紫外光谱的基本原理复习课程
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
横坐标表示吸收光的波长,用nm(纳米)为单位。
纵坐标表示吸收光的吸收强度,可以用A(吸光度)、 T(透射比或透光率或透过率)、1-T(吸收率)、(吸收系数) 中的任何一个来表示。
T = I / I0
吸收曲线表示化合物的紫外吸收情况。曲线最大吸 收峰的横坐标为该吸收峰的位置,纵坐标为它的吸收强 度。
对甲苯乙酮的紫外光谱图
注意: ①选择较长共轭体系作为母体; ②交叉共轭体系只能选取一个共轭键,分叉上的双 键不算延长双键; ③某环烷基位置为两个双键所共有,应计算两次。
计算举例:
应用实例:
当存在环张力或立体结构影响到共轭时, 计算值与真实值误差较大。
2.3.3 α,β-不饱和醛、酮
(乙醇或甲醇为溶剂)
非极性溶剂中测试值与计算值比较,需加上溶剂校正值, 计算举例:
蓝移现象:由于取代基或溶剂的影响使最大吸收峰 向短波方向移动的现象称为蓝移现象。
增色效应:使值增加的效应称为增色效应。
减色效应:使值减少的效应称为减色效应。
末端吸收:在仪器极限处测出的吸收。
肩峰:吸收曲线在下降或上升处有停顿,或吸收稍微 增加或降低的峰,是由于主峰内隐藏有其它峰。
2.2 非共轭有机化合物的紫外吸收
第二章 紫外光谱
2.1 紫外光谱的基本原理
2.1.1 紫外光谱的产生、波长范围 紫外吸收光谱是由于分子中价电子的跃迁而产生的。
分子中价电子经紫外或可见光照射时,电子从 低能级跃迁到高能级,此时电子就吸收了相应波长
的光,这样产生的吸收光谱叫紫外光谱
紫外吸收光谱的波长范围是100-400nm(纳米), 其
例如:CH3Cl 173nm,CH2Cl2 220nm, CHCl3237nm ,CCl4 257nm
小结:一般的饱和有机化合物在近紫外区无吸收, 不能将紫外吸收用于鉴定; 反之,它们在近紫外区对紫外线是透明的, 所以可用作紫外测定的良好溶剂。
2.2.2 烯、炔及其衍生物
非共轭 *跃迁, λmax位于190nm以下的远紫外区。
σ*、 n* 、 π π*属于远紫外吸收 n π *跃迁为禁戒跃迁,弱吸收带--R带
2.取代基对羰基化合物的影响 当醛、酮被羟基、胺基等取代变成酸、酯、酰胺时, 由于共轭效应和诱导效应影响羰基,λmax蓝移。
3.硫羰基化合物
R2C=S 较 R2C=O 同系物中n π *跃迁λmax红移。
2.3 共轭有机化合物的紫外吸收
max= 184 nm ( = 60000) max= 204 nm ( = 7900) max= 255 nm ( = 250)
E1带 E2带 B带
2.单取代苯 烷基取代苯:烷基无孤电子对,对苯环电子结构产生
很小的影响。由于有超共轭效应,一般 导致 B 带、E2带红移。
助色团取代苯:助色团含有孤电子对,它能与苯环 π
2.3.1 共轭体系的形成使吸收移向长波方向
共轭烯烃的π π*跃迁
均为强吸收带, ≥10000,
称为K带。
共轭体系越长,其最大吸收越移往长波方向, 且出现多条谱带。
2.3.2 共轭烯烃及其衍生物
Woodward-Fieser 规则: 取代基对共轭双烯 λmax的影响具有加和性。
应用范围: 非环共轭双烯、环共轭双烯、多烯、共轭烯酮、多烯酮
注意:环张力的影响
2.3.4 α,β-不饱和酸、酯、酰胺
α,β-不饱和酸、酯、酰胺 λmax 较相应α,β-不饱和醛、 酮ห้องสมุดไป่ตู้移。
α,β不饱和酰胺、 α,β不饱和腈的 λmax 值低于相应的酸
2.4芳香族化合物的紫外吸收
2.4.1 苯及其衍生物的紫外吸收
1.苯
苯环显示三个吸收带,都是起源于π π*跃迁.
2.1.3紫外光谱表示法
1.紫外吸收带的强度 吸收强度标志着相应电子能级跃迁的几率,
遵从Lamder-Beer定律
Alog I cl
Io
A:吸光度, : 消光系数, c: 溶液的摩尔浓度, l: 样品池长度
I0、I分别为入射光、透射光的强度
2.紫外光谱的表示法
紫外光谱图是由横坐标、纵坐标和吸收曲线组成的。
2.2.1 饱和化合物
饱和烷烃:σ*,能级差很大,紫外吸收的波 长
很短,属远紫外范围。 例如:甲烷 125nm,乙烷135nm 含饱和杂原子的化合物: σ*、 n*,吸收弱, 只有部分有机化合物(如C-Br、C-I、C-NH2) 的n*跃迁有紫外吸收。
同一碳原子上杂原子数目愈多, λmax愈向长波移动。
助色基: 当具有非键电子的原子或基团连在双键或 共轭体系上时,会形成非键电子与电子的 共轭(p- 共轭),从而使电子的活动范围增 大,吸收向长波方向位移,颜色加深,这 种效应称为助色效应。能产生助色效应的 原子或原子团称为助色基。(-OH、-Cl)
红移现象:由于取代基或溶剂的影响使最大吸收峰 向长波方向移动的现象称为红移现象。
电子共轭。使 B 带、E 带均移向长波 方向。
不同助色团的红移顺序为:
NCH3)2 ﹥NHCOCH3 ﹥ O-,SH ﹥NH2﹥ OCH3﹥OH﹥ Br﹥Cl﹥CH3﹥NH3+
中100-200nm 为远紫外区,200-400nm为近紫外区,
一般的紫外光谱是指近紫外区。
2.1.2 有机分子电子跃迁类型
可以跃迁的电子有:电子, 电子和n电子。 跃迁的类型有: *, n *, *, n *。各类电子跃迁的能量大小见下图:
既然一般的紫外光谱是指近紫外区,即 200-400nm, 那么就只能观察 *和 n *跃迁。也就是说紫 外光谱只适用于分析分子中具有不饱和结构的化合物。
例如:乙烯 165nm(ε 15000),乙炔 173nm
C=C与杂原子O、N、S、Cl相连,由于杂原子的助色 效应, λmax红移。
小结:C=C,C≡C虽为生色团,但若不与强的 助色团N,S相连, *跃迁仍位于远 紫外区。
2.2.3 含杂原子的双键化合物
1.含不饱和杂原子基团的紫外吸收 (如下页表所示)
以数据表示法:
以谱带的最大吸收波长 λmax 和 εmax(㏒εmax)值表示。 如:CH3I λmax 258nm( ε 387)
2.1.4 UV常用术语
生色基:能在某一段光波内产生吸收的基团,称为这 一段波长的生色团或生色基。
( C=C、C≡C、C=O、COOH、COOR、 COR、CONH2、NO2、-N=N-)
纵坐标表示吸收光的吸收强度,可以用A(吸光度)、 T(透射比或透光率或透过率)、1-T(吸收率)、(吸收系数) 中的任何一个来表示。
T = I / I0
吸收曲线表示化合物的紫外吸收情况。曲线最大吸 收峰的横坐标为该吸收峰的位置,纵坐标为它的吸收强 度。
对甲苯乙酮的紫外光谱图
注意: ①选择较长共轭体系作为母体; ②交叉共轭体系只能选取一个共轭键,分叉上的双 键不算延长双键; ③某环烷基位置为两个双键所共有,应计算两次。
计算举例:
应用实例:
当存在环张力或立体结构影响到共轭时, 计算值与真实值误差较大。
2.3.3 α,β-不饱和醛、酮
(乙醇或甲醇为溶剂)
非极性溶剂中测试值与计算值比较,需加上溶剂校正值, 计算举例:
蓝移现象:由于取代基或溶剂的影响使最大吸收峰 向短波方向移动的现象称为蓝移现象。
增色效应:使值增加的效应称为增色效应。
减色效应:使值减少的效应称为减色效应。
末端吸收:在仪器极限处测出的吸收。
肩峰:吸收曲线在下降或上升处有停顿,或吸收稍微 增加或降低的峰,是由于主峰内隐藏有其它峰。
2.2 非共轭有机化合物的紫外吸收
第二章 紫外光谱
2.1 紫外光谱的基本原理
2.1.1 紫外光谱的产生、波长范围 紫外吸收光谱是由于分子中价电子的跃迁而产生的。
分子中价电子经紫外或可见光照射时,电子从 低能级跃迁到高能级,此时电子就吸收了相应波长
的光,这样产生的吸收光谱叫紫外光谱
紫外吸收光谱的波长范围是100-400nm(纳米), 其
例如:CH3Cl 173nm,CH2Cl2 220nm, CHCl3237nm ,CCl4 257nm
小结:一般的饱和有机化合物在近紫外区无吸收, 不能将紫外吸收用于鉴定; 反之,它们在近紫外区对紫外线是透明的, 所以可用作紫外测定的良好溶剂。
2.2.2 烯、炔及其衍生物
非共轭 *跃迁, λmax位于190nm以下的远紫外区。
σ*、 n* 、 π π*属于远紫外吸收 n π *跃迁为禁戒跃迁,弱吸收带--R带
2.取代基对羰基化合物的影响 当醛、酮被羟基、胺基等取代变成酸、酯、酰胺时, 由于共轭效应和诱导效应影响羰基,λmax蓝移。
3.硫羰基化合物
R2C=S 较 R2C=O 同系物中n π *跃迁λmax红移。
2.3 共轭有机化合物的紫外吸收
max= 184 nm ( = 60000) max= 204 nm ( = 7900) max= 255 nm ( = 250)
E1带 E2带 B带
2.单取代苯 烷基取代苯:烷基无孤电子对,对苯环电子结构产生
很小的影响。由于有超共轭效应,一般 导致 B 带、E2带红移。
助色团取代苯:助色团含有孤电子对,它能与苯环 π
2.3.1 共轭体系的形成使吸收移向长波方向
共轭烯烃的π π*跃迁
均为强吸收带, ≥10000,
称为K带。
共轭体系越长,其最大吸收越移往长波方向, 且出现多条谱带。
2.3.2 共轭烯烃及其衍生物
Woodward-Fieser 规则: 取代基对共轭双烯 λmax的影响具有加和性。
应用范围: 非环共轭双烯、环共轭双烯、多烯、共轭烯酮、多烯酮
注意:环张力的影响
2.3.4 α,β-不饱和酸、酯、酰胺
α,β-不饱和酸、酯、酰胺 λmax 较相应α,β-不饱和醛、 酮ห้องสมุดไป่ตู้移。
α,β不饱和酰胺、 α,β不饱和腈的 λmax 值低于相应的酸
2.4芳香族化合物的紫外吸收
2.4.1 苯及其衍生物的紫外吸收
1.苯
苯环显示三个吸收带,都是起源于π π*跃迁.
2.1.3紫外光谱表示法
1.紫外吸收带的强度 吸收强度标志着相应电子能级跃迁的几率,
遵从Lamder-Beer定律
Alog I cl
Io
A:吸光度, : 消光系数, c: 溶液的摩尔浓度, l: 样品池长度
I0、I分别为入射光、透射光的强度
2.紫外光谱的表示法
紫外光谱图是由横坐标、纵坐标和吸收曲线组成的。
2.2.1 饱和化合物
饱和烷烃:σ*,能级差很大,紫外吸收的波 长
很短,属远紫外范围。 例如:甲烷 125nm,乙烷135nm 含饱和杂原子的化合物: σ*、 n*,吸收弱, 只有部分有机化合物(如C-Br、C-I、C-NH2) 的n*跃迁有紫外吸收。
同一碳原子上杂原子数目愈多, λmax愈向长波移动。
助色基: 当具有非键电子的原子或基团连在双键或 共轭体系上时,会形成非键电子与电子的 共轭(p- 共轭),从而使电子的活动范围增 大,吸收向长波方向位移,颜色加深,这 种效应称为助色效应。能产生助色效应的 原子或原子团称为助色基。(-OH、-Cl)
红移现象:由于取代基或溶剂的影响使最大吸收峰 向长波方向移动的现象称为红移现象。
电子共轭。使 B 带、E 带均移向长波 方向。
不同助色团的红移顺序为:
NCH3)2 ﹥NHCOCH3 ﹥ O-,SH ﹥NH2﹥ OCH3﹥OH﹥ Br﹥Cl﹥CH3﹥NH3+
中100-200nm 为远紫外区,200-400nm为近紫外区,
一般的紫外光谱是指近紫外区。
2.1.2 有机分子电子跃迁类型
可以跃迁的电子有:电子, 电子和n电子。 跃迁的类型有: *, n *, *, n *。各类电子跃迁的能量大小见下图:
既然一般的紫外光谱是指近紫外区,即 200-400nm, 那么就只能观察 *和 n *跃迁。也就是说紫 外光谱只适用于分析分子中具有不饱和结构的化合物。
例如:乙烯 165nm(ε 15000),乙炔 173nm
C=C与杂原子O、N、S、Cl相连,由于杂原子的助色 效应, λmax红移。
小结:C=C,C≡C虽为生色团,但若不与强的 助色团N,S相连, *跃迁仍位于远 紫外区。
2.2.3 含杂原子的双键化合物
1.含不饱和杂原子基团的紫外吸收 (如下页表所示)
以数据表示法:
以谱带的最大吸收波长 λmax 和 εmax(㏒εmax)值表示。 如:CH3I λmax 258nm( ε 387)
2.1.4 UV常用术语
生色基:能在某一段光波内产生吸收的基团,称为这 一段波长的生色团或生色基。
( C=C、C≡C、C=O、COOH、COOR、 COR、CONH2、NO2、-N=N-)