医学遗传学——染色体分组、核型与显带
染色体核型分析系列之三大技术介绍
染色体核型分析三大技术介绍·概念是细胞遗传学研究的基本方法,是研究物种演化、分类以及染色体结构、形态与功能之间关系所不可缺少的重要手段。
经行核型分析后,可以根据染色体结构和数目的变异来判断生物的病因。
染色体核型分析技术,传统上是观察染色体形态。
但随着新技术的发现与应用,染色体核型分析三大技术包括:GRQ带技术、荧光原位杂交技术、光谱核型分析技术。
·三大技术介绍一、GRQ带技术人类染色体用Giemsa染料染色呈均质状,但是如果染色体经过变性和(或)酶消化等不同处理后,再染色可呈现一系列深浅交替的带纹,这些带纹图形称为染色体带型。
显带技术就是通过特殊的染色方法使染色体的不同区域着色,使染色体在光镜下呈现出明暗相间的带纹。
每个染色体都有特定的带纹,甚至每个染色体的长臂和短臂都有特异性。
根据染色体的不同带型,可以更细致而可靠地识别染色体的个性。
染色体特定的带型发生变化,则表示该染色体的结构发生了改变。
一般染色体显带技术有G显带(最常用),Q显带和R显带等。
百奥赛图提供的小鼠染色体核型分析服务,就是利用Giemsa染色法,对染色体染色后进行显带分析,保证基因敲除小鼠在染色体水平阶段没有发生变异,从而确保基因敲除小鼠可以正常繁殖。
二、荧光原位杂交技术荧光原位杂交(fluorescenceinsituhybridization,FISH)是在20世纪80年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法,探针首先与某种介导分子结合,杂交后再通过免疫细胞化学过程连接上荧光染料。
FISH的基本原理是将DNA(或RNA)探针用特殊的核苷酸分子标记,然后将探针直接杂交到染色体或DNA纤维切片上,再用与荧光素分子耦联的单克隆抗体与探针分子特异性结合,来检测DNA序列在染色体或DNA纤维切片上的定性、定位、相对定量分析,可判断单个碱基突变。
医学遗传学——染色体分组、核型与显带
组 染色体号 大小 着丝粒位置 次缢痕 随体 说明
A
1-3 最大 1、3中 1号长臂
2 亚中
B
4-5 次大
亚中
C 6-12 中等 X
亚中
9号长臂
女16条 男15条
D 13—15 中等
近端
短臂 末端
E 16—18
小
16中 16号长臂
C带(C banding)
NaOH碱处理再Giemsa染色,使着丝粒和1、9、16号次缢痕以及Y染色体长臂远端的2/3的区段显带
N带(N banding pattern)
AgNO3染色可使核仁组织区(NOR)银染(Ag-NOR)
受染的是与 rDNA 转录有关的一种酸性蛋白
G带(G banding)
E 十六深带连着点 十七长臂带脚镣 十八人黑肚皮白
F 十九中间一点黑 二十头重脚轻飘
G二十一似三角形 二十二似羽毛球 老Y 貌似宝葫芦
四、人类染色体命名国际体制
人类细胞遗传学命名的国际体制
An International System for Human Cytogenetics Nomenclature, ISCN
1p31.1、1p31.2、1p31.3
五、染色体的多态性
(chromosomal polymorphism)
染色体的结构、带纹宽窄和着色强 度等存在恒定的微小变异,染色体 多态性主要在结构异染色质区,通 常没有明显表型效应或病理学意义
1、Y的长度变异存在种族差异,变异部位是 Y长臂 远端的2/3区段的长度变异。如果Y染色体大于F组 或大于第18号染色体,称长Y、大Y或巨Y、描述为 Yq+;如Y的长度为G组染色体长度的1/2以下,称 小Y染色体,描述为Yq-(罕见)。 2、D组、G组近端着丝粒染色体的短臂、随体及随 体柄部次缢痕区(NOR)变异。 3、第1、9 和16号染色体次缢痕的变异及着丝粒异 染色质区多态性的倒位。
医学遗传学名解
医学遗传学名词解释1、基因〔gene〕:基因是特定的DNA片段,带有遗传信息,可通过控制细胞内RNA和蛋白质〔酶〕的合成,进而决定生物的遗传性状。
2、断裂基因〔split gene〕:指人类的结构基因编码序列不连续,被非编码序列分隔嵌合排列的断裂形式的基因。
3、人体基因组〔human genome〕:细胞内全部遗传物质的总称。
细胞内遗传物质包括存在于细胞核内的全部DNA和存在于线粒体内的DNA,前者称为核基因组,后者称为线粒体基因组。
4、侧翼序列〔flanking sequences〕:在基因的两侧不被转录的非编码序列,这些序列在转录调控中起重要作用。
它们包括位于转录起始点上游的启动子序列、位于转录终止点下游的终止子序列和位置不固定的转录调控序列,如增强子、沉默子等。
5、多基因家族〔multigene family〕:指由一个祖先基因经过重复和突变所形成的一组基因,其中至少有一个功能基因。
多基因家族有两类:一类串联排列在同一条染色体上,称为基因簇,如α基因簇;另一类是不同成员分布在不同染色体上。
6、假基因〔pseudogenes〕:在人的一些基因家族中有的序列与有功能的基因相似,但是它没有相应的蛋白质产生,为拟基因或假基因。
7、外显子〔exon〕:在断裂基因及其初级转录产物上出现,并表达为RNA的核酸序列称为外显子。
8、内含子〔intron〕:内含子是隔断基因线性表达而在剪接过程中被除去的核苷酸序列。
9、启动子〔promoter〕由RNA聚合酶结合位点及周围的一组调控组件构成,一般处于基因的上游,包括至少一个转录起始点以及一个以上功能组件,决定转录起始准确性和频率。
10、外显子内含子接头序列〔splicing junction〕:在外显子与内含子接头有一段高度保守的序列,是RNA剪接的信号,称为接头序列。
每个内含子的5’端以GT开始,在3’端以AG 结束,所以又称为GT-AG法那么。
11、增强子(enhancer):指远离转录起始点,决定基因的时间、空间特异性,增强启动子转录活性的DNA序列,其发挥作用的方式通常与方向、距离无关。
医学遗传学-染色体分组、核型与显带
染色体的结构包括着丝粒、端粒、 次缢痕等,这些结构对于染色体 的稳定性和功能发挥具有重要作
用。
染色体数目与形态
人类体细胞中有23对染色体, 其中22对为常染色体,1对为性
染色体。
染色体形态多样,可分为长臂、 短臂、着丝粒、端粒等部分,不 同物种的染色体形态也存在差异。
染色体数目的异常会导致遗传性 疾病的发生,如唐氏综合征、特
染色体异常类型及发生率
பைடு நூலகம்
1 2 3
染色体数目异常
包括整倍体和非整倍体异常,如21三体综合征 (唐氏综合征)等,发生率相对较低,但后果严 重。
染色体结构异常
包括缺失、重复、倒位和易位等,如猫叫综合征 (5号染色体短臂缺失)等,发生率较高,临床 表现多样。
染色体多态性
包括随体大小、着丝粒位置等微小变异,通常不 引起表型效应和疾病,但在特定情况下可能与疾 病风险相关。
G显带技术
利用Giemsa染料对染色 体进行显带处理,根据显 带图谱进行分组。
C显带技术
采用C-分带技术,通过特 定的染色程序显示染色体 特定区域的结构异染色质, 从而进行分组。
荧光原位杂交技术
FISH技术
利用荧光标记的DNA探针与染色 体上的特定DNA序列进行杂交, 通过荧光显微镜观察杂交信号, 实现染色体分组。
03 核型分析技术
核型概念及意义
核型定义
是指生物体细胞内的染色体组型,包括染色体的数量、形态、大小等特征。
核型意义
核型分析是遗传学研究的基础,对于了解物种的遗传特性、染色体变异以及进 化关系具有重要意义。同时,在临床上,核型分析对于遗传病的诊断、预防和 治疗也具有重要的指导作用。
核型分析流程与方法
医学遗传学名词解释及问答题
名词解释chromosome disease染色体病——染色体数目或结构异常引起的疾病称为染色体病。
dynamic mutation动态突变——又称不稳定三核苷酸重复序列突变。
突变是由基因组中脱氧三核苷酸串联重复拷贝数增加,拷贝数的增加随着世代的传递而不断扩增。
frame shift mutation移码突变——基因组链中插入或缺失一个或多个碱基对,从而使该点之后的部分或所有三联体遗传密码子组合发黄色呢个改变的基因突变形式。
genetic disease 遗传病——因遗传因素而罹患的疾病称为遗传性疾病,简称遗传病。
family基因家族——从已克隆的基因来看,它们并不都是单拷贝,有的是重复的多拷贝,这一部分基因属于两个或多个相似基因的家族,称为基因家族。
genetic imprinting 遗传印记——一个个体来自双亲的某些同源染色体或等位基因存在着功能上的差异,因此当它们发生相同的改变时,所形成的表型却不同,这种现象称为遗传印记,也称基因组印记(genomicimprinting)或亲代印记(parental imprinting)。
mutation基因突变——基因在结构上发生碱基对组成或排列顺序的改变称为基因突变。
genetic load遗传负荷——一个群体由于致死基因或有害基因的存在而使群体适合度降低的现象。
遗传负荷主要有突变负荷和分离负荷,受近亲婚配和环境因素的影响。
diagnosis基因诊断——基因诊断又称诊断或分子诊断,通过分子生物学和分子遗传学的技术,直接检测患者体内遗传物质的结构或表达水平是否异常而作出或辅助临床诊断的技术。
therapy基因治疗——运用重组技术,将具有正常基因及其表达所需的序列导入到病变细胞或体细胞中,以替代或补偿缺陷基因的功能,或抑制基因的过度表达,从而达到治疗的目的。
replacement基因替代——去除整个变异基因,用有功能的正常基因取代之,使致病基因得到永久性地更正。
本科医学遗传学复习题答案
遗传学复习题一、名词解释遗传病:指由于遗传物质结构或功能改变所导致的疾病。
核型:一个细胞内的全部染色体所构成的图像。
染色体显带:通过现带染色等处理,分辨出染色体更微细的特征,如带的位置、宽度和深浅等技术,常见有G 带、Q带、C带和N带。
基因突变:指基因内的碱基组成或顺序发生了可遗传的改变,并且常能导致表型的改变。
断裂基因:真核生物结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,启动子:位于转录起始点上游约100bp 左右,是与RNA聚合酶特异结合使转录开始的DNA 序列。
系谱:指从先证者入手,追溯调查其所有家族成员(包括直系亲属和旁系亲属)某种遗传病(或性状)的分布等资料,将调查的资料按一定的格式绘制成的简图。
复等位基因:在同源染色体相对应的基因座位上存在两种以上不同形式的等位基因。
共显性:如果双亲的性状同时在F1 个体上表现出来,即一对等位基因的两个成员在杂合体中都表达的遗传现象。
交叉遗传:男想X 染色体(及其连锁基因)只能从母亲传来,并且必定传给女儿,不能传给儿子的这种遗传方式。
染色体畸变:在不同因素作用下产生的染色体数目及结构异常。
嵌合体:指具有两种或两种以上染色体组成的细胞系的个体。
易患性:一个个体在遗传基础和环境因素共同作用下患某种多基因病的风险。
遗传度:人体性状或者疾病由基因决定程度,一般用百分比表示。
二、问题1.遗传病有什么特点?可分为几类?对人类有何危害?答:遗传病一般具有先天性、家族性、垂直传递等特点,在家族中的分布具有一定的比例;部分遗传病也可能因感染而发生。
①先天性:许多遗传病的病症是生来就有的,如白化病是一种常染色体隐性遗传病,婴儿刚出生时就表现有白化”症状;②家族性:许多遗传病具有家族聚集性,如Hut in gto n舞蹈病患者往往具有阳性家族史。
③垂直传递:具有亲代向子代垂直传递的特点,但不是所有遗传病的家系中都可以观察到这一现象,有的患者是家系中的首例,还有些遗传病患者未活到生育年龄或未育。
【医学遗传学试题及答案】三、人类染色体形态观察和非显带核型分析
三、人类染色体形态观察和非显带核型分析实验学时:5 学时实验类型:综合性每组人数: 1 人/组一、实验目的通过实验掌握染色体核型分析的常用方法以及G分带的带型特征,初步会识别G分带人类染色体。
二、实验原理将一个细胞内的染色体按照一定的顺序排列起来构成的图像就称之为该细胞的核型(karyotype),这通常是用显微摄影得到的染色体相片剪贴而成。
在显带技术问世以前,人们主要根据染色体的大小、着丝粒的位置,将人类染色体顺次由1编到22号,并分为七组。
但要想精确、有把握地鉴别每条染色体是比较困难的。
70年代初出现了染色体显带技术,不仅解决了染色体识别困难的问题,而且为深入研究染色体异常及基因定位创造了条件。
将染色体标本用显带方法处理后,再用Giemsa染色,这类技术就称为G分带,通过显微摄影,就可得到G带染色体的显微相片。
三、主要仪器及试剂实验材料显微相片2张。
实验器材镊子、剪刀、胶水、实验报告纸。
四、实验方案1.取人体淋巴细胞有丝分裂中期染色体核型照片,用剪刀沿着每条染色体的四周按直线一一剪下(呈长方形),放在白纸上。
首先按每条染色体的大小顺序排列,然后参照着丝粒在染色体上的相对位置,仔细地一一进行配对。
一般先找出1、2、3号染色体进行配对,再依次为B组、G组、F组、E组,最后为C组。
配对完毕后,用浆糊按照一定的格式要求(附后),分别贴于实验报告纸上。
2.在分析结果中,写出该细胞的核型式,注明性染色体。
五、实验报告剪贴正常男性或女性染色体显微相片一张。
附人类染色体特征描述在进行染色体照片分析时,必须初步掌握人体各对染色体的形态特征,这是对常规标本进行核型分析的主要依据,现描述如下:A组:1-3号。
1号:是最大的染色体,具有中央着丝粒(约在染色体全长的1/2处。
以下简略为1/2、1/4、3/8等),在长臂近着丝粒处,偶可见到一个狭窄的次縊痕。
2号:较1号稍短,亚中着丝粒(3/8)。
3号:比2号短,为中央着丝粒(1/2)。
医学遗传学 人类染色体
43
高分辨显带的命名方法
• 在原带之后加小数点,并在小数点之后的数字, 称为亚带。例如:原来的1p36带被分为三个亚带, 命名为1p31.1、1p31.2、1p31.3,
• 亚 带 lp31.3 再 分 时 , 则 写 为 lp31.31 、 1p31.32 、 1p31.33,称为次亚带。
44
1、2、3、4
32
(2)G带(G band):
• 方法简便,带纹清晰,染色体标本可以长 期保存,因此被广泛用于染色体病的诊断 和研究。
33
图 人 类 显 带 染 色 体
G
34
(3)R带( band):
• 用盐溶液处理标本后,再用Giemsa染色, 显 示 与 G 带 相 反 的 带 , 称 反 带 ( reverse band)或R带。
• • • •
55
单拷贝探针FISH定位图象 1q13.3 的cDNA探针检测的双信号
59
原发性浆细胞瘤细胞 红色-6号 绿色15号
61
28
(二)人类染色体显带核型
29
(二)人类染色体显带核型
• 用染色体显带技术,使染色体沿其长轴显 出明暗或深浅相间的带纹,而每一号染色 体都有其独特的带纹,构成了每条染色体 的带型(band)。 • 同源染色体的带型基本相同,不同对的染 色体的带型不同。通过显带核型分析,可 以准确的识别每一号染色体。
正常女性型:
A B
• 分7个组: A→G • 正常男性:46,XY • 正常女性:46,XX • 两性畸形: 47,XXY
C D
E
F
G
XXY
26
(二)人类染色体显带核型
G bang
Y
医学遗传学名词解释
★1.核型(karyotype):一个体细胞中的所有染色体按其大小、形态等特征按顺序排列而构成的图像。
2.核型分析(karyotype analysis):将待测细胞的染色体按照Denver体制配对、排列,进行染色体数目,形态特征的分析,确定其是否正常的过程。
3.染色体组:指人类的配子细胞即精子或卵子各自含有的一套完整染色体,chr为23。
★4.嵌合体(mosaic):体内同时存在两种或两种以上不同核型细胞系的个体。
5.同源嵌合体:体内不同核型的细胞系起源于同一受精卵。
6.异源嵌合体:体内不同核型的细胞系起源于2个或以上的受精卵,形成“真两性畸形”。
7.衍生染色体:染色体断裂后形成的新畸变染色体,分为“平衡的”与“不平衡的”。
8.倒位(inversion):是某一染色体发生两次断裂后,两断点之间的片段旋转180度后重接,造成染色体上基因顺序的重排。
9.平衡易位携带者:具有平衡易位染色体但表现型正常的个体。
10.平衡易位:仅有位置改变而没有明显的染色体片段的增减,通常不会引起明显的遗传学效应的易位,也叫原发性易位。
★11.分子病(molecular):由于基因突变导致蛋白质分子(除酶蛋白)结构或数量的异常,从而引起机体功能障碍的一类疾病。
酶蛋白病:由基因突变导致酶蛋白分子结构和数量异常,从而引起代谢障碍的一类疾病。
12.血红蛋白病(hemoglobinopathy disease):是指由于珠蛋白基因缺陷导致珠蛋白分子结构异常或珠蛋白合成数量异常所引起的疾病。
★13.地中海贫血(thalassemia):是指由于珠蛋白基因缺陷导致某种珠蛋白链合成速率降低(合成数量减少),造成α链与非α链的数量失衡,从而引起的溶血性贫血。
★14.罗伯逊易位(Robertsonian translocation):发生在两近端着丝粒染色体都在着丝粒附近断裂,然后两长臂接合在一起形成一条较大的染色体,两短臂不能稳定的存在而逐步丢失。
医学遗传学名词解释
1.Lyon 假说:阐明哺乳动物剂量补偿效应的X染色体失活假说,主要内容是:(1)正常雌性哺乳动物体细胞中,两条X染色体中只有一条在遗传上是有活性的,其结果是X连锁基因得到了剂量补偿,保证雌雄个体具有相同的有效基因产物。
(2)失活是随机的,发生在胚胎发育早期,某一细胞的一条染色体一旦失活,这个细胞的所有后代细胞中的该条X染色体均处于失活状态。
(3)杂合体雌性在伴性基因的作用上是嵌合体,即某些细胞中来自父方的伴性基因表达,某些细胞中来自母方的伴性基因表达,这两类细胞镶嵌存在。
2.基因突变:基因在结构上发生碱基对组成或排列顺序的改变。
3.遗传标记:遗传标记是指在遗传分析上用作标记的基因,也称为标记基因。
4.核型:核型指染色体组在有丝分裂中期的表型,包括染色体数目、大小、形态特征的总和。
5.核型分析:将待测的细胞的染色体按照该生物固有的染色体形态特征和规定,进行配对、编号和分组,并进行形态分析的过程。
6.次级缢痕:染色体上的一个缢缩部位,由于此处部分的DNA松懈,形成核仁组织区(NOR)。
7.异染色质:在细胞周期中,间期、早期或中、晚期,某些染色质或染色质的某些部分的固缩常较其他的染色质早些或晚些,其染色较深或较浅,具有这种固缩特性的染色体称为异染色质。
8.先证者:是指在家族中最先发现具有某一特定性状或疾病的个体。
9.表现度:在不同的个体中由同一基因产生作用的严重程度不同。
10.遗传异质性:某一种遗传疾病或表型可以由不同的等位基因或者基因座突变所引起的现象。
11.外显率:一定环境条件下,群体中某一基因型(通常在杂合子状态下)个体表现出相应表型的百分率。
12.阈值效应:超越阈值,打破原有均衡引起的改变称之为阈值效应。
13.母系遗传:两个具有相对性状的亲本杂交,不论正交或反交,子一代总是表现为母本性状的遗传现象。
14.遗传瓶颈:一个大的多样性群体在某种条件的限制下,只有少部分个体可以通过某一个时空到达新的繁殖地,并由这些个体进一步繁殖成一个多态性的小群体。
医学遗传学期末复习资料
医学遗传学本科期末复习资料一、名词解释1、核型:是指一个体细胞中的全部染色体,按其大小、形态特征顺序排列所构成的图象。
2、基因表达:是指生命过程中,储存在基因中的遗传信息,通过转录和翻译,转变成蛋白质或酶分子,形成生物体特定性状的过程。
3、转录:是以DNA为模板,在RNA聚合酶作用下合成RNA的过程。
4、基因诊断:利用DNA 重组技术在分子水平上检测人类遗传病的基因缺陷以诊断疾病。
5、不规则显性:是指带有显性基因的杂合体由于某种原因不表现出相应症状,因此在系谱中出现隔代遗传的现象。
6、等位基因:是指位于一对同源染色体上相同位点的不同形式的基因。
7、错义突变:是指DNA中单个碱基置换后,其所在的三联体遗传密码子变成编码另一种氨基酸的遗传密码子,导致多肽中相应的氨基酸发生改变。
8、近婚系数:指近亲婚配的两个个体可能从共同祖先得到同一基因,婚后又把同一基因传给他们的子女的概率。
9、罗伯逊易位:又称着丝粒融合。
当两条近端着丝粒染色体在着丝粒或其附近某一部位发生断裂后,二者的长臂构成一大的染色体,而其短臂构成一个小的染色体,这种易位即为罗伯逊易位。
10、联会:在减数分裂前期I 偶线期,同源染色体互相靠拢,在各相同的位点上准确地配对,这个现象称为联会。
11、分子病:是指基因突变造成蛋白质分子结构或合成量异常所引起的疾病。
12、减数分裂:是生殖细胞精子或卵细胞发生过程中进行的一种特殊有丝分裂,只发生在精子和卵细胞发生的成熟期。
13、遗传性酶病:由于基因突变导致酶蛋白缺失或酶活性异常所引起的遗传性代谢紊乱,称为遗传性酶病。
14、携带者:表型正常但带有致病基因的杂合子,称为携带者。
15、基因:是特定的DNA片段,带有遗传信息,可通过控制细胞内RNA和蛋白质(酶)的合成,进而决定生物的遗传性状。
16、系谱:是指某种遗传病患者与家族各成员相互关系的图解。
17、基因治疗:是指运用DNA重组技术修复患者细胞中有缺陷的基因,使细胞恢复正常功能,达到治疗疾病的目的。
染色体核型分析在《医学遗传学》教学中的应用研究——以云南新兴职业学院为例
染色体核型分析在《医学遗传学》教学中的应用研究——以云南新兴职业学院为例摘要:医学遗传学是一门基础与临床密切相关的桥梁学科,在医学遗传学教学中采用染色体核型分析与教学相结合的方法,能够有效激发学生的学习积极性,培养学生的自我学习能力,提高其综合思考、分析诊断能力,从而更好地达到医学遗传学的学习目的。
关键词:染色体核型分析;医学遗传学;教学改革目前随着国内外染色体显带技术、荧光原位杂交技术、光谱核型分析技术的不断迭代更新使复杂染色体异常的筛查成为可能,并且更为准确和高效,可以有效服务于早期诊断癌症及染色体畸变。
染色体分析技术日益发展的同时,染色体核型分析的教学也在不断迭代更新,由最初的染色体排序到如今将各种新兴的分析方法运用到教学,帮助学生加强对染色体和相关疾病的认识[1]。
当前人类遗传病主要通过染色体检查的方式进行诊断;而所有新兴的染色体分析方法都以染色体核型分析为基础,本研究旨在探讨染色体核型分析在医学遗传学教学中的应用,并通过实践进行效果评价。
采用文献分析、问卷调查和实验教学等方法,对染色体核型分析在教学中的作用进行论述。
1染色体核型分析的基本概念和原理1.1染色体核型分析的定义染色体核型分析是将待测细胞的染色体根据生物固有的染色体形态结构特征,按照一定的规定,人为的对其进行配对、编号和分组,并进行形态分析的过程,目前最常用的分析技术有染色体显带技术、荧光原位杂交技术(FISH)、光谱核型分析技术。
1.2 染色体核型分析的基本原理每个人的染色体都有一定的形态结构(包括染色体的长度、着丝点位置、臂比、随体大小等)特征,而且这种形态特征是相对稳定的。
通过对染色体玻片标本和染色体照片的对比分析,进行染色体分组,并对组内各染色体的长度,着丝点位置,臂比和随体有无等形态特征进行观测和描述,从而阐明染色体组成,确定其染色体并判断有无异常信息。
临床上通过对染色体形态进行观察来判断染色体有无出现异常从而对染色体核型进行报告。
遗传学总结
医学遗传学一. 名词解释:1. 医学遗传学(medical genetics):医学与遗传学相结合、并互相渗透的一门交叉学科,是遗传学知识在医学领域的应用;它研究人类遗传性疾病的发病机制、传递规律、诊断方法以及治疗与预防措施。
2. 遗传病(genetic disease):遗传物质结构和功能改变所导致的疾病;其发生需要一定的遗传基础,并按一定的方式传给后代。
3.性染色质:间期细胞核中,性染色体上的异染色质显示出的一种特殊结构,包括X染色质和Y染色质。
4. 核型(karyotype):将一个细胞内的染色体按照一定的顺序排列起来所构成的图像称为该细胞的核型。
5. 有丝分裂(mitosis):是体细胞增殖方式,分为前、中、后和末四个时期。
6.显带核型:染色体标本经显带技术处理,可使染色体长轴上显示出明暗或深浅相间的带纹,每个染色体都有独特而恒定的带纹。
经显带技术显示的核型称为显带核型。
7.非显带核型:未经特殊处理,只用常规方法染色的人类染色体标本,除着丝粒和次缢痕外,整条染色体均匀着色,由此获得的核型称为非显带核型。
8.活性染色质:指具有转录活性的染色质。
9.非活性染色质:指不进行转录的染色质,既有异染色质,也有部分常染色质。
10. 人类基因组:指人的所有遗传信息的总和,包括两个既相对独立又相互关联的基因组;包括核基因组和线粒体基因组;如果不特别注明,通常所说的人类基因组是指核基因组。
11. 基因(gene):是DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位。
(或:合成有功能的蛋白质多肽链或RNA所需要的全部核苷酸序列。
)12. 基因突变(gene mutation):指基因在分子结构上发生碱基组成或排列顺序的改变。
13.中性突变:是指基因突变的后果轻微,对机体不产生可察觉的有害或有利的效应。
包括同义突变和错义突变。
14. 单基因遗传病(monogenetic or single-gene disease):指一对等位基因异常引起的疾病。
医学遗传学 第二章 遗传的细胞学基础 知识点
第二章遗传的细胞学基础染色质(chromatin):间期细胞核内能被碱性染料染色的物质。
由DNA,组蛋白,非组蛋白及少量rna组成,是间期细胞遗传物质存在的形式。
染色质有利于遗传信息的复制和表达。
染色体(chromosome):在有丝分裂或减数分裂过程中,由染色质聚缩而成的棒状结构,是DNA螺旋化的的最高形式。
染色体有利于遗传物质的平均分配。
染色质的类型:常染色质:细胞间期核内纤维折叠盘曲程度小,分散度大,染色较浅且具有转录活性。
异染色质:细胞间期核内纤维折叠盘曲程度紧密,分散度小,呈凝集状态,染色较深且不具有转录活性。
异染色质包括:结构异染色质:指各类细胞的全部发育过程中都处于凝缩状态。
大多数位于着丝粒区、端粒区、次缢痕及y染色体长臂远端三分之二区段,一般不具有转录活性。
兼性异染色质:只在某些特定细胞类型或一定发育阶段,细胞原来的常染色质凝缩并丧失基因转录活性变为异染色质。
性染色质:是x/y染色体某一区段的DNA形成的特殊染色结构。
一定是异染色质。
x染色质:也叫x小体或Barr小体。
Lyon假说:实质:失活的x染色体。
特点:随机,永久,完全失活。
x染色质的数目等于x染色体的数目-1。
x染色体失活的意义--剂量补偿作用。
女性x连锁基因杂合子表达异常。
女性嵌合体。
后世补充:失活的X染色体并非整条,结构异常的X染色体优先失活。
y染色质:由y染色体长臂远端三分之二区段在男性间期细胞核中所形成的异染色质。
y染色体的数目等于y染色质的数目。
人类染色体的形态结构:着丝粒(主缢痕),长臂q,短臂p,端粒,副缢痕,随体。
人类染色体的类型:中央着丝粒,亚中央着丝粒,近端着丝粒。
核型:一个体细胞中的全部染色体按其大小,形态特征顺序排列所构成的图像。
核型分析:将待测细胞的核型进行染色体数目,形态特征的分析。
确定其是否与正常核型完全一致。
核型的记录格式(非显带):染色体总数+(,)+性染色体构成。
例如46,xx。
丹佛体制分组:A-G(形态依次减小)。
第2章 核型与染色体显带
• 缺点
– 只能检测较大的结构异常
• ( one band = 6mb of DNA ~ 150 genes ).
– 需要大量的劳动并高度依赖操作者的经验和技术
二、荧光原位杂交
Fluorescence in situ hybridization (FISH)
(臂的末端、着丝粒 和某些带)界标之间 为区
• 区 region(区内有
连续排列的带,作为界 标的带命名为远端区的 第1带)
• 带 band(带的命名
由连续的符号命名)
1p35:1号染色体,
短臂,第三区,第5带
染色体显带技术的应用
1,染色体变异 2,基因定位
传统核型分析技术的优势和缺点
• 优势
• BSG(氢氧化钡/盐/Giemsa)方法被认为 是标准的C显带方法 • C显带的机制可能再蛋白而不是DNA C DNA • 在C带上的蛋白可能对Giemsa有更强的亲 和性
^ ^ ^ ^
更常用于鉴定昆虫和植物的染色体 鉴定减数分裂染色体 终变期时用两个着丝粒的位置鉴定二价体 用于亲子鉴定和基因图谱
SKY是 M-FISH一种 SKY采用干涉成像技术。 是 一种, 采用干涉成像技术。 一种 采用干涉成像技术 公司在Thomas Ried的合作下成功进 是1995年ASI公司在 年 公司在 的合作下成功进 行的实验。 行的实验。 SKY是一种光谱影像分析方法,它运用了光 是一种光谱影像分析方法,它运用了光 是一种光谱影像分析方法 谱干涉仪及傅立叶变换, 谱干涉仪及傅立叶变换,将图像中每一像素做光 谱分析后,在做重新显示, 谱分析后,在做重新显示,增强了对多种荧光分 子的辨别。其结果分显色图像和分色图象两部分, 子的辨别。其结果分显色图像和分色图象两部分, 前者可用于图象获取后即可评估所有探针的杂交 质量;后者用特定的SKY软件,参照每一条染色 软件, 质量;后者用特定的 软件 体特有的光谱信息特征进行分析。 体特有的光谱信息特征进行分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
技术原理
染色体的成份是核酸(DNA和RNA)和蛋白质(组蛋 白和非组蛋白)。染色体经胰蛋白酶处理后,蛋白 质因被水解而使DNA分子中的碱基暴露, 由于碱基 中G/C和A/T的比例不同,对染料结合的程度不一样 A/T碱基成份多,则 Giemsa染料易与它结合而深染 G/C碱基成份多,则 Giemsa染料不易与其结合而浅 染。染色体纵轴上呈现明暗相间或深浅不一的带纹
A 一秃头来二蛇腰 三似蝴蝶翩翩飘
B 四像鞭炮五黑腰 C 六号p似小白脸
C 七盖八下 九细腰 七(短臂远处深染) 八(着丝粒下部深染) 九(着丝粒下部浅染)
C 十号q臂三深带 十一宽来十二窄 十一(长臂近中段浅带宽) 十二(长臂近中段浅带窄)
C X 深带一担挑
D十三下来十四中 十五深染头上瞧 十三下(下部深染) 十四中(中部深染) 十五上(上部深染)
C带(C banding)
NaOH碱处理再Giemsa染色,使着丝粒和1、9、16号次缢痕以及Y染色体长臂远端的2/3的区段显带
N带(N banding pattern)
AgNO3染色可使核仁组织区(NOR)银染(Ag-NOR)
受染的是与 rDNA 转录有关的一种酸性蛋白
G带(G banding)
1p31.1、1p31.2、1p31.3
五、染色体的多态性
(chromosomal polymorphism)
染色体的结构、带纹宽窄和着色强 度等存在恒定的微小变异,染色体 多态性主要在结构异染色质区,通 常没有明显表型效应或病理学意义
1、Y的长度变异存在种族差异,变异部位是 Y长臂
远端的2/3区段的长度变异。如果Y染色体大于F组
F G
19—20 21—22 Y
次小 最小
中 近端
21号 22号 短臂 末端
女4条 男5条
二、染色体非显带核型
(The karyotype of non-banding chromosome)
女性:46,XX
男性:46,XY
非显带核型分析(karyotype analysis)
三、染色体显带(chromosome banding)
1-22号常染色体和X、Y性染色体形成24个基因连锁群(linkage group)
组 A
染色体号 1-3
大小 最大
着丝粒位置 1、3中 2 亚中
次缢痕 1号长臂
随体
说明
B C
D E
4-5 6-12 X
13—15 16—18
次大 中等
中等 小
亚中 亚中
近端
9号长臂 短臂 末端
女16条 男15条
16中 16号长臂 17、18亚中
E 十六深带连着点 十七长臂带脚镣 十八人黑肚皮白
F 十九中间一点黑 二十头重脚轻飘
G二十一似三角形 二十二似羽毛球 老Y 貌似宝葫芦
四、人类染色体命名国际体制
人类细胞遗传学命名的国际体制
An International System for Human Cytogenetics Nomenclature, ISCN
或大于第18号染色体,称长Y、大Y或巨Y、描述为 Yq+;如Y的长度为G组染色体长度的1/2以下,称 小Y染色体,描述为Yq-(罕见)。 2、D组、G组近端着丝粒染色体的短臂、随体及随
体柄部次缢痕区(NOR)变异。
3、第1、9 和16号染色体次缢痕的变异及着丝粒异 染色质区多态性的倒位。
Q带(Q banding)
荧光染料氮芥喹吖因(quinacrine mustard,QM)显带
R带(R banding)
反带(reverse band)
盐溶液处理,Giemsa染色,显示的带与G带相反
T带(T banding)
加热,Giemsa 染色,端粒特异性深染 端粒(telomere)含有TTAGGG重复序列
显带后的染色体呈现出独特的带纹 即染色体 带型 (banding pattern)
Q显带(Q banding) G显带(G banding) R显带(R banding) T显带(T banding) C显带(C banding) N显带(N banding) 高分辩显带染色体
(high resolution banding chromosome,HRBC)
界标是下一区的第一带
1p31 1号染色体短臂3区1带
1q42
1号染色体长臂4区2带
㈢高分辨显带染色体
High resolution banding chromosome,HRBC
一套单倍体染色体带纹 仅 320条。染色体高分 辨带型可显示550-850 条带纹,有助于发现更 细微的染色体结构异常
第二节 染色体分组、核型与显带
Section two Chromosome grouping, karyotype and banding
1960年在美国丹佛(Denver)第一届国际细胞遗传学会议确定人类 染色体分组按染色体大小递减次序和着丝粒位置划分Denver体制
一、染色体分组(Chromosome grouping)