、衢州、丽水2025届高三11月三地市高三教学质量检测试卷数学试卷及答案

湖州、衢州、丽水2024年11月三地市高三教学质量检测试卷数学1.本试题卷共4页,满分150分,考试时间120分钟.2.考生答题前,务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上.3.选择题的答案须用2B 铅笔将答题纸上对应题目的答案标号涂黑,如要改动,须将原填涂处用橡皮擦净.4.非选择题的答案须用黑色字迹的签字笔或钢笔写在答题纸上相应区域内,作图时可先使用2B 铅笔,确定后须用黑色字迹的签字笔或钢笔描黑,答案写在本试题卷上无效.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}6,5,4,3,2,1=A ,{}A x xB ∈=2,则=B A A.{}1 B.{}2,1 C.{}4,2,1 D.{}6,5,4,3,2,12.已知复数=-1i z (其中i 是虚数单位),则+=2z z A.2B.13.双曲线的另一种定义:动点(,)M x y 与定点(,0)F c 的距离和它与定直线2:al x c=的距离的比是常数ca(0a c <<),则点M 的轨迹是一个双曲线.动点M 与定点F 的距离和它与定直线:3l x =M 的轨迹方程为A.2212y x -= B.2212y x -= C.2212x y -= D.2212x y -=4.为研究光照时长x (小时)和种子发芽数量y (颗)之间的关系,某课题研究小组采集了9组数据,绘制散点图如图所示,并对,x y 进行线性回归分析.若在此图中加上点P 后,再次对,x y 进行线性回归分析,则下列说法正确的是A.,x y 不具有线性相关性B.决定系数2R 变大C.相关系数r 变小D.残差平方和变小5.已知ABC ∆的外接圆圆心为O ,且2AB AC AO += ,||||OA AB = ,则向量BA在向量BC 上的投影向量为A.14BCB.C.14BC-D. 6.古代农耕常用水车作为灌溉引水的工具,是人类的一项古老的发明,也是人类改造自然的成果之一.如图是一个半径为r 的水车,以水车的中心为原点,过水车的中心且平行于水平面的直线为x 轴,建立平面直角坐标系,一个水斗从点2)A -出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒.经过t 秒后,水斗旋转到P 点,设P 点的坐标为(,)x y ,其纵坐标满足sin()(0y r t t ωϕ=+ ,0ω>,||)2πϕ<,当45t =秒时,||PA =A.B.C. D.47.已知长方体1111ABCD A B C D -,E 是棱11C D 的中点,平面1AB E 将长方体分割成两部分,则体积较小部分与体积较大部分的体积之比为A .715B .12C .724D .7178.已知函数()x x x f 2cos 3cos -=,(0,)x π∈,若()f x 有两个零点()1212,x x x x <,则A .{}21,5x x ∈πB .123x x =C .121cos cos 2x x +=D .41cos cos 21-=x x 第6题图二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知0a >,0b >,则下列说法正确的是A.若1=+b a ,则2log log 22-≤+b a B.若1=+b a ,则1<+b a C.若1a b -=,则1212a b-≥ D.若1=-b a ,则221a b +>10.现有一个抽奖活动,主持人将奖品放在编号为1、2、3的箱子中,甲从中选择了1号箱子,但暂时未打开箱子,主持人此时打开了另一个箱子(主持人知道奖品在哪个箱子,他只打开甲选择之外的一个空箱子).记i A (1,2,3i =)表示第i 号箱子有奖品,j B (2,3j =)表示主持人打开第j 号箱子.则下列说法正确的是A.321()2P B A =B.131()3P A B =C.若再给甲一次选择的机会,则甲换号后中奖概率增大D.若再给甲一次选择的机会,则甲换号后中奖概率不变11.如图,在直三棱柱111ABC A B C -中,12AC BC CC ===,AC BC ⊥,Q 是线段AB 的中点,P 是线段1BC 上的动点(含端点),则下列命题正确的是A.三棱锥1P A QC -的体积为定值B.在直三棱柱111ABC A B C -内部能够放入一个表面积为4π的球C.直线PQ 与AC 所成角的正切值的最小值是22D .1A P PQ +第11题图三、填空题:本题共3小题,每小题5分,共15分.12.在()12nx -(*n ∈N )的展开式中,x 的系数为10-,则n =▲.13.已知椭圆()2222:10x y C a b a b +=>>,过左焦点F 作直线l 与圆222:4c M x y +=相切于点E ,与椭圆C 在第一象限的交点为P ,且3PE EF =,则椭圆离心率为▲.14.若()()3(2)222f x x x =-+-+,已知数列{}n a 中,首项1120a =,32123n n a a aa a n=++++L ,*n ∈N ,则()791ii f a ==∑▲.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)如图,在三棱锥P ABC -中,底面ABC 是边长为2的等边三角形,⊥PC 平面ABC ,点E 是PB 的中点,点F 在线段CE 上且:2:1CF EF =,G 为三角形ABC 的重心.(1)求证:GF ∥平面P AB ;(2)当PC 的长为何值时,二面角E AC B --的大小为60︒.16.(本小题满分15分)在ABC ∆中,角A ,B ,C 对应的的三边分别是a ,b ,c,且2bB c-=.(1)求角C 的值;(2)若1=c ,B A tan 3tan 2=,求ABC ∆的面积.17.(本小题满分15分)第15题图已知数列{}n a 的首项是1,其前n 项和是n S ,且121++=+n a a n n ,*n ∈N .(1)求32,a a 的值及数列{}n a 的通项公式;(2)若存在实数λ,使得关于n 的不等式25n S n λ+≤,*n ∈N 有解,求实数λ取到最大值时n 的值.18.(本小题满分17分)已知函数()21ln1x f x ax x -=+-(R a ∈).(1)当1=a 时,求曲线()x f y =在点()()2,2f 处的切线方程;(2)若103a <≤,3,22x ⎡⎤∈⎢⎥⎣⎦,证明:()2f x <;(3)若1x >,恒有()32ln 22f x ≥+,求实数a 的取值范围.19.(本小题满分17分)直线族是指具有某种共同性质的直线的全体,例如()R ∈+=k kx y 1表示过点()1,0的直线族(不包括直线y 轴),直线族的包络曲线定义为:直线族中的每一条直线都是该曲线上某点处的切线,且该曲线上的每一点处的切线都是该直线族中的某条直线.(1)圆()22:34M x y +-=是直线族1(,)mx ny m n +=∈R 的包络曲线,求,m n 满足的关系式;(2)若点()00,N x y 不在直线族Ω:()2y tx t t =-∈R 的任意一条直线上,求0y 的取值范围及直线族Ω的包络曲线E 的方程;(3)在(1)(2)的条件下,过曲线E 上动点P 向圆M 做两条切线PA ,PB ,交曲线E 于点A ,B ,求PAB ∆面积S 的最小值.湖州、衢州、丽水2024年11月三地市高三教学质量检测试卷数学参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.题号12345678答案BCBCAADD二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.题号91011答案ACDBCACD三、填空题:本题共3小题,每小题5分,共15分.12.513.14.158四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)如图,在三棱锥P ABC -中,底面ABC 是边长为2的等边三角形,⊥PC 平面ABC ,点E 是PB 的中点,点F 在线段CE 上且:2:1CF EF =,G 为三角形ABC 的重心.(1)求证:GF ∥平面P AB ;(2)当PC 的长为何值时,二面角E AC B --的大小为60︒.解:(1)如图1,连接CG 并延长,交AB 与点H ,由于,G F 分别为,ABC PBC ∆∆重心,所以2CF CGFE GH==,故//GF EH ,……………………3分EH ⊂面PAB ,FG ⊄面PAB ,所以//FG 面PAB .……………………6分(2)解法一:如图2,取线段BC 的中点D ,连接ED ,过点D 作DK AC ⊥,垂足为K ,连接EK .因为//,ED PC PC ABC ⊥平面,所以ED ABC ⊥平面,所以EKD ∠为二面角B AC E --的平面角,所以60EKD ∠= ……………………………………………………10分因为2DK =,所以32ED =,于是有3PC =.……………………13分解法二:如图3,以AC 的中点O 为坐标原点建立空间直角坐标系Ozxy ,设PC h =,则()0,1,0A -,)B,()0,1,0C,1,22h E ⎫⎪⎪⎝⎭.……………………8分设平面EAC 的一个法向量为()1,,n x y z =则1100n AC n AE ⎧⋅=⎪⎨⋅=⎪⎩,得3022220hz x y y ++=⎪⎨⎪=⎩取(,0,n h =,………………………………………………………………11分易得平面ABC 的一个法向量()20,0,1n =因为二面角E AC B --的大小为060,所以1212121cos ,2n n n n n n ⋅==,解得:3h =.………………………………………………………………13分图1图2图316.(本小题满分15分)在ABC∆中,角A,B,C对应的的三边分别是a,b,c,B=.(1)求角C的值;(2)若1=c,BA tan3tan2=,求ABC∆的面积.解:(1B=sin cosA B C B-=,…………2分sin cosB C B C B-=(+),cos sinB C B=,.………………………………………………………………5分故2cos2C=,又0Cπ<<,所以4Cπ=.……………………………………………7分(2)若1=c ,tan 12tan 3tan 3tan )341tan A A B A Aπ-==-+=-⨯-(,22tan 5tan 30A A --=解得tan 3A =,1tan 2A =-(舍去),……………………10分则tan 2B =,所以sin A =,sin B =,由sin sin a cA C=,得a =,……13分故113sin 1225S ac B ==⨯⨯,ABC ∆的面积为53.……………………15分17.(本小题满分15分)已知数列{}n a 的首项是1,其前n 项和是n S ,且121++=+n a a n n ,*n ∈N .(1)求32,a a 的值及数列{}n a 的通项公式;(2)若存在实数λ,使得关于n 的不等式25n S n λ+≤,*n ∈N 有解,求实数λ取到最大值时n 的值.解:(1)由题可得当1n =时,21214a a =++=当2n =时,322219a a =+⨯+=.……………………2分当2n ≥时,121-=--n a a n n ,所以112211n n n n n a a a a a a a a ---=-+-++-+ 2212331n n n =-+-++= ,……5分当1n =时,11a =也满足2n a n =,综上所述,数列{}n a 的通项公式为2n a n =.…………………………………7分(未检验1n =时的情形,扣1分)(2)由题可得25n n S λ≤-,设25n n b n S =-,若要使得关于n 的不等式25n S n λ+≤(*n ∈N )有解,则()max n b ≤λ,当2n ≥时,2125250n n n b b a n --=-=-≥,则5n ≤,…………………………………12分故当4n =或5n =时,n b 的最大值为70,所以实数λ取到最大值70时,此时n 的值为4或5.………………………………………………………………………15分(λ最大值未给出不扣分)18.(本小题满分17分)已知函数()21ln 1x f x ax x -=+-(R a ∈).(1)当1=a 时,求曲线()x f y =在点()()2,2f 处的切线方程;(2)若103a <≤,3,22x ⎡⎤∈⎢⎥⎣⎦,证明:()2f x <;(3)若1x >,恒有()32ln 22f x ≥+,求实数a 的取值范围.解:(1)()()()11211f x x x -'=+--(1x >或12x <),…………………………3分则()223f '=,又()2ln 32f =+,所以所求的切线方程为()()2ln 3223y x -+=-,即22ln 333y x =++.…………………5分(定义域未给出,扣1分)(2)()()()1211f x a x x -'=+--……………………7分因为322x ≤≤,所以()()1112113x x --≤≤---,而310≤<a ,所以()0f x '≤,故()f x 在区间3,22⎡⎤⎢⎥⎣⎦上单调递减,………………………………9分所以()3312ln 22ln 22222f x f ⎛⎫≤=+≤+< ⎪⎝⎭成立.………………………………10分(3)当32x =时,3332ln 22ln 2222f a ⎛⎫=+≥+ ⎪⎝⎭,所以1a ≥.………………………12分下证:当1a ≥,1x >时()32ln 22f x ≥+恒成立.令()21ln 1x g a xa x -=+-,1a ≥所以()()211ln1x g a g x x -≥=+-,………………………………………………………14分所以()21ln 1x f x x x -≥+-,令()21ln 1x x x x ϕ-≥+-,则()()()()()()2311211211x x x x x x x ϕ--'=+=----,当31,2x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'<,()x ϕ单调递减,当3,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0x ϕ'>,()x ϕ单调递增,所以()332ln 222x ϕϕ⎛⎫≥=+ ⎪⎝⎭,所以a 的取值范围为[)1,+∞.……………………………………………………17分19.(本小题满分17分)直线族是指具有某种共同性质的直线的全体,例如()R ∈+=k kx y 1表示过点()1,0的直线族(不包括直线y 轴),直线族的包络曲线定义为:直线族中的每一条直线都是该曲线上某点处的切线,且该曲线上的每一点处的切线都是该直线族中的某条直线.(1)圆()22:34M x y +-=是直线族1(,)mx ny m n +=∈R 的包络曲线,求,m n 满足的关系式;(2)若点()00,N x y 不在直线族Ω:()2y tx t t =-∈R 的任意一条直线上,求0y 的取值范围及直线族Ω的包络曲线E 的方程;(3)在(1)(2)的条件下,过曲线E 上动点P 向圆M 做两条切线PA ,PB ,交曲线E 于点A ,B .求PAB ∆面积S 的最小值.解:(1)由题可得,直线族1(,)mx ny m n +=∈R 为圆M 的切线,………………2分故满足,2d =,所以,m n 满足2254610n m n --+=.……………4分(2)将点()00,N x y 代入()2R y tx t t =-∈,可得关于t 的方程2000t x t y -+=,因为点()00,N x y 不在直线族()2R y tx t t =-∈上,故方程2000t x t y -+=无实数解,所以20040x y ∆=-<,那么2004x y >,故00y >因为区域2004x y >的边界为抛物线24x y =,…………………………………7分下证:24x y =是()2R y tx t t =-∈的包络曲线.证明:联立直线()2R y tx t t =-∈与24x y =,可得22440x tx t -+=,所以0∆=,故直线族Ω:()2R y tx t t =-∈为抛物线24x y =的切线.因此直线族Ω的包络曲线E 的方程为24x y =.…………………………………10分(3)设()11,A x y ,()22,B x y ,()22,P u u 则2111224PA y u x u k x u -+==-,故()11:2420PA x u x y ux +--=由直线PA 与M 相切,所以2d =,整理得()22111250u y ux u -++-=,1)同理可得,()22221250u y ux u -++-=,2)由1)2)可得直线()22:1250AB u y ux u -++-=.………………………………12分直线AB 与2:4C x y =联立得()22212504u y ux u x y ⎧-++-=⎪⎨=⎪⎩,(显然12≠u )可得22228204011ux u x u u -++=--,由韦达定理可得21212228204,11u u x x x x u u -+=-⋅=--.因此(()222411u AB u+=-,………………………………………………14分由于点()22,P u u 到直线AB 的距离422251u u d u ++=+,所以PAB ∆面积为()()4222225251PAB S u u u ∆=++-,令21u m -=,则()824PAB S f m m m ∆⎛==++ ⎝,由()()01f m m '==≥-,解得4m =,所以()f m 在()0,4上单调递减,在()4,+∞上单调递增,那么()()min 4PAB S f ∆==25u =时取到),所以PAB ∆面积S的最小值是17分。

2023届福建省福州市高三质量检测数学试题(解析版)

2023届福建省福州市高三质量检测数学试题(解析版)
(3)从 中选择0人划左桨,则 中的两人划右桨,从 中选2人划左桨,共有
所以,不同的选派方法共有19种.故选:C.
7.已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n, 则()
A.α∥β且 ∥αB.α⊥β且 ⊥β
C.α与β相交,且交线垂直于 D.α与β相交,且交线平行于
〖答案〗D
福建省福州市2023届高三质量检测数学试题
第Ⅰ卷
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 , ,若 ,则 ()
A. 2B. 3C. 6D. 7
〖答案〗B
〖解析〗因为集合 , ,且 ,所以
故 .故选:B.
2.在复平面内,复数 对应的点位于第二象限,则复数 对应的点位于()
11.如图,一个半径为3m的筒车,按逆时针方向匀速旋转1周.已知盛水筒Р离水面的最大距离为5.2m,旋转一周需要60s.以P刚浮出水面时开始计算时间,Р到水面的距离d(单位:m)(在水面下则d为负数)与时间t(单位:s)之间的关系为 , ,下列说法正确的是()
A.
B.
C.
D. 离水面的距离不小于3.7m的时长为20s
〖解析〗由 平面 ,直线 满足 ,且 ,所以 ,又 平面 , ,所以 ,由直线 为异面直线,且 平面 平面 ,则 与 相交,否则,若 则推出 ,与 异面矛盾,所以 相交,且交线平行于 ,故选D.
8.已知 ,函数 , .若 ,则 的取值范围是()
A. B.
C. D.
〖答案〗C
〖解析〗 ,即 ,
令 ,

9.已知互不相同的9个样本数据,若去掉其中最大和最小的数据,则剩下的7个数据与原9个数据相比,下列数字特征中不变的是()

四川省绵阳市2024-2025学年高三第一次诊断性考试数学质量检测试题(含解析)

四川省绵阳市2024-2025学年高三第一次诊断性考试数学质量检测试题(含解析)

注意事项:1.答卷前,考生务必将自己的班级、姓名、考号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.4四川省绵阳市2024-2025学年高三第一次诊断性考试数学质量检测试题.考试结束后,将答题卡交回.第Ⅰ卷(选择题,共58分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2,1,0,1,2A =--,(){}211B x x =+≤,则A B = ( )A. {}2,1--B. {}2,1,0-- C. []2,0- D. []22-,【答案】B 【解析】【分析】先求出集合B ,再根据集合交集运算即可得答案【详解】由()211x +≤,可得20x -≤≤,所以{}20B x x =-≤≤,所以A B = {}{}{}2,1,0,1,2202,1,0x x --⋂-≤≤=--.故选:B2. “22ac bc >”,是“a b >”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】利用充分条件、必要条件的定义判断即得.【详解】若22ac bc >,则20,0c c ≠>,因此a b >,当a b >,0c =时,220ac bc ==,所以“22ac bc >”,是“a b >”的充分不必要条件.故选:A3. 已知0,0x y >>,且满足3x y xy +=-,则xy 的最小值为( )A. 3B. C. 6D. 9【答案】D 【解析】【分析】利用基本不等式化简已知条件,再解不等式求得xy 的范围,从而求得xy 的最小值.详解】3x y xy +=-≥)23310--=+≥,30,9xy -≥≥,当且仅当3x y ==时等号成立,所以xy 的最小值为9.故选:D4. 某公司根据近几年经营经验,得到广告支出与获得利润数据如下:广告支出x /万元258111519利润y /万元334550535864根据表中数据可得利润y 关于广告支出x 的经验回归方程为ˆ 1.6ˆ5yx a =+.据此经验回归方程,若计划利润达到100万元,估计需要支出广告费( )A. 30万元 B. 32万元C. 36万元D. 40万元【答案】D 【解析】【分析】先得求数据的中心点()10,50.5,代入ˆ 1.6ˆ5yx a =+得ˆ34a =,再由ˆ100=y 求得40x =即得.【详解】258111519106x +++++==,33455053586450.56y +++++==,因ˆ 1.6ˆ5yx a =+过点()x y ,故ˆ50.5 1.6510a =⨯+,得ˆ34a =,【故当ˆ100=y时,341001.65x +=,得40x =,故选:D5. 下列选项中,既是增函数,也是奇函数的是( )A. 2y x -= B. 1y x x=+C. sin y x x =-D. 1ln1x y x -=+【答案】C 【解析】【分析】分别判断函数的奇偶性和单调性即可.【详解】对于A ,令()2f x x -=,0x ≠,()()()22fx x x fx ---=-==,所以2y x -=是偶函数,故A 错误;对于B ,1y x x=+在(),1∞--和()1,+∞上单调递增,在()1,0-和()0,1上单调递减,故B 错误;对于C ,令()sin g x x x =-,R x ∈,()()()()sin sin g x x x x x g x -=---=--=-,所以sin y x x =-是奇函数,又1cos 0y x '=-≥,所以sin y x x =-是R 上的增函数,故C 正确;对于D ,令()1ln1x h x x -=+,()(),11,x ∈-∞-⋃+∞,则()()()11201111x x h x x x x x '+-⎛⎫'=⋅=> ⎪-+-+⎝⎭,所以函数1ln 1x y x -=+在(),1∞--和()1,+∞上单调递增,但在定义域上不单调,故D 错误.故选:C.6. 已知θ为第一象限角,且πtan tan 03θθ⎛⎫++= ⎪⎝⎭,则1cos21cos2θθ-=+( )A. 9 B. 3C.13D.19【答案】B 【解析】【分析】根据两角和正切公式结合已知条件可求出tan θ=.【详解】由题意知θ为第一象限角,且πtan tan 03θθ⎛⎫++= ⎪⎝⎭,的故πtan tan3tan 0π1tan tan 3θθθ++=-,解得tan θ=或tan θ=(舍去),则2221cos22sin tan 31cos22cos θθθθθ-===+,故选:B7. 某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P (单位:mg/L )与时间t (单位:h )间的关系为0ektP P -=(e 是自然对数的底数,0P ,k 为正的常数).如果前9h 消除了20%的污染物,那么消除60%的污染物需要的时间约为( )(参考数据:lg 20.301≈)A. 33h B. 35h C. 37h D. 39h【答案】C 【解析】【分析】根据给定条件,求出常数k ,然后再令0.4P =即可解出t .【详解】依题意,900(120%)ekP P --=,解得1ln 0.89k =-,即900.8t P P =,当0(160%)P P =-时,9000.40.8tP P =,即90.80.4t=,解得9lg 0.49(2lg 21)9(120.301)37lg 0.83lg 21130.301t --⨯==≈≈--⨯,所以污消除60%的污染物需要的时间约为37h .故选:C8. 已知函数()()()()2231,0,e 3,0x x x f x g x mx x x ⎧-+≤⎪==⎨->⎪⎩,若关于x 的不等式()()()0x f x g x -<的整数解有且仅有2个,则实数m 的取值范围是( )A. 30,2⎛⎤⎥⎝⎦B. 2e 0,2⎛⎤ ⎥⎝⎦C. (]2e,0- D. ()3,00,2⎛⎤-∞ ⎥⎝⎦【答案】A 【解析】【分析】判断函数的单调性,作出函数图象,结合题意列出相应不等式组,即可求得答案.【详解】令()()2e3,0xh x xx =->,则()()()e 31x h x x x +'=-,当01x <<时,ℎ′(x )<0,则ℎ(x )在(0,1)上单调递减;当1x >时,ℎ′(x )>0,则ℎ(x )在(1,+∞)上单调递增;令()()231,0k x x x =-+≤,则其图象为开口向下,对称轴为1x =-的抛物线;由关于x 的不等式()()()0x f x g x -<,可知0x ≠,当0x >时,()()f x g x <,即有()()h x g x <;当0x <时,()()f x g x >,即有()()k x g x >;作出函数图象如图:要使关于x 的不等式()()()0x f x g x -<的整数解有且仅有2个,显然0m ≤不能满足题意,故需满足()()()()02222m h g k g ⎧>⎪≥⎨⎪-≤-⎩,即20e 232m m m>⎧⎪≥⎨⎪-≤-⎩,解得302m <≤,即m 的取值范围为30,2⎛⎤⎥⎝⎦,故选:A【点睛】关键点睛:解答本题的关键在于作出函数图象,从而列出相应不等式组,求得答案.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知数列{a n }的前n 项和为n S ,且116,6n n a a S +==+,则( )A. 342S = B. 2n nS a <C. {}n S 是等比数列 D. 存在大于1的整数n ,k ,使得n kS a =【答案】AB 【解析】【分析】通过n a 与n S 的关系,作差得到数列{}n a 是以6为首项,2为公比的等比数列,进而逐项判断即可.【详解】由16n n a S +=+,可得16,2n n a S n -=+≥两式相减可得:12,2n n a a n +=≥,又2211612,2a a S a =+==,所以数列{}n a 是以6为首项,2为公比的等比数列,所以162n n a -=⨯,626nn S =⨯-,所以3362642S =⨯-=,A 正确;262n n a =⨯,所以2n n S a <,B 正确;由626nn S =⨯-,可得1236,18,42S S S ===,显然3212S S S S ≠,可判断{}n S 不是等比数列,C 错误;若n k S a =,即162662n k -⨯-=⨯,也即1221n k --=,显然不存在大于1的整数,n k ,使得等式成立,D 错误;故选:AB10. 已知函数()22sin cos0)222xxxf x ωωωω=-+>在[)0,π上有且仅有4个零点,则( )A.1114,33ω⎛⎤∈⎥⎝⎦B. 令()π6g x f x ⎛⎫=+⎪⎝⎭,存在ω,使得()g x '为偶函数C. 函数()f x 在()0,π上可能有3个或4个极值点D. 函数()f x 在ππ,3535⎛⎫- ⎪⎝⎭上单调递增【答案】ABD 【解析】【分析】利用二倍角和辅助角公式化简得到()π2sin 3f x x ω⎛⎫=+⎪⎝⎭,根据()f x 在[)0,π上有且仅有4个零点,可确定πππ,π333x ωω⎡⎫+∈+⎪⎢⎣⎭,进而解得111433ω<≤,再根据其范围结合函数图象和平移知识等逐一判断即可.【详解】()2π2sincossin 2sin (0)2223xxxf x x x x ωωωωωωω⎛⎫=-=+=+> ⎪⎝⎭对于A , [)0,πx ∈,πππ,π333x ωω⎡⎫+∈+⎪⎢⎣⎭, 因为()f x 在[)0,π上有且仅有4个零点,所以π4ππ5π3ω<+≤,解得111433ω<≤,∴1114,33ω⎛⎤∈ ⎥⎝⎦,故A 正确;对于B ,()π6g x f x ⎛⎫=+⎪⎝⎭ππππ2sin 2sin 6363x x ωωω⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,()ππ2cos 63g x x ωωω'⎛⎫=++ ⎪⎝⎭为偶函数,则πππ,63k k ω+=∈Z ,即62,k k ω=-∈Z ,∵0,ω>∴取4ω=,()8cos 4g x x '=-为偶函数,满足题意,故B 正确;对于C ,x ∈(0,π),πππ,π333x ωω⎛⎫+∈+ ⎪⎝⎭,∵1114,33ω⎛⎤∈⎥⎝⎦,(]ππ4π,5π3ω+∈,∴函数()f x 在()0,π上可能有4个或5个极值点, 故C 不正确;对于D ,若ππ,3535x ⎛⎫∈-⎪⎝⎭,则πππππ,3353353x ωωω⎛⎫+∈-++ ⎪⎝⎭,∵1114,33ω⎛⎤∈⎥⎝⎦,∴ππ7π8πππ46π7π,,,353353535310515ωω⎡⎫⎛⎤-+∈+∈⎪ ⎢⎥⎣⎭⎝⎦,∴函数()f x 在ππ,3535⎛⎫- ⎪⎝⎭上单调递增. 故D 正确;故选:ABD.11. 已知函数()f x 的定义域为R ,()f x 不恒为0,且()()222f x f y x y x y f f ++-⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,则( )A. ()0f 可以等于零 B. ()f x 的解析式可以为:()cos2f x x =C. 曲线f (x−1)为轴对称图形 D. 若()11f =,则201()20k f k ==∑【答案】BCD【解析】【分析】利用赋值法可得()00f =或()01f =,分类讨论可得()01f =,判断A ;.有一只判断出函数的奇偶性,可判断B ;结合B 的分析以及图象的平移可判断C ;判断出(){}f k 是以()11f =为首项,0为公差的等差数列,即可判断D.【详解】令0x y ==,可得()()000000222f f f f ++-⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,可得()()200f f =,解得()00f =或()01f =,当()00f =时,则可得()()0222f x f x x x x x f f ++-⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,则()0f x =,与()f x 不恒为0矛盾,所以()01f =,故A 错误;令y x =-,可得()()()()()()20,f x f x f f x f x f x +-=∴-=,所以()f x 为偶函数,因为()cos 2f x x =是偶函数,所以()f x 的解析式可以为:()cos2f x x =,故B 正确;因为()f x 为偶函数,所以()f x 的图象关于直线0x =对称,所以()1f x -关于直线1x =对称,所以曲线()1f x -为轴对称图形,故C 正确;令2,x k y k =+=,则可得()()2222222f k f k k f f +++⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,所以()()()*221,N f k f k f k k ++=+∈,又()()2022222f f f f +⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,解得()21f =,所以(){}f k 是以()11f =为首项,0为公差的等差数列,所以201()20k f k ==∑,故D 正确.故选:BCD.【点睛】关键点点睛:采用赋值法是解抽象函数的一种有效方法,多领会其思路.第Ⅱ卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.12. 记ABC V 内角A ,B ,C 的对边分别为a ,b ,c .已知()22,3,cos 3b c B C ==+=-,则a =______.【解析】【分析】结合三角形内角和、诱导公式与余弦定理计算即可得解.【详解】由()()2cos cos πcos 3B C B C A ⎡⎤+=-+=-=-⎣⎦,故2cos 3A =,则22222cos 491253a b c bc A =+-=+-⨯=,故a =..13. 已知函数()|ln|2||f x x m =+-,m 为正的常数,则()f x 的零点之和为________.【答案】8-【解析】【分析】根据给定条件,探讨函数的对称性,再结合零点的意义即可求解得答案.【详解】函数()f x 的定义域为{R |2}x x ∈≠-,由()0f x =,得|ln|2||x m +=,令函数()|ln|2||g x x =+,(4)|ln|42|||ln |2||()g x x x g x --=--+=+=,则函数()y g x =图象关于直线2x =-对称,在同一坐标系内作出直线(0)y m m =>与函数()y g x =的图象,如图,直线(0)y m m =>与函数()y g x =的图象有4个交点,令其横坐标从左到右依次为1234,,,x x x x ,观察图象得14234x x x x +=+=-,所以()f x 的零点之和为8-.故答案为:8-14. 若2x =是函数()()213e 22xf x x a x x ⎛⎫=-+-⎪⎝⎭的极大值点,则实数a 的取值范围为________.【答案】2e a <-【解析】【分析】根据函数的导数,对a 分类讨论,再结合()0f x '=的根,分类讨论,分析函数的极大值点即可得出答案.【详解】()()()()()e222e xx f x x a x x a =-+-=-+',当0a ≥时,e 0x a +>,当2x <时,f ′(x )<0,当2x >时,f ′(x )>0,所以()f x 在(),2∞-上单调递减,在()2,∞+上单调递增,所以2x =是函数的极小值点,不符合题意;当0a <时,令()0f x '=,可得()122,ln x x a ==-,若()2ln a <-,即2e a <-时,则2x <时,f ′(x )>0,函数()f x 单调递增,()2ln x a <<-时,f ′(x )<0,函数()f x 单调递减,所以2是函数()()213e 22xf x x a x x ⎛⎫=-+- ⎪⎝⎭的极大值点,符合题意;若()2ln a >-即20e a >>-时,则2x >时,f ′(x )>0,函数()f x 单调递增,()ln 2a x -<<时,f ′(x )<0,函数()f x 单调递减,所以2是函数()()213e 22xf x x a x x ⎛⎫=-+-⎪⎝⎭的极小值点,不符合题意;若()2ln a =-即2e a =-时,则R x ∈时,f ′(x )≥0,函数()f x 单调递增,函数()f x 无极值点,不符合题意.综上,当2e a <-时,2是函数()f x 的极大值点.故答案为:2e a <-【点睛】关键点点睛:首先观察导函数,当0a ≥时,分析函数单调性判断2是否为极大值点,当0a <时,根据()0f x '=的两根大小分类,由导数的正负得函数的单调性,再由单调性判断极大值点是否为2.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 近年来,解放军强军兴军的深刻变化,感召了越来越多的高中优秀青年学子献身国防,投身军营.2024年高考,很多高考毕业学生报考了军事类院校.从某地区内学校的高三年级中随机抽取了900名学生,其中男生500人,女生400人,通过调查,有报考军事类院校意向的男生、女生各100名.(1)完成给出的列联表,并分别估计该地区高三男、女学生有报考军事类院校意向的概率;有报考意向无报考意向合计男学生女学生合计(2)根据小概率值0.10α=的独立性检验,能否认为学生有报考军事类院校的意愿与性别有关.参考公式及数据:()()()()()22,n ad bcn a b c da b c d a c b dχ-==+++ ++++.α0.250.150.100.050.0250.0100.0050.001xα1.3232.072 2.7063.841 5.024 6.6357.87910.828【答案】(1)列联表见解析,男生有报考军事类院校意向的概率为15,女生有报考军事类院校意向的概率为1 4(2)能认为学生有报考军事类院校的意愿与性别有关【解析】【分析】(1)先填写22⨯列联表,再根据古典概型概率计算公式求得正确答案.(2)计算2χ的知识,从而作出判断.【小问1详解】根据已知条件,填写22⨯列联表如下:有报考意向无报考意向合计男学生100400500女学生100300400合计200700900男生有报考军事类院校意向的概率为1001 5005=,女生有报考军事类院校意向的概率为1001 4004=.【小问2详解】()22900100300400100 3.214 2.072200700400500χ⨯-⨯=≈>⨯⨯⨯,所以能认为学生有报考军事类院校的意愿与性别有关.16. 记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c .已知1sin 2a C =,且cos cos 1a C c A +=,(1)求ABC V 的面积;(2)若π4B =,求A .【答案】(1)14; (2)π8或5π8.【解析】【分析】(1)根据给定条件,利用余弦定理及三角形面积公式求解即得.(2)利用正弦定理,结合和角的正弦公式、二倍角公式求解即得.【小问1详解】在ABC V 中,由余弦定理及cos cos 1a C c A +=,得222222122a b c b c a a c ab bc+-+-⋅+⋅=,整理得1b =,而1sin 2a C =,所以ABC V 的面积11sin 24S ba C ==.【小问2详解】由(1)及正弦定理得1πsin sin sin 4a b A B ===a A =,于1sin 2A C =1sin(2π)4A A +=,12cos )A A A +=,即22sin cos 12sin A A A =-,因此sin 2cos 2A A =,即tan 21A =,由3π04A <<,得3π022A <<,解得π24A =或5π24A =,所以π8A =或5π8A =.17. 已知数列{}{},n n a b 满足()1n n n a nb +=,且1n a +是n b 与1n b +的等比中项.(1)若124a a +=,求1b 的值;(2)若12a =,设数列{}{},n n a b 的前n 项和分别为,n n S T .(ⅰ)求数列{}{},n n a b 的通项公式;(ⅱ)求n n T S -.【答案】(1)2(2)(ⅰ)()1n a n n =+,()21n b n =+(ⅱ)()32n n n n T S +-=【解析】【分析】(1)先得112b a =,2232b a =,利用1n a +是n b 与1n b +的等比中项可得;(2)(ⅰ)先求得1n n n b a n+=,利用1n a +是n b 与1n b +的等比中项可得12n n n a a n ++=,由累乘法可得()1n a n n =+,进而可得()21n b n =+;(ⅱ)先得1n n n a b -=+,利用等差数列前n 项和公式可得()32n n T S n n +-=.【小问1详解】由()1n n n a nb +=可得112b a =,2232b a =,由题意可知2a 是1b 与2b 的等比中项,故2212a b b =,可得22123a a a =,即213a a =,又因124a a +=,故11a =,故1122b a ==【小问2详解】(ⅰ)由()1n n n a nb +=得1n n n b a n +=,由题意可得1211121n n n n n n n a a a n n b b ++++++==⋅,得12n n n a a n ++=,故12n n a n a n++=,故()1112211321121n n n n n a a a a n n n n a n n a a a ---=⨯⨯⨯⨯+⨯⨯⨯=+--= ,()211n n n b a n n+==+,故()1n a n n =+,()21n b n =+(ⅱ)()()2111n n b n a n n n =+-=-++,()()1212n n n n T b b b a a a S =+++-++-()()()1122n n b a b a b a =-+-++- ()231n =++++ ()212n n++=()32n n +=18. 已知函数()3221f x x ax a x =+--.(1)当5a =-时,则过点()0,2的曲线()f x 的切线有几条?并写出其中一条切线方程;(2)讨论()f x 的单调性;(3)若()f x 有唯一零点,求实数a 的取值范围.【答案】(1)有3条切线,322y x =-+(2)答案见解析 (3)⎛⎫ ⎪ ⎪⎝⎭【解析】【分析】(1)根据导数的几何意义,设出切点得出切线斜率,列方程组分析解得个数即可;(2)求出导函数,对a 分类讨论即可得出函数单调区间;(3)根据函数的单调性,结合当x →+∞时,()f x →+∞,利用极大值建立不等式求解.【小问1详解】当5a =-时,()325251f x x x x =---,()231025f x x x =--',设切点为()00,x y ,因为切线过点(0,2),所以切线斜率存在,故可设切线方程为2y kx =+,则3200002002525131025kx x x x k x x ⎧+=---⎨=--⎩,化简可得()2200021330x x x --+=,即()()200012330x x x ---=,由2002330x x --=的判别式9240∆=+>知方程有2个不等实根且不为1,故()()200012330x x x ---=有3个不等的实根,所以切线有3条,其中一条切点横坐标为1,故3102532k =--=-,所以切线方程为322y x =-+.【小问2详解】()()()22323f x x ax a x a x a =+-=-+',当0a =时,()230f x x ='≥,所以函数R 上单调递增;当0a >时,3a a -<,所以x a <-或3ax <时,f ′(x )>0,()f x 单调递增,当3aa x -<<时,f ′(x )<0,()f x 单调递减;当0a <时,3aa ->,所以x a >-或3a x <时,f ′(x )>0,()f x 单调递增,当3ax a <<-时,f ′(x )<0,()f x 单调递减;综上,0a =时,()f x 在R 上单调递增,无递减区间;当0a >时,()f x 在(),a ∞--和,3a ∞⎛⎫+ ⎪⎝⎭上单调递增,在,3a a ⎛⎫- ⎪⎝⎭上单调递减;当0a <时,()f x 在,3a ∞⎛⎫- ⎪⎝⎭和(),a ∞-+上单调递增,在,3a a ⎛⎫- ⎪⎝⎭上单调递减.【小问3详解】当0a =时,3()1f x x =-,函数仅有1个零点1;当0a >时,由(2)知,()f x 的极大值为()f a -,且当x →+∞时,()f x →+∞,若()f x 有唯一零点,则333()10f a a a a -=-++-<,解得1a <,故()0,1a ∈,当0a <时,由(2)知,()f x 的极大值为3a f ⎛⎫⎪⎝⎭,同理,若()f x 有唯一零点,则3510327a f a ⎛⎫=--< ⎪⎝⎭,解得a >,故a ⎛⎫∈ ⎪ ⎪⎝⎭,综上,实数a的取值范围⎛⎫⎪ ⎪⎝⎭【点睛】关键点点睛:对于含参数的函数,研究单调区间的关键在于对导函数的特点分析,本题导函数为二次函数,所以分析的重点在于导函数零点的关系,在根据函数有唯一零点求参数的时候,利用函数的极大值点建立不等式是解题关键.19. 已知函数()2ln 3f x x x x a =+-+,()f x 在(]0,1上的最大值为3ln24-.在(1)求实数a 的值;(2)若数列{}n a 满足()1231n n n n a a f a a +=+-,且143a =.(ⅰ)当2,n n ≥∈Z 时,比较n a 与1的大小,并说明理由;(ⅱ)求证:1312nii a=-<∑.【答案】(1)a =2(2)(1)1n a >,理由见详解;(2)证明见详解【解析】【分析】(1)利用导数判断()f x 的单调性求出最大值得解;(2)(i )由已知结合基本不等式可得1ln 12nn na a a +≥+,利用数学归纳法证明1n a >,()2,Z n n ≥∈,(ii )先构造函数()ln 1x x xϕ+=,并利用导数证明()1x ϕ<,从而得到()11112+-<-n n a a ,将所证明的式子放缩求和证明.【小问1详解】()()()121123x x f x x x x--'=+-=Q ,(]0,1x ∈,当102x <<时,10x -<,210x -<,()0f x '∴>,则()f x 在10,2⎛⎫⎪⎝⎭上单调递增,当112x ≤≤时,10x -≤,210x -≥,()0f x '∴≤,则()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,()max 11133ln ln 222424f x f a ⎛⎫∴==+-+=- ⎪⎝⎭,解得2a =所以实数a 的值为2.【小问2详解】(i )由(1)知,()2ln 32f x x x x =+-+,所以212ln 3231n n n n n n a a a a a a +=+-++-,即21ln 12n n n na a a a +++=,212n n a a +≥Q ,1ln 12nn na a a +∴≥+,.下面用数学归纳法证明1n a >,()2,Z n n ≥∈,当2n =时,143a =,1214lnln 3111823a a a ∴≥+=+>,假设()2,Z n k k k =≥∈时,命题成立,则1k a >,当1n k =+时,有1ln 112kk ka a a +≥+>成立,所以上述命题对2,Z n n ≥∈,均有1n a >成立.(ii )当1n =时,13112a -=<成立,当2n ≥时,令()ln 1x x x ϕ+=,则()2ln xx x ϕ-'=,当01x <<时,()0x ϕ'>,当1x >时,()0x ϕ'<,所以()x ϕ在()0,1上单调递增,在()1,+∞上单调递减,则()()11x ϕϕ<=,所以()()21ln 11ln 1112222n n n nn n n n n n a a a a a a a a a a ϕ+⎛⎫++++==+=+< ⎪⎝⎭,即11112n n a a +-<-,又由(i )知1n a >,则()11112+-<-n n a a ,()()()121313111ni n i a a a a =∴-=-+-++-⎡⎤⎣⎦∑L ()121111311222n a -⎡⎤⎛⎫<-++++ ⎪⎢⎥⎝⎭⎣⎦L 111123211322n n -⎛⎫=⨯⨯=- ⎪⎝⎭,102n >Q ,1112n ∴-<,12122n⎛⎫∴-< ⎪⎝⎭,即1312ni i a =-<∑,得证.【点睛】关键点点睛:本题最后小问证明的关键是构造函数()ln 1x x xϕ+=,并利用导数证明()1x ϕ<,从而得到()11112+-<-n n a a .。

福建省名校联盟2024-2025学年高三上学期9月质量检测试题 数学(含解析)

福建省名校联盟2024-2025学年高三上学期9月质量检测试题 数学(含解析)

高三9月数学试卷注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上.写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.本试卷主要考试内容:集合、常用逻辑用语、不等式、函数的概念与性质、一元函数的导数及其应用、平面向量、三角函数与解三角形。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,,则( )A .B .C .D .2.若向量,,且,则( )A .B .8C .D .23.已知是幂函数,则“是正偶数”是“的值域为”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.若,则( )A .B .CD .5.已知是奇函数,且在上单调递减,则( )A .B .C .D .6.已知函数的部分图象如图所示,则(){}1,2,3M =-{}1,0,2,5N =-M N = {}1,2-{}1,2,3-{}1,0,2,5-{}1,0,2,3,5-()1,2a =- ()1,2b m =+ ()a b a +⊥m =8-2-()f x x α=α()f x [)0,+∞π1sin 83α⎛⎫-= ⎪⎝⎭πcos 24α⎛⎫-= ⎪⎝⎭79-79()f x ()f x ()2,+∞()()440f f -->()()440f f -+>()()340f f -+>()()340f f -+<()()()sin 0,0,πf x A x A ωϕωϕ=+>><()2f =A .B .C .D .7.“三山一水”城市雕塑位于福建省福州市五一广场,是福州市的标志性雕塑.这座雕塑以福州的自然景观和历史文化为灵感,通过艺术的形式展现了福州“三山两塔一条江”的独特城市风貌和地域文化特色.如图,为了测量“三山一水”城市雕塑的高度,选取了与该雕塑底部在同一平面内的两个测量基点与.现测得,,在点测得雕塑顶端的仰角为,在点测得雕塑顶端的仰角为,则雕塑的高度()A .47.6mB .35.7mC .23.8mD .11.9m8.已知函数,.当时,恒成立,则的取值范围为( )A .B .C .D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数,则()A .在上单调递减B .在上单调递增C .有3个零点D .直线与的图象仅有1个公共点10.记的内角的对边分别为,且,,的面积为的周长可能为( )A .8B.C .9D .11.已知函数,则下列结论正确的是()A .的图像关于轴对称1-2-B C D 30CBD ∠=︒23.8m CD =C A 45︒D A30︒AB =()()ln 11f x x a x =-++()()21g x a x =+1x ≥()()20f x g x +≥a ()0,1()1,+∞(]0,1[)1,+∞()()()2623f x x x =--()f x ()0,1()f x ()1,2()f x 3y =-()f x ABC △,,A B C ,,a b c sin sin 5sin a B c A A +=1bc b c =++ABC △ABC △5+5+()sin cos f x x x x =++()f x yB .的图象关于点对称C .的图象关于直线对称D .是的极大值点三、填空题:本题共3小题,每小题5分,共15分.12.已知,,则______.13.已知,,且______的最小值为______.14.对于任意的,函数满足,函数满足.若,,则______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数.(1)若曲线在点处的切线方程为,求和的值;(2)求的单调区间与最大值.16.(15分)在中,角的对边分别为.已知.(1)求角的大小;(2)若;(3)若,求的值.17.(15分)已知函数(1)求函数的解析式;(2)若函数在上单调,求的取值范围.18.(17分)()f x ππ,44⎛⎫-- ⎪⎝⎭()f x π2x =π2x =()f x ()tan 4αβ+=()tan 3αβ-=-tan2β=0a >0b >2ab ==,x y ∈R ()f x ()()()()2f x y f x y f x f y ++-=()g x ()()()g x y g x g y +=()21f =-()38g =()()2024g f =()ln f x x x x a =--()y f x =()()1,1f 2y bx =+a b ()f x ABC △,,A B C ,,a b c sin cos 0b A a B -=B c =b =ac =tan A ()()211,0,122211,0.ax a x f x ax a x a x ⎧+<⎪+=⎨⎪+-++≥⎩()f x ()f x R a已知函数.(1)将化成的形式;(2)求的单调区间;(3)若在上的值域为,求的取值范围.19.(17分)若函数在上存在,使得,,则称是上的“双中值函数”,其中称为在上的中值点.(1)判断函数是否是上的“双中值函数”,并说明理由.(2)已知函数,存在,使得,且是上的“双中值函数”,是在上的中值点.①求的取值范围;②证明:.()2cos f x x x x =+()f x ()()()cos 0,0,πf x A x B A ωϕωϕ=++>><()f x ()f x π,4αα⎡⎤+⎢⎥⎣⎦[],a b b a -()f x [],a b ()1212,x x a x x b <<<()()()1f b f a f x b a-='-()()()2f b f a f x b a-='-()f x [],a b 12,x x ()f x [],a b ()3231f x x x =-+[]1,3-()21ln 2f x x x x ax =--0m n >>()()f m f n =()f x [],n m 12,x x ()f x [],n m a 122x x a +>+高三9月数学试卷参考答案1.D .2.B 由题意得.因为,所以,即.3.A 当是正偶数时,的值域为.当的值域为,但不是正偶数.故“是正偶数”是“的值域为”的充分不必要条件.4.D 由题意可得.5.D 因为是奇函数,所以,则,,所以A ,B 均错误.因为在上单调递减,所以,则,得,C 错误,D 正确.6.B 由,得,.由图可知,则,得,又,所以.由图可知,得.综上,,得7.C 设,则,,在中,由余弦定理得,即,得.8.D 令,则.若,则在上恒成立,则在上单调递减,则,不符合题意.若,则当时,,单调递减,则,不符合题意.若,则在上恒成立,则在上单调递增,即,符合题意.故的取值范围为.9.ACD 由题意得.当或时,,{}1,0,2,3,5M N =- (),4a b m += ()a b a +⊥ ()80a b a m +⋅=-+=8m =α()f x [)0,+∞()f x =()f x [)0,+∞αα()f x [)0,+∞22πππ17cos 2cos 212sin 1244839ααα⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=-⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()f x ()()44f f -=-()()440f f -+=()()()4424f f f --=-()f x ()2,+∞()()34f f >()()()334f f f =-->()()340f f -+<732222T =-=4T =2ππ2T ω==33πsin 024f A ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭()3ππ2π4k k ϕ+=+∈Z ()π2π4k k ϕ=+∈Z πϕ<π4ϕ=()π0sin 4f A ==2A =()ππ2sin 24f x x ⎛⎫=+⎪⎝⎭()π22sin π4f ⎛⎫=+= ⎪⎝⎭m AB x =m BC x =m tan30xBD ︒==BCD △2222cos CD BC BD BC BD CBD =+-⋅⋅∠222223.833x x x =+-23.8x =()()()()()222ln 2121h x f x g x x a x ax a x =+=-++++≥()()()()2112212x ax h x a ax x x--=-='++0a ≤()0h x '≤[)1,+∞()h x [)1,+∞()()10h x h ≤=01a <<11,x a ⎛⎫∈ ⎪⎝⎭()0h x '<()h x ()()10h x h ≤=1a ≥()0h x '≥[)1,+∞()h x [)1,+∞()()10h x h ≥=a [)1,+∞()()()()()222326612f x x x x x x =-+-=+-'1x <-2x >()0f x '>单调递增;当时,,单调递减.故A 正确,B 错误.的极大值为,的极小值为,所以有3个零点,直线与的图象仅有1个公共点,C ,D 正确.10.AB 由正弦定理得,得,则.由,得,得.由余弦定理,得或17,即,所以的周长为8或.11.BD易知,故A 错误;,所以的图象关于点对称,故B 正确;,故C 错误;,则,并结合的图象(图略),可知是的极大值点,故D 正确.12. .13.1;8,则,当且仅当即时,等号成立.14.2 令,得,则或(舍去).令,得,则,则,则,则.因为,所以,则,从而.()f x 12x -<<()0f x '<()f x ()f x ()125f -=()f x ()22f =-()f x 3y =-()f x 5ab ac a +=5b c +=16bc b c =++=1sin 2ABC S bc A ==△sin A =1cos 3A =±2222cos a b c bc A =+-()2222cos 9a b c bc bc A =+--=3a =ABC △5+()()f x f x -≠-()πππππsin cos sin cos 22222f x f x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫--+=--+--+--+++=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()f x ππ,44⎛⎫-- ⎪⎝⎭()()()()πsin πcos ππsin cos πf x x x x x x x f x -=-+-+-=-+-≠()πcos sin 114f x x x x ⎛⎫=-+=++ ⎪⎝⎭'π02f ⎛⎫= ⎪⎭'⎝()y f x ='π2x =()f x 711-()()()()()tan tan 7tan2tan 1tan tan 11αβαββαβαβαβαβ+--⎡⎤=+--==-⎣⎦++-1=+=448+=≥+==416a b ==0y =()()()220f x f f x =()01f =()0f x =1x y ==()()()220210f f f ⎡⎤+==⎣⎦()10f =()()110f x f x ++-=()()4f x f x +=()()202401f f ==()()()g x y g x g y +=()()()()332118g g g g ⎡⎤===⎣⎦()12g =()()()202412g f g ==15.解:(1),所以.又,所以,则.(2)的定义域为.,当时,,当时,,所以在上单调递增,在上单调递减,所以的最大值为.16.解:(1)由正弦定理得.因为,所以,则,即.因为,所以.(2)根据余弦定理得,解得或(舍去),故.(3)方法一.由,得,即.,得.方法二.根据余弦定理得,则.,,()()1ln 1ln f x x x '=-+=-()10f b '==()11f a =-12a -=1a =-()f x ()0,+∞()ln f x x'=-01x <<()0fx '>1x >()0f x '<()f x ()0,1()1,+∞()f x ()11f a =-sin sin sin cos 0B AA B -=()0,πA ∈sin 0A ≠sin cos 0B B -=tan 1B =()0,πB ∈π4B =252a =+-3a =1-3a =c =sin C A =πsin 4A A ⎛⎫+= ⎪⎝⎭A A A +=A A =1tan 3A =22222222cos 85b a c acB a a a =+-=+-=b =222cos 2b c a A bc +-===sin A ==故.17.解:(1)令,得,则得即(2)当时,在上不单调.当在上单调递增时,得.当在上单调递减时,得.综上,的取值范围为.18.解:(1).(2)由,得,所以的单调递增区间为.由,得,所以的单调递减区间为.sin 1tan cos 3A A A ==1t x =+1x t =-()()()()()2111,10,2212111,10,a t a t f t a t a t a t ⎧-+-<⎪=⎨⎪-+--++-≥⎩()21,1,22,1,at t f t at t t ⎧<⎪=⎨⎪-+≥⎩()21,1,22, 1.ax x f x ax x x ⎧<⎪=⎨⎪-+≥⎩0a =()0,1,2,1x f x x x <⎧=⎨-+≥⎩R ()f x R 0,11,2112,2a aa a ⎧⎪>⎪-⎪-≤⎨⎪⎪≤-+⎪⎩12a ≥()f x R 0,11,2112,2a a a a ⎧⎪<⎪-⎪-≤⎨⎪⎪≥-+⎪⎩2a ≤-a (]1,2,2⎡⎫-∞-+∞⎪⎢⎣⎭()1cos22xf x x x x +=+=++π2cos 24x ⎛⎫=- ⎪⎝⎭ππ2π22π,4k x k k -+≤-≤∈Z 3ππππ,88k x k k -+≤≤+∈Z ()f x 3πππ,π,88k k k ⎡⎤-++∈⎢⎥⎣⎦Z π2π2π2π,4k x k k ≤-≤+∈Z π5πππ,88k x k k +≤≤+∈Z ()f x π5ππ,π,88k k k ⎡⎤++∈⎢⎥⎣⎦Z(3)由题意得的最小正周期,由(2)可知图象的对称轴为直线.若在上单调,则,得,则.由,得,则,所以.若在上不单调,则在上的图象上必定有一个最高点或最低点,且在上的图象无论经过任何一个最高点或任何一个最低点,的取值范围均相同.假设在上的图象的最高点为,则当,即时,,此时取得最小值,且最小值是.易得,则,所以.综上,的取值范围为.19.(1)解:函数是上的“双中值函数”.理由如下:因为,所以.()f x 2ππ2T ==()fx ππ,82kx k =+∈Z ()f x π,4αα⎡⎤+⎢⎥⎣⎦ππ82ππππ,4822k k αα⎧≥+⎪⎪⎨⎪+≤++⎪⎩,k ∈Z ππ3ππ,8282k k k α+≤≤+∈Z ()πππ2cos 22cos 2444b a ff αααα⎛⎫⎛⎫⎛⎫-=-+=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααααππ3ππ,8282k k k α+≤≤+∈Z π3ππ2π,44k k k α+≤≤+∈Z sin2α⎤∈⎥⎦2,b a α⎡-∈⎣()f x π,4αα⎡⎤+⎢⎥⎣⎦()f x π,4αα⎡⎤+⎢⎥⎣⎦()f x π,4αα⎡⎤+⎢⎥⎣⎦b a -()f x π,4αα⎡⎤+⎢⎥⎣⎦π,28A ⎛+ ⎝2b =+ππ248αα++=⨯0α=()0a f ==b a -2-ππ84a f ⎛⎫>+=⎪⎝⎭2b a -<)22b a ⎡-∈-⎣b a -2⎡⎣()f x []1,3-()3231f x x x =-+()236f x x x '=-因为,,所以.令,得,即,解得.因为,所以是上的“双中值函数”.(2)①解:因为,所以.因为是上的“双中值函数”,所以.由题意可得.设,则.当时,,则为减函数,即为减函数;当时,,则为增函数,即为增函数.故.因为,所以,所以,即的取值范围为.②证明:不妨设,则,,即,.要证,即证.设,则.设,则,所以在上单调递增,所以,所以,则在上单调递减.因为,所以,即.因为,所以.()31f =()13f -=-()()()31131f f --=--()1f x '=2361x x -=23610x x --=x =13-<<<()f x []1,3-()()f m f n =()()0f m f n m n-=-()f x [],n m ()()120f x f x ''==()ln 1f x x x a '=---()()ln 1g x f x x x a ==---'()111x g x x x'-=-=()0,1x ∈()0g x '<()g x ()f x '()1,x ∈+∞()0g x '>()g x ()f x '()()min 1f x f a ='=-'()()120f x f x ''==0a -<0a >a ()0,+∞1201x x <<<11ln 10x x a ---=22ln 10x x a ---=11ln 1x x a -=+22ln 1x x a -=+122x x a +>+21121ln x a x x >+-=-()()()()()1ln 1ln 1ln 01h x g x g x x x x =--=-+-<<()()()11011ln h x x x x =-<<-'()()()1ln 01x x x x ϕ=-<<()ln 0x x ϕ'=->()x ϕ()0,1()()011x ϕϕ<<=()()1101ln h x x x -'=-<()h x ()0,1()()()1110h g g =-=()0h x >()()1ln g x g x >-101x <<()()111ln g x g x >-因为,所以.因为,所以.由①可知在上单调递增,所以,即得证.()()120g x g x ==()()211ln g x g x >-101x <<11ln 1x ->()g x ()1,+∞211ln x x >-122x x a +>+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学模拟卷注意事项:1 .本试题满分150分,考试时间为120分钟.2 .使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰. 出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.3 .答卷前将密封线内的项目填写清楚.一、选择题:本大题共10小题,每小题5分,共50分. 只有一个选项符合题目要求.A.若m//,n/ /,则m//nB.若, ,则//C.若m//,m//,则//D.若m,n , 则m//n4.已知函数 f x sin x —0的最小正周期为,则该函数的图象4在每小题给出的四个选项中,1已知集合A x log 2X 1 ,B= 2x,x 0,则A. x1 x 2 B. x1 c. x1 x 2log 3,c log s2cos—4 ,则a,b,c关系正确的是A. b>a>cB.a>b>c c. b>c>a D. c>b>a3.已知是m, n两条不同直线, 是三个不同平面,下列命题中正确的是A .关于直线X -对称B.关于点2°对称C.关于直线x 对称4x 5.已知x, y满足约束条件xy D .关于点,0对称8y 4 0y 4 0,贝U z=3x+2y的最大值为0A,6 C. 10 D. 12A .仝B.6C.丄D. _634337. 已知正实数X, y满足21 d卄1,右X2y m22m恒成立, 则实数m的取值范围是X yA. 2,4B. 4,2C. ,24,D. , 4 2,&已知函数f X X ln X , 则f X的图象大致为则实数m的取值范围是6•已知a,b为平面向量,若a b与a的夹角为3,aab与b的夹角为—,则b29.若曲线C i: X2y 2X 0与曲线C2:X 1 y mx m 0有四个不同的交点,A. B. ,0 3 .D.10.已知函数f XX2 m,x 0,2,若函数yX 2mx,x 0.X m恰有3个零点,则实数m的取值范围是1A. ,B.2,1 C . 1J D .1,二、填空题:本大题共有5个小题,每小题5分, 共25分.11.在等比数列a n中,若a2 1,则其前3项和S3的取值范围是12 .若某个几何体的三视图如右上图所示,则这个几何体的体积是A D C D4为坐标原点,以A 为圆心的圆与双曲线 C 的一条渐近线交于两点P, Q ,若/ PAQ=60uuu uuu且OQ 3OP ,则双曲线的离心率为其中“ Z 函数”对应的序号为三、解答题:本大题共 6个小题,共75 分. 16. (本小题满分12分)(1) 求角A 的大小;⑵若a 2 3,求△ ABC 面积的最大值.17. (本小题满分12分) 已知等差数列 a n 的首项a 1 1,a 2为整数,且a 3 6,8(1)求数列 a n 的通项公式;S n 108恒成立?若存在,求出n 的值;若不存在,说明理由.13.函数 f x 2sin15 . 若定义在 R 上f (x )对任意两个不等的实数为,X 2都有N f N x 2 f x 2 x j fx2x 2f x ,,则称函数f (x )为“ Z 函数” .给出下列四个函数:① y =— x 3+i ,② y =2x ,In x , x y0,x 0,④yx 2 4x, x 2x x, x已知△ ABC 的内角A , B , C 的对边分别是 a , b , c ,tan A tan B2ctan Bb[来源学科网]⑵设b na n 2六,S nb 1 b 2 b n ,问是否存在最小的正整数n ,使得来源学&科&网]象如右图所示,将f x 2x 14 .已知双曲线C : -yab18. (本小题满分12分)如图,已知四棱锥 P —ABCD 中,底面 ABCD 是直角梯形,/ ADC=90 ° , AB//CD ,1 _AB= , 2,平面 PBC 丄平面 ABCD .2(1)求证:AC 丄PB ; ⑵在侧棱PA 上是否存在一点 说明理由.19. (本小题满分12分)随着旅游业的发展,玉石工艺品的展览与销售逐渐成为旅游产业文化的重要一环•某 工艺品厂的日产量最多不超过15件,每日产品废品率p 与日产量X (件)之间近似地满x N ,(日产品废品率=日废品量 100%)15已知每生产一件正品可赢利 2千元,而生产一件废品亏损 1千元. (1)将该厂日利润y (千元)表示为日产量x (件)的函数; ⑵当该厂的日产量为多少件时,日利润最大?最大日利润是多少?(1)求f x 的解析式;-,若对任意的为 1,1,总存在x 21,e ,使得x20.(本小题满分 已知函数f x 13分)mx~2x m, n R 在x =1处取得极值2.[来源学科网]7成立, 2求实数a 的取值范围.AD=DC=2------- ,1 x足关系式p 年xx 20 “ ,10480日产量⑵设函数g x In21 .(本小题满分14分)已知点P是椭圆C上任意一点,点P到直线11 : x 2的距离为d,,到点F(- 1, 0)的距pl /Q离为d2,且:三,直线1椭圆C交于不同的两点A,B ( A, B 都在X 轴上),/ OFA+ / OFB=180 ° .(1) 求椭圆C的方程;(2) 当A为椭圆与y轴正半轴的交点时,求直线l方程;(3) 对于动直线l,是否存在一个定点,无论/ OFA如何变化,直线l 总经过此定点?若存在,求出该定点的坐标;若不存在,说明理由.10高三数学(文科)参考答案及评分标准D B A A D1说明:第9题曲线C 2的方程应为:(x )(y mx m ) 0.、填空题13. y 2sin 2x 14.15.②④2由同角三角函数基本关系和正弦定理得, (1)35又A 0,,所以A -.3(2)由余弦定理得:12 b 2 c 2 2bccos —,3 即: b 2 c 2 bc 12 ,所以12 b 2 c 2 bc 2bc bc bc ,当且仅当b c 2、、3时取等号,分sin A sin B tan B bcosA cosB2s in Csin B sin B ,cosB分、选择题 C B D A D11.( , 1]U[3, ) 12. 12三、解答题分又 A B C ,所以 sin( A B) sinC ,1所以cos A -. 2分16.解:(1)因为 tanA tanB 2c整理得:sin ^l 2si nC ,cos A所以s ABCIbcsin—丄2 3 212宁33,10d , 由a 1 2即ABC 面积的最大值为33.1217.解:(1)设等差数列a n 的公差为 1 , a 2为整数,可知d 为整数, 又 a 31 2d6,8 知,3.所以a n 3n(2)由(1)知,b n a n 3n疋S n 3(1 2 31 n)1 1 (1)n8TT8|n(n 1) 1 1 (1)n2 7 8[来源:]要使S n|n(n 1)(8)n108恒成立,只需(n 1)10810解得(舍),11所以存在最小的正整数 n 8使得 S n 108恒成立.18.( 1 )证明:取AB 的中点 E ,连结CE , 1 ••• AB//CD , DC 严, ••• DC // AE , DC AE ,•••四边形AECD是平行四边形.又••• ADC 90,•四边形AECD是正方形,•CE AB.•CAB为等腰三角形,且CA CB 2,AB 2,2 ,•AC2 CB2 AB2,.•• AC CB, (3)分•••平面PBC 平面ABCD,平面PBC I平面ABCD BC ,AC CB , AC 平面ABCD .• AC 平面PBC .又••• PB 平面PBC , • AC PB . (6)分(2)当M为侧棱PA的中点时,DM //平面PCB . ................................................... 7分证明:取PB的中点N,连接DM , MN ,CN .在PAB 中,MN 为中位线,MN//AB,MN 1AB '一2.2 由已知AB// CD,所以MN // CD .又MN CD ,2,四边形MNCD为平行四边形•DM // CN .-10分又DM 平面PCB,CN平面PCB,DM // 平面PCB•- 12 分18x 2x219•解:(1)由题意可知,当 1 x9时,y 2x(1 p) px...... 2分12 x当10 x 15时,15x 2 xy 2x(1 p) px (4)816018x 2x 2 , ,1 x所以该厂日利润 y 12 x15x"8-12分解得m 4,4x故f(x)厂 当1x 6 时,y 0,函数单调递增,当6 x 9 时,y 0 ,函数单调递减,而x 6 时,y max6 , .............................................................................. 8分 当10 x 15 时,15 3x 2令y 一——0,解得x 10,…….............. 9分当10x 15 时, y 0,函数单调递减,18舍去),6分所以当x 10时,11分 ymax3x ,10 x 16015当1 x 9时,令y2x 2 48x(12 x)2 216解得x 6 ( x 257, 由于256,所以当该厂的日产量为 10件时,日利润最大,为至千元.220.解:(1)f '(x) m(x 2 n) 2mx 2(x 2 n)22mx mn—2 (x n)因为 f (x)在 x 1 处取到极值为2,所以 f'(1) 0, f(1) 2,mn m (1 n)20,经检验,此时 f(x)在x 1处取得极值.由(1)当x 1,1 时,f '(x)4 1 x 2 x 21 20恒成立所以f X在1,1上单调递增分[来源:]有g'(x) 0,单调递增,所以函数g(x)最小值为f(a) ln a 1,3解不等式lna 1 —,得到0 a 晶2 '从而知1 a . e符合题意•③当a e时,显然函数g(x)在1,e上单调递减,其最小值为a 3 人g(e) 1 - 2 _,舍去• (12)e 2分综上所述,a的取值范围为a . e. (13)d2 , X 1 2 y2,-d2 x 1 2 y2x 2l -i,化简得—y2 1 , 2 2所以f X 在1,1上最小值为f 1所以f X 1,1上最小值为f依题意有g ( x) min 函数g (x) In x2a的定义域为(0,xg'(x)x a2~x①当a 时,g'(x) 0 函数g(x) 在1,e上单调递增,其最小值为g(1) 1 -合题意;2②当1 e时,函数g(x)在1,a 上有g'(x) 0,单调递减,在a,e上分x 221.解:(1)设P(x, y),则d41022•••椭圆C 的方程为—y 1.2 分 (2) A(0,1), F( 1,0) • k AF 0 ( 1)又••• OFA OFB 180 , • k BF 1 , l BF : y1(x 1) x 1. 42与x2y1联立,解得x,或者21 y —3• B4 13' 3,11 - 1分于是 k AB 3 • AB : y 门42,3x 0(舍去)y 1 (7)ix1.直线l 的方程为X 2y 2 0.分 2 xy2 1,得 (3)联立 2y kx m 21 2 2k x 2kmx m 10.设 A(X 1,yJ , B(X 2,y 2)2 ,OFA OFB 180 k AF k BF 0.i, i, y 1 y 2kx-i m kx 2 mk AFk BFX 1 1 X 21 X 1 1 x 21kx 1 m x 2 1 kx ? m x 1 1x 1 1 x 2 1m 2k 0,分 •••直线AB 方程为y 直线l 总经过定点M 2,02km2m 1 AX 1X 2.2 1 , kk22X i X 2kx 1 m X 2 1kx 2 m X 1 1 =2kx 〔X 222k 」k 2 12k m x 1 x 2 2m如2m k2 21314。

相关文档
最新文档