2018-2019学年贵州省贵阳市八年级(下)期末数学试卷

合集下载

贵州省贵阳市八年级上学期数学期中考试试卷

贵州省贵阳市八年级上学期数学期中考试试卷

贵州省贵阳市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题(选择唯一正确的答案填在括号内,每小题3分,共30分) (共10题;共29分)1. (3分)(2018·青岛模拟) 下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .2. (3分) (2018八上·青山期中) 如图,木工师傅做完窗框后,常像图中那样钉上一条斜拉的木条,这样做的数学原理是()A . 全等三角形对应角相等B . 三角形内角和为180°C . 三角形的稳定性D . 两直线平行,内错角相等3. (3分)Rt△ABC中,∠C=90°,∠B=36°,则∠A=()A . 44°B . 34°C . 54°D . 64°4. (3分)如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是()A . 2B . 3D . 85. (3分) (2019八上·慈溪期中) 如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A . AD⊥BCB . AD平分∠BACC . AB=2BDD . ∠B=∠C6. (3分)在△ABC中,若∠B与∠C互余,则△ABC是()三角形.A . 锐角三角形B . 直角三角形C . 钝角三角形D . 等腰三角形7. (3分) (2017八上·辽阳期中) 点P(-5,6)关于x轴对称的点的坐标是()A . (-5, -6)B . (5,6)C . (6,.5)D . (5,.6)8. (3分)下列说法:①平移不改变图形的形状和大小;②一个多边形的内角中最多有3个锐角;③一个图形和它经过平移所得的图形中,两组对应点的连线段平行(或在同一条直线上)且相等;④同位角相等;⑤任何数的零次幂都等于1;⑥一个角的两边和另一个角的两边分别平行,则这两个角相等;正确的有()A . 2个B . 3个C . 4个9. (2分) (2019八下·简阳期中) 如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于 AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为()A . 65°B . 60°C . 55°D . 45°10. (3分)(2018·绵阳) 如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD 的斜边DE上,若AE= ,AD= ,则两个三角形重叠部分的面积为()A .B .C .D .二、填空题(每小题3分,共18分) (共6题;共17分)11. (3分) (2016八上·淮阴期末) 如图,△ABC与△A′B′C′关于直线l对称,则∠C′的度数为________.12. (3分) (2019八上·台安月考) 如图,△ABC≌△DBE,A、D、C在一条直线上,且∠A=60°,∠C=35°,则∠DBC=________°.13. (3分)△ABC和△A’B’C’中,若AB=A’B’,BC=B’C’,则需要补充条件________可得到△ABC≌△A’B’C’.14. (2分) (2016八上·顺义期末) 在数学实践课上,老师给同学们布置了如下任务:为美化校园环境,计划在学校内某处空地,用30平方米的草皮铺设一块等腰三角形绿地,使等腰三角形绿地的一边长为10米,请你给出设计方案.同学们开始思考,交流,一致认为应先通过画图、计算,求出等腰三角形绿地的另两边的长.请你也通过画图、计算,求出这个等腰三角形绿地的另两边的长分别为________.15. (3分)如图,AB是⊙O的直径,AC与⊙O相切,CO交⊙O于点D.若∠CAD=30°,则∠BOD=________°16. (3分)某村庄和小学分别位于两条交叉的大路边(如图).可是,每年冬天麦田弄不好就会走出一条小路来.你说小学生为什么会这样走呢?________.三、解答题(本大题52分) (共7题;共52分)17. (6分) (2016八上·阳信期中) ①如图1:A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点的位置(保留作图痕迹).②如图2:某地有两个工厂M、N和两条相交叉的公路a,b现计划修建一座物资仓库,希望仓库到两个工厂的距离相等,到两条公路的距离也相等.你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案.18. (6分) (2020八上·苏州期末) 如图,在△ABC与△FDE中,点D在AB上,点B在DF上,∠C=∠E,AC∥FE,AD=FB.求证:△ABC≌△FDE.19. (6分) (2017七下·西城期中) 如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.20. (8分) (2017八下·萧山期中) 如图,分别延长▱ABCD的边CD,AB到E,F,使DE=BF,连接EF,分别交AD,BC于G,H,连结CG,AH.求证:CG∥AH.21. (8分)(2018·云南模拟) 如图,小明在M处用高1米(DM=1米)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度(取≈1.73,结果保留整数)22. (8分)如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.23. (10分) (2017九上·南山月考) 根据所学知识完成小题:(1)如图1,锐角△ABC中,分别以AB、AC为边向外作等边△ABE和等边△ACD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.(2)【深入探究】如图2,△ABC中,∠ABC=45°,AB=5cm,BC=3cm,分别以AB、AC为边向外作正方形ABNE 和正方形ACMD,连接BD,求BD的长.(3)如图3,在(2)的条件下,以AC为直角边在线段AC的左侧作等腰直角△ACD,求BD的长.参考答案一、选择题(选择唯一正确的答案填在括号内,每小题3分,共30分) (共10题;共29分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(每小题3分,共18分) (共6题;共17分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(本大题52分) (共7题;共52分)17-1、18-1、19-1、20-1、21-1、22-1、23-1、23-2、23-3、。

2018年贵州省贵阳市中考数学试卷(含详细解析)

2018年贵州省贵阳市中考数学试卷(含详细解析)

2018年贵州省贵阳市中考数学试卷一、选择题(以下每个小题均有A、B、C、D四个选项.其中只有一个选项正确.请用2B铅笔在答题卡相应位置作答.每题3分.共30分)1.(3.00分)当x=﹣1时,代数式3x+1的值是()A.﹣1 B.﹣2 C.4 D.﹣42.(3.00分)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()A.线段DE B.线段BE C.线段EF D.线段FG3.(3.00分)如图是一个几何体的主视图和俯视图,则这个几何体是()A.三棱柱B.正方体C.三棱锥D.长方体4.(3.00分)在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600名学生进行调查C.随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调査5.(3.00分)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.96.(3.00分)如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.47.(3.00分)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.B.1 C.D.8.(3.00分)如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是()A.B.C.D.9.(3.00分)一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A.(﹣5,3)B.(1,﹣3)C.(2,2) D.(5,﹣1)10.(3.00分)已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A.﹣<m<3 B.﹣<m<2 C.﹣2<m<3 D.﹣6<m<﹣2二、填空題(每小题4分,共20分)11.(4.00分)某班50名学生在2018年适应性考试中,数学成绩在100〜110分这个分数段的频率为0.2,则该班在这个分数段的学生为人.12.(4.00分)如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y=(x>0),y=﹣(x>0)的图象交于A点和B点,若C为y轴任意一点.连接AB、BC,则△ABC的面积为.13.(4.00分)如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是度.14.(4.00分)已知关于x的不等式组无解,则a的取值范围是.15.(4.00分)如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG长的最小值为.三、解答題(本大題10个小题,共100分)16.(10.00分)在6.26国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分折,成绩如下:初一:688810010079948985100881009098977794961009267初二:69979169981009910090100996997100999479999879(1)根据上述数据,将下列表格补充完成.整理、描述数据:分数段60≤x≤6970≤x≤7980≤x≤8990≤x≤100初一人数22412初二人数22115分析数据:样本数据的平均数、中位数、满分率如表:年级平均教中位教满分率初一90.19325%初二92.820%得出结论:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共人;(3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.17.(8.00分)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.18.(8.00分)如图①,在Rt△ABC中,以下是小亮探究与之间关系的方法:∵sinA=,sinB=∴c=,c=∴=根据你掌握的三角函数知识.在图②的锐角△ABC中,探究、、之间的关系,并写出探究过程.19.(10.00分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?20.(10.00分)如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE 的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.21.(10.00分)图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)达机掷一次骰子,则棋子跳动到点C处的概率是(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.22.(10.00分)六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:cm)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s0123…滑行距离y/cm041224…(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约800m,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向上平移5个单位,求平移后的函数表达式.23.(10.00分)如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.(1)求∠OMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.24.(12.00分)如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)25.(12.00分)如图,在平面直角坐标系xOy中,点A是反比例函数y=(x >0,m>1)图象上一点,点A的横坐标为m,点B(0,﹣m)是y轴负半轴上的一点,连接AB,AC⊥AB,交y轴于点C,延长CA到点D,使得AD=AC,过点A作AE平行于x轴,过点D作y轴平行线交AE于点E.(1)当m=3时,求点A的坐标;(2)DE=,设点D的坐标为(x,y),求y关于x的函数关系式和自变量的取值范围;(3)连接BD,过点A作BD的平行线,与(2)中的函数图象交于点F,当m 为何值时,以A、B、D、F为顶点的四边形是平行四边形?2018年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题(以下每个小题均有A、B、C、D四个选项.其中只有一个选项正确.请用2B铅笔在答题卡相应位置作答.每题3分.共30分)1.(3.00分)当x=﹣1时,代数式3x+1的值是()A.﹣1 B.﹣2 C.4 D.﹣4【分析】把x的值代入解答即可.【解答】解:把x=﹣1代入3x+1=﹣3+1=﹣2,故选:B.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.2.(3.00分)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()A.线段DE B.线段BE C.线段EF D.线段FG【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【解答】解:根据三角形中线的定义知线段BE是△ABC的中线,故选:B.【点评】本题主要考查三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3.(3.00分)如图是一个几何体的主视图和俯视图,则这个几何体是()A.三棱柱B.正方体C.三棱锥D.长方体【分析】根据三视图得出几何体为三棱柱即可.【解答】解:由主视图和俯视图可得几何体为三棱柱,故选:A.【点评】本题考点是简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.4.(3.00分)在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600名学生进行调查C.随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调査【分析】根据抽样调查的具体性和代表性解答即可.【解答】解:为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,在四个学校各随机抽取150名学生进行调査最具有具体性和代表性,故选:D.【点评】此题考查抽样调查,关键是理解抽样调查的具体性和代表性.5.(3.00分)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.9【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【解答】解:∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴EF=BC,∴BC=6,∴菱形ABCD的周长是4×6=24.故选:A.【点评】本题考查的是三角形中位线的性质及菱形的周长公式,题目比较简单.6.(3.00分)如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.4【分析】首先确定原点位置,进而可得C点对应的数.【解答】解:∵点A、B表示的数互为相反数,∴原点在线段AB的中点处,∴点C对应的数是1,故选:C.【点评】此题主要考查了数轴,关键是正确确定原点位置.7.(3.00分)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.B.1 C.D.【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【解答】解:连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选:B.【点评】此题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.8.(3.00分)如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是()A.B.C.D.【分析】先找出符合的所有情况,再得出选项即可.【解答】解:共有5+4+3=12,所以恰好摆放成如图所示位置的概率是,故选:A.【点评】本题考查了列表法与树形图法,能找出符合的所有情况是解此题的关键.9.(3.00分)一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A.(﹣5,3)B.(1,﹣3)C.(2,2) D.(5,﹣1)【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【解答】解:∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意;故选:C.【点评】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.10.(3.00分)已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A.﹣<m<3 B.﹣<m<2 C.﹣2<m<3 D.﹣6<m<﹣2【分析】如图,解方程﹣x2+x+6=0得A(﹣2,0),B(3,0),再利用折叠的性质求出折叠部分的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),然后求出直线•y=﹣x+m经过点A(﹣2,0)时m的值和当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时m的值,从而得到当直线y=﹣x+m与新图象有4个交点时,m的取值范围.【解答】解:如图,当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,则A(﹣2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),当直线•y=﹣x+m经过点A(﹣2,0)时,2+m=0,解得m=﹣2;当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时,方程x2﹣x ﹣6=﹣x+m有相等的实数解,解得m=﹣6,所以当直线y=﹣x+m与新图象有4个交点时,m的取值范围为﹣6<m<﹣2.故选:D.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象与几何变换.二、填空題(每小题4分,共20分)11.(4.00分)某班50名学生在2018年适应性考试中,数学成绩在100〜110分这个分数段的频率为0.2,则该班在这个分数段的学生为10人.【分析】频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷数据总数,进而得出即可.【解答】解:∵频数=总数×频率,∴可得此分数段的人数为:50×0.2=10.故答案为:10.【点评】此题主要考查了频数与频率,利用频率求法得出是解题关键.12.(4.00分)如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y=(x>0),y=﹣(x>0)的图象交于A点和B点,若C为y轴任意一点.连接AB、BC,则△ABC的面积为.【分析】设出点P坐标,分别表示点AB坐标,表示△ABC面积.【解答】解:设点P坐标为(a,0)则点A坐标为(a,),B点坐标为(a,﹣)∴S△ABC =S△APO+S△OPB=故答案为:【点评】本题考查反比例函数中比例系数k的几何意义,本题也可直接套用结论求解.13.(4.00分)如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是72度.【分析】连接OA、OB、OC,根据正多边形的中心角的计算公式求出∠AOB,证明△AOM≌△BON,根据全等三角形的性质得到∠BON=∠AOM,得到答案.【解答】解:连接OA、OB、OC,∠AOB==72°,∵∠AOB=∠BOC,OA=OB,OB=OC,∴∠OAB=∠OBC,在△AOM和△BON中,∴△AOM≌△BON,∴∠BON=∠AOM,∴∠MON=∠AOB=72°,故答案为:72.【点评】本题考查的是正多边形和圆的有关计算,掌握正多边形与圆的关系、全等三角形的判定定理和性质定理是解题的关键.14.(4.00分)已知关于x的不等式组无解,则a的取值范围是a≥2.【分析】先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a 的取值范围即可.【解答】解:,由①得:x≤2,由②得:x>a,∵不等式组无解,∴a≥2,故答案为:a≥2.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小解没了.15.(4.00分)如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG长的最小值为.【分析】作AQ⊥BC于点Q,交DG于点P,设GF=PQ=x,则AP=4﹣x,证△ADG ∽△ABC得=,据此知EF=DG=(4﹣x),由EG==可得答案.【解答】解:如图,作AQ⊥BC于点Q,交DG于点P,∵四边形DEFG是矩形,∴AQ⊥DG,GF=PQ,设GF=PQ=x,则AP=4﹣x,由DG∥BC知△ADG∽△ABC,∴=,即=,则EF=DG=(4﹣x),∴EG====,∴当x=时,EG取得最小值,最小值为,故答案为:【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握矩形的性质、相似三角形的判定与性质及二次函数的性质及勾股定理.三、解答題(本大題10个小题,共100分)16.(10.00分)在6.26国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分折,成绩如下:初一:688810010079948985100881009098977794961009267初二:69979169981009910090100996997100999479999879(1)根据上述数据,将下列表格补充完成.整理、描述数据:分数段60≤x≤6970≤x≤7980≤x≤8990≤x≤100初一人数22412初二人数22115分析数据:样本数据的平均数、中位数、满分率如表:年级平均教中位教满分率初一90.19325%初二92.89920%得出结论:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共135人;(3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.【分析】(1)根据中位数的定义求解可得;(2)用初一、初二的总人数分别乘以其满分率,求和即可得;(3)根据平均数和中位数的意义解答可得.【解答】解:(1)由题意知初二年级的分数从小到大排列为69、69、69、79、79、90、91、94、97、97、98、98、99、99、99、99、100、100、100、100,所以初二年级成绩的中位数为97.5分,补全表格如下:年级平均教中位教满分率初一90.19325%初二92.89920%(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共300×25%+300×20%=135人,故答案为:135;(3)初二年级掌握禁毒知识的总体水平较好,∵初二年级的平均成绩比初一高,说明初二年级平均水平高,且初二年级成绩的中位数比初一大,说明初二年级的得高分人数多于初一,∴初二年级掌握禁毒知识的总体水平较好.【点评】本题主要考查频数分布表,解题的关键是熟练掌握数据的整理、样本估计总体思想的运用、平均数和中位数的意义.17.(8.00分)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.【分析】(1)根据题意和矩形的性质列出代数式解答即可.(2)把m=7,n=4代入矩形的长与宽中,再利用矩形的面积公式解答即可.【解答】解:(1)矩形的长为:m﹣n,矩形的宽为:m+n,矩形的周长为:4m;(2)矩形的面积为(m+n)(m﹣n),把m=7,n=4代入(m+n)(m﹣n)=11×3=33.【点评】此题考查列代数式问题,关键是根据题意和矩形的性质列出代数式解答.18.(8.00分)如图①,在Rt△ABC中,以下是小亮探究与之间关系的方法:∵sinA=,sinB=∴c=,c=∴=根据你掌握的三角函数知识.在图②的锐角△ABC中,探究、、之间的关系,并写出探究过程.【分析】三式相等,理由为:过A作AD⊥BC,BE⊥AC,在直角三角形ABD中,利用锐角三角函数定义表示出AD,在直角三角形ADC中,利用锐角三角函数定义表示出AD,两者相等即可得证.【解答】解:==,理由为:过A作AD⊥BC,BE⊥AC,在Rt△ABD中,sinB=,即AD=csinB,在Rt△ADC中,sinC=,即AD=bsinC,∴csinB=bsinC,即=,同理可得=,则==.【点评】此题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键.19.(10.00分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?【分析】(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【解答】解:(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有=,解得:x=30.经检验,x=30是原方程的解,x+10=30+10=40.答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y为整数,∴y最大为11.答:他们最多可购买11棵乙种树苗.【点评】考查了分式方程的应用,分析题意,找到合适的等量关系和不等关系是解决问题的关键20.(10.00分)如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE 的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.【分析】(1)先根据轴对称性质及BC∥AD证△ADE为直角三角形,由F是AD 中点知AF=EF,再结合AE与AF关于AG对称知AE=AF,即可得证;(2)由△AEF是等边三角形且AB与AG关于AE对称、AE与AF关于AG对称知∠EAG=30°,据此由AB=2知AE=AF=DF=、AH=,从而得出答案.【解答】解:(1)∵AB与AG关于AE对称,∴AE⊥BC,∵四边形ABCD是平行四边形,∴AD∥BC,∴AE⊥AD,即∠DAE=90°,∵点F是DE的中点,即AF是Rt△ADE的中线,∴AF=EF=DF,∵AE与AF关于AG对称,∴AE=AF,则AE=AF=EF,∴△AEF是等边三角形;(2)记AG、EF交点为H,∵△AEF是等边三角形,且AE与AF关于AG对称,∴∠EAG=30°,AG⊥EF,∵AB与AG关于AE对称,∴∠BAE=∠GAE=30°,∠AEB=90°,∵AB=2,∴BE=1、DF=AF=AE=,则EH=AE=、AH=,=××=.∴S△ADF【点评】本题主要考查含30°角的直角三角形,解题的关键是掌握直角三角形有关的性质、等边三角形的判定与性质、轴对称的性质及平行四边形的性质等知识点.21.(10.00分)图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)达机掷一次骰子,则棋子跳动到点C处的概率是(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.【分析】(1)和为8时,可以到达点C,根据概率公式计算即可;(2)利用列表法统计即可;【解答】解:(1)随机掷一次骰子,则棋子跳动到点C处的概率是,故答案为:;(2)共有16种可能,和为14可以到达点C,有3种情形,所以棋子最终跳动到点C 处的概率为.【点评】本题考查列表法与树状图,概率公式等知识,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P (A)=.22.(10.00分)六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:cm)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s0123…滑行距离y/cm041224…(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约800m,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向上平移5个单位,求平移后的函数表达式.【分析】(1)利用待定系数法求出函数解析式,再求出y=80000时x的值即可得;(2)根据“上加下减,左加右减”的原则进行解答即可.【解答】解:(1)∵该抛物线过点(0,0),∴设抛物线解析式为y=ax2+bx,将(1,4)、(2,12)代入,得:,解得:,所以抛物线的解析式为y=2x2+2x,当y=80000时,2x2+2x=80000,解得:x=199.500625(负值舍去),即他需要199.500625s才能到达终点;(2)∵y=2x2+2x=2(x+)2﹣,∴向左平移2个单位,再向上平移5个单位后函数解析式为y=2(x+2+)2﹣+5=2(x+)2+.【点评】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律.23.(10.00分)如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.(1)求∠OMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.【分析】(1)先判断出∠MOP=∠MOC,∠MPO=∠MPE,再用三角形的内角和定理即可得出结论;(2)分两种情况,当点M在扇形BOC和扇形AOC内,先求出∠CMO=135°,进而判断出点M的轨迹,再求出∠OO'C=90°,最后用弧长公式即可得出结论.【解答】解:(1)∵△OPE的内心为M,∴∠MOP=∠MOC,∠MPO=∠MPE,∴∠PMO=180°﹣∠MPO﹣∠MOP=180°﹣(∠EOP+∠OPE),∵PE⊥OC,即∠PEO=90°,∴∠PMO=180°﹣(∠EOP+∠OPE)=180°﹣(180°﹣90°)=135°,(2)如图,∵OP=OC,OM=OM,而∠MOP=∠MOC,∴△OPM≌△OCM,∴∠CMO=∠PMO=135°,所以点M在以OC为弦,并且所对的圆周角为135°的两段劣弧上(和);点M在扇形BOC内时,过C、M、O三点作⊙O′,连O′C,O′O,在优弧CO取点D,连DA,DO,∵∠CMO=135°,∴∠CDO=180°﹣135°=45°,∴∠CO′O=90°,而OA=4cm,∴O′O=OC=×4=2,∴弧OMC的长==π(cm),同理:点M在扇形AOC内时,同①的方法得,弧ONC的长为πcm,所以内心M所经过的路径长为2×π=2πcm.【点评】本题考查了弧长的计算公式:l=,其中l表示弧长,n表示弧所对的圆心角的度数.同时考查了三角形内心的性质、三角形全等的判定与性质、圆周角定理和圆的内接四边形的性质,解题的关键是正确寻找点I的运动轨迹,属于中考选择题中的压轴题.24.(12.00分)如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;(2)先求出DE=CE=1,进而判断出△ADE≌△BCE,得出∠AED=∠BEC,再用锐角三角函数求出∠AED,即可得出结论;(3)先判断出△AEP≌△FBP,即可得出结论.【解答】解:(1)依题意作出图形如图①所示,(2)EB是平分∠AEC,理由:∵四边形ABCD是矩形,∴∠C=∠D=90°,CD=AB=2,BC=AD=,∵点E是CD的中点,∴DE=CE=CD=1,在△ADE和△BCE中,,。

2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

2020-2021学年贵州省贵阳市名校数学八年级第二学期期末教学质量检测试题含解析

2020-2021学年贵州省贵阳市名校数学八年级第二学期期末教学质量检测试题含解析

2020-2021学年贵州省贵阳市名校数学八年级第二学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.若三角形的三条中位线长分别为2cm ,3cm ,4cm ,则原三角形的周长为( ) A .4.5cmB .18cmC .9cmD .36cm2.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .43.如图,在四边形ABCD 中,3AB =,5BC =,130A ∠=︒,100D ∠=︒,AD CD =.若点E ,F 分别是边AD ,CD 的中点,则EF 的长是( )A 2B 3C .2D 54.下列命题是真命题的是( ) A .如果a 2=b 2,那么a=bB .如果两个角是同位角,那么这两个角相等C .相等的两个角是对项角D .在同一平面内,垂直于同一条直线的两条直线平行 5.以下列各组数为边长能构成直角三角形的是( )A .6,12,13B .3,4,7C .8,15,16D .5,12,136.七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )A .B .C .D .7.下列图形是中心对称图形的是( )A .B .C .D .8.点()0,3P 向右平移m 个单位后落在直线21y x =-上,则m 的值为( ) A .2B .3C .4D .59.一次函数y =3x +b 和y =ax -3的图象如图所示,其交点为P(-2,-5),则不等式3x +b >ax -3的解集在数轴上表示正确的是( )A .B .C .D .10.函数y =k(x +1)和y =kx(k≠0)在同一坐标系中的图象可能是( ) A . B .C .D .二、填空题(每小题3分,共24分)11.已知整数x 、y 满足x +3y =72,则x y +的值是______.12.约分:236a bab=_______.13.计算2(3)- +(3 )2=________.14.如图,在一次测绘活动中,某同学站在点A 处观测停放于B 、C 两处的小船,测得船B 在点A 北偏东75°方向160米处,船C 在点A 南偏东15°方向120米处,则船B 与船C 之间的距离为________米.15.如图,在△ABC 中,∠CAB =65°,在同一平面内,将△ABC 绕点A 逆时针旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠B ′AB 等于_____.16.己知关于x 的分式方程1233x k x x +-=--有一个增根,则k =_____________. 17.写一个二次项系数为1的一元二次方程,使得两根分别是﹣2和1._____. 18.如图,在y 轴的正半轴上,自O 点开始依次间隔相等的距离取点1A ,2A ,3A ,4A ,,n A ,分别过这些点作y 轴的垂线,与反比例函数2y x=-()0x <的图象交于点1P ,2P ,3P ,4P ,,n P ,作2111P B A P ⊥,3222P B A P ⊥,4333P B A P ⊥,,111n n n n P B A P ---⊥,垂足分别为1B ,2B ,3B ,4B ,,1n B -,连结12PP ,23PP ,34P P ,,1n n P P -,得到一组112Rt PB P ∆,223Rt P B P ∆,334 Rt P B P ∆,,11n n n Rt P B P --∆,它们的面积分别记为1S ,2S ,3S ,,1n S -,则12S S +=_________,1231n S S S S -++++=_________.三、解答题(共66分)19.(10分)如图,矩形ABCD 中,点E ,F 分别在边AB ,CD 上,点G ,H 在对角线AC 上,EF 与AC 相交于点O ,AG=CH ,BE=DF .(1)求证:四边形EGFH 是平行四边形; (2)当EG=EH 时,连接AF ①求证:AF=FC ;②若DC=8,AD=4,求AE 的长.20.(6分)对于实数a ,b ,定义运算“⊗”:a ⊗b =22()()ab b a b a ab a b ⎧-≥⎨-<⎩,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=1.若x 1,x 2是一元二次方程x 2﹣3x +2=0的两个根,则x 1⊗x 2等于( ) A .﹣1B .±2C .1D .±121.(6分)直线1234,,,,l l l l 是同一平面内的一组平行线.(1)如图1.正方形ABCD 的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点A ,点C 分别在直线1l 和4l 上,求正方形的面积;(2)如图2,正方形ABCD 的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为123h h h ,,. ①求证:13h h =;②设正方形ABCD 的面积为S ,求证222211 2 2 S h h h h =++.22.(8分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?23.(8分)已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E.(1)求证:BC=BD;(2)若BC=15,AD= 20,求AB和CD的长.24.(8分)某校八年级两个班各选派10名学生参加“垃圾分类知识竞赛,各参赛选手的成绩如下:八(1)班:88,91,92,93,93,93,94,98,98,100;八(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下班级最高分平均分中位数众数方差八(1)班100 a93 93 12八(2)班99 95 b c8.4(1)求表中a,b,c的值;(2)依据数据分析表,有同学认为最高分在(1)班,(1)班的成绩比(2)班好.但也有同学认为(2)班的成绩更好.请你写出两条支持八(2)班成绩更好的理由.25.(10分)如图,双曲线y=kx经过Rt△BOC斜边上的点A,且满足23AOAB,与BC交于点D,S△BOD=21,求:(1)S△BOC(2)k的值.26.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销量y(件)之间的关系如下表:若日销量y是销售价x的一次函数.(1)求出日销量y(件)与销售价x(元)的函数关系式;(2)求销售定价为30元时,每日的销售利润.x(元)15 20 25 ……y(件)25 20 15 ……参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:根据三角形的中位线定理即可得到结果.由题意得,原三角形的周长为,故选B.考点:本题考查的是三角形的中位线点评:解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.2、B【解析】【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF 中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.3、C【解析】【分析】,根据勾股定理求出AC,根据三角形中位线定理连接AC,根据等腰三角形的性质、三角形内角和定理求出DAC计算即可.【详解】解:连接AC,100D ∠=︒,AD CD =, 40DAC DCA ∴∠=∠=︒, 90BAC BAD DAC ∴∠=∠-∠=︒,224AC BC AB ∴=-=,点E ,F 分别是边AD ,CD 的中点, 122EF AC ∴==, 故选:C . 【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键. 4、D 【解析】 【分析】利用平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系分别判断后即可确定正确的选项. 【详解】A 、如果a 2=b 2,那么a=±b ,故错误,是假命题;B 、两直线平行,同位角才相等,故错误,是假命题;C 、相等的两个角不一定是对项角,故错误,是假命题;D 、平面内,垂直于同一条直线的两条直线平行,正确,是真命题, 故选D . 【点睛】本题考查了命题与定理的知识,解题的关键是了解平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系等知识,难度不大. 5、D 【解析】解:A .62+122≠132,不能构成直角三角形.故选项错误;B.32+42≠72,不能构成直角三角形.故选项错误;C.82+152≠162,不能构成直角三角形.故选项错误;D.52+122=132,能构成直角三角形.故选项正确.故选D.6、C【解析】观察可得,选项C中的图形与原图中的④、⑦图形不符,故选C.7、C【解析】【分析】根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误.故选:C.【点睛】本题考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、A【解析】【分析】根据向右平移横坐标相加,纵坐标不变得出点P平移后的坐标,再将点P平移后的坐标代入y=1x-1,即可求出m的值.【详解】解:∵将点P(0,3)向右平移m个单位,∴点P平移后的坐标为(m,3),∵点(m,3)在直线y=1x-1上,∴1m-1=3,解得m=1.故选A.【点睛】本题考查了点的平移和一次函数图象上点的坐标特征,求出点P平移后的坐标是解题的关键.9、A【解析】【分析】直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.【详解】解:∵由函数图象可知,当x>-2时,一次函数y=3x+b的图象在函数y=ax-3的图象的上方,∴不等式3x+b>ax-3的解集为:x>-2,在数轴上表示为:故选:A.【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.10、D【解析】【分析】分两种情况分析:当k>0或当k<0时.【详解】当k>0时,直线经过第一、二、三象限,双曲线在第一、三象限;当k<0时,直线经过第二、三、四象限,双曲线在第二、四象限.故选:D【点睛】本题考核知识点:一次函数和反比例函数的图象. 解题关键点:理解两种函数的性质.二、填空题(每小题3分,共24分)11、2或52【解析】【分析】x y722,且x、y x72,y x2,y2x,,分别求出x 、y【详解】,又x 、y 均为整数,,=0,,∴x=72,y=0或x=18,y=2或x=0,y=8,或.故答案为:或.【点睛】本题考查了算术平方根,二次根式的化简与性质,进行分类讨论是解题的关键.12、2a 【解析】【分析】根据分式的基本性质,分子分母同时除以公因式3ab 即可。

贵州省贵阳市2022-2023学年八年级下学期期中数学试题(含答案)

贵州省贵阳市2022-2023学年八年级下学期期中数学试题(含答案)

2022—2023学年度第二学期半期联合统一检测八年级数学同学你好!答题前请认真阅读以下内容:1.全卷共4页,三个大题,共21小题,满分100分.考试时间为90分钟.考试形式闭卷.2.一律在答题卡相应位置作答,在试题卷上答题视为无效.3.不能使用科学计算器.一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.已知等腰三角形的两边长分别为6cm 、3cm ,则该等腰三角形的周长是( )A .9cm B .12cmC .12cm 或15cmD .15cm2.如图,OC 为的平分线,,,则点C 到射线OA 的距离为()A .3B .6C .9D .123.已知,则下列结论正确的是()A .B .C .D .4.下列四个图案中,不能由1号图形平移得到2号图形的是()A B CD5.不等式的解集在数轴上表示正确的是()A B CD6.下列式子从左到右变形,是因式分解的是( )A .B .C .D .7.如图,已知,点P 在边OA 上,,点M ,N 在边OB 上,AOB ∠CM OB ⊥6CM =a b >22a b->-a c b c+>+33a b<ac bc>10x ->22(2)44x x x +=++23221025x y x y y=⋅241(4)1x x x x -+=-+3(1)(1)y y y y y -=+-60AOB ∠=︒12OP =.若,则ON 的值为( )A .3B .4C .5D .68.如图,一次函数与一次函数的图象交于点,则关于x 的不等式的解集是()A .B .C .D .9.如图,在△ABC 中,,,.分别以点A ,B 为圆心,大于的长为半径作弧,两弧交于M ,N 两点,作直线MN 交AC 于点D ,则CD 的长为()A .1B .C .D .310.如果不等式的正整数解为1,2,3,则m 的取值范围是( )A .B .C .D .二、填空题:每小题4分,共16分.11.不等式组的解焦是________.12.分解因式:________.13.如图,△DEF 是由△ABC 通过平移得到的,且点B ,E ,C ,F 在同一条直线上.若,,则平移的距离是________.PM PN =2MN =1y x b =+24y kx =+()1,3P 4x b kx +>+2x >-0x >1x >1x <60C ∠=︒4AC =3BC =12AB 753230x m -≤912m ≤<912m <<12m <9m ≥54,x x -<>⎧⎨⎩242x xy -=14BF =6EC =14.如图,等腰Rt △ABC 和等腰Rt △ADE 的腰长分别为4和2,其中,M 为边DE 的中点.若等腰Rt △ADE 绕点A 旋转,则点B 到点M的距离的最大值为________.三、解答题:解答应写出必要的文字说明、演算步骤或证明过程,本大题共7小题,共54分.15.(本题满分8分)解下列一元一次不等式,并把解集在数轴上表示出来.(1);(2).16.(本题满分8分)如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,且,过点E 作,交BC 的延长线于点F .(1)求的度数;(2)若,求DF 的长.17.(本题满分8分)如图,在平面直角坐标系中,△ABC 的顶点都在网格点上,其中点C 的坐标为(1,2).(1)填空:点A 的坐标是________,点B 的坐标是________;(2)将△ABC 先向左平移2个单位长度,再向上平移1个单位长度,得到,请画出平移后的;(3)求△ABC 的面积.18.(本题满分6分)给出三个多项式:,,,请选择其中两个多项式进行加法运算,并把结果分解因式(写出一种情况即可).19.(本题满分8分)如图,,,,将△ABC 绕点B 逆时90BAC DAE ∠=∠=︒312)4(x x +≤+334642x x---<//DE AB EF DE ⊥F ∠2CD =A B C '''△A B C '''△21212x x +-21412x x ++2122x x -90DBC ∠=︒45C ∠=︒2AC =针旋转60°得到△DBE ,连接AE .(1)求证:;(2)连接AD ,求AD 的长.20.(本题满分8分)超市购进一批A ,B 两种品牌的饮料共320箱,其中A 品牌饮料比B 品牌饮料多80箱.两种饮料每箱的进价和售价如下表所示:品牌A B 进价(元/箱)5535售价(元/箱)6340(1)问销售一箱B 品牌的饮料获得的利润是多少元?(注:利润售价进价)(2)问该超市购进A ,B 两种品牌的饮料各多少箱?(3)受市场经济影响,该超市调整销售策略,将A 品牌的饮料每箱打折销售,B 品牌的饮料每箱售价改为38元.为使购进的A ,B 两种品牌的饮料全部售出且利润不低于700元,问A 品牌的饮料每箱最低打几折出售?21.(本题满分8分)如图,在△ABC 中,的平分线AE 与BC 的垂直平分线DE 交于点E ,过点E 作边AC 的垂线,垂足为N ,过点E 作边AB 延长线的垂线,垂足为M .(1)求证:;(2)若,,求BM 的长.2022—2023学年度第二学期半期联合统一检测八年级数学参考答案及评分标准一、选择题:每小题3分,共30分.题号12345678910答案DBBDADCCBA9.【解析】如图,连接BD ,过点B 作于点H ,由,可知,,∴,ABC ABE △≌△=-BAC ∠BM CN =2AB =8AC =BH AC ⊥60C ∠=︒3BC =30CBH ∠=︒1322CH BC ==∴,∴.设,则,根据作图可知,则,∴根据勾股定理可得,解得,∴.二、填空题:每小题4分,共16分.11.12.13.414.14.【解析】如图,连接AM .∵M 为边DE 的中点,且△ADE 为等腰直角三角形,∴,.在Rt △ADM 中,,由勾股定理可知,即.当A ,B ,M 三点不共线时,由三角形的三边关系可知,此时一定有;当A ,B ,M 三点共线且点M 不位于点A ,B 之间时,此时有,∴,即点B 到点M 的距离的最大值为三、解答题:本大题共7小题,共54分.15.解:(1)去括号,得,移项,得,合并同类项,得.解集在数轴上表示如图所示.4分BH ==35422AH AC CH =-=-=HD x =52AD x =+AD BD =52BD x =+22252x x ⎛⎫+=+ ⎪⎝⎭110x =3172105CD CH HD =-=-=54x -<<2()2x x y -4+AM DE ⊥12AM DE DM ==2AD =222AD AM DM =+AM DM ==BM AB AM <+BM AB AM =+4BM AB AM ≤+=+4+312)4(x x +≤+3128x x +≤+3281x x -≤-7x ≤(2)去分母,得,去括号,得,移项,得,合并同类项,得,系数化为1,得.解集在数轴上表示如图所示.8分16.解:(1)∵△ABC 是等边三角形,∴.∵,∴.∵,∴,∴.4分(2)∵,,∴△EDC 是等边三角形,∴.∵,,∴.8分17.解:(1)(2,)(4,3)2分(2)如图,即为所.5分(3)△ABC 的面积.8分18.解:说明:(三个答案中任做一种正确即可给分)答案一:.答案二:.答案三:.6分334642x x---<324234()x x -<--32468x x -<-+82463x x -<-+721x -<3x >-60B ACB ∠=∠=︒//DE AB 60EDC B ∠=∠=︒EF DE ⊥90DEF ∠=︒9030F EDC ∠=︒-∠=︒60ACB ∠=︒60EDC ∠=︒2DE CD ==90DEF ∠=︒30F ∠=︒24DF DE ==1-A B C '''△111342431315222=⨯-⨯⨯-⨯⨯-⨯⨯=2221121416(6)22x x x x x x x x +-+++=+=+222112121(1)(1)22x x x x x x x +-+-=-=+-22221141221(1)22x x x x x x x +++-=++=+19.(1)证明:∵将△ABC 绕点B 逆时针旋转60°得到△DBE ,∴,,.∵,∴,∴.在△ABC 和△ABE 中,∴.4分(2)解:如图,连接AD .∵将△ABC 绕点B 逆时针旋转60°得到△DBE ,∴,.∵,∴,.∵,∴,∴,,∴8分20.解:(1)(元).答:销售一箱B 品牌的饮料获得的利润是5元.2分(2)设该超市购进A 品牌的饮料x 箱,B 品牌的饮料y 箱.依题意,得解得答:该超市购进A 品牌的饮料200箱,B 品牌的饮料120箱.5分(3)设A 品牌的饮料每箱打m 折出售.依题意,得,解得.答:A 品牌的饮料每箱最低打9折出售.8分21.(1)证明:如图,连接BE ,CE ,则DE 是边BC 的垂直平分线,∴.∵AE 是的平分线,,,∴.ABC DBE ∠=∠60EBC ∠=︒BC BE =90DBC ∠=︒–30ABC DBE DBC EBC ∠=∠=∠∠=︒30ABE ∠=︒,,,BC BE ABC ABE BA BA =⎧∠=∠=⎪⎨⎪⎩(SAS)ABC ABE △≌△2DE AC ==BED C ∠=∠ABC ABE △≌△C BEA ∠=∠2AE AC ==45C ∠=︒45BED BEA C ∠=∠=∠=︒90AED ∠=︒DE AE =AD ===40355-=320,80,x y x y +=-=⎧⎨⎩200,120.x y =⎧⎨=⎩6355200(3835)12070010m ⎛⎫⨯-⨯+-⨯≥ ⎪⎝⎭9m ≥BE CE =BAC ∠EM AB ⊥EN AC ⊥EM EN =在Rt △BME 和Rt △CNE 中,∴,∴.4分(2)解:由(1)得,.在Rt △AME 和Rt △ANE 中,∴,∴.又∵,,∴,∴.又∵,∴.8分,,BE CE EM EN ==⎧⎨⎩Rt Rt (HL)BME CNE △≌△BM CN =EM EN =BM CN =,,AE AE EM EN ==⎧⎨⎩Rt Rt (HL)AME ANE △≌△AM AN =AM AB BM =+AN AC CN =-AB BM AC CN +=-28BM CN +=-BM CN =3BM =。

2018年贵州省贵阳市中考数学试卷(含答案与解析)

2018年贵州省贵阳市中考数学试卷(含答案与解析)

数学试卷 第1页(共44页) 数学试卷 第2页(共44页)绝密★启用前贵州省贵阳市2018年初中毕业生学业(升学)考试数 学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.当时1x =-,代数式31x +的值是( )A .1-B .2-C .3-D .4-2.如图,在ABC △中有四条线段DE ,BE ,EF ,FG ,其中有一条线段是ABC △的中线,则该线段是( )A .线段DEB .线段BEC .线段EFD .线段FG3.如图是一个几何体的主视图和俯视图,则这个几何体是( )主视图俯视图A .三棱柱B .正方体C .三棱锥D .长方体4.在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握的情况.小丽制定了如下调查方案,你认为最合理的是( )A .抽取乙校初二年级学生进行调查B .在丙校随机抽取600名学生进行调查C .随机抽取150名老师进行调查D .在四个学校各随机抽取150名学生进行调査5.如图,在菱形ABCD 中,E 是AC 的中点,EF CB ∥,交AB 于点F ,如果3EF =,那么菱形ABCD 的周长为( )A .24B .18C .12D .96.如图,数轴上有三个点A ,B ,C ,若点A ,B 表示的数互为相反数,则图中点C 对应的数是( )A .2-B .0C .1D .4 7.如图,A ,B ,C 是小正方形的顶点,且每个小正方形的边长为1,则tan BAC ∠的值为( )A .12B .1 CD8.如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中恰好摆放成如图所示位置的概率是( )A .112B .110C .16D .259.一次函数1y kx =-的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(5,3)-B .(1,3)-C .(2,2)D .(5,1)-毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共44页) 数学试卷 第4页(共44页)10.已知二次函数26y x x =-++及一次函数y x m =-+.将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新图象(如图所示).当直线y x m =-+与新图象有4个交点时,m 的取值范围是 ( )A .2534m -<< B .2524m -<<- C .23m -<<D .62m --<<第Ⅱ卷(非选择题 共120分)二、填空题(本大题共5小题,每小题4分,共20分.请把答案填在题中的横线上) 11.某班50名学生在2018年适应性考试中,数学成绩在100〜110分这个分数段的频率为0.2,则该班在这个分数段的学生为 人.12.如图,过x 轴上任意一点P 作y 轴的平行线,分别与反比例函数3y x=(0x >),6y x=-(0x >)的图象交于A 点和B 点,若C 为y 轴任意一点.连接AC ,BC 则ABC△的面积为 .13.如图,点M ,N 分别是正五边形ABCDE 的两边AB ,BC 上的点,且AM BN =,点O 是正五边形的中心,则MON ∠的度数是 度.14.已知关于x 的不等式组531,0x a x --⎧⎨-⎩≥<无解,则a 的取值范围是 .15.如图,在ABC △中,6BC =,BC 边上的高为4,在ABC △的内部作一个矩形EFGH ,使EF 在BC 边上,另外两个顶点分别在AB ,AC 边上,则对角线EG 长的最小值为 .三、解答题(本大题共10小题,共100分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分10分)在626⋅国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高学生禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分折,成绩如下: 初一: 68 88 100 100 79 94 89 85 100 88 100 90 98 97 77 94 96 100 92 67 初二:69 97 96 89 98 100 99 100 95 100 996997100999479999879(1)根据上述数据,将下列表格补充完整;得出结论:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共 人; (3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.数学试卷 第5页(共44页) 数学试卷 第6页(共44页)17.(本小题满分8分)如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形.拿掉边长为n 的小正方形纸板后,再将剩下的三块拼成一个新矩形. (1)用含m 或n 的代数式表示拼成的矩形周长; (2)当7m =,4n =,求拼成的矩形面积.18.(本小题满分8分)如图1,在Rt ABC △中,以下是小亮探索sin a A 与sin b B之间关系的方法:图1图2∵sin a A c =,sin b B c =,∴sin a c A =,sin b c B =,∴sin sin a b A B=. 根据你掌握的三角函数知识,在图2的锐角ABC △中,探究sin a A ,sin bB ,sin c C之间的关系,并写出探索过程.19.(本小题满分10分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵.此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价保持不变.如果此次购买两种树苗的总费用不超过1 500元,那么他们最多可购买多少棵乙种树苗?20.(本小题满分10分) 如图,在平行四边形ABCD 中,AE 是BC 边上的高,点F 是DE 的中点,AB 与AG 关于AE 对称,AE 与AF 关于AG 对称. (1)求证:AEF △是等边三角形; (2)若2AB =,求AFD △的面积.21.(本小题满分10分)图1是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图2是一个正六边形棋盘.现通过掷骰子的方式玩跳棋游戏.规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图2中的A 点开始沿着顺时针方向连续跳动几个顶点.第二次从第一次的终点处开始,按第一次的方法跳动.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共44页) 数学试卷 第8页(共44页)图1图2(1)随机掷一次骰子,则棋子跳动到点C 处的概率是 ;(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C 处的概率.22.(本小题满分10分)六盘水市梅花山国际滑雪场自建成以来,吸引了大批滑雪爱好者.一滑雪者从山坡滑下,测得滑行距离y (单位:m )与滑行时间x (单位:s )之间的关系可以近似地用二次(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840米,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后所得函数的表达式.23.(本小题满分10分)如图,AB 为O e 的直径,且4AB =,点C 在半圆上,OC AB ⊥,垂足为点O ,P 为半圆上任意一点,过P 点作PE OC ⊥于点E .设OPE △的内心为M ,连接OM ,PM . (1)求OMP ∠的度数;(2)当点P 在半圆上从点B 运动到点A 时,求内心M 所经过的路径长.24.(本小题满分12分)如图,在矩形ABCD 中,2AB =,AD ,P 是BC 边上的一点,且2BP CP =. (1)用尺规在图1中作出CD 边上的中点E ,连接AE 、BE (保留作图痕迹,不写作法); (2)如图2,在(1)的条体下,判断EB 是否平分AEC ∠,并说明理由;(3)如图3,在(2)的条件下,连接EP 并延长交AB 的延长线于点F ,连接AP .不添加辅助线,PFB △能否由都经过P 点的两次变换与PAE △组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离);如果不能,也请说明理由.图1图2图325.(本小题满分12分)如图,在平面直角坐标系xOy 中,点A 是反比例函数32m m y x-=(0x >,1m >)图象上一点,点A 的横坐标为m ,点B (,)m 0-是y 轴负半轴上的一点,连接AB ,AC AB ⊥,交y 轴于点C ,延长CA 到点D ,使得AD AC =.过点A 作AE 平行于x 轴,过点D 作y轴平行线交AE 于点E.(1)当3m =时,求点A 的坐标; (2)DE = ;设点D 的坐标为(),x y ,求y 关于x 的函数关系式和自变量的取值范围;(3)连接BD ,过点A 作BD 的平行线,与(2)中的函数图象交于点F ,当m 为何值时,以A ,B ,D ,F 为顶点的四边形是平行四边形?5 / 22贵州省贵阳市2018年初中毕业生学业(升学)考试一、选择题 1.【答案】B【解析】解:把1x =-代入31312x +=-+=-,故选:B . 【考点】代数式求值,运算法则. 2.【答案】B【解析】解:根据三角形中线的定义知线段BE 是ABC △的中线,故选:B . 【考点】三角形的中线. 3.【答案】A【解析】解:由主视图和俯视图可得几何体为三棱柱,故选:A . 【考点】空间图形的三视图. 4.【答案】D【解析】解:为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,在四个学校各随机抽取150名学生进行调査最具有具体性和代表性,故选:D . 【考点】抽样调查. 5.【答案】A【解析】解:∵E 是AC 中点, ∵EF BC ∥,交AB 于点F , ∴EF 是ABC △的中位线, ∴12EF BC =, ∴6BC =,∴菱形ABCD 的周长是4624⨯=.故选:A . 【考点】三角形中位线的性质及菱形的周长公式. 6.【答案】C【解析】解:∵点A 、B 表示的数互为相反数, ∴原点在线段AB 的中点处, ∴点C 对应的数是1,故选:C . 【考点】数轴,正确确定原点位置. 7.【答案】B【解析】解:连接BC ,由网格可得AB BC =AC 即222AB BC AC +=,6∴ABC △为等腰直角三角形,∴45BAC ∠=,则tan 1BAC ∠=,故选:B .【考点】锐角三角函数的定义,解直角三角形,以及勾股定理. 8.【答案】A【解析】解:共有54312++=, 所以恰好摆放成如图所示位置的概率是112,故选:A . 【考点】列表法与树形图法. 9.【答案】C【解析】解:∵一次函数1y kx =-的图象的y 的值随x 值的增大而增大, ∴0k >,A 、把点()5,3-代入1y kx =-得到:405k =-<,不符合题意;B 、把点(1,)3-代入1y kx =-得到:20k =-<,不符合题意;C 、把点(2,2)代入1y kx =-得到:302k =>,符合题意;D 、把点(5,1)-代入1y kx =-得到:=0k ,不符合题意;故选C . 【考点】一次函数图象上点的坐标特征,一次函数的性质. 10.【答案】D【解析】解:如图,当0y =时,260x x -++=,解得12x =-,23x =,则0()2,A ﹣,()3,0B , 将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方的部分图象的解析式为()(3)2y x x =+-, 即26y x x =--(23x -≤≤),当直线y x m =-+经过点0()2,A -时,20m +=,解得2m =-;当直线y x m =-+与抛物线26y x x =--(23x -≤≤)有唯一公共点时,方程26x x x m --=-+有相等的实数解,解得6m =-,所以当直线y x m =-+与新图象有4个交点时,m 的取值范围为62m -<<-.故选:D .7 / 22【考点】抛物线与x 轴的交点二次函数图象与几何变换. 二.填空题 11.【答案】10【解析】解:∵=⨯频数总数频率, ∴可得此分数段的人数为:500.210⨯=. 故答案为:10. 【考点】频数与频率. 12.【答案】92【解析】解:设点P 坐标为(),0a ,则点A 坐标为()3,a a ,B 点坐标为(6,)a a -,111316922222ABC APO OPB S S S AP OP BP OP a a a a =+=+=+=△△△.故答案为:92. 【考点】反比例函数中比例系数k 的几何意义. 13.【答案】72【解析】解:连接OA 、OB 、OC ,360725AOB ︒∠==︒, ∵AOB BOC ∠=∠,OA OB =,OB OC =, ∴OAB OBC ∠=∠, 在AOM △和BON △中,OA OB OAM OBN AM BN =⎧⎪=⎨⎪=⎩∠∠ ∴AOM BON △≌△, ∴BON AOM ∠=∠,∴72MON AOB ∠=∠=︒,故答案为:72.8【考点】正多边形和圆的有关计算. 14.【答案】2a ≥【解析】解:530x a x -⎧⎨-⎩﹣1 ①②≥<,由①得:2x ≤, 由②得:x a >, ∵不等式组无解,∴2a ≥,故答案为:2a ≥. 【考点】一元一次不等式组. 15.【解析】解:如图,作AQ BC ⊥于点Q ,交DG 于点P ,∵四边形DEFG 是矩形, ∴AQ DG ⊥,GF PQ =, 设GF PQ x ==,则4AP x =-, 由DG BC ∥知ADG ABC △∽△, ∴AP DG AQ BC =,即446x DG-=, 则342()EF DG x ==-,∴EG ,===,9 / 22∴当1613x =时,EG 取得最小值,,【考点】相似三角形的判定与性质. 三、解答题16.【答案】(1)补全表格如下:(2)135人(3)初二年级掌握禁毒知识的总体水平较好,∵初二年级的平均成绩比初一高,说明初二年级平均水平高,且初二年级成绩的中位数比初一大,说明初二年级的得高分人数多于初一, ∴初二年级掌握禁毒知识的总体水平较好.【解析】解:(1)由题意知初二年级的分数从小到大排列为69、69、69、79、79、90、91、94、97、97、98、98、99、99、99、99、100、100、100、100, 所以初二年级成绩的中位数为97.5分; 补全表格如下: (2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共30025%30020%135⨯+⨯=人;(3)初二年级掌握禁毒知识的总体水平较好,∵初二年级的平均成绩比初一高,说明初二年级平均水平高,且初二年级成绩的中位数比初一大,说明初二年级的得高分人数多于初一, ∴初二年级掌握禁毒知识的总体水平较好. 【考点】本频数分布表.17.【答案】解:(1)矩形的长为:m n -, 矩形的宽为:m n +, 矩形的周长为:4m ;(2)矩形的面积为()()m n m n +-,10把7m =,4n =代入()()11333m n m n +-=⨯=. 【解析】解:(1)矩形的长为:m n -, 矩形的宽为:m n +, 矩形的周长为:4m ;(2)矩形的面积为()()m n m n +-,把7m =,4n =代入()()11333m n m n +-=⨯=. 【考点】列代数式问题. 18.【答案】sin sin sin a b cA B C==,理由为: 过A 作AD BC ⊥,BE AC ⊥, 在Rt ABD △中,sin ADB c=,即sin AD c B =, 在Rt ADC △中,sin ADC b=,即sin AD b C =, ∴sin sin c B b C =,即sin sin b cB C=, 同理可得sin sin a cA C=, 则sin sin sin a b cA B C==.【解析】sin sin sin a b cA B C==,理由为: 过A 作AD BC ⊥,BE AC ⊥, 在Rt ABD △中,sin ADB c=,即sin AD c B =, 在Rt ADC △中,sin ADC b=,即sin AD b C =, ∴sin sin c B b C =,即sin sin b cB C=,11 / 22同理可得sin sin a cA C=, 则sin sin sin a b cA B C==.【考点】直角三角形.19.【答案】(1)设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(0)1x +元,依题意有48036010x x=+, 解得:30x =.经检验,30x =是原方程的解,10301040x +=+=.答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元. (2)设他们可购买y 棵乙种树苗,依题意有30110%50()()401500y y ⨯--+≤, 解得71113y ≤,∵y 为整数, ∴y 最大为11.答:他们最多可购买11棵乙种树苗.【解析】解:(1)设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(0)1x +元,依题意有48036010x x=+, 解得:30x =.经检验,30x =是原方程的解,10301040x +=+=.答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元. 答:他们最多可购买11棵乙种树苗. 【考点】分式方程的应用.20.【答案】(1)∵AB 与AG 关于AE 对称,∵四边形ABCD 是平行四边形, ∴AD BC ∥,∴AE AD ⊥,即90DAE ∠=,∵点F 是DE 的中点,即AF 是Rt ADE △的中线, ∴AF EF DF ==, ∵AE 与AF 关于AG 对称, ∴AE AF =, 则AE AF EF ==, ∴AEF △是等边三角形;(2 【解析】解:(1)∵AB 与AG 关于AE 对称, ∴AE BC ⊥,∵四边形ABCD 是平行四边形, ∴AD BC ∥,∴AE AD ⊥,即90DAE ∠=︒,∵点F 是DE 的中点,即AF 是Rt ADE △的中线, ∴AF EF DF ==, ∵AE 与AF 关于AG 对称, ∴AE AF =, 则AE AF EF ==, ∴AEF △是等边三角形; (2)记AG 、EF 交点为H ,∵AEF △是等边三角形,且AE 与AF 关于AG 对称, ∴30EAG ∠=,AG EF ⊥, ∵AB 与AG 关于AE 对称,∴30BAE GAE ∠=∠=,90AEB ∠=,13 / 22∴1BE =、DF AF AE ===则12EH AE ==32AH =,∴1322ADF S ==△ 【考点】直角三角形有关的性质、等边三角形的判定与性质、轴对称的性质及平行四边形的性质. 21.【答案】解:(1)随机掷一次骰子,则棋子跳动到点C 处的概率是14, 故答案为:14; (2)共有16种可能,和为14可以到达点C ,有3种情形,所以棋子最终跳动到点C 处的概率为316. 【解析】解:(1)随机掷一次骰子,则棋子跳动到点C 处的概率是14, 故答案为:14; (2)共有16种可能,和为14可以到达点C ,有3种情形,所以棋子最终跳动到点C 处的概率为316. 【考点】列表法与树状图,概率公式.22.【答案】解:(1)∵该抛物线过点(0,0), ∴设抛物线解析式为2y ax bx =+, 将(1,4)、(2,12)代入,得:44212a b a b +=⎧⎨+=⎩, 解得:22a b =⎧⎨=⎩,所以抛物线的解析式为222y x x =+, 当80000y =时,22280000x x +=, 解得:199.500625x =(负值舍去), 即他需要199.500625s 才能到达终点;(2)∵2211222)22y x x x =+=+-(,∴向左平移2个单位,再向上平移5个单位后函数解析式为221159225222)(22()y x x =++-+=++.【解析】解:(1)∵该抛物线过点(0,0), ∴设抛物线解析式为2y ax bx =+, 将(1,4)、(2,12)代入,得:44212a b a b +=⎧⎨+=⎩, 解得:22a b =⎧⎨=⎩,所以抛物线的解析式为222y x x =+, 当80000y =时,22280000x x +=, 解得:199.500625x =(负值舍去), 即他需要199.500625s 才能到达终点;(2)∵2211222)22y x x x =+=+-(,∴向左平移2个单位,再向上平移5个单位后函数解析式为221159225222)(22()y x x =++-+=++.【考点】二次函数的应用.23.【答案】解:(1)∵OPE △的内心为M , ∴MOP MOC ∠=∠,MPO MPE ∠=∠,15 / 22∴11801802()PMO MPO MOP EOP OPE ∠=-∠-∠=-∠+∠,∵PE OC ⊥,即90PEO ∠=,∴11180180180901352()()2PMO EOP OPE ∠=-∠+∠=--=,(2)如图,∵OP OC =,OM OM =, 而MOP MOC ∠=∠, ∴OPM OCM △≌△, ∴135CMO PMO ∠=∠=︒,所以点M 在以OC 为弦,并且所对的圆周角为135°的两段劣弧上(OMC 和ONC ); 点M 在扇形BOC 内时,过C 、M 、O 三点作O ',连O C ',O O ', 在优弧CO 取点D ,连DA ,DO , ∵135CMO ∠=︒,∴18013545CDO ∠=︒-︒=︒, ∴90CO O '∠=,而4cm OA =,∴4O O '==, ∴弧OMC 的长=90π180⨯(cm ),同理:点M 在扇形AOC 内时,同①的方法得,弧ONCcm , 所以内心M所经过的路径长为2cm =. 【解析】解:(1)∵OPE △的内心为M , ∴MOP MOC ∠=∠,MPO MPE ∠=∠,∴11801802()PMO MPO MOP EOP OPE ∠=-∠-∠=-∠+∠,∵PE OC ⊥,即90PEO ∠=,∴11180180180901352()()2PMO EOP OPE ∠=-∠+∠=--=,(2)如图,∵OP OC =,OM OM =, 而MOP MOC ∠=∠, ∴OPM OCM △≌△, ∴135CMO PMO ∠=∠=︒,所以点M 在以OC 为弦,并且所对的圆周角为135°的两段劣弧上(OMC 和ONC ); 点M 在扇形BOC 内时,过C 、M 、O 三点作O ',连O C ',O O ', 在优弧CO 取点D ,连DA ,DO , ∵135CMO ∠=︒,∴18013545CDO ∠=︒-︒=︒, ∴90CO O '∠=,而4cm OA =,∴4O O '==, ∴弧OMC 的长(cm ),同理:点M 在扇形AOC 内时,同①的方法得,弧ONCcm , 所以内心M所经过的路径长为2cm =.【考点】弧长的计算公式,三角形内心的性质,三角形全等的判定与性质,圆周角定理和圆的内接四边形的性质.24.【答案】解:(1)依题意作出图形如图①所示, (2)EB 是平分AEC ∠,理由: ∵四边形ABCD 是矩形,∴90C D ∠=∠=︒,2CD AB ==,BC AD == ∵点E 是CD 的中点,∴112DE CE CD ===,在ADE △和BCE △中,90AD BC C D DE CE =⎧⎪==⎨⎪=⎩∠∠,∴ADE BCE △≌△, ∴AED BEC ∠=∠,在Rt ADE △中,AD =1DE =,∴tan ADAED DE∠=∴60AED ∠=︒, ∴60BCE AED ∠=∠=︒,∴18060AEB AED BEC BEC ∠=-∠-︒∠==∠,17 / 22∴BE 平分AEC ∠;(3)∵2BP CP =,BC =∴CP =,BP =, 在Rt CEP △中,tan CP CEP CE ∠==, ∴30CEP ∠=︒, ∴30BEP ∠=︒, ∴90AEP ∠=︒, ∵CD AB ∥,∴30F CEP ∠=∠=︒, 在Rt ABP △中,tan BP BAP AB ∠==, ∴30PAB ∠=︒,∴30EAP F PAB ∠==∠=∠︒, ∵CB AF ⊥, ∴AP FP =, ∴AEP FBP △≌△,∴PFB △能由都经过P 点的两次变换与PAE △组成一个等腰三角形,变换的方法为:将BPF △绕点B 顺时针旋转120和EPA △重合,①沿PF 折叠,②沿AE 折叠.【解释】(1)依题意作出图形如图①所示, (2)EB 是平分AEC ∠,理由: ∵四边形ABCD 是矩形,∴90C D ∠=∠=︒,2CD AB ==,BC AD == ∵点E 是CD 的中点,∴112DE CE CD ===,在ADE △和BCE △中,90AD BC C D DE CE =⎧⎪==⎨⎪=⎩∠∠,∴ADE BCE △≌△, ∴AED BEC ∠=∠,在Rt ADE △中,AD =1DE =,∴tan ADAED DE∠=∴60AED ∠=︒, ∴60BCE AED ∠=∠=︒,∴18060AEB AED BEC BEC ∠=-∠-︒∠==∠, ∴BE 平分AEC ∠;(3)∵2BP CP =,BC =∴CP =,BP =, 在Rt CEP △中,tan CP CEP CE ∠==, ∴30CEP ∠=︒, ∴30BEP ∠=︒, ∴90AEP ∠=︒, ∵CD AB ∥,∴30F CEP ∠=∠=︒, 在Rt ABP △中,tan BP BAP AB ∠==, ∴30PAB ∠=︒,∴30EAP F PAB ∠==∠=∠︒, ∵CB AF ⊥, ∴AP FP =, ∴AEP FBP △≌△,∴PFB △能由都经过P 点的两次变换与PAE △组成一个等腰三角形,变换的方法为:将BPF △绕点B 顺时针旋转120和EPA △重合,①沿PF 折叠,②沿AE 折叠.19 / 22【考点】矩形的性质,全等三角形的判定和性质,锐角三角函数,图形的变换. 25.【答案】解:(1)当3m =时,27918y x x-==, ∴当3x =时,y 6=, ∴点A 坐标为(3,6); (2)如图延长EA 交y 轴于点F , ∵DE x ∥轴,∴FCA EDA ∠=∠,CFA DEA ∠=∠, ∵AD AC =, ∴FCA EDA △≌△, ∴DE CF =,∵2(),A m m m -,()0,B m -,∴22()BF m m m m =--=-,AF m =, ∵Rt CAB △中,AF x ⊥轴, ∴AFC BFA △∽△, ∴2AF CF BF =, ∴22m CF m =,∴1CF =, ∴1DE =, 故答案为:1, 由上面步骤可知, 点E 坐标为22m,m (-m), ∴点D 坐标为22m,m -(m-1), ∴2m x =,21y m m =--,∴把12m x =代入21y m m =--, ∴211142y x x =--, 2x >;(3)由题意可知,AF BD ∥,当AD 、BF 为平行四边形对角线时,由平行四边形对角线互相平分可得A 、D 和B 、F 的横坐标、纵坐标之和分别相等, 设点F 坐标为(),a b , ∴02a m m +=+,22(1)b m m m m m +=-+---,∴3a m =,221b m m =--, 代入211142y x x =--, 22112133142m m m m --=⨯-⨯-(),解得12m =,20m =(舍去), 当FD 、AB 为平行四边形对角线时, 同理设点F 坐标为(),a b ,则a m =-,1b m =-,则F 点在y 轴左侧,由(2)可知,点D 所在图象不能在y 轴左侧 ∴此情况不存在,综上当2m =时,以A 、B 、D 、F 为顶点的四边形是平行四边形. 【解析】解:(1)当3m =时,27918y x x-==, ∴当3x =时,y 6=,21 / 22 ∴点A 坐标为(3,6);(2)如图延长EA 交y 轴于点F ,∵DE x ∥轴,∴FCA EDA ∠=∠,CFA DEA ∠=∠,∵AD AC =,∴FCA EDA △≌△,∴DE CF =,∵2(),A m m m -,()0,B m -,∴22()BF m m m m =--=-,AF m =,∵Rt CAB △中,AF x ⊥轴,∴AFC BFA △∽△,∴2AF CF BF =,∴22m CF m =,∴1CF =,∴1DE =,故答案为:1,由上面步骤可知,点E 坐标为22m,m (-m),∴点D 坐标为22m,m -(m-1),∴2m x =,21y m m =--, ∴把12m x =代入21y m m =--,22 ∴211142y x x =--, 2x >;(3)由题意可知,AF BD ∥,当AD 、BF 为平行四边形对角线时,由平行四边形对角线互相平分可得A 、D 和B 、F 的横坐标、纵坐标之和分别相等, 设点F 坐标为(),a b ,∴02a m m +=+,22(1)b m m m m m +=-+---,∴3a m =,221b m m =--, 代入211142y x x =--, 22112133142m m m m --=⨯-⨯-(), 解得12m =,20m =(舍去),当FD 、AB 为平行四边形对角线时,同理设点F 坐标为(),a b ,则a m =-,1b m =-,则F 点在y 轴左侧,由(2)可知,点D 所在图象不能在y 轴左侧 ∴此情况不存在,综上当2m =时,以A 、B 、D 、F 为顶点的四边形是平行四边形.【考点】三角形的全等、相似、平行四边形判定,用字母表示坐标.。

贵州省遵义市2018-2019学年人教版八年级上学期数学期末考试试卷

贵州省遵义市2018-2019学年人教版八年级上学期数学期末考试试卷

贵州省遵义市2018-2019学年八年级上学期数学期末考试试卷一、选择题1.下列长度的线段中,可以组成三角形的是( )A.1,2,3B.2,5,8C.3,4,5D.3,6,92.下列图案中,不是轴对称图形的是( )A. B. C. D.3.下列运算正确的是( )A.3a + 2b = 5aB.(a + b) = a + bC.(-a b ) = a bD.1 - 4m + 4m = (2m -1)4.分式有意义,则x的取值范围是( )A.x≠-3B.x≠3C.x≠±3D.x≠95.已知等腰三角形的一个外角是80°,则它的顶角是( )A.20°B.100°C.20°或100°D.20°或80°6.如图,已知AD∥BC,AB=CD,AC,BD 交于点O,另加一个条件不能使△ABD≌△CDB 的是( )A.AO=COB.AD=BCC.AC=BDD.OB=OD7.下列正多边形不能镶嵌为平面图形的是( )A.正三角形B.正方形C.正五边形D.正六边形8.小明在计算一个多边形的内角和时,漏掉了一个内角,结果得1000°,则这个多边形是( )A.六边形B.七边形C.八边形D.十边形9.如果mx2 + 4x + m2 + 3 = 0 是一个完全平方式,则m 的值是( )A.m=±1B.m=-1C.m=0D.m=110.港珠澳大桥是我国桥梁建筑史上的又一伟大奇迹,东接香港,西接珠海、澳门,全程55 公里.通车前需走水陆两路共约340 公里,通车后,约减少时间2.5 小时,平均速度是原来的6 倍,如果设原来通车前的平均时速为x 千米/小时,则可列方程为( )A. B. C. D.11.如图,从边长为a 厘米的正方形纸片中减去边长为b 厘米的小正方形,将剪下的图形从虚线处剪开,再拼成一个矩形(长方形).试求这个“新矩形”的面积,下列说法表述正确的是( )A.因式分解a - b = (a + b)(a - b)B.整式乘法a - b = (a + b)(a - b)C.因式分解(a + b)(a - b) = a - bD.整式乘法a ± 2ab + b = (a ± b)12.如图,点B,C,D,E 在同一条直线上,△ABC 为等边三角形,AC=CD,AD=DE,若AB=3,AD=m,试用m 的代数式表示△ABE 的面积( )A. B.m C.m D.3m二、填空题13.计算________14.分解因式:2m -32m5=________;15.已知a+b=3,ab=2,则a2+b2=________;16.若分式有增根,则m=________;17.如图,在∠AOB 的边OA、OB 上取点M、N,连接MN,P 是△MON 外角平分线的交点,若MN=2,S △PMN=2,S△OMN=7.则△MON 的周长是________;18.如图,以AB 为底分别作等边三角形QAB 和正方形ABCD.如果在正方形的对角线AC上存在一点P 使PD+PQ 存在最小值为2,则该正方形的面积是________ .三、解答题19.(1)计算:(2a6b)-1 ÷(a-2b)3 (2)因式分解:2xy+1-x2- y220.解方程:21.化简,然后从-1,0,1,2 中选取一个你喜欢的数作为x 的值代入求值.22.如图,点A(-1,2),B(-3,1),C(-1,1)在平面坐标系中.(1)在图中找出第四个点P,使以A、B、C、P 为顶点的四边形是轴对称图形,画出该四边形,并写出P 点的坐标________;(找出一个即可)(2)求出(1)中你画出的四边形的面积.23.如图,△ABC 和△BDE 均为等边三角形,求证:DE+EC=AE.24.已知三角形的三边长分别为a,b,c,且满足等式a2+b2+c2=ab+bc+ac,试猜想该三角形的形状,并证明你的猜想.25.“绿色环保,健康出行”新能源汽车越来越占领汽车市场,以“北汽”和“北汽新能源EV500”为例,分别在某加油站和某充电站加油和充电的电费均为300 元,而续航里程之比则为1∶4.经计算新能源汽车相比燃油车节约0.6 元/公里.(1)分别求出燃油车和新能源汽车的续航单价(每公里费用);(2)随着更多新能源车进入千家万户,有条件的小区及用户将享受0.48 元/度的优惠专用电费.以新能源EV500 为例,充电55 度可续航400 公里,试计算每公里所需电费,并求出与燃油车相同里程下的所需费用(油电)百分比.26.已知,有一组不为零的数a,b,c,d,e,f,m,满足,求解:∵a=bm,c=md,e=fm∴= = m利用数学的恒等变形及转化思想,试完成:(1)244,333,422 的大小关系是________;(2)已知a,b,c 不相等且不为零,若,求的值.27.数学思维是数学地思考问题和解决问题,运用数学概念,思维和方法,辨明数学关系,形成良好的思维品质,试用你的数学能力解决下列问题:图1 图2(1)如图1 是角平分线的一种作法,其运用的数学知识是全等三角形判定方法中的________(判定方法);(2)如图2,在△ABC 中,∠B=60°,∠BAC 的平分线AD 与∠BCA 的平分线CE 交于点F,则:①∠AFC=________度.②写出EF与FD的数量关系,并说明理由;________。

冀教版2018-2019学年八年级第二学期期末数学试卷含答案解析

冀教版2018-2019学年八年级第二学期期末数学试卷含答案解析

冀教版2018-2019学年八年级第二学期期末数学试卷一、细心选一选(本大题共12个小题,每小题2分,共24分,每小题后均给出四个选项。

请把最符合题意的选项序号填在题后的括号内)1.(2分)函数y=中,自变量x的取值范围是()A.x>2 B.x≥2C.x>﹣3 D.x≥﹣32.(2分)如图,将矩形ABCD沿AE折叠,使D点落在BC边的F处,若∠BAF=60°,则∠DAE等于()A.15°B.30°C.45°D.60°3.(2分)下列图象中,表示y是x的函数的个数有()A.1个B.2个C.3个D.4个4.(2分)一次函数y=﹣2x+4的图象与y轴的交点坐标是()A.(0,4)B.(4,0)C.(2,0)D.(0,2)5.(2分)菱形、矩形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分一组对角6.(2分)如图,一次函数y=(m﹣1)x﹣3+m的图象分别于x轴、y轴的负半轴相交于点A、B,则m的取值范围是()A.m>3 B.m<3 C.m>1 D.m<17.(2分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC 于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.88.(2分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>39.(2分)2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为S.下面能反映S与t的函数关系的大致图象是()A. B. C. D.10.(2分)如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是()A.54 B.110 C.19 D.10911.(2分)为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.9612.(2分)某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资w(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4.5小时B.4.75小时C.5小时D.5小时二、认真填一填(每空3分,共30分,请把正确答案填在题后的横线上)13.(3分)如图是一次函数y=kx+b的图象,则方程kx+b=0的解为.14.(3分)如果点P1(﹣3,y1)、P2(﹣2,y2)在一次函数y=2x+b的图象上,则y1y2.(填“>”,“<”或“=”)15.(3分)如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=.16.(3分)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=.17.(3分)如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费元.18.(3分)如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1S2;(填“>”或“<”或“=”)19.(3分)如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于.20.(3分)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.21.(3分)在平面直角坐标系xOy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是.22.(3分)如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为.三、解答题(本大题共66分)23.(9分)小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高cm;(2)求放入小球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出?24.(10分)在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图甲、乙所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:(1)样本中喜欢B项目的人数百分比是,其所在扇形统计图中的圆心角的度数是;(2)把条形统计图补充完整;(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?25.(11分)如图(*),四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF 交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题.(1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证△AEM≌EFC 就行了,随即小强写出了如下的证明过程:证明:如图1,取AB的中点M,连接EM.∵∠AEF=90°∴∠FEC+∠AEB=90°又∵∠EAM+∠AEB=90°∴∠EAM=∠FEC∵点E,M分别为正方形的边BC和AB的中点∴AM=EC又可知△BME是等腰直角三角形∴∠AME=135°又∵CF是正方形外角的平分线∴∠ECF=135°∴△AEM≌△EFC(ASA)∴AE=EF(2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC 上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论.(3)探究3:小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由.26.(12分)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?27.(12分)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB 外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.28.(12分)在茶节期间,某茶商订购了甲种茶叶90吨,乙种茶叶80吨,准备用A、B两种型号的货车共20辆运往外地.已知A型货车每辆运费为0.4万元,B型货车每辆运费为0.6万元.(1)设A型货车安排x辆,总运费为y万元,写出y与x的函数关系式;(2)若一辆A型货车可装甲种茶叶6吨,乙种茶叶2吨;一辆B型货车可装甲种茶叶3吨,乙种茶叶7吨.按此要求安排A、B两种型号货车一次性运完这批茶叶,共有哪几种运输方案?(3)说明哪种方案运费最少?最少运费是多少万元?参考答案与试题解析一、细心选一选(本大题共12个小题,每小题2分,共24分,每小题后均给出四个选项。

2018-2019学年八年级(下)期中数学试卷1 解析版

2018-2019学年八年级(下)期中数学试卷1  解析版

2018-2019学八年级(下)期中数学试卷一.选择题(共10小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.3.下列运算正确的是()A.2﹣=1B.+=C.×=4D.÷=2 4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28°B.38°C.62°D.72°5.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1 6.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若EF=3,则BD的长为()A.6B.9C.12D.158.如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为()A.15°B.30°C.45°D.20°9.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm10.如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为()A.4.8B.5C.5.2D.5.4二.填空题(共4小题)11.计算3﹣的结果是.12.如图所示,数轴上点A所表示的数为a,则a的值是.13.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=7,则EF的长为.14.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接P A,以P A、PC为邻边作▱P AQC,连接PQ,则PQ的最小值为.三.解答题(共11小题)15.计算:(﹣2)×﹣616.先化简,再求值:(2﹣)÷,其中x=﹣3.17.若x、y都是实数,且y=++,求x2y+xy2的值.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.20.如图,在四边形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.21.如图,在矩形ABCD中,M为BC上的点,过点D作DE⊥AM于E,DE=DC=5,AE =2EM.(1)求证:BM=AE;(2)求BM的长.22.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:+++…+.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.24.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E 作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.25.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.参考答案与试题解析一.选择题(共10小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补【分析】根据平行四边形的性质和菱形的性质对各选项进行判断.【解答】解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.故选:C.2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.【分析】根据勾股定理即可得到结论.【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB===,故选:B.3.下列运算正确的是()A.2﹣=1B.+=C.×=4D.÷=2【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A.2﹣=,此选项错误;B.与不是同类二次根式,不能合并,此选项错误;C.×=×2=4,此选项正确;D.÷=,此选项错误;故选:C.4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28°B.38°C.62°D.72°【分析】由在平行四边形ABCD中,∠A=118°,可求得∠B的度数,又由CE⊥AB,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠B=180°﹣∠A=180°﹣118°=62°,∵CE⊥AB,∴∠BCE=90°﹣∠B=28°.故选:A.5.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1【分析】根据二次根式有意义的条件可得x+1≥0,根据分式有意义的条件可得x﹣1≠0,再解即可.【解答】解:由题意得:x+1≥0,且x﹣1≠0,解得:x≥﹣1,且x≠1,故选:D.6.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【解答】解:由勾股定理得:楼梯的水平宽度==4,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(m).故选:A.7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若EF=3,则BD的长为()A.6B.9C.12D.15【分析】根据已知条件可以得到EF是△OAB的中位线,则OB=2EF=6,再利用平行四边形的性质得出BD即可.【解答】解:∵点E,F分别是AB,AO的中点,连接EF,EF=3,∴EF是△OAB的中位线,则OB=2EF=6,∵在▱ABCD中,∴BD=2OB=12,故选:C.8.如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为()A.15°B.30°C.45°D.20°【分析】先利用正方形的性质得到DA=DC,∠CAD=45°,∠ADC=90°,利用等边三角形的性质得到DE=DC,∠CDE=60°,则DA=DE,∠ADE=150°,再根据等腰三角形的性质和三角形内角和计算出∠DAE=15°,然后计算∠CAD与∠DAE的差即可.【解答】解:∵四边形ABCD为正方形,∴DA=DC,∠CAD=45°,∠ADC=90°,∵△CDE为等边三角形,∴DE=DC,∠CDE=60°,∴DA=DE,∠ADE=90°+60°=150°,∴∠DAE=∠DEA,∴∠DAE=(180°﹣150°)=15°,∴∠CAE=45°﹣15°=30°.故选:B.9.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm【分析】思想两个勾股定理求出菱形的边长,再利用菱形的面积的两种求法构建方程即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8.故选:A.10.如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为()A.4.8B.5C.5.2D.5.4【分析】由矩形的性质得出∠A=∠C=∠D=90°,CD=AB=8,BC=AD=6,由折叠的性质得出EP=AP,BE=AB=8,∠E=∠A=90°,由ASA证明△ODP≌△OEF,得出PD=FE,OP=OF,因此DF=EP=AP,设AP=x,则DF=x,FE=PD=6﹣x,得出CF=CD﹣DF=8﹣x,BF=BE﹣FE=x+2,在Rt△BCF中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是长方形,∴∠A=∠C=∠D=90°,CD=AB=8,BC=AD=6,由折叠的性质得:EP=AP,BE=AB=8,∠E=∠A=90°,在△ODP和△OEF中,,∴△ODP≌△OEF(ASA),∴PD=FE,OP=OF,∴DF=EP=AP,设AP=x,则DF=x,FE=PD=6﹣x,∴CF=CD﹣DF=8﹣x,BF=BE﹣FE=x+2,在Rt△BCF中,BC2+CF2=BF2,即62+(8﹣x)2=(x+2)2,解得:x=4.8;故选:A.二.填空题(共4小题)11.计算3﹣的结果是﹣.【分析】直接化简二次根式,进而合并得出答案.【解答】解:原式=3×﹣2=﹣2=﹣.故答案为:﹣.12.如图所示,数轴上点A所表示的数为a,则a的值是﹣.【分析】根据图形,利用勾股定理可以求得a的值.【解答】解:由图可得,a=﹣,故答案为:﹣.13.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=7,则EF的长为1.【分析】根据三角形中位线定理得到DE=BC=3.5,根据直角三角形的性质得到DF =AB=2.5,计算即可.【解答】解:∵DE是△ABC的中位线,∴DE=BC=3.5,DE∥BC,∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∴EF=DE﹣DF=1,故答案为:1.14.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接P A,以P A、PC为邻边作▱P AQC,连接PQ,则PQ的最小值为.【分析】以P A,PC为邻边作平行四边形P AQC,由平行四边形的性质可知O是AC中点,PQ最短也就是PO最短,所以应该过O作BC的垂线P′O,根据垂线段最短即可解决问题;【解答】解:∵∠BAC=90°,∠B=60°,AB=1,∴BC=2AB=2,AC=,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO=,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∴则PQ的最小值为2OP′=2OC•sin30°=,故答案为:.三.解答题(共11小题)15.计算:(﹣2)×﹣6【分析】先算乘法,再合并同类二次根式即可.【解答】解:原式=3﹣2﹣3=﹣2.16.先化简,再求值:(2﹣)÷,其中x=﹣3.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=×=,把x=﹣3代入得:原式===1﹣2.17.若x、y都是实数,且y=++,求x2y+xy2的值.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后代入求值即可.【解答】解:由题意得:,解得:x=2,则y=,x2y+xy2=xy(x+y)=2(2+)=4+4.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.【分析】依据勾股定理,即可得到BD和CD的长,进而得出BC=BD+CD=21.【解答】解:∵AB=13,AC=20,AD=12,AD⊥BC,∴Rt△ABD中,BD===5,Rt△ACD中,CD===16,∴BC=BD+CD=5+16=21.19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.【分析】根据平行四边形的性质和全等三角形的判定和性质证明即可.【解答】证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=DC,∴∠ABE=∠CDF,又∵BE=DF,在△ABE与△CDF中,∴△ABE≌△CDF(SAS)∴AE=CF.20.如图,在四边形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.【分析】(1)连接BD,根据AB=AD=6,∠A=60°,得出△ABD是等边三角形,求得BD=8,然后根据勾股定理的逆定理判断三角形BDC是直角三角形,从而求得∠ADC=150°;(2)根据四边形的面积等于三角形ABD和三角形BCD的和即可求得.【解答】解:(1)连接BD,∵AB=AD=6,∠A=60°,∴△ABD是等边三角形,∴BD=6,∠ADB=60°,∵BC=10,CD=8,则BD2+CD2=82+62=100,BC2=102=100,∴BD2+CD2=BC2,∴∠BDC=90°,∴∠ADC=150°;(2)S=S△ABD+S△BDC=AD•AD+BD•DC=×6××6+×8×6=9+24.21.如图,在矩形ABCD中,M为BC上的点,过点D作DE⊥AM于E,DE=DC=5,AE =2EM.(1)求证:BM=AE;(2)求BM的长.【分析】(1)由题意可证△AED≌△ABM,则结论可得.(2)在Rt△ABM中根据勾股定理可求EM的长,即可求AE的长.【解答】证明:(1)∵四边形ABCD是矩形∴AD∥BC,AB=CD,∠B=∠C=90°∴∠DAE=∠AMB∵CD=DE,CD=AB∴AB=DE,且∠ABC=∠AED=90°,∠DAE=∠AMB∴△ADE≌△ABM∴BM=AE(2)在Rt△ABM中,AM2=AB2+BM2.∴9EM2=25+4EM2.∴EM=∴AE=BM=222.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:+++…+.【分析】(1)原式分母有理化,计算即可得到结果;(2)原式各自分母有理化化简后,合并即可得到结果.【解答】解:(1)原式==+;(2)原式=﹣1+﹣+…+﹣=﹣1.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.【分析】(1)通过证明四边形OCEB是矩形来推知OE=CB;(2)利用(1)中的AC⊥BD、OE=CB,结合已知条件,在Rt△BOC中,由勾股定理求得CO=1,OB=2.然后由菱形的对角线互相平分和菱形的面积公式进行解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,∴OE=CB;(2)解:∵由(1)知,AC⊥BD,OC:OB=1:2,∴BC=OE=.∴在Rt△BOC中,由勾股定理得BC2=OC2+OB2,∴CO=1,OB=2.∵四边形ABCD是菱形,∴AC=2,BD=4,∴菱形ABCD的面积是:BD•AC=4.24.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E 作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.【分析】(1)由正方形的性质可得∠ABC=90°,AD∥BC,由“AAS”可证△ABM≌△EF A,可得AF=BM;(2)由勾股定理可求AM=13,由全等三角形的性质可得AM=AE=13,即可求DE的长.【解答】证明:(1)∵四边形ABCD是正方形∴∠ABC=90°,AD∥BC∴∠EAF=∠AMB,∵∠AFE=∠ABC=90°,AE=AM,∴△ABM≌△EF A(AAS)∴AF=BM(2)∵在Rt△ABM中,AB=12,AF=BM=5∴AM==13∵△ABM≌△EF A,∴AM=AE=13,∵四边形ABCD是正方形,∴AB=AD,∴DE=AE﹣AD=13﹣12=125.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.(2)作F A⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.【解答】证明:延长AE、BC交于点N,如图1(1),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠F AE=90°.∴∠F AB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠F AB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠F AB=∠F AM.∴∠F=∠F AM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE和△PCE中,∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM.∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.在△ABQ和△ADE中,∴△ABQ≌△ADE(AAS).∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.。

2022-2023学年贵州省贵阳市八年级(下)期中数学试卷+答案解析(附后)

2022-2023学年贵州省贵阳市八年级(下)期中数学试卷+答案解析(附后)

2022-2023学年贵州省贵阳市八年级(下)期中数学试卷1. 已知等腰三角形的两边长分别为6cm、3cm,则该等腰三角形的周长是( )A. 9cmB. 12cmC. 12cm或15cmD. 15cm2. 如图,OC为的平分线,,,则点C到射线OA的距离为( )A. 3B. 6C. 9D. 123. 已知,则下列结论正确的是( )A. B. C. D.4. 下列四个图案中,不能由1号图形平移得到2号图形的是( )A. B. C. D.5. 不等式的解集在数轴上表示正确的是( )A. B.C. D.6. 下列式子从左到右变形是因式分解的是( )A. B.C. D.7. 如图,已知,点P在边OA上,,点M,N在边OB上,,若,则OM的长为( )A. 3B. 4C. 5D. 68. 如图,一次函数与一次函数的图象交于点,则关于x的不等式的解集是( )A. B. C. D.9. 如图,在中,,,分别以点A,B为圆心,大于的长为半径作弧,两弧交于M、N两点,作直线MN交AC于点D,则CD的长为( )A. 1B.C.D. 310. 若关于x的不等式的正整数解是1,2,3,则m的取值范围是( )A. B. C. D.11. 如图所示的不等式组的解集是______.12. 分解因式:__________.13. 如图,是由通过平移得到,且点B、E,C、F在同一条直线上,如果,那么这次平移的距离是__________.14. 如图,等腰和等腰的腰长分别M为边DE的中点.为4和2,其中,若等腰绕点A旋转,则点B到点M的距离的最大值为______ .15. 解下列一元一次不等式,并把解集在数轴上表示出来.;16. 如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且,过点E 作,交BC的延长线于点求的度数;若,求DF的长.17. 如图,直角坐标系中,的顶点都在网格上,其中C点坐标为写出点A、B的坐标:______ ,______ 、______ ,______ ;将先向左平移2个单位长度,再向上平移1个单位长度,得到,请你画出平移后的;求的面积.18. 给出三个多项式:,,请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.19. 如图所示,,,,绕点B逆时针旋转得到,连接求证:≌;连接AD,求AD的长.20. 超市购进一批A、B两种品牌的饮料共320箱,其中A品牌比B品牌多80箱.此两种饮料每箱的进价和售价如下表所示:品牌A B进价元/箱5535售价元/箱6340问销售一箱B品牌的饮料获得的利润是多少元?注:利润=售价-进价问该商场购进A、B两种品牌的饮料各多少箱?受市场经济影响,该商场调整销售策略,A品牌的饮料每箱打折销售,B品牌的饮料每箱售价改为38元.为使新购进的A、B两种品牌的饮料全部售出且利润不少于700元,问A 种品牌的饮料每箱最低打几折出售?21. 如图,在中,的平分线与BC的中垂线DE交于点E,过点E作AC边的垂线,垂足N,过点E作AB延长线的垂线,垂足为求证:;若,,求BM的长.答案和解析1.【答案】D【解析】【分析】本题考查了等腰三角形的定义和三角形的三边关系,涉及分类讨论的思想方法,属于基础题.题目给出等腰三角形有两条边长为3cm和6cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为3cm时,,不能构成三角形,因此这种情况不成立.当腰为6cm时,,能构成三角形;此时等腰三角形的周长为故选:2.【答案】B【解析】解:过点C作,为点C到射线OA的距离,为的平分线,,,故选:作,可知CN为点C到射线OA的距离,根据角平分线的性质定理可得,即可得答案.本题考查了角平分线的性质,角平分线上的点,到角两边的距离相等;熟练掌握角平分线的性质是解题关键.3.【答案】B【解析】解:根据在不等式两边加上同一个数,不等号方向不变知B正确.根据在不等式两边乘以同一个正数,不等号方向不变,乘以同一个负数不等号方向改变知A,C,D 错误.故选:根据不等式的性质判断.本题考查不等式的性质,正确运用不等式性质是求解本题的关键.4.【答案】D【解析】解:A、属于平移,错误;B、属于平移,错误;C、属于平移,错误;D、属于旋转,正确;故选:根据平移的定义求解,平移变换不改变图形的形状、大小和方向.此题考查利用平移设计图案,判断是否是平移,要把握“两不变”,“一变”,即形状和大小没有变化,位置变化.5.【答案】A【解析】解;,解得,故选:根据解不等式的方法,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.本题考查了在数轴上表示不等式的解集,在表示解集时“”,“”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.【答案】D【解析】解:A、,从左到右变形是整式的乘法运算,故此选项错误;B、,,不是多项式,故左到右变形不是因式分解,故此选项错误;C、,不符合因式分解的定义,故此选项错误;D、,从左到右是因式分解,符合题意.故选:直接利用因式分解的定义结合整式乘法运算法则进而分析得出答案.此题主要考查了因式分解的意义,正确掌握因式分解的意义是解题关键.7.【答案】C【解析】解:过P作,,,,,,,,,,,故选:过Pp作,根据等腰三角形形三线合一及直角三角形角所对直角边等于斜边一半即可得到答案.本题考查等腰三角形形三线合一及直角三角形角所对直角边等于斜边一半,解题关键是作出辅助线.8.【答案】C【解析】解:当时,,即不等式的解集为故选观察函数图象得到当时,函数的图象都在的图象上方,所以关于x的不等式的解集为本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量x的取值范围;从函数图象的角度看,就是确定直线在x轴上或下方部分所有的点的横坐标所构成的集合.9.【答案】B【解析】解:如图,过点D作于点E,根据作图过程可知:MN是线段AB的垂直平分线,,,,,设,则,,,,,在中,根据勾股定理,得,,解得则CD的长为故选:根据作图过程可得MN是线段AB的垂直平分线,可得,然后作于点E,根据勾股定理即可得结果.本题考查了作图-基本作图,线段垂直平分线的性质,勾股定理,解决本题的关键是掌握线段垂直平分线的性质.10.【答案】D【解析】解:移项,得:,系数化为1,得:,不等式的正整数解为1,2,3,,解得:,故选:解关于x的不等式求得,根据不等式的正整数解的情况列出关于m的不等式组,解之可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.11.【答案】【解析】解:由数轴可知是公共部分,即不等式组的解集是故答案是:根据不等式组解集是所有不等式解集的公共部分求解可得.本题考查了在数轴上表示不等式组的解集.把每个不等式的解集在数轴上表示出来向右画;<,向左画,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“”,“”要用实心圆点表示;“<”,“>”要用空心圆点表示.12.【答案】【解析】【分析】此题主要考查了提公因式法分解因式,关键是正确找到公因式.直接提取公因式2x即可.【解答】解:,故答案为13.【答案】4【解析】解:因为是由通过平移得到,所以,所以,因为,,所以故答案为:【分析】根据平移的性质可得,然后列式即可求解.本题考查了平移的性质,根据对应点间的距离等于平移的长度得到是解题的关键.14.【答案】【解析】解:如图,连接为边DE的中点,且为等腰直角三角形,,在中,,由勾股定理可知,即当A,B,M三点不共线时,由三角形的三边关系可知,此时一定有;当A,B,M三点共线且点M不位于点A,B之间时,此时有,,即点B到点M的距离的最大值为故答案为:连接由三线合一得,利用勾股定理求出,然后利用三角形三条边的关系求解即可.本题考查了勾股定理,等腰直角三角形的性质,以及三角形三条边的关系,确定当A,B,M三点共线且点M不位于点A,B之间时BM有最大值是解题的关键.15.【答案】解:,去括号,得,移项,得,合并同类项,得解集在数轴上表示如图所示.,去分母,得,去括号,得,移项,得,合并同类项,得,系数化为1,得解集在数轴上表示如图所示.【解析】先求出不等式的解集,然后画数轴表示即可;先求出不等式的解集,然后画数轴表示即可.本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.16.【答案】解:是等边三角形,,,,,,,;,,,【解析】证明中的三个角均为,然后再求得,则可得出答案;先求得,然后由进行求解即可.本题主要考查的是等边三角形的性质和等腰三角形的性质,熟练掌握相关知识是解题的关键.17.【答案】【解析】解:由图可得,,故答案为:2;;4;如图,即为所求.的面积为由图可直接得出答案.根据平移的性质作图即可.利用割补法求三角形的面积即可.本题考查作图-平移变换,熟练掌握平移的性质是解答本题的关键.18.【答案】解:情况一:情况二:情况三:【解析】本题考查整式的加法运算,找出同类项,然后只要合并同类项就可以了.本题考查了提公因式法,公式法分解因式,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.熟记公式结构是分解因式的关键.平方差公式:;完全平方公式:19.【答案】证明:绕点B逆时针旋转得到,,,,,,,在与中,,≌;解:连接AD,绕点B逆时针旋转得到,,,,≌,,,,,,,【解析】根据旋转的性质得到,,,根据全等三角形的判定定理即可得到结论;连接AD,根据旋转的性质得到,,,根据全等三角形的性质得到,,根据等腰三角形的性质即可得到结论.本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,熟练掌握旋转的性质是解题的关键.20.【答案】解:元答:销售一箱B品牌的饮料获得的利润是5元.设该商场购进A品牌饮料x箱,B品牌饮料y箱,依题意,得:,解得:答:该商场购进A品牌饮料200箱,B品牌饮料120箱.设A种品牌的饮料每箱打m折出售,依题意,得:,解得:答:A种品牌的饮料每箱最低打9折出售.【解析】利用利润=售价-进价,即可求出结论;设该商场购进A品牌饮料x箱,B品牌饮料y箱,根据“超市购进一批A、B两种品牌的饮料共320箱,其中A品牌比B品牌多80箱”,即可得出关于x,y的二元一次方程组,解之即可得出结论;设A种品牌的饮料每箱打m折出售,根据总利润=每箱的利润销售数量结合总利润不少于700元,即可得出关于x的一元一次不等式,解之取其最小值即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:根据各数量之间的关系,列式计算;找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,正确列出一元一次不等式.21.【答案】证明:连接BE,CE,平分,,,,垂直平分BC,,,;解:,,,设,,,,,【解析】连接BE,CE,根据角平分线的性质得到,根据线段垂直平分线的性质得到,根据全等三角形的判定和性质即可得到结论;根据全等三角形的性质得到,设,列方程即可得到结论.本题考查了全等三角形的判定和性质,角平分线的性质,线段垂直平分线的性质,正确的作出辅助线构造全等三角形是解题的关键.。

2018贵州省贵阳市中考数学试卷(含答案解析版)

2018贵州省贵阳市中考数学试卷(含答案解析版)

14、2018年贵州省贵阳市中考数学试卷一、选择题(以下每个小题均有A、B、C、D四个选项.其中只有一个选项正确.请用2B铅笔在答题卡相应位置作答.每题3分.共30分)1.(3.00分)(2018•贵阳)当x=﹣1时,代数式3x+1的值是()A.﹣1 B.﹣2 C.4 D.﹣42.(3.00分)(2018•贵阳)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()A.线段DE B.线段BE C.线段EF D.线段FG3.(3.00分)(2018•贵阳)如图是一个几何体的主视图和俯视图,则这个几何体是()A.三棱柱B.正方体C.三棱锥D.长方体4.(3.00分)(2018•贵阳)在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600名学生进行调查C.随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调査5.(3.00分)(2018•贵阳)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.96.(3.00分)(2018•贵阳)如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.47.(3.00分)(2018•贵阳)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.B.1 C.D.8.(3.00分)(2018•贵阳)如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是()A.B.C.D.9.(3.00分)(2018•贵阳)一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A.(﹣5,3)B.(1,﹣3)C.(2,2)D.(5,﹣1)10.(3.00分)(2018•贵阳)已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A.﹣<m<3 B.﹣<m<2 C.﹣2<m<3 D.﹣6<m<﹣2二、填空題(每小题4分,共20分)11.(4.00分)(2018•贵阳)某班50名学生在2018年适应性考试中,数学成绩在100〜110分这个分数段的频率为0.2,则该班在这个分数段的学生为人.12.(4.00分)(2018•贵阳)如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y=(x>0),y=﹣(x>0)的图象交于A点和B点,若C为y轴任意一点.连接AB、BC,则△ABC的面积为.13.(4.00分)(2018•贵阳)如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是度.14.(4.00分)(2018•贵阳)已知关于x的不等式组无解,则a的取值范围是.15.(4.00分)(2018•贵阳)如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG长的最小值为.三、解答題(本大題10个小题,共100分)16.(10.00分)(2018•贵阳)在6.26国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分折,成绩如下:初一:68881851008814961009267初二:6997916998109969971879(1)根据上述数据,将下列表格补充完成.整理、描述数据:分数段60≤x≤6970≤x≤7980≤x≤8990≤x≤100初一人数22412初二人数22115分析数据:样本数据的平均数、中位数、满分率如表:年级平均教中位教满分率初一90.19325%初二92.820%得出结论:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共人;(3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.17.(8.00分)(2018•贵阳)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.18.(8.00分)(2018•贵阳)如图①,在Rt△ABC中,以下是小亮探究与之间关系的方法:∵sinA=,sinB=∴c=,c=∴=根据你掌握的三角函数知识.在图②的锐角△ABC中,探究、、之间的关系,并写出探究过程.19.(10.00分)(2018•贵阳)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?20.(10.00分)(2018•贵阳)如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE 的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.21.(10.00分)(2018•贵阳)图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)达机掷一次骰子,则棋子跳动到点C处的概率是(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.22.(10.00分)(2018•贵阳)六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:cm)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s0123…滑行距离y/cm041224…(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约800m,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向上平移5个单位,求平移后的函数表达式.23.(10.00分)(2018•贵阳)如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.(1)求∠OMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.24.(12.00分)(2018•贵阳)如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)25.(12.00分)(2018•贵阳)如图,在平面直角坐标系xOy中,点A是反比例函数y=(x>0,m>1)图象上一点,点A的横坐标为m,点B(0,﹣m)是y轴负半轴上的一点,连接AB,AC⊥AB,交y轴于点C,延长CA到点D,使得AD=AC,过点A作AE平行于x 轴,过点D作y轴平行线交AE于点E.(1)当m=3时,求点A的坐标;(2)DE=,设点D的坐标为(x,y),求y关于x的函数关系式和自变量的取值范围;(3)连接BD,过点A作BD的平行线,与(2)中的函数图象交于点F,当m为何值时,以A、B、D、F为顶点的四边形是平行四边形?2018年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题(以下每个小题均有A、B、C、D四个选项.其中只有一个选项正确.请用2B铅笔在答题卡相应位置作答.每题3分.共30分)1.(3.00分)(2018•贵阳)当x=﹣1时,代数式3x+1的值是()A.﹣1 B.﹣2 C.4 D.﹣4【分析】把x的值代入解答即可.【解答】解:把x=﹣1代入3x+1=﹣3+1=﹣2,故选:B.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.2.(3.00分)(2018•贵阳)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()A.线段DE B.线段BE C.线段EF D.线段FG【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【解答】解:根据三角形中线的定义知线段BE是△ABC的中线,故选:B.【点评】本题主要考查三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3.(3.00分)(2018•贵阳)如图是一个几何体的主视图和俯视图,则这个几何体是()A.三棱柱B.正方体C.三棱锥D.长方体【分析】根据三视图得出几何体为三棱柱即可.【解答】解:由主视图和俯视图可得几何体为三棱柱,故选:A.【点评】本题考点是简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.4.(3.00分)(2018•贵阳)在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600名学生进行调查C.随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调査【分析】根据抽样调查的具体性和代表性解答即可.【解答】解:为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,在四个学校各随机抽取150名学生进行调査最具有具体性和代表性,故选:D.【点评】此题考查抽样调查,关键是理解抽样调查的具体性和代表性.5.(3.00分)(2018•贵阳)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.9【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【解答】解:∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴EF=BC,∴BC=6,∴菱形ABCD的周长是4×6=24.故选:A.【点评】本题考查的是三角形中位线的性质及菱形的周长公式,题目比较简单.6.(3.00分)(2018•贵阳)如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.4【分析】首先确定原点位置,进而可得C点对应的数.【解答】解:∵点A、B表示的数互为相反数,∴原点在线段AB的中点处,∴点C对应的数是1,故选:C.【点评】此题主要考查了数轴,关键是正确确定原点位置.7.(3.00分)(2018•贵阳)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.B.1 C.D.【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【解答】解:连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选:B.【点评】此题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.8.(3.00分)(2018•贵阳)如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是()A.B.C.D.【分析】先找出符合的所有情况,再得出选项即可.【解答】解:共有5+4+3=12,所以恰好摆放成如图所示位置的概率是,故选:A.【点评】本题考查了列表法与树形图法,能找出符合的所有情况是解此题的关键.9.(3.00分)(2018•贵阳)一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A.(﹣5,3)B.(1,﹣3)C.(2,2)D.(5,﹣1)【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【解答】解:∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意;故选:C.【点评】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.10.(3.00分)(2018•贵阳)已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A.﹣<m<3 B.﹣<m<2 C.﹣2<m<3 D.﹣6<m<﹣2【分析】如图,解方程﹣x2+x+6=0得A(﹣2,0),B(3,0),再利用折叠的性质求出折叠部分的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),然后求出直线•y=﹣x+m 经过点A(﹣2,0)时m的值和当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时m的值,从而得到当直线y=﹣x+m与新图象有4个交点时,m的取值范围.【解答】解:如图,当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,则A(﹣2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),当直线•y=﹣x+m经过点A(﹣2,0)时,2+m=0,解得m=﹣2;当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时,方程x2﹣x﹣6=﹣x+m有相等的实数解,解得m=﹣6,所以当直线y=﹣x+m与新图象有4个交点时,m的取值范围为﹣6<m<﹣2.故选:D.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象与几何变换.二、填空題(每小题4分,共20分)11.(4.00分)(2018•贵阳)某班50名学生在2018年适应性考试中,数学成绩在100〜110分这个分数段的频率为0.2,则该班在这个分数段的学生为10人.【分析】频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷数据总数,进而得出即可.【解答】解:∵频数=总数×频率,∴可得此分数段的人数为:50×0.2=10.故答案为:10.【点评】此题主要考查了频数与频率,利用频率求法得出是解题关键.12.(4.00分)(2018•贵阳)如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y=(x>0),y=﹣(x>0)的图象交于A点和B点,若C为y轴任意一点.连接AB、BC,则△ABC的面积为.【分析】设出点P坐标,分别表示点AB坐标,表示△ABC面积.【解答】解:设点P坐标为(a,0)则点A坐标为(a,),B点坐标为(a,﹣)∴S△ABC =S△APO+S△OPB=故答案为:【点评】本题考查反比例函数中比例系数k的几何意义,本题也可直接套用结论求解.13.(4.00分)(2018•贵阳)如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是72度.【分析】连接OA、OB、OC,根据正多边形的中心角的计算公式求出∠AOB,证明△AOM≌△BON,根据全等三角形的性质得到∠BON=∠AOM,得到答案.【解答】解:连接OA、OB、OC,∠AOB==72°,∵∠AOB=∠BOC,OA=OB,OB=OC,∴∠OAB=∠OBC,在△AOM和△BON中,∴△AOM≌△BON,∴∠BON=∠AOM,∴∠MON=∠AOB=72°,故答案为:72.【点评】本题考查的是正多边形和圆的有关计算,掌握正多边形与圆的关系、全等三角形的判定定理和性质定理是解题的关键.14.(4.00分)(2018•贵阳)已知关于x的不等式组无解,则a的取值范围是a ≥2.【分析】先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可.【解答】解:,由①得:x≤2,由②得:x>a,∵不等式组无解,∴a≥2,故答案为:a≥2.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小解没了.15.(4.00分)(2018•贵阳)如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG长的最小值为.【分析】作AQ⊥BC于点Q,交DG于点P,设GF=PQ=x,则AP=4﹣x,证△ADG∽△ABC得=,据此知EF=DG=(4﹣x),由EG==可得答案.【解答】解:如图,作AQ⊥BC于点Q,交DG于点P,∵四边形DEFG是矩形,∴AQ⊥DG,GF=PQ,设GF=PQ=x,则AP=4﹣x,由DG∥BC知△ADG∽△ABC,∴=,即=,则EF=DG=(4﹣x),∴EG====,∴当x=时,EG取得最小值,最小值为,故答案为:【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握矩形的性质、相似三角形的判定与性质及二次函数的性质及勾股定理.三、解答題(本大題10个小题,共100分)16.(10.00分)(2018•贵阳)在6.26国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分折,成绩如下:初一:68881851008814961009267初二:6997916998109969971879(1)根据上述数据,将下列表格补充完成.整理、描述数据:分数段60≤x≤6970≤x≤7980≤x≤8990≤x≤100初一人数22412初二人数22115分析数据:样本数据的平均数、中位数、满分率如表:年级平均教中位教满分率初一90.19325%初二92.89920%得出结论:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共135人;(3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.【分析】(1)根据中位数的定义求解可得;(2)用初一、初二的总人数分别乘以其满分率,求和即可得;(3)根据平均数和中位数的意义解答可得.【解答】解:(1)由题意知初二年级的分数从小到大排列为69、69、69、79、79、90、91、94、97、97、98、98、99、99、99、99、100、100、100、100,所以初二年级成绩的中位数为97.5分,补全表格如下:年级平均教中位教满分率初一90.19325%初二92.89920%(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共300×25%+300×20%=135人,故答案为:135;(3)初二年级掌握禁毒知识的总体水平较好,∵初二年级的平均成绩比初一高,说明初二年级平均水平高,且初二年级成绩的中位数比初一大,说明初二年级的得高分人数多于初一,∴初二年级掌握禁毒知识的总体水平较好.【点评】本题主要考查频数分布表,解题的关键是熟练掌握数据的整理、样本估计总体思想的运用、平均数和中位数的意义.17.(8.00分)(2018•贵阳)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.【分析】(1)根据题意和矩形的性质列出代数式解答即可.(2)把m=7,n=4代入矩形的长与宽中,再利用矩形的面积公式解答即可.【解答】解:(1)矩形的长为:m﹣n,矩形的宽为:m+n,矩形的周长为:4m;(2)矩形的面积为(m+n)(m﹣n),把m=7,n=4代入(m+n)(m﹣n)=11×3=33.【点评】此题考查列代数式问题,关键是根据题意和矩形的性质列出代数式解答.18.(8.00分)(2018•贵阳)如图①,在Rt△ABC中,以下是小亮探究与之间关系的方法:∵sinA=,sinB=∴c=,c=∴=根据你掌握的三角函数知识.在图②的锐角△ABC中,探究、、之间的关系,并写出探究过程.【分析】三式相等,理由为:过A作AD⊥BC,BE⊥AC,在直角三角形ABD中,利用锐角三角函数定义表示出AD,在直角三角形ADC中,利用锐角三角函数定义表示出AD,两者相等即可得证.【解答】解:==,理由为:过A作AD⊥BC,BE⊥AC,在Rt△ABD中,sinB=,即AD=csinB,在Rt△ADC中,sinC=,即AD=bsinC,∴csinB=bsinC,即=,同理可得=,则==.【点评】此题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键.19.(10.00分)(2018•贵阳)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?【分析】(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【解答】解:(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有=,解得:x=30.经检验,x=30是原方程的解,x+10=30+10=40.答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y为整数,∴y最大为11.答:他们最多可购买11棵乙种树苗.【点评】考查了分式方程的应用,分析题意,找到合适的等量关系和不等关系是解决问题的关键20.(10.00分)(2018•贵阳)如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE 的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.【分析】(1)先根据轴对称性质及BC∥AD证△ADE为直角三角形,由F是AD中点知AF=EF,再结合AE与AF关于AG对称知AE=AF,即可得证;(2)由△AEF是等边三角形且AB与AG关于AE对称、AE与AF关于AG对称知∠EAG=30°,据此由AB=2知AE=AF=DF=、AH=,从而得出答案.【解答】解:(1)∵AB与AG关于AE对称,∴AE⊥BC,∵四边形ABCD是平行四边形,∴AD∥BC,∴AE⊥AD,即∠DAE=90°,∵点F是DE的中点,即AF是Rt△ADE的中线,∴AF=EF=DF,∵AE与AF关于AG对称,∴AE=AF,则AE=AF=EF,∴△AEF是等边三角形;(2)记AG、EF交点为H,∵△AEF是等边三角形,且AE与AF关于AG对称,∴∠EAG=30°,AG⊥EF,∵AB与AG关于AE对称,∴∠BAE=∠GAE=30°,∠AEB=90°,∵AB=2,∴BE=1、DF=AF=AE=,则EH=AE=、AH=,=××=.∴S△ADF【点评】本题主要考查含30°角的直角三角形,解题的关键是掌握直角三角形有关的性质、等边三角形的判定与性质、轴对称的性质及平行四边形的性质等知识点.21.(10.00分)(2018•贵阳)图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)达机掷一次骰子,则棋子跳动到点C处的概率是(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.【分析】(1)和为8时,可以到达点C,根据概率公式计算即可;(2)利用列表法统计即可;【解答】解:(1)随机掷一次骰子,则棋子跳动到点C处的概率是,故答案为:;(2)共有16种可能,和为14可以到达点C,有3种情形,所以棋子最终跳动到点C处的概率为.【点评】本题考查列表法与树状图,概率公式等知识,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.22.(10.00分)(2018•贵阳)六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:cm)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s0123…滑行距离y/cm041224…(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约800m,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向上平移5个单位,求平移后的函数表达式.【分析】(1)利用待定系数法求出函数解析式,再求出y=80000时x的值即可得;(2)根据“上加下减,左加右减”的原则进行解答即可.【解答】解:(1)∵该抛物线过点(0,0),∴设抛物线解析式为y=ax2+bx,将(1,4)、(2,12)代入,得:,解得:,所以抛物线的解析式为y=2x2+2x,当y=80000时,2x2+2x=80000,解得:x=199.500625(负值舍去),即他需要199.500625s才能到达终点;(2)∵y=2x2+2x=2(x+)2﹣,∴向左平移2个单位,再向上平移5个单位后函数解析式我诶y=2(x+2+)2﹣+5=2(x+)2+.【点评】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律.23.(10.00分)(2018•贵阳)如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.(1)求∠OMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.【分析】(1)先判断出∠MOP=∠MOC,∠MPO=∠MPE,再用三角形的内角和定理即可得出结论;(2)分两种情况,当点M在扇形BOC和扇形AOC内,先求出∠CMO=135°,进而判断出点M 的轨迹,再求出∠OO'C=90°,最后用弧长公式即可得出结论.【解答】解:(1)∵△OPE的内心为M,∴∠MOP=∠MOC,∠MPO=∠MPE,∴∠PMO=180°﹣∠MPO﹣∠MOP=180°﹣(∠EOP+∠OPE),∵PE⊥OC,即∠PEO=90°,∴∠PMO=180°﹣(∠EOP+∠OPE)=180°﹣(180°﹣90°)=135°,(2)如图,∵OP=OC,OM=OM,而∠MOP=∠MOC,∴△OPM≌△OCM,∴∠CMO=∠PMO=135°,所以点M在以OC为弦,并且所对的圆周角为135°的两段劣弧上(和);点M在扇形BOC内时,过C、M、O三点作⊙O′,连O′C,O′O,在优弧CO取点D,连DA,DO,∵∠CMO=135°,∴∠CDO=180°﹣135°=45°,∴∠CO′O=90°,而OA=4cm,∴O′O=OC=×4=2,∴弧OMC的长==π(cm),同理:点M在扇形AOC内时,同①的方法得,弧ONC的长为πcm,所以内心M所经过的路径长为2×π=2πcm.【点评】本题考查了弧长的计算公式:l=,其中l表示弧长,n表示弧所对的圆心角的度数.同时考查了三角形内心的性质、三角形全等的判定与性质、圆周角定理和圆的内接四边形的性质,解题的关键是正确寻找点I的运动轨迹,属于中考选择题中的压轴题.24.(12.00分)(2018•贵阳)如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;。

(沪科版)数学八年级(下)期末质量测试卷7(附答案)

(沪科版)数学八年级(下)期末质量测试卷7(附答案)

八年级(下)期末数学试卷一、选择题。

(每小题4分.共40分。

)1.下列计算正确的是()。

A.2×3=6B.3×3=3C.4×2=8D.2×6=122.如图.△ABC中.点P是AB边上的一点.过点P作PD∥BC.PE∥AC.分别交AC.BC于点D.E.连接CP.若四边形CDPE是菱形.则线段CP应满足的条件是()。

A.CP平分∠ACB B.CP⊥ABC.CP是AB边上的中线D.CP=AP3.已知a<b.化简二次根式()。

A.2a B.﹣2a C.2a D.﹣2a4.如图.在平行四边形ABCD中.AB=4.BC=6.分别以A.C为圆心.以大于的长为半径作弧.两弧相交于M.N两点.作直线MN交AD于点E.则△CDE的周长是()。

A.7B.10C.11D.125.已知关于x的一元二次方程x2﹣bx﹣2=0.则下列关于该方程根的判断中正确的是()。

A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.实数根的个数与实数b的取值有关6.若a.b为方程x2﹣5x﹣1=0的两个实数根.则2a2+3ab+8b﹣2a的值为()。

A.﹣41B.﹣35C.39D.457.如图.▱ABCD中.EF∥AB.DE:DA=2:5.EF=4.则CD的长为()。

A.B.8C.10D.168.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个实数根.那么k的取值范围是()。

A.k≥﹣B.k≥﹣且k≠0C.k<﹣D.k>﹣且k≠09.关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正.关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正.给出三个结论:①这两个方程的根都是负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1.其中正确结论的个数是()。

A.0个B.1个C.2个D.3个10.如图.正方形ABCD中.E为BC的中点.CG⊥DE于G.BG延长交CD于点F.CG延长交BD于点H.交AB于N 下列结论:①DE=CN;②=;③S△DEC=3S△BNH;④∠BGN=45°;⑤GN+EG=BG;其中正确结论的个数有()。

2018-2019学年八年级上期末数学试卷(含答案解析)(可编辑修改word版)

2018-2019学年八年级上期末数学试卷(含答案解析)(可编辑修改word版)

2018-2019 学年八年级(上)期末数学试卷一、选择题:(本大题共8 小题,每小题3 分,共24 分,每小题只有一个选项是正确的,请把你认为正确的选项代号填写在括号里,)1.4的平方根是()A.±2 B.2 C.±D.2.下列图形中,不是轴对称图形的是()A.B.C.D.3.下列各组数中,可以构成直角三角形的是()A.2,3,5 B.3,4,5 C.5,6,7 D.6,7,84.点A(﹣3,2)关于x 轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)5.一次函数y=x+1 不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.下列各式中,正确的是()A.=±2 B.=3 C.=﹣3 D.=﹣3 7.如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD,则CE 的长为()A.1cm B.2cm C.3cm D.4cm8.如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB,过O 作DE∥BC,分别交AB、AC于点D、E,若DE=5,BD=3,则线段CE 的长为()A.3 B.1 C.2 D.4二、填空题:(共8 小题,每题3 分,共24 分。

将结果直接填写在横线上.)9.一个等腰三角形的两边长分别为5 和2,则这个三角形的周长为.10.把无理数,,﹣表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是.1.函数y=kx 的图象过点(﹣1,2),那么k= .12.取=1.4142135623731…的近似值,若要求精确到0.01,则= .13.如图,AB 垂直平分CD,AD=4,BC=2,则四边形ACBD 的周长是.14.将函数y=2x 的图象向下平移3 个单位,则得到的图象相应的函数表达式为.15.已知点A(1,y1)、B(2,y2)都在直线y=﹣2x+3 上,则y1与y2的大小关系是.16.如图,在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A、B 分别在x、y轴的正半轴上,OA=3,OB=4,D 为OB 边的中点,E 是OA 边上的一个动点,当△CDE 的周长最小时,E 点坐标为.三、解答题(共10 小题,共102 分。

2019-2020学年贵州省贵阳市白云区八年级下学期期末数学试卷 (解析版)

2019-2020学年贵州省贵阳市白云区八年级下学期期末数学试卷 (解析版)

2019-2020学年贵州贵阳市白云区八年级第二学期期末数学试卷一、选择题(共10小题).1.窗棂即窗格(窗里面的横的或竖的格)是中国传统木构建筑的框架结构设计.如图表示我国古代窗棂样式结构图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.已知a<b,则下列各式中不正确的是()A.2020a<2020b B.2020+a<2020+bC.2020﹣a<2020﹣b D.3.下列因式分解正确的是()A.(x+1)2=x2+2x+1B.x2+2x﹣1=(x﹣1)2C.x2﹣x+2=(x﹣1)(x+2)D.2x2﹣8=2(x+2)(x﹣2)4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.36.如图,在▱ABCD中,AB=4,BC=7,∠ABC的平分线交AD于点E,则ED等于()A.2B.3C.4D.57.如图,∠1,∠2,∠3是五边形ABCDE的3个外角,若∠A+∠B=220°,则∠1+∠2+∠3=()A.140°B.180°C.220°D.320°8.某园林队原计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比原计划提前3小时完成任务,若每人每小时绿化的面积相同,求每人每小时绿化的面积若设每人每小时绿化的面积为x平方米,根据题意下面所列方程正确的是()A.﹣=3B.﹣=3C.﹣=2D.+=39.如图,在Rt△AOB中,∠O=90°,以点A为旋转中心,把△ABO顺时针旋转得△ACD,记旋转角为α,∠ABO为β,当旋转后满足BC∥OA时,α与β之间的数量关系为()A.α=βB.α=2βC.α+β=90°D.α+2β=180°10.如图,在第一个△ABA1中∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C,得到第二个△A1A2C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,则以点A4为顶点的等腰三角形的底角的度数为()A.175°B.170°C.10°D.5°二、填空题(每小题4分,共20分)11.化简分式的结果是.12.已知a﹣b=3,b﹣c=﹣4,则代数式a2﹣ac﹣b(a﹣c)的值是.13.如图,在平行四边形ABCD中,AB=4,BC=6.以点B为圆心,适当长为半径画弧,交BA于点E,交BC于点F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点G,射线BG交CD的延长线于点H,则DH的长是.14.如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为.15.如图,在△ABC中,∠B=30°,BC=2,等腰直角三角形ACD的斜边AD在AB边上,则AB的长是.三、解答题(共50分)16.关于x的方程:﹣=1.(1)当a=3时,求这个方程的解;(2)若这个方程有增根,求a的值.17.如图,在平面直角坐标系中,已知点A(﹣2,5),B(﹣3,3),C(1,2),点P (m,n)是三角形ABC边BC上任意一点,三角形经过平移后得到三角形A1B1C1,点P的对应点为P1(m+6,n﹣2).(1)直接写出点B1的坐标;(2)画出三角形ABC平移后的三角形A1B1C1.(3)在y轴上是否存在一点P,使三角形AOP的面积等于三角形ABC面积的,若存在,请求出点P的坐标;若不存在,请说明理由.18.如图,有一张直角三角形纸片,两直角边AC=6cm,AB=8cm,将△ABC折叠,使点B与C点重合,折痕为DE.(1)求△ABC的周长.(2)求DE的长.19.如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=(AC﹣AB);(2)如图2,△ABC中,AB=9,AC=5,求线段EF的长.20.“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A、B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?21.多边形上或内部的一点与多边形各顶点的连线,可以将多边形分割成若干个小三角形.如图,给出了四边形的三种具体分割方法,分别将四边形分割成了2个、3个、4个小三角形,这样我们就可以借助研究三角形的经验研究四边形了.图①被分割成2个小三角形图②被分割成3个小三角形图③被分割成4个小三角形(1)请按照上述三种方法分别将图中的六边形进行分割,并写出每种方法所得到的小三角形的个数:图①被分割成个小三角形、图②被分割成个小三角形、图③被分割成个小三角形(2)如果按照上述三种分割方法分别分割n边形,请写出每种方法所得到的小三角形的个数(用含n的代数式写出结论即可,不必画图);按照上述图①、图②、图③的分割方法,n边形分别可以被分割成、、个小三角形.参考答案一、选择题(共10小题).1.窗棂即窗格(窗里面的横的或竖的格)是中国传统木构建筑的框架结构设计.如图表示我国古代窗棂样式结构图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、是中心对称图形,也是轴对称图形,故此选项正确;B、不是中心对称图形,是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项错误;D、不是轴对称图形,也不是中心对称图形,故此选项错误,故选:A.2.已知a<b,则下列各式中不正确的是()A.2020a<2020b B.2020+a<2020+bC.2020﹣a<2020﹣b D.【分析】根据不等式的性质进行判断即可.解:A、在不等式a<b的两边同时乘以2020,不等式仍成立,即2020a<2020b,故本选项不符合题意.B、在不等式a<b的两边同时加上2020,不等式仍成立,即2020+a<2020+b,故本选项不符合题意.C、在不等式a<b的两边同时乘以﹣1,然后再加上2020,不等式仍成立,不等号的方向发生改变,即2020﹣a>2020﹣b,故本选项符合题意.D、在不等式a<b的两边同时除以2020,不等式仍成立,即,故本选项不符合题意.故选:C.3.下列因式分解正确的是()A.(x+1)2=x2+2x+1B.x2+2x﹣1=(x﹣1)2C.x2﹣x+2=(x﹣1)(x+2)D.2x2﹣8=2(x+2)(x﹣2)【分析】根据因式分解的定义,和对各多项式分解因式得到结果,即可作出判断.解:A.是整式乘法,不是因式分解,不符合题意;B.x2+2x﹣1=x2+2x+1﹣2=(x+1)2﹣2=(x+1+)(x+1﹣),不符合题意;C.原式=(x+1)(x﹣2),不符合题意;D、原式=2(x2﹣4)=2(x+2)(x﹣2),符合题意,故选:D.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式2﹣x≤1,得:x≥1,解不等式2x+3>x+6,得:x>3,则不等式组的解集为x>3,其解集在数轴上表示为:.故选:B.5.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.6.如图,在▱ABCD中,AB=4,BC=7,∠ABC的平分线交AD于点E,则ED等于()A.2B.3C.4D.5【分析】由四边形ABCD为平行四边形,得到AD与BC平行,AD=BC,利用两直线平行得到一对内错角相等,由BE为角平分线得到一对角相等,等量代换得到∠ABE=∠AEB,利用等角对等边得到AB=AE=4,由AD﹣AE求出ED的长即可.解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC=7,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠AEB=∠ABE,∴AB=AE=4,∴ED=AD﹣AE=BC﹣AE=7﹣4=3.故选:B.7.如图,∠1,∠2,∠3是五边形ABCDE的3个外角,若∠A+∠B=220°,则∠1+∠2+∠3=()A.140°B.180°C.220°D.320°【分析】根据∠A+∠B=220°,可求∠A、∠B的外角和,再根据多边形外角和360°,可求∠1+∠2+∠3的值.解:根据∠A+∠B=220°,可知∠A的一个邻补角与∠B的一个邻补角的和为360°﹣220°=140°.根据多边形外角和为360°,可知∠1+∠2+∠3=360°﹣140°=220°.故选:C.8.某园林队原计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比原计划提前3小时完成任务,若每人每小时绿化的面积相同,求每人每小时绿化的面积若设每人每小时绿化的面积为x平方米,根据题意下面所列方程正确的是()A.﹣=3B.﹣=3C.﹣=2D.+=3【分析】直接利用原计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比原计划提前3小时完成任务,利用施工时间得出等式求出答案.解:设每人每小时绿化的面积为x平方米,根据题意可得:﹣=3.故选:A.9.如图,在Rt△AOB中,∠O=90°,以点A为旋转中心,把△ABO顺时针旋转得△ACD,记旋转角为α,∠ABO为β,当旋转后满足BC∥OA时,α与β之间的数量关系为()A.α=βB.α=2βC.α+β=90°D.α+2β=180°【分析】由旋转的性质可得△AOB≌△ADC,∠BAC=∠OAD=α,可得AB=AC,∠BAO=∠CAD,由等腰三角形的性质可得∠ABC=(180°﹣α),由平行线的性质可得∠OBC=90°,即可求解.解:∵把△ABO顺时针旋转得△ACD,∴△AOB≌△ADC,∠BAC=∠OAD=α,∴AB=AC,∠BAO=∠CAD,在△ABC中,∠ABC=(180°﹣α),∵BC∥OA,∴∠OBC=180°﹣∠O=180°﹣90°=90°,∴β+(180°﹣α)=90°,整理得,α=2β.故选:B.10.如图,在第一个△ABA1中∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C,得到第二个△A1A2C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,则以点A4为顶点的等腰三角形的底角的度数为()A.175°B.170°C.10°D.5°【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出∠A6的度数.解:∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A==80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1===40°;A同理可得∠DA3A2=20°,∠EA4A3=10°,∴∠A n=,以点A4为顶点的底角为∠A5.∵∠A5==5°,故选:D.二、填空题(每小题4分,共20分)11.化简分式的结果是.【分析】将分子、分母因式分解并进行约分.解:原式=.12.已知a﹣b=3,b﹣c=﹣4,则代数式a2﹣ac﹣b(a﹣c)的值是﹣3.【分析】直接利用分组分解法分解因式,进而把已知代入得出答案.解:∵a﹣b=3,b﹣c=﹣4,∴a﹣b+b﹣c=a﹣c=﹣1,∴a2﹣ac﹣b(a﹣c)=a(a﹣c)﹣b(a﹣c)=(a﹣c)(a﹣b)=﹣1×3=﹣3.故答案为:﹣3.13.如图,在平行四边形ABCD中,AB=4,BC=6.以点B为圆心,适当长为半径画弧,交BA于点E,交BC于点F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点G,射线BG交CD的延长线于点H,则DH的长是2.【分析】根据作图过程可得BH平分∠ABC,再根据平行四边形的性质可得AG=AB=CD,进而可得DH的长.解:根据作图过程可知:BH平分∠ABC,∴∠ABG=∠CBG,∵在平行四边形ABCD中,AD∥BC,∴∠AGB=∠CBG,∴∠ABG=∠AGB,∴AG=AB=CD,∵AB∥CD,∴∠H=∠ABG=∠DGH,∴DH=DG=AD﹣AG=BC﹣AB=6﹣4=2,故答案为:2.14.如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为x >1.【分析】此题可根据两直线的图象以及两直线的交点坐标来进行判断.解:由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x>1时,x+b>ax+3;故答案为:x>1.15.如图,在△ABC中,∠B=30°,BC=2,等腰直角三角形ACD的斜边AD在AB边上,则AB的长是1+.【分析】首先过点C作CE⊥AB交AB于点E,由已知等腰直角△ACD,可求出CE=AE,在直角三角形CEB中,根据含30°角的直角三角形性质可求出CE、BE的长,进而即可求得AB的长..解:过点C作CE⊥AB交AB于点E,已知等腰直角△ACD,∴△AEC是等腰直角三角形,∴AE=CE,在直角三角形CEB中,∠B=30°,∴CE=BC=×2=1,BE=BC=×2=,∴AE=CE=1,∴AB=AE+BE=1+,故答案为1+.三、解答题(共50分)16.关于x的方程:﹣=1.(1)当a=3时,求这个方程的解;(2)若这个方程有增根,求a的值.【分析】(1)把a的值代入分式方程,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)由分式方程有增根,得到最简公分母为0,求出x的值,代入整式方程即可求出a 的值.解:(1)当a=3时,原方程为﹣=1,方程两边同时乘以(x﹣1)得:3x+1+2=x﹣1,解这个整式方程得:x=﹣2,检验:将x=﹣2代入x﹣1=﹣2﹣1=﹣3≠0,∴x=﹣2是原方程的解;(2)方程两边同时乘以(x﹣1)得ax+1+2=x﹣1,若原方程有增根,则x﹣1=0,解得:x=1,将x=1代入整式方程得:a+1+2=0,解得:a=﹣3.17.如图,在平面直角坐标系中,已知点A(﹣2,5),B(﹣3,3),C(1,2),点P (m,n)是三角形ABC边BC上任意一点,三角形经过平移后得到三角形A1B1C1,点P的对应点为P1(m+6,n﹣2).(1)直接写出点B1的坐标;(2)画出三角形ABC平移后的三角形A1B1C1.(3)在y轴上是否存在一点P,使三角形AOP的面积等于三角形ABC面积的,若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)利用点P和点为P1坐标特征确定平移的方向与距离,然后根据此平移规律可确定点B1的坐标;(2)利用(1)中的平移规律确定点A1的坐标和C1的坐标,然后描点即可;(3)设P(0,t),先利用面积的和差计算出△ABC的面积=,则•|t|•2=×,然后解方程求出t即可得到P点坐标.解:(1)点B1的坐标为(3,1);(2)如图,△A1B1C1为所作;(3)存在.设P(0,t),△ABC的面积=4×3﹣×4×1﹣×2×1﹣×3×3=,∵S△AOP=S△ABC,∴•|t|•2=×,解得t=3或t=﹣3,∴P点坐标为(0,3)或(0,﹣3).18.如图,有一张直角三角形纸片,两直角边AC=6cm,AB=8cm,将△ABC折叠,使点B与C点重合,折痕为DE.(1)求△ABC的周长.(2)求DE的长.【分析】(1)由勾股定理可求BC的长,即可求解;(2)由折叠的性质可得∠DEC=∠DEB=90°,DC=BD,CE=BE=5cm,由勾股定理可求DB的长,DE的长.解:(1)∵AC=6cm,AB=8cm,∴BC===10cm,∴△ABC的周长=AC+AB+BC=6+8+10=24cm;(2)∵将△ABC折叠,使点B与C点重合,折痕为DE,∴∠DEC=∠DEB=90°,DC=BD,CE=BE=5cm,∵AC2+AD2=CD2,∴36+(8﹣DB)2=DB2,∴DB=,∴DE===.19.如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=(AC﹣AB);(2)如图2,△ABC中,AB=9,AC=5,求线段EF的长.【分析】(1)利用ASA定理证明△AEB≌△AED,得到BE=ED,AD=AB,根据三角形中位线定理解答;(2)分别延长BE、AC交于点H,利用(1)的结论解答.【解答】(1)证明:在△AEB和△AED中,,∴△AEB≌△AED(ASA)∴BE=ED,AD=AB,∵BE=ED,BF=FC,∴EF=CD=(AC﹣AD)=(AC﹣AB);(2)解:分别延长BE、AC交于点H,在△AEB和△AEH中,,∴△AEB≌△AED(ASA)∴BE=EH,AH=AB=9,∵BE=EH,BF=FC,∴EF=CH=(AH﹣AC)=2.20.“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A、B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?【分析】(1)设购买A种设备x台,则购买B种设备(10﹣x)台,根据购回的设备日处理能力不低于140吨列出不等式12x+15(10﹣x)≥140,求出解集,再根据x为正整数,得出x=1,2,3.进而求解即可;(2)分别求出各方案实际购买费用,比较即可求解.解:(1)设购买A种设备x台,则购买B种设备(10﹣x)台,根据题意,得12x+15(10﹣x)≥140,解得x≤3,∵x为正整数,∴x=1,2,3,∴该景区有三种设计方案:方案一:购买A种设备1台,B种设备9台;方案二:购买A种设备2台,B种设备8台;方案三:购买A种设备3台,B种设备7台;(2)各方案购买费用分别为:方案一:3×1+4.4×9=42.6>40,实际付款:42.6×0.9=38.34(万元);方案二:3×2+4.4×8=41.2>40,实际付款:41.2×0.9=37.08(万元);方案三:3×3+4.4×7=39.8<40,实际付款:39.8(万元);∵37.08<38.34<39.8,∴采用(1)设计的第二种方案,使购买费用最少.21.多边形上或内部的一点与多边形各顶点的连线,可以将多边形分割成若干个小三角形.如图,给出了四边形的三种具体分割方法,分别将四边形分割成了2个、3个、4个小三角形,这样我们就可以借助研究三角形的经验研究四边形了.图①被分割成2个小三角形图②被分割成3个小三角形图③被分割成4个小三角形(1)请按照上述三种方法分别将图中的六边形进行分割,并写出每种方法所得到的小三角形的个数:图①被分割成4个小三角形、图②被分割成5个小三角形、图③被分割成6个小三角形(2)如果按照上述三种分割方法分别分割n边形,请写出每种方法所得到的小三角形的个数(用含n的代数式写出结论即可,不必画图);按照上述图①、图②、图③的分割方法,n边形分别可以被分割成(n﹣2)、(n ﹣1)、n个小三角形.【分析】(1)图(1)是作一个顶点出发的所有对角线对其进行分割;(2)是连接多边形的其中一边上的一个点和各个顶点,对其进行分割;(3)是连接多边形内部的任意一点和多边形的各个顶点,对其进行分割.(2)根据(1)的解答,从特殊到一般总结,可得出答案.解:(1)如图所示:可以发现所分割成的三角形的个数分别是4个,5个,6个;故答案为:4;5;6;(2)结合两个特殊图形,可以发现:第一种分割法把n边形分割成了(n﹣2)个三角形;第二种分割法把n边形分割成了(n﹣1)个三角形;第三种分割法把n边形分割成了n个三角形.故答案为:(1)4,5,6;(2)(n﹣2);(n﹣1);n。

2018—2019学年度第二学期期末教学质量检测八年级数学试题及答案

2018—2019学年度第二学期期末教学质量检测八年级数学试题及答案

2018—2019学年度第二学期期末教学质量检测八年级数学试题(满分120分,时间:120分钟)一、选择题:本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A 、B 、C 、D 中,只有一项是正确的,请把正确的选项填在答题卡的相应位置1.在数轴上与原点的距离小于8的点对应的x 满足A.x <8B.x >8C.x <-8或x >8D.-8<x <82.将多项式﹣6a 3b 2﹣3a 2b 2+12a 2b 3分解因式时,应提取的公因式是A .-3a 2b 2B .-3abC .-3a 2bD .-3a 3b 33.下列分式是最简分式的是A .11m m --B .3xy y xy -C .22x y x y -+D .6132m m- 4.如图,在Rt △ABC 中,∠C=90°,∠ABC=30°,AB=8,将△ABC 沿CB 方向向右平移得到△DEF.若四边形ABED 的面积为8,则平移距离为A .2B .4C .8D .165.如图所示,在△ABC 中,AB=AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB 、AC 的距离相等;③∠BDE=∠CDF ;④∠1=∠2.正确的有A.1个B.2个C.3个D.4个6.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为 A.y x my nx ++元 B.yx ny mx ++元 C.y x n m ++元 D.12x y m n ⎛⎫+ ⎪⎝⎭元 7.如图,□ABCD 的对角线AC ,BD 交于点O ,已知AD=8,BD=12,AC=6,则△OBC 的周长为A .13B .26C .20D .178.如图,DE 是△ABC 的中位线,过点C 作CF ∥BD 交DE 的延长线于点F ,则下列结论正确的是A .EF=CFB .EF=DEC .CF <BD D .EF >DE二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后的结果填写在答题卡的相应区域内)9.利用因式分解计算:2012-1992= ;10.若x+y=1,xy=-7,则x 2y+xy 2= ;11.已知x=2时,分式31x k x ++的值为零,则k= ; 12.公路全长为skm ,骑自行车t 小时可到达,为了提前半小时到达,骑自行车每小时应多走 ;13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 ;14.如图,△ACE 是以□ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,﹣D 点的坐标是 .三、解答题(本大题共78分,解答要写出必要的文字说明、演算步骤)15.(6分)分解因式(1)20a 3-30a 2 (2)25(x+y )2-9(x-y )216.(6分)计算:(1)22122a a a a+⋅-+ (2)211x x x -++ 17.(6分)A 、B 两地相距200千米,甲车从A 地出发匀速开往B 地,乙车同时从B 地出发匀速开往A 地,两车相遇时距A 地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.18.(7分)已知:如图,在△ABC 中,AB=AC ,点D 是BC 的中点,作∠EAB=∠BAD ,AE 边交CB 的延长线于点E ,延长AD 到点F ,使AF=AE ,连结CF .求证:BE=CF .19.(8分) “二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.20.(8分)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别在AB ,AC 上,CE=BC ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF.(1)补充完成图形;(2)若EF ∥CD ,求证:∠BDC=90°.21.(8分)下面是某同学对多项式(x 2-4x+2)(x 2-4x+6)+4进行因式分解的过程.解:设x 2-4x=y ,原式=(y+2)(y+6)+4(第一步)=y 2+8y+16 (第二步)=(y+4)2(第三步)=(x 2-4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 .A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果是否彻底? .(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果 .(3)请你模仿以上方法尝试对多项式(x 2-2x)(x 2-2x+2)+1进行因式分解.22.(8分)如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在OA ,OC 上(1)给出以下条件;①OB=OD ,②∠1=∠2,③OE=OF ,请你从中选取两个条件证明△BEO ≌△DFO ;(2)在(1)条件中你所选条件的前提下,添加AE=CF ,求证:四边形ABCD 是平行四边形.23.(10分)如图,在□ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)连接DE ,若AD=2AB ,求证:DE ⊥AF .24.(11分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,且AD=12cm ,AB=8cm ,DC=10cm ,若动点P 从A 点出发,以每秒2cm 的速度沿线段AD 向点D 运动;动点Q 从C 点出发以每秒3cm 的速度沿CB 向B 点运动,当P 点到达D 点时,动点P 、Q 同时停止运动,设点P 、Q 同时出发,并运动了t 秒,回答下列问题:(1)BC= cm ;(2)当t 为多少时,四边形PQCD 成为平行四边形?(3)当t 为多少时,四边形PQCD 为等腰梯形?(4)是否存在t ,使得△DQC 是等腰三角形?若存在,请求出t 的值;若不存在,说明理由.八年级数学试题参考答案一、选择题(每小题3分,共24分)1、D2、A3、C4、A5、C6、B7、D8、B二、填空题(每小题3分,共18分)9. 800 10.-7 11.-6 12.221s t --s t 13.6(六) 14.(5,0) 三、解答题 (共78分)15.(1)解:20a 3﹣30a 2=10a 2(2a ﹣3)…………………………………………3分(2)解:25(x+y )2﹣9(x ﹣y )2=[5(x+y )+3(x ﹣y )][5(x+y )﹣3(x ﹣y )]=(8x+2y )(2x+8y );=4(4x+y)(x+4y)……………………………………………………………3分16.(1)解:22122a a a a+⋅-+ =2(2)(2)a a a a +-⋅+ =212a a -1(2)a a -或………………………………………………3分 (2)211x x x -++ =2(1)1x x x --+ =2(1)(1)11x x x x x -+-++ =2(1)(1)1x x x x --++=11x +…………………………………………………………………………3分 17.设甲车的速度是x 千米/时,乙车的速度为(x+30)千米/时,……………1分308020080+-=x x ………………………………………………………………………3分 解得,x=60,………………………………………………………………………4分经检验,x=60是原方程的解.……………………………………………………5分则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.……………………6分18.证明:∵AB=AC ,点D 是BC 的中点,∴∠CAD=∠BAD .…………………………………………………………………2分 又∵∠EAB=∠BAD ,∴∠CAD=∠EAB .…………………………………………………………………4分 在△ACF 和△ABE 中,∴△ACF ≌△ABE (SAS ).∴BE=CF .……………………………………………………………………………7分19.解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x 辆、y 辆,根据题意得:,解之得:. 答:“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;…………………4分(2)设载重量为8吨的卡车增加了z 辆,依题意得:8(5+z )+10(7+6﹣z )>165,解之得:z <,………………………………………………………………………………6分 ∵z ≥0且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;②载重量为8吨的卡车购买2辆,10吨的卡车购买4辆;③载重量为8吨的卡车不购买,10吨的卡车购买6辆.………………………………8分20.(1)解:补全图形,如图所示.………………………………………………………3分(2) 证明:由旋转的性质得∠DCF=90°,DC=FC ,∴∠DCE +∠ECF=90°.………………………………………………………………4分∵∠ACB=90°,∴∠DCE +∠BCD=90°,∴∠ECF=∠BCD∵EF ∥DC ,∴∠EFC +∠DCF=180°,∴∠EFC=90°.………………………………………………………………………6分在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC(SAS),∴∠BDC=∠EFC=90°.………………………………………………………………8分21.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C ;……………………………………………………………………………2分(2)该同学因式分解的结果不彻底,原式=(x 2﹣4x+4)2=(x ﹣2)4;故答案为:不彻底,(x ﹣2)4…………………………………………………………4分(3)(x 2﹣2x )(x 2﹣2x+2)+1=(x 2﹣2x )2+2(x 2﹣2x )+1=(x 2﹣2x+1)2=(x ﹣1)4.………………………………………………………………………………8分22.证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);……………………………………………………………………4分(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.……………………………………………………………8分23.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;………………………………………………………………………………6分(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.………………………………………………………………………………10分24.解:根据题意得:PA=2t,CQ=3t,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,∴EC=,∴BC=BE+EC=18cm.…………………………………………………………………2分(直接写出最后结果18cm即可)(2)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,即12-2t=3t,解得t=125秒,故当t=125秒时四边形PQCD为平行四边形;………………………………………4分(3)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,当PQ=CD时,四边形PQCD为等腰梯形.过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△CDE中,PQ CD PF DE ==⎧⎨⎩, ∴Rt △PQF ≌Rt △CDE (HL ),∴QF=CE ,∴QC-PD=QC-EF=QF+EC=2CE ,即3t-(12-2t )=12,解得:t=245, 即当t=245时,四边形PQCD 为等腰梯形;……………………………………………8分 (4)△DQC 是等腰三角形时,分三种情况讨论:①当QC=DC 时,即3t=10,∴t=103; ②当DQ=DC 时,362t = ∴t=4; ③当QD=QC 时,3t ×6510= ∴t=259. 故存在t ,使得△DQC 是等腰三角形,此时t 的值为103秒或4秒或259秒.………11分③在Rt△DMQ中,DQ2=DM2+QM2222 (3)8(38) t t=+-36t=100t=259第11 页共11 页。

贵州省贵阳市2019-2020学年八年级(下)开学数学试卷(含解析)

贵州省贵阳市2019-2020学年八年级(下)开学数学试卷(含解析)

2019-2020学年贵州省贵阳市八年级(下)开学数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.(3分)下列实数中,属于无理数的是()A.B.C.D.π2.(3分)已知一直角三角形的木板,三边的平方和为1800cm2,则斜边长为()A.30cm B.80cm C.90cm D.120cm3.(3分)如图,在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(﹣4,﹣1)B.(﹣4,1)C.(4,﹣1)D.(1,﹣4)4.(3分)我市某一周每天的最高气温统计如下(单位:℃):27,28,29,28,29,30,29.这组数据的众数与中位数分别是()A.28,28B.28,29C.29,28D.29,295.(3分)已知点A(m+3,2)与点B(1,n﹣1)关于x轴对称,m=(),n=()A.﹣4,3B.﹣2,﹣1C.4,﹣3D.2,16.(3分)如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()A.70°B.80°C.110°D.100°7.(3分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米8.(3分)一次函数y=kx﹣k的大致图象可能如图()A.B.C.D.9.(3分)《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,则列方程组错误的是()A.B.C.D.10.(3分)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC 二、填空题:每小题4分,共20分.11.(4分)已知:一个正数的两个平方根分别是2a﹣3和a﹣2,则a的值是.12.(4分)点A(m,m+5)在函数y=﹣2x+1的图象上,则m=.13.(4分)如图,已知O为△ABC内任意一点,且∠A=40°,∠1=25°,∠2=35°,则∠BOC=.14.(4分)如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.15.(4分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.若PE=5,则点P 到AB的距离是.三、解答题:本大题8小题,共50分.16.(9分)计算:(2)3x(x﹣2)=2(x﹣2)17.(9分)如图,在四边形ABCD中,点E,F分别在AB和CD上,已知AB∥CD,∠CDE =∠ABF.求证:DE∥BF18.(9分)如图,正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积.(2)判断△ABC是什么形状?并说明理由.19.(9分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)在图中画出△ABC关于y轴的对称图形△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积;(3)在x轴上找出使P A+PB的值最小的点P,并写出点P的坐标20.(9分)周口市某水果店一周内甲、乙两种水果每天销售情况统计如下:(单位:千克)品种星期一二三四五六日甲45444842575566乙48444754515360(1)分别求出本周内甲、乙两种水果每天销售量的平均数;(2)哪种水果销售量比较稳定?21.(9分)甲开车从距离B市100千米的A市出发去B市,乙从同一路线上的C市出发也去往B市,二人离A市的距离与行驶时间的函数图象如图(y代表距离,x代表时间).(1)C市离A市的距离是千米;(2)甲的速度是千米∕小时,乙的速度是千米∕小时;(3)小时,甲追上乙;(4)试分别写出甲、乙离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式.(注明自变量的范围)22.(8分)某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.23.(8分)已知一次函数y=kx+b经过点(0,3)和(3,0).(1)求此一次函数解析式;(2)求这个函数与直线y=2x﹣3及y轴围成的三角形的面积.2019-2020学年贵州省贵阳市八年级(下)开学数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.(3分)下列实数中,属于无理数的是()A.B.C.D.π【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:,,∴,,是有理数,π是无理数.故选:D.2.(3分)已知一直角三角形的木板,三边的平方和为1800cm2,则斜边长为()A.30cm B.80cm C.90cm D.120cm【分析】先求出斜边的平方,进而可得出结论.【解答】解:设直角三角形的斜边长为x,∵三边的平方和为1800cm2,∴x2=900cm2,解得x=30cm.故选:A.3.(3分)如图,在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(﹣4,﹣1)B.(﹣4,1)C.(4,﹣1)D.(1,﹣4)【分析】根据A(1,1),B(2,0),再结合图形即可确定出点C的坐标.【解答】解:∵点A的坐标是:(1,1),点B的坐标是:(2,0),∴点C的坐标是:(4,﹣1).故选:C.4.(3分)我市某一周每天的最高气温统计如下(单位:℃):27,28,29,28,29,30,29.这组数据的众数与中位数分别是()A.28,28B.28,29C.29,28D.29,29【分析】根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数,即可得出答案.【解答】解:29出现了3次,出现的次数最多,则众数是29;把这组数据从小到大排列27,28,28,29,29,29,30,最中间的数是29,则中位数是29;故选:D.5.(3分)已知点A(m+3,2)与点B(1,n﹣1)关于x轴对称,m=(),n=()A.﹣4,3B.﹣2,﹣1C.4,﹣3D.2,1【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:由点A(m+3,2)与点B(1,n﹣1)关于x轴对称,得m+3=1,n﹣1=﹣2,解得m=﹣2,n=﹣1,故选:B.6.(3分)如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()A.70°B.80°C.110°D.100°【分析】根据同位角相等,两直线平行这一定理可知a∥b,再根据两直线平行,同旁内角互补即可解答.【解答】解:∵∠3=∠5=110°,∵∠1=∠2=58°,∴a∥b,∴∠4+∠5=180°,∴∠4=70°,故选:A.7.(3分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.8.(3分)一次函数y=kx﹣k的大致图象可能如图()A.B.C.D.【分析】根据一次函数图象:k>0,b>0图象经过一二三象限,k>0,b<0图象经过一三四象限,k<0,b<0,图象经过二三四象限,k<0,b<0图象经过一二四象限,可得答案.【解答】解:当k>0时,﹣k<0,图象经过一三四象限,A、k>0,﹣k>0,故A不符合题意;B、k>0,﹣k<0,故B符合题意;C、k<0,﹣k<0,故C不符合题意;D、k<0,﹣k=0,故D不符合题意;故选:B.9.(3分)《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,则列方程组错误的是()A.B.C.D.【分析】由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.【解答】解:设每头牛值金x两,每只羊值金y两,由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,所以方程组错误,故选:D.10.(3分)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC 【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC =CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.二、填空题:每小题4分,共20分.11.(4分)已知:一个正数的两个平方根分别是2a﹣3和a﹣2,则a的值是.【分析】根据一个正数的平方根有两个,它们互为相反数求出a的值即可.【解答】解:∵一个正数的两个平方根分别是2a﹣3和a﹣2,∴2a﹣3+a﹣2=0,解得:a=,故答案为:.12.(4分)点A(m,m+5)在函数y=﹣2x+1的图象上,则m=﹣.【分析】把点A(m,m+5)代入y=﹣2x+1得到关于m的一元一次方程,解之即可.【解答】解:把点A(m,m+5)代入y=﹣2x+1得:m+5=﹣2m+1,解得:m=﹣,故答案为:﹣.13.(4分)如图,已知O为△ABC内任意一点,且∠A=40°,∠1=25°,∠2=35°,则∠BOC=100°.【分析】连接AO,延长AO交BC于点D,利用三角形的外角性质可得出∠BOD=∠1+∠BAO,∠COD=∠2+∠CAO,结合∠BOC=∠BOD+∠COD,∠BAC=∠BAO+∠CAO,即可求出∠BOC的度数.【解答】解:连接AO,延长AO交BC于点D,如图所示.∵∠BOD=∠1+∠BAO,∠COD=∠2+∠CAO,∴∠BOC=∠BOD+∠COD=∠1+∠BAO+∠2+∠CAO=∠BAC+∠1+∠2=40°+25°+35°=100°.故答案为:100°.14.(4分)如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是.【分析】由两条直线的交点坐标(m,4),先求出m,再求出方程组的解即可.【解答】解:∵y=x=2经过P(m,4),∴4=m+2,∴m=2,∴直线l1:y=x+2与直线l2:y=kx+b相交于点P(2,4),∴,故答案为15.(4分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.若PE=5,则点P 到AB的距离是5.【分析】作PF⊥AB于F,根据角平分线的性质解答即可.【解答】解:作PF⊥AB于F,∵AD是∠BAC的平分线,PE⊥AC,PF⊥AB,∴PF=PE=5,故答案为:5.三、解答题:本大题8小题,共50分.16.(9分)计算:(2)3x(x﹣2)=2(x﹣2)【分析】(1)先算乘方,二次根式,绝对值,再算乘法即可求解;(2)根据因式分解法解方程即可求解.【解答】解:(1)原式==﹣1+2+π﹣3=π﹣2;(2)3x(x﹣2)=2(x﹣2),3x(x﹣2)﹣2(x﹣2)=0,(x﹣2)(3x﹣2)=0,x﹣2=0或3x﹣2=0,解得.17.(9分)如图,在四边形ABCD中,点E,F分别在AB和CD上,已知AB∥CD,∠CDE =∠ABF.求证:DE∥BF【分析】先由AB∥CD知∠CDE=∠AED,结合∠CDE=∠ABF得∠AED=∠ABF,据此即可得证.【解答】证明:∵AB∥CD,∴∠CDE=∠AED.∵∠CDE=∠ABF,∴∠AED=∠ABF.∴DE∥BF.18.(9分)如图,正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积.(2)判断△ABC是什么形状?并说明理由.【分析】(1)用长方形的面积减去三个小三角形的面积即可求出△ABC的面积.(2)根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:(1)△ABC的面积=4×8﹣1×8÷2﹣2×3÷2﹣6×4÷2=13.故△ABC的面积为13;(2)∵正方形小方格边长为1∴AC==,AB==,BC==2,∵在△ABC中,AB2+BC2=13+52=65,AC2=65,∴AB2+BC2=AC2,∴网格中的△ABC是直角三角形.19.(9分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)在图中画出△ABC关于y轴的对称图形△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积;(3)在x轴上找出使P A+PB的值最小的点P,并写出点P的坐标【分析】(1)直接利用关于y轴对称点的性质得出对应点位置进而得出答案;(2)根据三角形的面积公式解答即可;(3)利用轴对称求最短路线的方法分析得出答案.【解答】解:(1)如图△A1B1C1即为所求.(﹣3,4);;(3)如图,点P即为所求.(2,0)20.(9分)周口市某水果店一周内甲、乙两种水果每天销售情况统计如下:(单位:千克)品种星期一二三四五六日甲45444842575566乙48444754515360(1)分别求出本周内甲、乙两种水果每天销售量的平均数;(2)哪种水果销售量比较稳定?【分析】(1)根据平均数的计算公式分别进行计算即可;(2)根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:(1)甲==51(千克),==51(千克);乙(2)S甲2=[(45﹣51)2+(44﹣51)2+(48﹣51)2+(42﹣51)2+(57﹣51)2+(55﹣51)2+(66﹣51)2]=,S乙2=[48﹣51)2+(44﹣51)2+(47﹣51)2+(54﹣51)2+(51﹣51)2+(53﹣51)2+(60﹣51)2]=,∵S甲2>S乙2,∴乙种水果销量比较稳定.21.(9分)甲开车从距离B市100千米的A市出发去B市,乙从同一路线上的C市出发也去往B市,二人离A市的距离与行驶时间的函数图象如图(y代表距离,x代表时间).(1)C市离A市的距离是28千米;(2)甲的速度是40千米∕小时,乙的速度是12千米∕小时;(3)1小时,甲追上乙;(4)试分别写出甲、乙离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式.(注明自变量的范围)【分析】(1)由函数图象可以直接得出C市离A市的距离是28千米;(2)由函数图象可以直接得出甲的速度为40千米∕小时,乙的速度为12千米∕小时;(3)由函数图象可以直接得出1小时,甲追上乙;(4)设甲离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式为y甲=k1x,乙离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式为y乙=k2x+b,由待定系数法求出其解即可.【解答】解:(1)由函数图象可以直接得出C市离A市的距离是28千米.故答案为:28;(2)由函数图象可以直接得出甲的速度为40千米∕小时,乙的速度为12千米∕小时.故答案为:40,12;(3)由函数图象可以直接得出1小时,甲追上乙.故答案为:1.(4)设甲离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式为y甲=k1x,乙离开A市的距离y(千米)与行驶时间x(时)之间的函数关系式为y乙=k2x+b,由题意,得40=k1,∴y甲=40x(0≤x≤2.5).,解得:,∴y乙=12x+28(0≤x≤6).22.(8分)某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.【分析】(1)根据题意可知本题的等量关系有,1个大餐厅容纳的学生人数+2个小餐厅容纳的学生人数=1680,2个大餐厅容纳的学生人数+1个小餐厅容纳的学生人数=2280.根据这两个等量关系,可列出方程组.(2)根据题(1)得到1个大餐厅和1个小餐厅分别可容纳学生的人数,可以求出5个大餐厅和2个小餐厅一共可容纳学生的人数,再和5300比较.【解答】解:(1)设1个大餐厅可供x名学生就餐,1个小餐厅可供y名学生就餐,根据题意,得解这个方程组,得答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.(2)因为960×5+360×2=5520>5300,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.23.(8分)已知一次函数y=kx+b经过点(0,3)和(3,0).(1)求此一次函数解析式;(2)求这个函数与直线y=2x﹣3及y轴围成的三角形的面积.【分析】(1)将两坐标代入函数求得k,b,即求出了一次函数解析式;(2)求出两直线的交点坐标及两直线分别与y轴相交得到的交点坐标,再根据三角形面积公式求得结果.【解答】解:(1)将(0,3)(3,0)代入y=kx+b解得:∴一次函数解析式y=﹣x+3(2)一次函数y=﹣x+3与y轴的交点坐标为(0,3)直线y=2x﹣3与y轴的交点坐标为(0,﹣3)两直线的交点坐标解得交点坐标(2,1)∴S△==6.。

2018-2019学年新人教版八年级数学第二学期期中试卷(含答案)

2018-2019学年新人教版八年级数学第二学期期中试卷(含答案)

2018-2019学年八年级(下)期中数学试卷一、选择题(每小题4分,共40分)1.下列式子为最简二次根式的是()A.B.C.D.2.以下各式不是代数式的是()A.0B.C.D.3.在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定4.如果是一个正整数,那么x可取的最小正整数的值是()A.2B.3C.4D.85.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A.15B.225C.81D.256.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF8.计算的结果是()A.2+B.C.2﹣D.9.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定10.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm二、填空题(每小题4分,共20分)11.命题“若a=b,则a2=b2”的逆命题是.12.化简的结果是.13.若长方形相邻两边的长分别是cm和cm,则它的周长是cm.14.下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有(填序号).15.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.16.若成立,则x满足.17.若a﹣=,则a+=.18.有一个边长为2m的正方形洞口,想用一个圆形盖住这个洞口,圆形盖的半径至少是m.19.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=.20.如图,OP=1,过点P作PP1⊥OP,得PP1=1;连接OP1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,连接OP3,得OP3=2;…依此法继续作下去,得OP2013=.三、解答题(本大题共6个小题,共70分)21.(12分)(1)5.(2).22.(12分)将Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的三条边.(1)已知a=,b=3,求c的长.(2)已知c=13,b=12,求a的长.23.(10分)先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.24.(10分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.25.(12分)如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.26.(14分)阅读下面的问题:﹣1;=;;……(1)求与的值.(2)已知n是正整数,求与的值;(3)计算+.2018-2019学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.下列式子为最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、=,不是最简二次根式,故此选项错误;B、是最简二次根式,故此选项正确;C、=2,不是最简二次根式,故此选项错误;D、=2,不是最简二次根式,故此选项错误;故选:B.【点评】此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.2.以下各式不是代数式的是()A.0B.C.D.【分析】代数式是指把数或表示数的字母用+、﹣、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.由此可得答案.【解答】解:A、0是单独数字,是代数式;B、是代数式;C、是不等式,不是代数式;D、是数字,是代数式;故选:C.【点评】此类问题主要考查了代数式的定义,只要根据代数式的定义进行判断,就能熟练解决此类问题.3.在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定【分析】先把AC2﹣AB2=BC2转化为AC2=AB2+BC2的形式,再由勾股定理的逆定理可判断出△ABC是直角三角形,再根据大边对大角的性质即可作出判断.【解答】解:∵AC2﹣AB2=BC2,∴AC2=AB2+BC2,∴△ABC是直角三角形,∴∠B=90°.故选:B.【点评】本题考查的是勾股定理的逆定理,即果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如果是一个正整数,那么x可取的最小正整数的值是()A.2B.3C.4D.8【分析】首先化简,再确定x的最小正整数的值.【解答】解:=3,x可取的最小正整数的值为2,故选:A.【点评】此题主要考查了二次根式有意义的条件,关键是正确进行化简.5.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A.15B.225C.81D.25【分析】根据正方形的面积公式求出BC、AB,根据勾股定理计算即可.【解答】解:∵S1=64,S3=289,∴BC=8,AB=17,由勾股定理得,AC==15,∴S2=152=225,故选:B.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.6.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选:C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF【分析】设出正方形的边长,利用勾股定理,解出AB、CD、EF、GH各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【解答】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.【点评】考查了勾股定理逆定理的应用.8.计算的结果是()A.2+B.C.2﹣D.【分析】原式利用积的乘方变形为=[(+2)(﹣2)]2017•(﹣2),再利用平方差公式计算,从而得出答案.【解答】解:原式=(+2)2017•(﹣2)2017•(﹣2)=[(+2)(﹣2)]2017•(﹣2)=(﹣1)2017•(﹣2)=﹣(﹣2)=2﹣,故选:C.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则及积的乘方的运算法则.9.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选:A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.10.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm【分析】根据折叠前后角相等可证AO=CO,在直角三角形ADO中,运用勾股定理求得DO,再根据线段的和差关系求解即可.【解答】解:根据折叠前后角相等可知∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠ACD,∴AO=CO=5cm,在直角三角形ADO中,DO==3cm,AB=CD=DO+CO=3+5=8cm.故选:C.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题(每小题4分,共20分)11.命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【分析】如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题,如果把其中一个叫做原命题,那么把另一个叫做它的逆命题.故只需将命题“若a=b,则a2=b2”的题设和结论互换,变成新的命题即可.【解答】解:命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【点评】写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.12.化简的结果是5.【分析】根据二次根式的性质解答.【解答】解:=|﹣5|=5.【点评】解答此题,要弄清二次根式的性质:=|a|的运用.13.若长方形相邻两边的长分别是cm和cm,则它的周长是14cm.【分析】直接化简二次根式进而计算得出答案.【解答】解:∵长方形相邻两边的长分别是cm和cm,∴它的周长是:2(+)=2(2+5)=14(cm).故答案为:14.【点评】此题主要考查了二次根式的应用,正确化简二次根式是解题关键.14.下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有②④(填序号).【分析】勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,根据定义即可求解.【解答】解:①1、2、3不属于勾股数;②6、8、10属于勾股数;③0.3、0.4、0.5不属于勾股数;④9、40、41属于勾股数;∴勾股数只有2组.故答案为:②④【点评】本题考查了勾股数的定义,注意:作为勾股数的三个数必须是正整数,一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.15.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了4步路(假设2步为1米),却踩伤了花草.【分析】本题关键是求出路长,即三角形的斜边长.求两直角边的和与斜边的差.【解答】解:根据勾股定理可得斜边长是=5m.则少走的距离是3+4﹣5=2m,∵2步为1米,∴少走了4步,故答案为:4.【点评】本题就是一个简单的勾股定理的应用问题.16.若成立,则x满足2≤x<3.【分析】根据二次根式有意义及分式有意义的条件,即可得出x的取值范围.【解答】解:∵成立,∴,解得:2≤x<3.故答案为:2≤x<3.【点评】本题考查了二次根式的乘除法及二次根式及分式有意义的条件,关键是掌握二次根式有意义:被开方数为非负数,分式有意义:分母不为零.17.若a﹣=,则a+=.【分析】根据完全平方公式即可求出答案.【解答】解:由题意可知:(a﹣)2=2017,∴a2﹣2+=2017∴a2+2+=2021∴(a+)2=2021∴a+=±故答案为:±【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.18.有一个边长为2m的正方形洞口,想用一个圆形盖住这个洞口,圆形盖的半径至少是m.【分析】根据圆形盖的直径最小应等于正方形的对角线的长,才能将洞口盖住,根据勾股定理进行解答.【解答】解:∵正方形的边长为2m,∴正方形的对角线长为=2(m),∴想用一个圆盖去盖住这个洞口,则圆形盖的半径至少是m;故答案为【点评】本题考查的是正多边形和圆、勾股定理的应用,根据正方形和圆的关系确定圆的半径是解题的关键.19.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=﹣.【分析】根据所给的式子求出8※12的值即可.【解答】解:∵a※b=,∴8※12===﹣.故答案为:﹣.【点评】本题考查的是算术平方根,根据题意得出8※12=是解答此题的关键.20.如图,OP=1,过点P作PP1⊥OP,得PP1=1;连接OP1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,连接OP3,得OP3=2;…依此法继续作下去,得OP2013=.【分析】根据勾股定理分别求出每个直角三角形斜边长,根据结果得出规律,即可得出答案.【解答】解:∵OP1=,由勾股定理得:OP2==,OP3==,…OP2013=,故答案为:.【点评】本题考查了勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方,解此题的关键是能根据求出的结果得出规律.三、解答题(本大题共6个小题,共70分)21.(12分)(1)5.(2).【分析】(1)先化简各二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除运算法则计算可得.【解答】解:(1)原式=5×+4﹣=5﹣;(2)原式=×()=×==.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.22.(12分)将Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的三条边.(1)已知a=,b=3,求c的长.(2)已知c=13,b=12,求a的长.【分析】(1)利用勾股定理计算c边的长;(2)利用勾股定理计算a边的长;【解答】解:(1)∵∠C=90°,a=,b=3.∴c==4(2))∵∠C=90°,c=13,b=12,∴a==5【点评】本题主要考查了勾股定理的应用,属于基础题.23.(10分)先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.【分析】根据分式的除法可以化简题目中的式子,然后将a、b代入化简后的式子即可解答本题.【解答】解:(a2b+ab)÷=ab(a+1)=ab,当a=+1,b=﹣1时,原式==3﹣1=2.【点评】本题考查分式的化简求值、分母有理化,解答本题的关键是明确分式化简求值的方法.24.(10分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.【分析】过A作CD⊥AB.修建公路CD,则工厂C到公路的距离最短,首先证明△ABC是直角三角形,然后根据三角形的面积公式求得CD的长.【解答】解:过A作CD⊥AB,垂足为D,∵6002+8002=10002,∴AC2+BC2=AB2,∴∠ACB=90°,S=AB•CD=AC•BC,△ACB×600×800=×1000×DB,解得:BD=480,∴新建的路的长为480m.【点评】此题主要考查了勾股定理逆定理以及三角形的面积公式,关键是证明△ABC是直角三角形.25.(12分)如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.【分析】先设CD=x,则BD=BC+CD=9+x,再运用勾股定理分别在△ACD与△ABD中表示出AD2,列出方程,求解即可.【解答】解:设CD=x,则BD=BC+CD=9+x.在△ACD中,∵∠D=90°,∴AD2=AC2﹣CD2,在△ABD中,∵∠D=90°,∴AD2=AB2﹣BD2,∴AC2﹣CD2=AB2﹣BD2,即102﹣x2=172﹣(9+x)2,解得x=6,∴AD2=102﹣62=64,∴AD=8.故AD的长为8.【点评】本题主要考查了勾股定理的运用,根据AD的长度不变列出方程是解题的关键.26.(14分)阅读下面的问题:﹣1;=;;……(1)求与的值.(2)已知n是正整数,求与的值;(3)计算+.【分析】(1)根据分母有理化可以解答本题;(2)根据分母有理化可以解答本题;(3)根据(2)中的结果可以解答本题.【解答】解:(1)==,==;(2)==,==;(3)+==﹣1+=﹣1+10=9.【点评】本题考查二次根式的化简求值、分母有理化,解答本题的关键是明确二次根式化简求值的方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年贵州省贵阳市八年级(下)期末数学试卷
一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请在答题卡相应位置作答,每小题3分,共30分.
1.(3分)下面四个手机应用图标中,属于中心对称图形的是()
A.B.C.D.
2.(3分)不等式x<1的解集是()
A.x<B.x>C.x>3D.x<3
3.(3分)如图,在▱ABCD中,∠C=50°,∠BDC=55°,则∠ADB的度数是()
A.10°B.75°C.35°D.15°
4.(3分)要使分式有意义,则x的取值范围是()
A.x=1B.x≠1C.x=﹣1D.x≠﹣1
5.(3分)把a2﹣a分解因式,正确的是()
A.a(a﹣1)B.a(a+1)C.a(a2﹣1)D.a(1﹣a)6.(3分)如图,长方形ABCD的长为6,宽为4,将长方形先向上平移2个单位,再向右平移2个单位得到长方形A′B′C′D′,则阴影部分面积是()
A.12B.10C.8D.6
7.(3分)如图,在△ABC中,分别以点A,C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD.若AB=3,BC=4,则△ABD的周
长是()
A.7B.8C.9D.10
8.(3分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()
A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣ab
C.(a﹣b)2=a2﹣b2D.a2﹣b2=(a+b)(a﹣b)
9.(3分)利用函数y=ax+b的图象解得ax+b<0的解集是x<﹣2,则y=ax+b的图象是()A.B.
C.D.
10.(3分)如图,在△ABC中,D是BC边的中点,AE是∠BAC的角平分线,AE⊥CE于点E,连接DE.若AB=7,DE=1,则AC的长度是()
A.5B.4C.3D.2
二、填空题:每小題4分,共16分.
11.(4分)分式的值为零,则x的值是.
12.(4分)如图,在四边形ABCD中,对角线AC、BD交于点O,AD∥BC,请添加一个条件:,使四边形ABCD为平行四边形(不添加任何辅助线).
13.(4分)若不等式组的解集是x>2,则m的值是.
14.(4分)如图,在等腰直角△ABC中,∠ACB=90°,BC=2,D是AB上一个动点,以DC为斜边作等腰直角△DCE,使点E和A位于CD两侧.点D从点A到点B的运动过程中,△DCE周长的最小值是.
三、解答题:本大题7小题,共54分.
15.(10分)(1)先化简,再求值:(﹣),其中a=3;
(2)三个数4,1﹣a,5﹣3a在数轴上从左到右依次排列,求a的取值范围.16.(10分)如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF,连接EF,分别交AD,BC于点M,N,连接AN,CM.
(1)求证:△DFM≌△BEN;
(2)四边形AMCN是平行四边形吗?请说明理由.
17.(6分)在平面直角坐标系中,△ABC的位置如图所示,点A,B,C的坐标分别为(﹣3,﹣3),(﹣1,﹣1),(0,﹣2),根据下面要求完成解答.
(1)作△ABC关于点C成中心对称的△A1B1C1;
(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2;
(3)在x轴上求作一点P,使P A2+PC2的值最小,直接写出点P的坐标.
18.(7分)在“626”国际禁毒日到来之际,为了普及禁毒知识,提高市民禁毒意识,某区发放了一批“关爱生命,拒绝毒品”的宣传资料.据统计,甲小区共收到宣传资料350份,乙小区共收到宣传资料100份,甲小区住户比乙小区住户的3倍多25户,若两小区每户平均收到资料的数量相同.求这两小区各有多少户住户?
19.(6分)如图是两个全等的直角三角形(△ABC和△DEC)摆放成的图形,其中∠ACB =∠DCE=90°,∠A=∠D=30°,点B落在DE边上,AB与CD相交于点F.若BC =4,求这两个直角三角形重叠部分△BCF的周长.
20.(8分)王大伯计划在自家的鱼塘里投放普通鱼苗和红色鱼苗,需要购买这两种鱼苗2000尾,购买这两种鱼苗的相关信息如下表:
品种项目单价(元/尾)养殖费用(元/尾)
普通鱼种0.51
红色鱼种11设购买普通鱼苗x尾,养殖这些鱼苗的总费用为y元
(1)写出y(元)与x(尾)之间的函数关系式;
(2)如果购买每种鱼苗不少于600尾,在总鱼苗2000尾不变的条件下,养殖这些鱼苗的最低费用是多少?
21.(7分)如图,在△ABC中,AB=AC,∠A=2α,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.
(1)∠EDB=°(用含α的式子表示)
(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转180°﹣2α,与AC边交于点N.
①根据条件补全图形;
②写出DM与DN的数量关系并证明;
③用等式表示线段BM、CN与BC之间的数量关系,(用含α的锐角三角函数表示)并
写出解题思路.。

相关文档
最新文档