利息理论第1章
利息论第一章
有关名义利率的几个概念 利息换算期(interest conversion period) 月换算(convertible monthly) 季换算(payable quarterly) 半年换算(compounded semiannually)
名义利率—— i(m) m 1 为一个度量期
中付息m次的名义利率. 也就是说, 名义利率i(m) 指每1/m个度量期支付实质利息为 i(m) /m的利 息一次。
注意:实质上实质利率是对期末支付利息的 度量;而实质贴现率是对期初支付利息的度 量。
18
现在,来讨论任意一期上的实质贴现率。
设 dn 为第n期的实质贴现率,则
dn
In
An
Pan Pan Pan
1
a n a n an
1
注意:1、在常数单利率下,各期实质贴
现率为
dn
a n a n 1 an
i 1 i n
则:i1
A0 A1 A0
50 1000
5%; i2
A2 A1 A1
50 1050
4.762%
10
1-3 单利与复利 引例:某企业今年产量为Q,如果年递
增a 则明年产量T?5年后呢T5?
T Q 1 a
T 5 Q 1 a 5
11
如果我们定义积累函数分别为: 1、 at 1it 则说该项投资是以单利i率 记息。称该种计息方式为单利。
e1e2
et
实际利率in
a n a n 1 a n 1
an a n 1
1
en
1
a n 1 i1 1 i2 1 in 当i1i2 in时 1 i n
36
例1.6.1书上例1-13 例1.6.2确定1000元按利息强度5%,投资10 年的积累值. 答案:1648.78
第一章 利息理论
季度的实际利率为 3% :
年名义利率为 12% ,每年结转 4 次利息; 年名义利率为 12% ,每年复利 4 次; 年名义利率为 12% ,每个季度结转一次利息; 年名义利率为 12% ,每个季度复利一次。
相关术语
利息结转期:
interest conversion period ; 每月结转一次: convertible monthly ; 每季支付一次: payable quarterly ; 每半年复利一次: compound semiannually ;
例:
若在 1999 年 6 月 17 日存入 1000 元,到 2000 年 3 月 10 日取款,年单利利率为 8 %,试分别 按下列规则计算利息金额:
1 ) “ 实际 /365 ” 规则。 2 ) “ 实际 /360 ” 规则。Fra bibliotek( ( (
3 ) “ 30/360 ” 规则。
( 1 )从 1999 年 6 月 17 日到 2000 年 3 月 10 日的精确天数为267 ,因此在 “ 实际 /365 ” 规则下, t = 267/365 ,利息金额为:
单贴现与复贴现的关系( 了解 )
单贴现和复贴现对单个时期产生的结果相同。 对于较长时期,单贴现比复贴现产生较小的现值, 而对较短时期情况则相反。 单贴现模式并不对应着单利的贴现模式,而复贴 现模式对应复利的贴现模式。
小结:
计算累积值和现值,既可以用利率,也可以用 贴现率。 如果 用利率计算累积值和现值 ,则有
期末的 1 元在期初的现值为:
此现值用贴现率d表示即为:
故有下图:
根据利率的定义,有
利率i与贴现率d的关系(3)
利息理论第一章——利息度量
n
n
lim
x0
exp
ln(1 x
ix)
lim
x0
exp
1
i
ix
ei
24
1.4 复利 (compound interest)
单利:本金保持不变。 复利:前期的利息收入计入下一期的本金,即 “利滚利”。 例:
假设年初投资1000元,年利率为5%,则年末可获利50元, 因此在年末有1050元可以用来投资。
21
(1)精确天数为238,在“实际/365”规则下,t = 238/365, 利息金额为:
10000 0.08 238 521.6 365
(2)在“实际/360”规则下,t = 238/360,利息金额为:
10000 0.08 238 528.9 360
(3)在“30/360”规则下,两个日期之间的天数为:
累积函数:时间零点的1元在时间 t 的累积值, 记为a (t) 。 性质:
a (0) = 1; a (t) 通常是时间的增函数; 当利息是连续产生时,a (t) 是时间的连续函数。
注:一般假设利息是连续产生的。
7
例:
常见的几个积累函数 (1)常数:a (t) = 1 (2)线性:a (t) = 1 + 0.1 t (3)指数:a (t) = (1+0.1) t
(1 i)t
t 年累积因子:t-year accumulation factor
34
实际贴现率:d
(effective rate of discount with compound interest)
实际贴现率等于一个时期的利息收入与期末累积值之比:
实际贴现率(d
)
《利息理论》复习提纲
《利息理论》复习提纲第一章 利息的基本概念 第一节 利息度量 一. 实际利率某一度量期的实际利率是指该度量期内得到的利息金额与此度量期开始时投资的本金金额之比,通常用字母i 来表示。
利息金额I n =A(n)-A(n-1)对于实际利率保持不变的情形,i=I 1/A(0); 对于实际利率变动的情形,则i n =I n /A(n-1); 例题:1.1.1二.单利和复利考虑投资一单位本金,(1) 如果其在t 时刻的积累函数为 a(t)=1+i*t ,则称这样产生的利息为单利;实际利率 )()()()(1111-+=---=n i in a n a n a i n(2) 如果其在t 时刻的积累函数为a(t)=(1+i)t ,则称这样产生的利息为复利。
实际利率 i i n =例题:1.1.3 三.. 实际贴现率一个度量期的实际贴现率为该度量期内取得的利息金额与期末的投资可回收金额之比,通常用字母d 来表示实际贴现率。
等价的利率i 、贴现率d 和贴现因子(折现因子)v 之间关系如下:,(1),1111,,,1d ii d i i d d iv d d iv v i d idi=+==-+=-==-=+例题:1.1.6 四.名义利率与名义贴现率用()m i 表示每一度量期支付m 次利息的名义利率,这里的m 可以不是整数也可以小于1。
所谓名义利率,是指每1/m 个度量期支付利息一次,而在每1/m 个度量期的实际利率为()/m i m 。
与()m i 等价的实际利率i 之间的关系:()1(1/)m m i i m +=+。
名义贴现率()m d ,()1(1/)m m d d m -=-。
名义利率与名义贴现率之间的关系:()()()()m m m m i d i d m m m m-=⋅。
例题:1.1.9 五.利息强度定义利息强度(利息力)为()()()()t A t a t A t a t δ''==, 0()ts ds a t e δ⎰=。
利息理论第一章 1 优质课件
a(t)是1单位的本金在t个周期末的积累值,而a1(t) 是为使在t个周期期末的积累值为1,而在开始时 投资的本金金额。
23
例题1-5
已知年实际利率为8%,求4年后支付10000元的 现值。
解:由于i=8%,故
a(4)=(1+8%) 4 从而现值
pv=10000 a1(4)=
27
(2)实际利率是对期末支付的利息的度量, 而实际贴现率是对期初支付的利息的度量。
例:(1)张三到一家银行去,以年实际利率6% 向银行借100元,为期1年,则张三的借款流 程如下: 0时刻张三收到100元,。 1时刻张三支付100+100×6%=106元。
(2)张三到一家银行去,以年实际贴现率6% 向银行借款100元,为期1年,则张三的借款 流程如下:
(2)从积累形式来看
在单利下,上一个度量期上所产生的利息并不作为
投资本金在以后的时期再赚取利息。
16
在复利下,在任何时刻,本金和到该时刻为止所得到 的利息,总是用于投资以赚取更多的利息。
(3)单利与复利在计算上的区别 在常数的单利i下,积累函数a(t)=1+it;在常数的 复利i下积累函数a*(t)=(1+i)t。
28
0时刻银行预收6%(即6元)的利息, 而仅付给张三94元;1年后,张三支付 给银行100元。 分析:从上面两个例子来看,实际利率是 对期末支付利息的度量,而实际贴现率 是对期初支付利息的度量。即实际利率 说明了资本在期末获得利息的一种能力。 而实际贴现率说明了资本在期初获得利 息的一种能力。
29
25
a(1) 1 i,a1(1) 1 。根据实际贴现率的定义,知 1 i
第1章利息理论
2.1.6 利息问题求解
一个简单的利息问题通常包括以下四个基本量: 1.原始投资的本金 2.投资时期的长度 3.利率 4.本金在投资期末的积累值 如果已知其中的任何三个,就可以建立一个 价值等式,由此等式确定第四个量。
利息问题求解举例
例1: 某人借款50000元,每半年结算一次利息, 年名义利率为6%,两年后他还了30000元,又过3 年后还了20000元,求7年后的欠款额为多少。
●
积累函数a (t)有时也称作 t 期积累因子;
称 a-1(t)为折现函数或 t 期折现因子。特别地, 把一期折现因子a-1(1)简称为折现因子。
●
在复利方式下,当年利率不变时 通常记
1 a (t ) (1 i)t
1
1 v a (1) 1 i
1
a (t )
现值
1
1 本金
a (t )
常数利率时
A(t ) A(0)(1 பைடு நூலகம் it )
• 复利:利上生利的计息方式
A(n) A(0)(1 i1)(1 i2)(1 in)
常数利率时
A(t ) A(0)(1 i)t
a(t ) (1 i)t 此时累积函数为
例1. 某人到银行存入1000元,第一年末他存折上的余 额为1050元,第二年末他存折上的余额为1100元, 问:第一年、第二年的实际利率分别是多少?
价值等式
f (i) =2000×(1+i)5+3000×(1+i)2 -6000
可利用中点插值法求解
补充作业:
1、设 m 1,请把 的次序排列。
i, i
( m)
, d, d
( m)
, 按从大到小
利息理论及其应用(pdf112)
2004 年 2 月 6 月
主讲 黄 海
北京大学金融数学系
利息理论与应用
第1章 — 1
第一章 利息基本计算
1.1 利息基本函数
v 利息是借贷关系中借款人(borrower)为取得资金使 用权而支付给贷款人(lender)的报酬
v 从投资的角度看 利息是一定量的资本经过一段时 间的投资后产生的价值增值
i= 2.50%
a(t)=(1+i)^t 1.000 1.025 1.050 1.075 1.100 1.125 1.150 1.175 1.200 1.225 1.250 1.275 1.300 1.325 1.350 1.375 1.400 1.425 1.450 1.475 1.500
利息理论与应用
例 在银行开立储蓄帐户 把平时积累下来的多余钱 存入银行 可视为投资一定数量的钱款以产生投资收 益— — 利息
例 购买国库券
北京大学金融数学系
利息理论与应用
第1章 — 2
累积函数(accumulation function)
本金(principal) 初始投资的资本金额
累积值(accumulated value) 的总金额
过一定时期后收到
利息(interest) 累积值与本金之间的金额差值
假设在初始时刻 0 投资了 1 个单位的本金 则在时 刻 t 的累积值记为 a(t) 称为累积函数
注 时间 t 为从投资之日算起的时间 可以用不同的 单位来度量
1 单位的本金
累积值 a(t)
0
北京大学金融数学系
t
利息理论与应用
时间 t
v 离散型
v 连续型
注C 一般的
利息是跳跃产生的 利息是连续产生的 利息被认为是连续产生的
第1章利息理论
i ( m ) m 1 [1 ] m
[1
i
(m)
m
]m
2.名义贴现率:现率为
(m)
表示每
d ( m ) 计息的名义贴现率,设与之等价的实际 贴现率 m
1 m
个度量期以实际
d ,则有:
( m)
d m 1 d (1 ) m
a ( s) 0 s ds 0 a(s) ds ln a(t )
t t
'
0 s ds a(t ) e
或
t
a(t ) (1 i) 时, t ln( 1 i)
t
e 1 i
例:如果 t 0.01t , 0 t 2,确定投资1000元 在第1年末的积累值和第2年内的利息金额。
例1:某人从银行贷款20万元用于购买住房,规定的 还款期是20年,假设贷款利率为5%,如果从贷款第 2年开始每年等额还款,求每年需要的还款数额。
20万元
0 1 2
…
19
20
x
解得
x
x
x
xa20 200000
0.05 x 200000 16048.52 20 1 1.05
例:计算年利率为3%的条件下,每年年末投 资3000元,投资20年的现值及积累值。如果 投资在每年年初进行,那么投资20年的现值 及积累值又分别是多少?
n 2 n
sn i
2. 期初付n期年金的现值和终值
1
0
1
1
1
2
…
…
1
n-1 n
1 vn 1 vn n 1 v v 2 v n1 a 1 v d n n 1 v (1 i) 1 n n n an (1 i) s (1 i) d d
第一章 利息理论(利率问题)
Accumulated value Present value Effective annual rate Simple interest Compound interest Nominal interest Discount rate Force of interest
一、利息(Interest)的定义
d1 A 1 A 1 1 A 1 a 1 a 0 a 1 1 a 1 1
a 1 1 1 d 1
(3)利率与贴现率之间的关系 1)单利场合 2)复利场合
1)单利场合利率与贴现率的关系
dn
I ( n) A(n) a (n) a(n 1) a ( n) i 1 in
一、某公司招聘广告中对精算助理的 要求
岗位职责: 1、 根据市场、销售部门提出的开发新险种的需求,设计 符合市场及公司发展需要的产品; 2、 责任准备金的评估及计提; 3、 公司未来的现金流分析及利润预测; 4、 分析公司发生的各项管理费用的合理性; 5、 核算公司代理人体系的成本,进行成本效益分析; 6、 公司的利源分析,资产负债匹配分析; 7、 根据保监会的规定编制各种精算月报、季报、年报; 8、 各种发生率的经验分析,保险条款的订立与修正。
0
t
a(0) 1 1 特别的有:a (1) v折现因子,记为v.
3、金额函数(Amount function )
A(t ) K a(t ) 显然有:A(0) K
K------------------------------ A(t ) 0
t
4、第N期利息
I ( n)
I (n) A(n) A(n 1)
利息理论第一章 利息的基本概念
从而有,
∫0 δ s ds = A(t ) = a (t ) = a(t ) e A(0) a (0)
t
这样我们便得到了利息强度和积累函数之间的关 系。如果已知各个时刻利息强度,便可以求得人一时 刻的积累函数。 例、如果δ t = 0.01t , 0 ≤ t ≤ 2, ,确定投资1000元 ,确定投资1000元 在第一年末的积累值和第二年内的利息金额。 解:
在《利息理论》这门课程中,我们将着重讨 论以下几个方面的问题: 1、金融产品价格的确定。例如,年金、 债券、股票等。 2、分析投资的可行性,确定投资的收益率。 3、设计债务人的各种偿还计划,并且分析 各种偿还计划的特点。 4、分析企业的财务状况,如固定资产的折 旧和固定资产的选择。
在西方资本主义发达的国家,《利息理论》 这门课程也被称作《Financial Mathematics》 这门课程也被称作《Financial Mathematics》, 即《财务数学》。也就是说《利息理论》这门 课程实际上是利用数学的方法定量分析个人、 企业的财务状况,包括:投资收益分析、融资 成本分析、债务偿还分析以及企业自身内部的 固定称的分析。因此,学好利息理论这门课程 十分必要,它是我们先前所学到的诸如《财务 管理》、《金融市场学》等课程的必要补充, 能帮助我们用数学的方法精确的度量各种金融
前面定义的各种利息度量方式都是用来度量在规定 的时间去间内的利息。实际利率和实际贴现率度量的是 一个度量期内的利息,而名义利率和名义贴现率则用来 度量在1/m 度量在1/m个度量期内的利息。 在很多情形下,我们还希望能度量在每一时间点上 的利息,也就是在无穷区间上的利息。这种对利息在各 个时间点上的度量叫做利息强度。 利息强度 δ t 定义如下:
利息理论 第1章 利息的基础知识
3)贴现率与利率
d=
或:
an an1 an
=
(1+i )n (1+i ) n1 (1+i ) n
=
i 1+i
d = i v i=
d 1 d
4)贴现率与折现因子
公式一 公式二
d = 1 v
及:
vt = v = (1 d )
t
t
及:
v = 1 d
at = (1 d )
t
日的积累值为1, 例:94年1月1日的积累值为 ,000元,d=10% 年 月 日的积累值为 元 日的现值为多少? 求:1)90年1月1日的现值为多少? ) 年 月 日的现值为多少 2)年利率为多少? )年利率为多少 3)折现因子为多少? )折现因子为多少? 解: 1)A0=1000(1-d)4 =656.1元 2) d 1d
m→∞
(m)
δ = lim m[(1 + i ) 1]
1 m
m →∞
= lim
= lim
m →∞
1 (1 + i ) m 1 m
1
m→∞
= lim
1 ) m2
1 [( 1+ i ) m 1 ( m )'
。
1 ] '
m→∞
1 ln(1+i )(1+ i ) m
(
12 m
= lim (1 + i) ln(1 + i)
(1)单利 设年利率为i ,期初本金为1
1 1+i 1+2i 1+it
0
1
2
t
at=1+it
复利
设利率为i,期初本金为1。
利息理论第一章 利息的基本概念
A′(t ) a′(t ) δt = = A(t ) a(t )
称 δ t 该投资在t时的利息强度,即 δ t 为利息在时刻t一 该投资在t 为利息在时刻t 种度量,通过如上定义可将 δ 表示为如下形式:
t
d d δ t = ln A(t ) = ln a (t ) dt dt
对两边积分可得,
A(t ) ∫0 δ s ds = ∫0 d ln A(s) = ln A(s) | = ln A(0)
利息理论
绪论
利息是债务人(borrower) 利息是债务人(borrower)对债权人 (lender)因为资金被借用而牺牲了当前消费, lender) 以及对其面对的机会成本的一种补偿。不同经济 学以及货币银行学等课程讨论利息是如何形成的 以及分析决定利息大小的具体因素,在本门课程 中假定存在于债权人和债务人之间的利息是一种 既定的事实,并在此基础上分析债权人和债务人 之间的权利与义务的关系。
假如不是以年实际利率6%,而是以年实际贴现率 假如不是以年实际利率6%,而是以年实际贴现率 6%向银行借款,为期一年,则银行将预收6% 6%向银行借款,为期一年,则银行将预收6% (即6元)的利息,仅付给张三94元。一年后, (即6元)的利息,仅付给张三94元。一年后, 张三将还给银行100元。 张三将还给银行100元。 由此可见,实际利率和实际贴现率反映的 是一个先后付息的问题。
就是只有本金生息,本金产生的利息并不积累 生息。 (2)如果单位投资在t时的积累值为: )如果单位投资在t a(t)=(1+i)t )=(1+i) 那么,则称该笔投资以每期复利i计息, 那么,则称该笔投资以每期复利i计息,并将 这样产生的利息称为复利。实际上,复利就是 指民间俗称的“利滚利”,即当其产生的利息 计入本金,在下一期可以生息。
利息理论——第一章1.1
1
这里我们引入一个新的概念:现值。我们把 为了在t期末得到某个积累值,而在开始时 投资的本金金额称为该积累值的现值(或折 现值,Present Value)。
我们将 k a (t ) 代入(1.1.1)式,可以得到
1
1 A(t ) ka(t ) a(t ) 1 a(t )
例1 甲向乙借款1 000元,两人商定从2006年 12月31日归还,且归还时,甲一次性向乙支 付利息100元。
在该项借贷往来中,可将乙借钱给甲看成是一项投 资,其初始投资为1 000元,即本金为1 000元 ( P=1 000元);投资期从2006年1月1日至2006年12月 31日,为期1年( n=1年);乙的该项投资在1年后除 了收回本金外,还额外可得100元,即利息( I=100元)。 因为两人商定利息是在1年结束时才一次性支付,即1年 才计算一次利息,所以计息期为1年。且其单位本金获得 的利息为0.1元( 100/1 000=0.1),所以年利率为10% ( i=10%)。在2006年12月31日时,该项投资的积累值 为1 100元。
利息
我们将从投资日起第n个时期所得到的利息 金额记为I n ,则 I n A(n) A(n 1) 对整数n≥1 (1.1.2)
注:这里注意 I n 表示的是一个时间区间上 所得利息的量,而A(n)则是在一特定时刻的 积累量。
§1.1.1
实际利率
定义:某一度量期的实际利率(Effective Rate of Interest) 是指该度量期内得到的利息金额 与此度量期开始时投资的本金金额之比。通常, 实际利率用字母i表示。 实际利率i是利息的第一种度量方式,由定义可 以看出,实际利率是一个不带单位的数,实务 中常用百分数来表示; 它与给定的时期有关; 它其实是单位本金在给定的时期上产生的利息 金额。
利息理论第一章
本课程以北美精算师协会考试课程2中利息理 论部分的内容为主要线条,对其中基础部分进 行了压缩,介绍利息的基本计算概念和方法, 以及年金计算基本工具函数,这些内容是进入 金融定量分析领域的基础。随后是金融计算和 分析中的常用的两大类方法:投资收益率分析 和现金流的本金利息分解过程。
从实务的角度看,金融学可以分为投资和融资 两大部分,在金融市场中,大多数参与者及其 进行的活动都可以归在这两类中。而其中尤以 投资学中的计算问题为多。本课程在引进基本 的现金流计算方法之后,对主要的投资工具: 固定收益产品(债券为主)的计算问题进行了 详细的介绍。
利息理论及其应用
福州大学管理学院财金系 陈志军
课程简介
金融领域的许多计算问题具有共同的数学特征 和模型,大量的计算和分析实践的基础是现金 流分析和货币的时间价值(累积和贴现)计算。 例如:银行的资产负债分析、融资成本和投资 收益分析、金融市场产品的定价和保险精算分 析等。 本课程的基本目的:掌握基本的金融计算的概 念和原则,同时对一些基础性的金融工具的进 行现金流价值分析。
利息理论是北美精算师协会(Society of Actuaries, SoA)的准精算师(Associate-ship) 资格考试中的经济金融课程的主要部分 。 北京大学金融系从1997-1998学年第一学期 (1997年秋季)开始,将课程“利息理论与应 用”作为金融系本科生的第一门专业基础课。
最后,用两章的篇幅介绍学生深入进行金融数学 学习的准备知识:利率风险分析和随机模型。利 率风险分析和管理是金融领域很重要的一个主题, 已有一些现成的工具和算法;随机模型在金融风 险分析,特别是衍生工具定价和套期保值技术中 成为基本和必不可少的一部分,本课程只是介绍 了最基本的工具和方法,希望对进入这个领域有 一定的帮助。
刘占国利息理论答案全套1 5章
第一章利息的基本概念1. A(t) = A(O)a(t)2. a(0) =1二 b =1 100a(5)=180,3~5.用公式(1-4b ) 7~9.用公式(1-5)、( 1-6)12. k(1 +"(1 +i 2)(1 5) =1000 14.(1 +i)n+(1 +i)』〉2j (1 +i)n'(1 +i)』16. 用p.6公式17. 用P.7最后两个公式 19. 用公式(1-26)20. (1)用公式(1-20);⑵用公式(1-23) 22. 用公式(1-29)23. (1)用公式(1-32);(2)用公式(1-34)及题6( 2)结论 24. 用公式(1-32)41 < 6% V25. ----------------------------------- (1+i)4=(1+10%) [1+— 2丿 1-8% I 4 丿 < 5%YI 2丿26.对于 c)及 d),a(n) =e n&,二 a(1)=e 5 = 1+i =11 - dd)中,d =1 -e 』j&x) dx 28.a(t) =e 029.1 +i; 1 + j =e31. (1) 902 天46.d =1000~920=0.08,x(1 -0.08) +288(1 —0.08xJ) =92011.第三个月单利利息1%,复利利息(1+1%)3 -(1 +1%)2■300a(8^508a(5)-1=V C)中,6 = - In V ,39.e =1+t 二 0仇4「=1 n (1+t ),两边同时求导,S (t)= 1丙3B (t )类似1000 2第二章年金an - X - i 二 (1+i ) =1-Xi _2n 2 1—(1 +i ) 1 一(1 -xi )a 2n - y - i ipl将i = 代入(*)_n 5.解:(*)1-d _n1-(1 +i \ 4.解: 」+0.087 l16000 =A +1000 ” 0.087 12 +0087舊+占 12人 12丿 1000 1000 1000 1718_51000鵝(1+0.08)P =39169.848.解:5000齬0.1 =9.解:5000s^.^0.1514.解:永续年金每年支付 R17.解:15OOa m0.008 =100000 解得m 止95.6 即正常还款次数为 95次1500a 埶.008 + f (1 +0.008)』5=100000 解得 f =965.7419.解:+2000S i (2)=170005^—21000LS 肚-s5e< 2 2丿 105/. (1 +i j +(1+i ) -17(1令 f(t) =t10+t 5—17t +150 — f(1.03) = f (1.035) — f (1.03) i —1.03 1.035—1.03 f (1.032) = —0.003186iV 18=1 -ia 诃=1 -iM5001也轴半(1 + i 半)」=100001=(1 +i 半 2= 1+i 半=(1 —d P ,1 -L3_ = 2037.解: 1 20 123该永续年金现值为12441—(1+i ) 6 ( 0.04]23.解:a 6004 + ---- --- 1.04 ,1+i =|1+ -----24.解: R 1.1025R 1.205R 012 34R>c1.054+1.1025R1.053+1.1025R1.052+1.205R1.05 =11000 得 R = 2212.1471 -(1 +i f 25.解:a n =' '€a n n (1+i f i-1 + (1 + i『c ic i _ Hi _ 弔0.102 — an0.1甞6宀"=0.002其中n 通过公式(2-76)得到29.解:a 7 =1-v 7/. v 7 =1 -i a 7 =1 -iK类似地,V11:v7v 11= v 18/. (1-iK)(1-iL) =1-iM从而 i = L + K-MKL31.解:= 1-v nC _ 1- V12丿an32.解: 1 +i =1 -36.解 : g 卄屮-20.••95.36mm1 1 1该永续年金现值为: 4 +(1+i ) •••所求年金现值为: 1 + --- (2 + i)i (2+i)int 39.解: —g —h f =lim a-i =limn ^C ni n _^ § , n .1 -v 1 (2+i)ig =(1-kn)- v n 0 40.解:a(t)=e 0^dr=1 +t J0a 」(t )dt = J 。
《利息理论复习》PPT课件
na
=
n
i
(2-55B)
(Ds) = s + s s + s s +…+ s s + s s
n
n
n
1n
2
n
n2 n
n1
=n s -( s + s +…+ s + s )
n
12
n2 n1
n(1 i)n s
=
n
i
(2-56B)
永续变额年金
lim (P a
n
n
+Q
a n
nvn i
)=
P i
第三章
收益率
3-1 贴现现金流分析法
现金流出:O0
现金流入 I0
时间
0
O1
O2 …
On-1
On
I1
I2 …
I n-1
In
1
2…
n-1
n
图(3-1) 投资记录时间图
3-2 收益率的定义
• 使得净现值为0的利率i为相应投资
项目的收益率
n
P(i)= vt Rt =0 t0
(3-2)
第三章
收益率
3-1 贴现现金流分析法
j)mn j
1 1 vn = i(m)
(2-35B) (2-36B)
a(m n
)
=
1 v i(m)
n
1 vn =
i
i
× i
(
m
)
i
= i(m)
a n
s(m) n
=
i
i
(m
)
s n
(2-37A) (2-37B)
利息理论课件 (1)
(1-4)
n≥1 为整数 (1-5)
例1-1 某人到银行存入1000元,第一年末 他存折上的余额为1050元,第二年末他存 折上的余额为1100元,问:第一年、第二 年银行存款的实质利率分别是多少?
例1-2 某人借款10000元,为期一年,年实质 利率为 10% 。问:一年后,此人需要还款 多少?其中利息为多少?
例1-7 重新考虑例1-1中存款,所述的事件 不变,求第一、第二年的实质贴现率。
“等价”
对于同一笔业务,用不同的率去度量,其结 果是“等价”的。
等价 关系式
i=d/(1-d) i-id=d d(1+i)=i d=i/(1+i) d=iv d= i/(1+i)=1-1/(1+i) =1-v v=1-d d =iv=i(1-d) =i-id i-d=id (1-12A) (1-12B) (1-12C) (1-12D) (1-12E) (1-12F) (1-12G) (1-12H) (1-12I)
d (m) d ( m ) m 1 (1 ) 贴现: m m
d ( m) d ( m) m2 (1 ) m m
d (m) d (m) (1 ) m m
d (m) 1 m
d ( m) m ) 余额: 1 d (1 m
d ( m ) m 1 (1 ) m
…
d (m) 2 (1 ) m
d (m) 1 m
1
图(1-2B) 名义贴现率图
例1-9 ( 1 )求与实质利率 8% 等价的每年计息 2 次的年 名义利率以及每年计息4次的年名义贴现率; (2)已知每年计息12次的年名义贴现率为8%, 求等价的实质利率; (3)已知i(3/2)=8%,求等价的d(12)。
利息理论第一章.ppt
注意:积累和折现的区别
积累和折现是两个相反的过程,积累值 和过去支付的款项有关,现值和未来得 到的款项有关。
a(t)是0时刻的1单位本金在t时刻的积累 值;a1(t) 是t时刻的1单位本金在0时刻的 现值。
8
8、利息金额 把从投资日起第n个时期所得的利息金额记为 In ,则
In A(n) A(n 1) In 表示在一个时间区间上所产生的,在最后 时刻支付利息的量,A(n) 表示在一特定时刻的积累量。
2
例如:1000元以年实际利率5%存款1年, 可得利息50元。
3、利息的定义 总结来说,利息是一定时期内,资金拥有 人将资金的使用权转让给借款人后得到的 报酬。
注意:理论上利息和资金可以不均为货币 形式,但几乎所有的实际应用中,资金和 利息均是用货币来表示的,故本书中的所 有的资金和利息均为货币形式。
假设每期以单利 i 计息,则在投资期间,每一度量
期产生的利息均为常数i ;令 in (n 1)为第n个度
量期内的实际利率,则
in
a(n) a(n 1) a(n 1)
(1 in) [1 i(n 1 i(n 1)
1)]
i
i
对整数n 1
1 i(n 1)
in关于n递减,且当n取值较大时,实际利率in将变得较小。 故常数的单利意味着递减的实际利率。
6
6、t期折现因子
▪(1)定义: 称积累函数a(t)的倒数 a1(t) 为t期折 现因子或折现函数。特别地,把一期折现因子 a1(1)
简称为折现因子,并记为 v 。
▪ (2)意义: 第t期折现因子a1(t) 是为了使在t 期末的积累值为1,而在开始时投资的本金金额。
7、现值或折现值
我们把为了在t期末得到某个积累值,而在开始时投 资的本金金额称为该积累值的现值(或折现值)。在 t期末支付k的现值为k a1(t)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C、金融衍生工具定价理论(分数比例约为26%)
1. 金融衍生工具介绍(分数比例约为16%) 2. 金融衍生工具定价理论(分数比例约为10%)
D、投资理论(分数比例约为28%)
1. 投资组合理论(分数比例约为12%) 2. 资本资产定价(CAPM)与套利定价(APT)理论(分数比例约为16%)
中国精算师资格考试(金融数学)
• 考试形式: 选择题
• 考试要求:本科目要求考生具有较好的数学知
识背景。通过学习本科目, 考生应该熟练掌握
利息理论、利率期限结构与随机利率模型、金
融衍生工具定价理论、投资组合理论的主要内
容,在了解基本概念、基本理论的基础上,掌
握上述几部分内容涉及的方法和技巧。
中国精算师资格考试(金融数学)
课程简介
• 《中华人民共和国保险法》(2009年修订)第八十五条规定:
“保险公司应当聘用经国务院保险监督管理机构认可的精算 专业人员,建立精算报告制度。保险公司应当聘用专业人员, 建立合规报告制度。” 中国保险监督管理委员会1999年组织了中国首次精算师资格 考试,当年有43人获得中国精算师资格。中国精算师考试科 目共有19门课(其中准精算师有9门课,精算师10门课)。 北美精算学会(Society of Actuaries, SOA )的精算师资格 考试课程是为寿险精算人员所设计的。其考试分为两部分, 准精算师课程和精算师课程。2000年学会开始实行新的考试 制度,一共包括8门课程。 利息理论是中国准精算师和北美精算学会准精算师的必考科 目,也是许多财经类大学保险精算专业研究生入学考试的必 考科目。
• 关键词:累积函数;金额函数;单利;复利;实际
利率;实际贴现率;名义利率;名义贴现率;利息 力;贴现力;累积因子;贴现因子。
第1章 利息的度量
• 本章要解决以下问题:
– 复利和单利有何区别?复利产生的利息是否总大
于单利产生的利息?
– 如果复利在一年内有多次利息结转,甚至按时间
连续结转利息时,复利的利息会有何变化? – 贴现率和利率有何关系?实际利率与名义利率有 何关系?实际贴现率和名义贴现率有何关系?
– 金额函数 A(t) 在时间段 [ t1 , t2 ] 内所获得的利息金额为 I (t1,t2) = A(t2) − A(t1) – 从投资之日算起,在t个时期所获得的利息金额记为 I(t)=A(t)-A(0)=A(0)[a(t)-1] ,n ≥ 1 (1-3)
I (t ) [ A( s) A( s 1)]
• 教 材:孟生旺:《金融数学(第三版)》,中国人
•
民大学出版社,2011年8月。 参考书目:
– 1、孟生旺,袁卫:《利息理论及其应用》,中国人民大学 出版社,2001年版; – 2、刘占国:《利息理论》,南开大学出版社,2000年版; – 3、李晓林:《利息理论》,经济科学出版社,1999年版; – 4、 [美]S.G.Kellison:《利息理论》,上海科学技术出版社, 1995年版; – 5、熊福生:《利息理论》,武汉大学出版社,2004年版; – 6、张连增:《利息理论》,南开大学出版社,2005年版; – 7、张运刚:《利息理论与应用》,西南财经大学出版社, 2006年版; – 8、陈伟森(香港)、谢耀权(新加坡)著,庄新田、苑莹译: 《金融与保险精算数学》,机械工业出版社,2009年版。
– 年利率,用本金的%表示; – 月利率,用本金的‰表示; – 日利率,用本金的‰0表示。
• 实际利率的概念
• 实际利率与名义利率的根本区别
某一度量期的实际利率是指该度量期末得到的利息金额与此度量期开始 时投资的本金金额之比。实际利率常用字母i表示。
• 考试内容(结构):
A、利息理论 (分数比例约为30%)
1. 利息的基本概念(分数比例约为4%) 2. 年金(分数比例约为6%) 3. 收益率(分数比例约为6%) 4. 债务偿还(分数比例约为4%) 5. 债券及其定价理论(分数比例约为10%)
B、利率期限结构与随机利率模型(分数比例约为 16%)
利息理论
Interest Theory
讲授: 南京财经大学
使用教材:
曾卫
21世纪保险精算系列教材
金融数学
孟生旺
中国人民大学出版社
课程概述
• 利息理论是用数理分析的方法对利息及其相关问题进行定量分 •
析的理论。它是精算学的主要基础之一,也是金融产品定价理 论和保险产品定价理论的基础。 《利息理论》是金融学、保险学等专业的一门基础课,它要探 讨的主要内容是与利率和利息有关的理论及应用问题。本课程 由理论部分和应用部分两部分组成。 – 理论部分介绍了利息理论的主要内容,包括利率、贴现率、 利息力、贴现函数和累积函数等利息的度量工具,并讨论 了各种年金的计算等; – 应用部分探讨了利息理论在投资分析和财务管理等领域的 具体应用,包括收益率、债务偿还、证券价值、衍生工具、 利率风险、利率期限结构等内容。 这门课程所涉及的内容以及所提供的方法具有极为广泛的适用 性,其应用范围已远远超出了保险精算领域,在投资分析、资 产定价、财务管理、理财规划等方面都有很大的应用价值。
• •
•
中国精算师资格考试
准精算师考试科目 科目代码 A1 科目 数学 学分 考试时间 备注 3小时
A2 A3 A4 A5
A6 A7 A8
金融数学 精算模型 经济学 寿险精算
非寿险精算 会计与财务 精算管理
3小时 3小时 3小时 3小时
3小时 3小时 3小时
中国精算师资格考试
精算师考试科目 科目代码 F3 F4 F5 F6 F7 F8 F9 F10 科目① 个人寿险与年金精算实务 员工福利计划 非寿险实务 非寿险定价 非寿险责任准备金评估 投资学 资产负债管理 健康保险 学分 考试时间 备注 4小时 4小时 4小时 4小时 4小时 4小时 4小时 4小时
1.1
累积函数与实际利率
1.1.1 累积函数
• 金额函数(Amount function)
– 当原始投资不是1个单位的本金,而是 k 个单位时,则把 k个单位本金的原始投资在时刻 t 的累积值记为A (t) ,称为 金额函数(也称为总额函数、总量函数)。 – 金额函数:0时刻的k单位货币到t时刻时的累积值,记为 A(t)。 k A(t) – 性质: 0 1 2 …… t
第1章 利息的度量
• 教学要求:本章的重点是围绕利息的度量和利息问
题的求解这两大问题展开讨论。要求掌握有关利息 的各种度量工具以及与此相联系的累积函数和贴现 函数,能够熟练地运算与利息有关的一些问题,特 别要求重点掌握与复利有关的计算问题。要求对利 息的各种度量工具之间的相互关系比较熟悉。 教学内容:
1.1.1 累积函数(Accumulation function) • 累积函数a(t)及其性质
– 累积函数:0时刻的1单位货币到t时刻时的累积值,记为a(t)。累积 函数a(t)也称为t期累积因子,因为它是单位本金在t期末的累积值。 1 a(t) – 性质: 0 1 2 …… t (1)a (0) = 1; (2)a (t) 通常是时间t的递增函数,即利息≥0 ; (3)如果按时间连续结转利息,a(t)是时间t的连续函数;如果间断结 转利息,a(t)为间断函数(若在每期末结转利息,则是以结转利息 时刻为间断点的阶梯函数)。 (注):一般假设利息是连续产生的。
累积函数与实际利率 累积函数的证明 贴现函数 名义利率 利息力 利率概念辨析 1.2 单利 1.3 复利 1.6 贴现率 1.8 名义贴现率 1.10 贴现力
•
1.1 1.4 1.5 1.7 1.9 1.11
1.1
累积函数与实际利率
• 关于利息的几个基本概念
– 本金(principal):初始投资的资本金额。 – 累积值(accumulated value):过一段时期后收到的总金额。 – 利息(interest)——累积值与本金之间的差额。
世界主要国家的保险精算资格考试
• 英国精算学会①
代07 108 109 201 课程 统计模型 金融数学 随机模型 生存模型 精算数学Ⅰ(寿险精算) 精算数学Ⅱ(非寿险精算) 经济学(宏观与微观) 财务报告分析 金融经济学 交流能力(命题论文写作) 代号 301 302 303 304 401 402 403 404 课程 投资与资产管理 寿险精算实务 非寿险精算实务 养老金精算实务 高级投资与资产管理 高级寿险精算实务 高级非寿险精算实务 高级养老金精算实务
•
课程概述
• 1997年的诺贝尔经济学奖获得者罗伯特· 默顿
(ROBERT C.MERTON) 教授①指出货币的时 间价值、资产定价和风险管理是现代金融理 论的三大支柱。
• 《利息理论》这门课自始至终都贯穿着货币
时间价值的思想,围绕资产定价的主题,讨 论金融保险领域中的理论和实际问题。
教材和参考书目
利息理论在保险专业课程体系中的地位
保险专业课
保险经营
人身保险 财产与责任 保险 保险营销 再保险 保险 经营管理
保险精算
保险投资
风险管理
利息理论 寿险精算 非寿险精算
证券投资学 金融 衍生工具 公司金融 资产评估 保险投资学
风险管理
教学目的
• 在保险学专业开设《利息理论》这门课,其目的是
为学习保险精算的其他几门专业课打下一个扎实的 基础,同时也为学习金融学、保险学的其他相关课 程提供理论和方法支撑。学习这门课程,要求掌握 它的基本理论、基本方法和基本技能。通过对本课 程的学习,能够比较完整地掌握利息理论的基本理 论框架和基本方法体系,并将它们运用于现代保险、 银行、投资分析、财务管理、理财规划等领域的实 务工作中去。
s 1 t
其中A(s)-A(s-1)表示金额函数在时间段(s-1,s)上产生的利息。