实验项目二进程管理

合集下载

操作系统实验报告进程管理

操作系统实验报告进程管理

操作系统实验报告进程管理操作系统实验报告:进程管理引言操作系统是计算机系统中的核心软件,负责管理计算机的硬件资源和提供用户与计算机之间的接口。

进程管理是操作系统的重要功能之一,它负责对计算机中运行的各个进程进行管理和调度,以保证系统的高效运行。

本实验报告将介绍进程管理的基本概念、原理和实验结果。

一、进程管理的基本概念1. 进程与线程进程是计算机中正在运行的程序的实例,它拥有独立的内存空间和执行环境。

线程是进程中的一个执行单元,多个线程可以共享同一个进程的资源。

进程和线程是操作系统中最基本的执行单位。

2. 进程状态进程在运行过程中会经历不同的状态,常见的进程状态包括就绪、运行和阻塞。

就绪状态表示进程已经准备好执行,但还没有得到处理器的分配;运行状态表示进程正在执行;阻塞状态表示进程由于某些原因无法继续执行,需要等待某些事件的发生。

3. 进程调度进程调度是操作系统中的一个重要任务,它决定了哪个进程应该获得处理器的使用权。

常见的调度算法包括先来先服务(FCFS)、最短作业优先(SJF)和时间片轮转等。

二、进程管理的原理1. 进程控制块(PCB)PCB是操作系统中用于管理进程的数据结构,它包含了进程的各种属性和状态信息,如进程标识符、程序计数器、寄存器值等。

通过PCB,操作系统可以对进程进行管理和控制。

2. 进程创建与撤销进程的创建是指操作系统根据用户的请求创建一个新的进程。

进程的撤销是指操作系统根据某种条件或用户的请求终止一个正在运行的进程。

进程的创建和撤销是操作系统中的基本操作之一。

3. 进程同步与通信多个进程之间可能需要进行同步和通信,以实现数据共享和协作。

常见的进程同步与通信机制包括互斥锁、信号量和管道等。

三、实验结果与分析在本次实验中,我们使用了一个简单的进程管理模拟程序,模拟了进程的创建、撤销和调度过程。

通过该程序,我们可以观察到不同调度算法对系统性能的影响。

实验结果显示,先来先服务(FCFS)调度算法在一些情况下可能导致长作业等待时间过长,影响系统的响应速度。

操作系统实验二:进程管理

操作系统实验二:进程管理

操作系统实验二:进程管理操作系统实验二:进程管理篇一:操作系统实验报告实验一进程管理一、目的进程调度是处理机管理的核心内容。

本实验要求编写和调试一个简单的进程调度程序。

通过本实验加深理解有关进程控制块、进程队列的概念,并体会和了解进程调度算法的具体实施办法。

二、实验内容及要求1、设计进程控制块PCB的结构(PCB结构通常包括以下信息:进程名(进程ID)、进程优先数、轮转时间片、进程所占用的CPU时间、进程的状态、当前队列指针等。

可根据实验的不同,PCB结构的内容可以作适当的增删)。

为了便于处理,程序中的某进程运行时间以时间片为单位计算。

各进程的轮转时间数以及进程需运行的时间片数的初始值均由用户给定。

2、系统资源(r1…rw),共有w类,每类数目为r1…rw。

随机产生n进程Pi(id,s(j,k)t),0<=i<=n,0<=j<=m,0<=k<=dt为总运行时间,在运行过程中,会随机申请新的资源。

3、每个进程可有三个状态(即就绪状态W、运行状态R、等待或阻塞状态B),并假设初始状态为就绪状态。

建立进程就绪队列。

4、编制进程调度算法:时间片轮转调度算法本程序用该算法对n个进程进行调度,进程每执行一次,CPU时间片数加1,进程还需要的时间片数减1。

在调度算法中,采用固定时间片(即:每执行一次进程,该进程的执行时间片数为已执行了1个单位),这时,CPU时间片数加1,进程还需要的时间片数减1,并排列到就绪队列的尾上。

三、实验环境操作系统环境:Windows系统。

编程语言:C#。

四、实验思路和设计1、程序流程图2、主要程序代码//PCB结构体struct pcb{public int id; //进程IDpublic int ra; //所需资源A的数量public int rb; //所需资源B的数量public int rc; //所需资源C的数量public int ntime; //所需的时间片个数public int rtime; //已经运行的时间片个数public char state; //进程状态,W(等待)、R(运行)、B(阻塞)//public int next;}ArrayList hready = new ArrayList();ArrayList hblock = new ArrayList();Random random = new Random();//ArrayList p = new ArrayList();int m, n, r, a,a1, b,b1, c,c1, h = 0, i = 1, time1Inteval;//m为要模拟的进程个数,n为初始化进程个数//r为可随机产生的进程数(r=m-n)//a,b,c分别为A,B,C三类资源的总量//i为进城计数,i=1…n//h为运行的时间片次数,time1Inteval为时间片大小(毫秒)//对进程进行初始化,建立就绪数组、阻塞数组。

计算机操作系统实验二Windows任务管理器的进程管理

计算机操作系统实验二Windows任务管理器的进程管理

计算机操作系统实验二Windows任务管理器的进程管理实验二 Windows任务管理器的进程管理一实验目的1)在Windows 任务管理器中对程序进程进行响应的管理操作;2)熟悉操作系统进程管理的概念;3)学习观察操作系统运行的动态性能。

二实验环境需要准备一台运行Windows XP操作系统的计算机。

三背景知识Windows XP的任务管理器提供了用户计算机上正在运行的程序和进程的相关信息,也显示了最常用的度量进程性能的单位。

使用任务管理器,可以打开监视计算机性能的关键指示器,快速查看正在运行的程序的状态,或者终止已停止响应的程序。

也可以使用多个参数评估正在运行的进程的活动,以及查看CPU 和内存使用情况的图形和数据。

四实验内容与步骤启动并进入Windows环境,单击Ctrl + Alt + Del键,或者右键单击任务栏,在快捷菜单中单击“任务管理器”命令,打开“任务管理器”窗口。

当前机器中由你打开,正在运行的应用程序有:1) 实验二Windows 任务管理器的进程管理2) 常州大学—Windows Internet Explore3) 实验一Windows XP 系统管理4)可移动磁盘(H:)Windows“任务管理器”的窗口由_5_个选项卡组成,分别是:1) 应用程序2) 进程3) 性能4)联网当前“进程”选项卡显示的栏目分别是(可移动窗口下方的游标/箭头,或使窗口最大化进行观察) :1) 映像名称2) 用户名3) CPU4) 内存使用1. 使用任务管理器终止进程步骤1:单击“进程”选项卡,一共显示了__24_个进程。

请试着区分一下,其中:系统(SYSTEM) 进程有_14_个,填入表2-1中。

表2-1 实验记录映像名称用户名作用内存使用svchost.exe SYSTEM 用于执行dll文件 4988Kspoolsv.exe SYSTEM 管理所有本地和网络打 5544K印队列及控制所有打印工作lsass.exe SYSTEM 本地安全授权服务1460K services.exe SYSTEM 远程控制木马病毒3816Kwinlogon.exe SYSTEM 管理用户登录和退出5244Kcarss.exe SYSTEM 负责控制windows 12552K smss.exe SYSTEM 系统关键进程 500K CDAC11BA.exe SYSTEM 反复制保护软件1440K server.exe SYSTEM 用于Novell服务监听1196K MATLAB.exe SYSTEM 一种科学计算工程软件46576K MDM.exe SYSTEM 进行本地和远程调试 3532K service.exe SYSTEM 管理启动停止服务 3366K Inetinfo.exe SYSTEM 用于Debug调试除错 10236K system SYSTEM 系统进程 312K服务(SERVICE) 进程有_3_个,填入表2-2中。

实验二Windows任务管理器的进程管理

实验二Windows任务管理器的进程管理

实验⼆Windows任务管理器的进程管理实验⼆ Windows任务管理器的进程管理⼀实验⽬的1)在Windows 任务管理器中对程序进程进⾏响应的管理操作;2)熟悉操作系统进程管理的概念;3)学习观察操作系统运⾏的动态性能。

⼆实验环境需要准备⼀台运⾏Windows XP操作系统的计算机。

三背景知识Windows XP的任务管理器提供了⽤户计算机上正在运⾏的程序和进程的相关信息,也显⽰了最常⽤的度量进程性能的单位。

使⽤任务管理器,可以打开监视计算机性能的关键指⽰器,快速查看正在运⾏的程序的状态,或者终⽌已停⽌响应的程序。

也可以使⽤多个参数评估正在运⾏的进程的活动,以及查看CPU 和内存使⽤情况的图形和数据。

四实验内容与步骤启动并进⼊Windows环境,单击Ctrl + Alt + Del键,或者右键单击任务栏,在快捷菜单中单击“任务管理器”命令,打开“任务管理器”窗⼝。

当前机器中由你打开,正在运⾏的应⽤程序有:1) 实验⼆Windows任务管理器的进程管理Windows“任务管理器”的窗⼝由 5 个选项卡组成,分别是:1) 应⽤程序2) 进程3) 性能4) 联⽹5) ⽤户当前“进程”选项卡显⽰的栏⽬分别是(可移动窗⼝下⽅的游标/箭头,或使窗⼝最⼤化进⾏观察) :1) 映像名称2) ⽤户名3) CPU4) 内存使⽤1. 使⽤任务管理器终⽌进程步骤1:单击“进程”选项卡,⼀共显⽰了36 个进程。

请试着区分⼀下,其中:系统(SYSTEM) 进程有19 个,填⼊表2-1中。

表2-1 实验记录服务(SERVICE) 进程有4 个,填⼊表2-2中。

表2-2 实验记录⽤户进程有9 个,填⼊表2-3中。

步骤2:单击要终⽌的进程,然后单击“结束进程”按钮。

终⽌进程,将结束它直接或间接创建的所有⼦进程。

例如,如果终⽌了电⼦邮件程序(如Outlook 98) 的进程树,那么同时也终⽌了相关的进程,如MAPI后台处理程序mapisp32.exe。

进程管理实验二

进程管理实验二

#include<stdio.h>main(){int p,x;p=fork();if(p>0){x=fork();if(x>0)printf("father\n");elseprintf("child2");}elseprintf("child1");}实验步骤及输出结果:[test@localhost 桌面]$ gcc -o 1 1.c[test@localhost 桌面]$ ./1father[test@localhost 桌面]$ child2child12、运行以下程序,分析程序执行过程中产生的进程情况。

#include <stdio.h>main(){int p,x;p=fork();if (p>0)fork();else{fork();fork();}sleep(15);}实验步骤:编译连接 gcc –o forktree forktree.c后台运行 ./forktree &使用 pstree –h 查看进程树实验步骤及输出结果:[test@localhost 桌面]$ gcc -o forktree forktree.c[test@localhost 桌面]$ ./forktree &[1] 3952[test@localhost 桌面]$ pstree -hinit─┬─NetworkManager─┬─dhclient│ └─{NetworkManager}├─abrtd├─acpid├─atd├─auditd───{auditd}├─automount───4*[{automount}]├─avahi-daemon───avahi-daemon├─bonobo-activati───{bonobo-activat}├─clock-applet├─console-kit-dae───63*[{console-kit-da}]├─crond├─2*[dbus-daemon───{dbus-daemon}]├─2*[dbus-launch]├─devkit-power-da├─gconf-im-settin├─gconfd-2├─gdm-binary───gdm-simple-slav─┬─Xorg│└─gdm-session-wor───gnome-session─┬─abrt-ap+│ ├─bluetoo+│ ├─gdu-not+│ ├─gnome-p+│ ├─gnome-p+│ ├─gnome-v+│ ├─gpk-upd+│├─metacit+│ ├─nautilus│ ├─polkit-+│├─restore+│ ├─rhsm-co+│ └─{gnome-+├─gdm-user-switch├─gedit├─gnome-keyring-d───2*[{gnome-keyring-}]├─gnome-screensav├─gnome-settings-───{gnome-settings}├─gnome-terminal─┬─bash───pstree│ ├─gnome-pty-helpe│ └─{gnome-terminal}├─gnote├─gvfs-afc-vol ume───{gvfs-afc-volum}├─gvfs-gdu-volume├─gvfs-gphoto2-vo├─gvfsd├─gvfsd-burn├─gvfsd-computer├─gvfsd-metadata├─gvfsd-trash├─hald───hald-runner─┬─hald-addon-acpi│ └─hald-addon-inpu├─ibus-x11├─im-settings-dae───ibus-daemon─┬─ibus-engine-pin│ ├─ibus-gconf│ ├─python│ └─{ibus-daemon}├─loop├─master─┬─pickup│└─qmgr├─5*[mingetty]├─modem-manager├─notification-ar├─notification-da├─polkitd├─pulseaudio─┬─gconf-helper│ └─2*[{pulseaudio}]├─rhsmcertd├─rpc.idmapd├─rpc.mountd├─rpc.rquot ad├─rpc.statd├─rpcbind├─rsyslogd───2*[{rsyslogd}]├─rtkit-daemon───2*[{rtkit-daemon}]├─seahorse-daemon├─sshd├─trashapplet├─udevd───2*[udevd]├─udisks-daemon───udisks-daemon├─wnck-applet├─wpa_s upplicant└─xinetd[1]+ Done ./forktree3、运行程序,分析运行结果。

电大操作系统实验2进程管理实验

电大操作系统实验2进程管理实验

电大操作系统实验2进程管理实验进程管理是操作系统的核心功能之一,它负责控制和协调计算机系统中的进程,以提高系统的效率和资源利用率。

在电大操作系统实验2中,我们需要进行进程管理实验,通过实际操作和观察,深入理解和掌握进程管理的相关知识。

进程是操作系统分配资源和执行程序的基本单位。

在实验中,我们可以通过创建、销毁、调度、挂起等操作来模拟进程的管理和调度过程。

首先,我们需要了解进程的创建和销毁。

进程的创建可以通过fork(系统调用来实现,它会创建一个子进程并复制当前进程的状态。

子进程可以执行不同的程序,也可以通过exec(系统调用加载一个新的程序。

进程的销毁可以通过exit(系统调用来实现,它会释放进程占用的资源,并将控制权返回给父进程或操作系统。

其次,我们需要了解进程的调度和挂起。

进程的调度是指操作系统如何从就绪队列中选择下一个要执行的进程,可以根据优先级、时间片轮转等算法进行选择。

实验中,我们可以通过设置进程的优先级来观察不同优先级对进程调度的影响。

进程的挂起是将进程从运行状态转换为阻塞状态,通常是因为需要等待一些事件的发生。

实验中,我们可以通过设置定时器等待一段时间来模拟进程的挂起操作。

此外,进程间的通信也是进程管理的重要内容之一、进程间通信可以通过管道、共享内存、信号量等方式实现,它们可以实现进程之间的数据交换和共享。

实验中,我们可以通过管道或共享内存来实现简单的进程间通信,观察不同通信方式的性能差异。

在实验过程中,我们需要对进程的状态进行监控和统计。

可以通过系统调用来获取和记录进程的状态信息,包括进程的ID、状态、优先级等。

可以通过编写监控程序或脚本来实现进程状态的实时监控和统计。

通过进行进程管理实验,我们可以深入理解操作系统中进程的管理原理和机制。

通过实际操作和观察,我们可以更加直观地感受进程的创建、销毁、调度和挂起过程,并从中总结经验和教训。

总的来说,电大操作系统实验2的进程管理实验是一个非常重要的实验,它可以帮助我们更好地理解和掌握操作系统中进程管理的相关知识。

操作系统实验报告二 进程管理 fork()

操作系统实验报告二  进程管理    fork()

闽南师范大学实验报告
实 验 内 容 与 具 体 步 骤
第3页
闽南师范大学实验报告 通过此次实验对进程运行过程有了初步的了解,对用 fork()函数从已存在的进程创建一个新的 进程,会用 getpid()函数取得进程识别码。
实 验 心 得
注:如果填写内容超出表格,自行添加附页。ຫໍສະໝຸດ 第4页闽南师范大学
实验报告
班级
学号 姓名 成绩
同组人
实验日期
课程名称:操作系统
实验题目:进程管理
1.对理论课中学习的进程、程序等的概念作进一步的理解,明确进程和程序的区别; 2. 加深理解进程并发执行的概念,认识多进程的并发执行的实质;
实 验 目 的 与 要 求
PC 兼容机。Window xp 以上操作系统
} else if (pid == 0) { printf("child1 pid is %d\n",getpid()); for(i=0;i<26;i++) {
sleep(1); printf("%c\n",'A'+i); } } else { pid1=fork(); if(pid1==0){ printf("child2 pid is%d\n",getpid()); for(i=0;i<26;i++) { sleep(1); printf("%c\n",'a'+i); } } else if(pid1>0){ printf("parent pid is%d\n",getppid()); for(i=1;i<=26;i++) { sleep(1); printf("%d\n",i); } } } return 0;

进程管理实验报告分析(3篇)

进程管理实验报告分析(3篇)

第1篇一、实验背景进程管理是操作系统中的一个重要组成部分,它负责管理计算机系统中所有进程的创建、调度、同步、通信和终止等操作。

为了加深对进程管理的理解,我们进行了一系列实验,以下是对实验的分析和总结。

二、实验目的1. 加深对进程概念的理解,明确进程和程序的区别。

2. 进一步认识并发执行的实质。

3. 分析进程争用资源的现象,学习解决进程互斥的方法。

4. 了解Linux系统中进程通信的基本原理。

三、实验内容1. 使用系统调用fork()创建两个子进程,父进程和子进程分别显示不同的字符。

2. 修改程序,使每个进程循环显示一句话。

3. 使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号,实现进程的终止。

4. 分析利用软中断通信实现进程同步的机理。

四、实验结果与分析1. 实验一:父进程和子进程分别显示不同的字符在实验一中,我们使用fork()创建了一个父进程和两个子进程。

在父进程中,我们打印了字符'a',而在两个子进程中,我们分别打印了字符'b'和字符'c'。

实验结果显示,父进程和子进程的打印顺序是不确定的,这是因为进程的并发执行。

2. 实验二:每个进程循环显示一句话在实验二中,我们修改了程序,使每个进程循环显示一句话。

实验结果显示,父进程和子进程的打印顺序仍然是随机的。

这是因为并发执行的进程可能会同时占用CPU,导致打印顺序的不确定性。

3. 实验三:使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号在实验三中,我们使用signal()捕捉键盘中断信号(按c键),然后通过kill()向两个子进程发送信号,实现进程的终止。

实验结果显示,当按下c键时,两个子进程被终止,而父进程继续执行。

这表明signal()和kill()在进程控制方面具有重要作用。

4. 实验四:分析利用软中断通信实现进程同步的机理在实验四中,我们分析了利用软中断通信实现进程同步的机理。

操作系统实验2进程管理报告

操作系统实验2进程管理报告

实验一进程管理一、实验目的:1.加深对进程概念的理解,明确进程和程序的区别;2.进一步认识并发执行的实质;3.分析进程争用资源的现象,学习解决进程互斥的方法;4.了解Linux系统中进程通信的基本原理;二、实验预备容:1.阅读Linux的sched.h源码文件,加深对进程管理概念的理解;2.阅读Linux的fork()源码文件,分析进程的创建过程;三、实验环境说明:1.此实验采用的是Win7(32bit)下虚拟机VMware-workstation-10.0.4build-2249910;2.ubuntu 版本3.19.0;3.直接编写c文件在终端用命令行执行;4.虚拟机分配8G存中的1024M;5.虚拟机名称knLinux;6.ubuntu用户名kn;四、实验容:1.进程的创建:a)题目要求:编写一段程序,使用系统调用fork() 创建两个子进程。

当此程序运行时,在系统中有一个父进程和两个子进程活动。

让每一个进程在屏幕上显示一个字符:父进程显示字符“a”,子进程分别显示字符“b”和“c”。

试观察记录屏幕上的显示结果,并分析原因。

b)程序设计说明:一个父进程,两个子进程,分别输出显示a,b,c。

c)源代码:d)运行结果:e)分析:由输出结果可知,运行结果不唯一,可以是abc,acb,bca等多种情况。

因为在程序中,并没有三个进程之间的同步措施,所以父进程和子进程的输出顺序是随机的。

在试验次数足够大的情况下,6中顺序都有可能出现:abc, acb, bac, bca, cab, cba。

2.进程的控制:a)修改已经编写的程序,将每个进程输出一个字符改为每个进程输出一句话,再观察程序执行时屏幕上出现的现象,并分析原因。

i.程序设计说明:将第一个程序中输出字符的语句改为输出parent process和childprocess1&2的语句。

ii.源代码:iii.运行结果:iv.分析:发现在结果中,运行结果同第一个程序,但是在一个进程输出语句的中途不会被打断,语句都是完整的。

电大操作系统实验2:进程管理实验

电大操作系统实验2:进程管理实验

电大操作系统实验2:进程管理实验
实验目的:
1.加深对进程概念的理解,特别是进程的动态性和并发性。

2.了解进程的创建和终止。

3.学会查看进程的状态信息。

4.学会使用进程管理命令。

实验要求:
1.理解有关进程的概念,能够使用ps命令列出系统中进
程的有关信息并进行分析。

2.理解进程的创建和族系关系。

3.能够使用&,jobs,bg,at等命令控制进程的运行。

实验内容:
1.使用ps命令查看系统中运行进程的信息。

实验环境:
实验步骤和结果:
1.输入ps命令,可以报告系统当前的进程状态。

2.输入ps-e命令,可以显示系统中运行的所有进程,包括系统进程和用户进程。

3.输入ps-f命令,可以得到进程的详细信息。

进程控制:
1.后台进程
1) $grep "注册用户名" /etc/passwd。

/tmp/abc &
2.作业控制
1) 进程休眠60秒Sleep 60 &
2) 进程休眠30秒Sleep 30 &
3) 查看进程状态Jobs
4) 将睡眠30秒的sleep命令放在前台执行fg%2
3.发送中断信号
1) 后台运行sleep命令$sleep 120 &
2) 查看sleep进程的状态$ps-p pid
3) 终止sleep命令$kill -9 pid。

操作系统实验二Windows任务管理器的进程管理

操作系统实验二Windows任务管理器的进程管理

实验二 Windows任务管理器的进程管理一实验目的1)在Windows 任务管理器中对程序进程进行响应的管理操作;2)熟悉操作系统进程管理的概念;3)学习观察操作系统运行的动态性能。

二实验环境需要准备一台运行Windows XP操作系统的计算机。

三背景知识Windows XP的任务管理器提供了用户计算机上正在运行的程序和进程的相关信息,也显示了最常用的度量进程性能的单位。

使用任务管理器,可以打开监视计算机性能的关键指示器,快速查看正在运行的程序的状态,或者终止已停止响应的程序。

也可以使用多个参数评估正在运行的进程的活动,以及查看CPU 和内存使用情况的图形和数据。

四实验内容与步骤启动并进入Windows环境,单击Ctrl + Alt + Del键,或者右键单击任务栏,在快捷菜单中单击“任务管理器”命令,打开“任务管理器”窗口。

当前机器中由你打开,正在运行的应用程序有:1) 实验二Windows 任务管理器的进程管理2) 管理工具3) 可移动磁盘(I:)Windows“任务管理器”的窗口由 5 个选项卡组成,分别是:1) 应用程序2) 进程3) 性能4)联网5)用户当前“进程”选项卡显示的栏目分别是(可移动窗口下方的游标/箭头,或使窗口最大化进行观察) :1) 映像名称2) 用户名3) CPU4)内存使用1. 使用任务管理器终止进程步骤1:单击“进程”选项卡,一共显示了33 个进程。

请试着区分一下,其中:系统(SYSTEM) 进程有19 个,填入表2-1中。

表2-1 实验记录服务(SERVICE) 进程有_ 4___个,填入表2-2中。

表2-2 实验记录用户进程有__9____个,填入表2-3中。

表2-3 实验记录步骤2:单击要终止的进程,然后单击“结束进程”按钮。

终止进程,将结束它直接或间接创建的所有子进程。

例如,如果终止了电子邮件程序(如Outlook 98) 的进程树,那么同时也终止了相关的进程,如MAPI后台处理程序mapisp32.exe。

《操作系统》实验二

《操作系统》实验二

《操作系统》实验二一、实验目的本实验旨在加深对操作系统基本概念和原理的理解,通过实际操作,提高对操作系统设计和实现的认知。

通过实验二,我们将重点掌握进程管理、线程调度、内存管理和文件系统的基本原理和实现方法。

二、实验内容1、进程管理a.实现进程创建、撤销、阻塞、唤醒等基本操作。

b.设计一个简单的进程调度算法,如轮转法或优先级调度法。

c.实现进程间的通信机制,如共享内存或消息队列。

2、线程调度a.实现线程的创建、撤销和调度。

b.实现一个简单的线程调度算法,如协同多任务(cooperative multitasking)。

3、内存管理a.设计一个简单的分页内存管理系统。

b.实现内存的分配和回收。

c.实现一个简单的内存保护机制。

4、文件系统a.设计一个简单的文件系统,包括文件的创建、读取、写入和删除。

b.实现文件的存储和检索。

c.实现文件的备份和恢复。

三、实验步骤1、进程管理a.首先,设计一个进程类,包含进程的基本属性(如进程ID、状态、优先级等)和操作方法(如创建、撤销、阻塞、唤醒等)。

b.然后,实现一个进程调度器,根据不同的调度算法对进程进行调度。

可以使用模拟的方法,不需要真实的硬件环境。

c.最后,实现进程间的通信机制,可以通过模拟共享内存或消息队列来实现。

2、线程调度a.首先,设计一个线程类,包含线程的基本属性(如线程ID、状态等)和操作方法(如创建、撤销等)。

b.然后,实现一个线程调度器,根据不同的调度算法对线程进行调度。

同样可以使用模拟的方法。

3、内存管理a.首先,设计一个内存页框类,包含页框的基本属性(如页框号、状态等)和操作方法(如分配、回收等)。

b.然后,实现一个内存管理器,根据不同的内存保护机制对内存进行保护。

可以使用模拟的方法。

4、文件系统a.首先,设计一个文件类,包含文件的基本属性(如文件名、大小等)和操作方法(如创建、读取、写入、删除等)。

b.然后,实现一个文件系统管理器,包括文件的存储和检索功能。

操作系统实验二 进程管理

操作系统实验二   进程管理

操作系统实验实验二进程管理学号姓名班级华侨大学电子工程系实验目的1、理解进程的概念,明确进程和程序的区别。

2、理解并发执行的实质。

3、掌握进程的创建、睡眠、撤销等进程控制方法。

实验内容与要求基本要求:用C语言编写程序,模拟实现创建新的进程;查看运行进程;换出某个进程;杀死进程等功能。

实验报告内容1、进程、进程控制块等的基本原理。

进程是现代操作系统中的一个最基本也是最重要的概念,掌握这个概念对于理解操作系统实质,分析、设计操作系统都有其非常重要的意义。

为了强调进程的并发性和动态性,可以给进程作如下定义:进程是可并发执行的程序在一个数据集合上的运行过程,是系统进行资源分配和调度的一个独立单位。

进程又就绪、执行、阻塞三种基本状态,三者的变迁图如下:由于多个程序并发执行,各程序需要轮流使用CPU,当某程序不在CPU上运行时,必须保留其被中断的程序的现场,包括:断点地址、程序状态字、通用寄存器的内容、堆栈内容、程序当前状态、程序的大小、运行时间等信息,以便程序再次获得CPU时,能够正确执行。

为了保存这些内容,需要建立—个专用数据结构,我们称这个数据结构为进程控制块PCB (Process Control Block)。

进程控制块是进程存在的惟一标志,它跟踪程序执行的情况,表明了进程在当前时刻的状态以及与其它进程和资源的关系。

当创建一个进程时,实际上就是为其建立一个进程控制块。

在通常的操作系统中,PCB应包含如下一些信息:①进程标识信息。

为了标识系统中的各个进程,每个进程必须有惟一的标识名或标识数。

②位置信息。

指出进程的程序和数据部分在内存或外存中的物理位置。

③状态信息。

指出进程当前所处的状态,作为进程调度、分配CPU的依据。

④进程的优先级。

一般根据进程的轻重缓急其它信息。

这里给出的只是一般操作系统中PCB所应具有的内容,不同操作系统的PCB结构是不同的,我们将在2.8节介绍Linux系统的PCB结构。

程度为进程指定一个优先级,优先级用优先数表示。

进程管理实验报告

进程管理实验报告

进程管理实验报告进程管理实验报告引言:进程管理是操作系统中的重要概念,它负责调度和控制计算机系统中的各个进程,确保它们能够有序地执行。

本实验旨在通过实际操作和观察,深入了解进程管理的原理和方法,并通过实验结果分析其影响因素和优化策略。

实验一:进程创建与终止在本实验中,我们首先进行了进程的创建和终止实验。

通过编写简单的程序,我们能够观察到进程的创建和终止过程,并了解到进程控制块(PCB)在其中的作用。

实验结果显示,当一个进程被创建时,操作系统会为其分配一个唯一的进程ID,并为其分配必要的资源,如内存空间、文件描述符等。

同时,操作系统还会为该进程创建一个PCB,用于存储该进程的相关信息,如进程状态、程序计数器等。

当我们手动终止一个进程时,操作系统会释放该进程所占用的资源,并将其PCB从系统中删除。

这样,其他进程便可以继续使用这些资源,提高系统的效率和资源利用率。

实验二:进程调度算法进程调度算法是决定进程执行顺序的重要因素。

在本实验中,我们通过模拟不同的进程调度算法,比较它们在不同场景下的表现和效果。

我们选择了三种常见的进程调度算法:先来先服务(FCFS)、最短作业优先(SJF)和轮转调度(RR)。

通过设置不同的进程执行时间和优先级,我们观察到不同调度算法对系统吞吐量和响应时间的影响。

实验结果显示,FCFS算法适用于执行时间较短的进程,能够保证公平性,但在执行时间较长的进程出现时,会导致等待时间过长,影响系统的响应速度。

SJF 算法在执行时间较长的进程时表现出色,但对于执行时间较短的进程,可能会导致饥饿现象。

RR算法能够在一定程度上平衡各个进程的执行时间,但对于执行时间过长的进程,仍然会影响系统的响应速度。

实验三:进程同步与互斥在多进程环境中,进程之间的同步和互斥是必不可少的。

在本实验中,我们通过模拟进程间的竞争和互斥关系,观察进程同步与互斥的实现方式和效果。

我们选择了信号量机制和互斥锁机制作为实现进程同步和互斥的方法。

操作系统实验之进程管理实验报告

操作系统实验之进程管理实验报告
六、自我评价与总结
本次操作系统实验是模拟进程管理过程,解决哲学家的就餐问题。个人本 次实验还比较顺利,使用了比较熟悉的 c++语言进行算法的编写,比较巧妙的 定义了两个类来定义哲学家和筷子对象的属性以及相应的动作,方便在各种就 餐过程中对筷子的资源进行申请和释放,以及哲学家实现相应的动作。另一个 觉得比较好的地方是解决了死锁问题,通过判断当前哲学家是否可以同时拿起 左右筷子来避免死锁。
①至多只允许四个哲学家同时进餐,以保证至少有一个哲学家可以进餐,
最终总会释放出他所用过的两只筷子,从而可使更多的哲学家进餐;
②仅当左右两只筷子均可用时,才允许哲学家拿起筷子就餐;
③规定奇数号哲学家先拿起右边筷子,然后再去拿左边筷子,而偶数号哲
学家则相反。
本实验中采取方法 2.
三、数据结构及功能设计
}; bool b[5]; int i, j; srand(time(0)); j = rand() % 5; for (i = j; i < j + 5; i++) {
b[i % 5] = philosopher[i % 5].eat(); cout << endl << "********************************************************" << endl; } for (i = j; i < j + 5; i++) { if (b[i % 5]) {
五、测试用例及运行结果、分析
测试结果截图:
分析:产生了一个随机数 0,并依次加 1 对每个哲学家进行分析。分析时首先看 左筷子是否可用,然后看右筷子,若有一个不可用则放下手中的另一只筷子,并 说明 need waiting。然后再下一时间段对每个哲学家再次分析,直到每个哲学 家都吃上饭,程序结束。 通过实验结果可得,程序正确运行,且解决了死锁问题。

实验二-实验报告(进程管理)

实验二-实验报告(进程管理)

实验二模拟实现进程管理组长:李和林软件1402一、实验目的1.理解进程的概念,明确进程和程序的区别。

2.理解并发执行的实质。

3.掌握进程的创建,睡眠,撤销等进程控制方法。

二、实验内容用C语言,JAVA语言,C++语言编写程序,模拟实现创建新的进程;查看运行进程,换出某个进程;杀死运行进程。

三、实验准备1.进程的定义进程是程序在一个数据集合上的运行过程,是系统资源分配和调度的一个独立单位。

一个程序在不同的数据集合上运行,乃至一个程序在同样数据集合上的多次运行都是不同的进程。

2.进程的状态通常情况下,一个进程必须具有就绪,执行和阻塞三种基本情况。

1)就绪状态当进程已分配到除处理器外的所有必要资源后,只要再获得处理器就可以立即执行,这时进程的状态就为就绪状态。

在一个系统里,可以有多个进程同时处于就绪状态,通常把这些就绪进程排成一个或多个队列,称为就绪队列。

2)执行状态处于就绪状态的进程一旦获得处理器,就可以运行,进程状态也就处于执行状态,在单处理器系统中,只能有一个进程处于执行状态,在多处理器系统中,则可能有多个进程处于执行状态3)阻塞状态正在执行的进程因为发生某些事件而暂停运行,这种受阻暂停的状态称为阻塞状态,也可称为等待状态。

通常将处于阻塞状态的进程拍成一个队列,称为阻塞队列,在有些系统中,也会按阻塞原因的不同将阻塞状态的进程排成多个队列。

3.进程状态之间的转换4.进程控制块1)进程控制块的作用进程控制块是进程实体的重要组成部分,主要包含下述四个方面的信息:a)进程标示信息b)说明信息c)现场信息d)管理信息5.进程控制块的组织方式1)链接方式2)索引方式6.进程控制原语1)创建原语2)撤销原语3)阻塞原语4)唤醒原语7.程序代码#include<stdio.h>#include<iostream>using namespace std;void clrscr();void create();void run( );void exchange( );//唤出void kill( );void wakeUp( );//唤醒struct process_type{int pid;int priority;//优先次序int size;int state;//状态char info[10];};struct process_type internalMemory[20];int amount=0,hangUp=0,pid,flag=0;//数目,挂起void main( ){int n;int a;n=1;clrscr( );while(n==1){cout<<"\n********************************************";cout<<"\n* 进程演示系统 *";cout<<"\n********************************************";cout<<"\n 1.创建新的进程 2.查看运行进程 ";cout<<"\n 3.换出某个进程 4.杀死运行进程 ";cout<<"\n 5.唤醒某个进程¨ 6.退出系统 ";cout<<"\n*********************************************"<<endl;cout<<"请选择 ";cin>>a;switch(a){case 1:create( );break;case 2:run( );break;case 3:exchange();//换出break;case 4:kill();break;case 5:wakeUp();break;case 6:exit(0);default:n=0;}}}void create(){ //创建进程int i=0;if (amount>=20){cout<<" 内存已满,请先结束或换出进程";}else{for (i=0;i<20;i++){if (internalMemory[i].state==0){break;}}cout<<"请输入新进程的pid: "<<endl;cin>>internalMemory[ i ].pid;cout<<"请输入新进程的优先级: "<<endl;cin>>internalMemory[amount].priority;cout<<"请输入新进程的大小: "<<endl;cin>>internalMemory[amount].size;cout<<"请输入新进程的内容: "<<endl;cin>>internalMemory[amount].info;internalMemory[i].state=1;amount++;}}void clrscr()//清除内存空间{for (int i=0;i<19;i++){internalMemory[i].pid=0;internalMemory[i].priority=0;internalMemory[i].size=0;internalMemory[i].state=0;}amount=0;}void run(){for (int i=0;i<20;i++){if (internalMemory[i].state==1){cout<<"当前内存中的进程:\n"<<endl;cout<<"当前运行的进程: ";cout<<internalMemory[i].pid<<endl;cout<<"当前运行进程的优先级: ";cout<<internalMemory[i].priority<<endl;cout<<"当前运行进程占用的空间大小: ";cout<<internalMemory[i].size;}}}void exchange( ){//唤出优先级最小的进程if (!amount){cout<<"当前没有运行进程\n";return;}cout<<"\n输入换出进程的ID值: ";cin>>pid;for (int i=0;i<20;i++){if (pid==internalMemory[i].pid){if (internalMemory[i].state==1){internalMemory[i].state=2;hangUp++;cout<<"\n已经成功换出进程\n";}else if (internalMemory[i].state==0){cout<<"\n要换出的进程不存在";}else{cout<<"\n要换出的进程已被挂起\n";}flag=1;break;}}if (flag==0){cout<<"\n要换出的进程不存在";}}void kill( ){if (!amount){cout<<"当前没有运行进程\n";return;}cout<<"请输入要杀死的进程: ";cin>>pid;for (int i=0;i<20;i++){if (pid==internalMemory[i].pid){if (internalMemory[i].state==1){internalMemory[i].state=0;amount--;cout<<"此进程被杀死"<<pid;}else if (internalMemory[i].state==0){cout<<"\n要杀死的进程不存在\n";}else{cout<<"\n要杀死的进程已被挂起\n";}flag=1;break;}}if (!flag){cout<<"\n要杀死的进程不存在\n";}}void wakeUp(){if (!amount){cout<<"当前没有运行进程"<<endl;return;}if (!hangUp){cout<<"当前没有挂起进程";return;}cout<<"请输入pid: ";cin>>pid;for (int i=0;i<20;i++){if (pid==internalMemory[i].pid){flag=0;if (internalMemory[i].state==2){internalMemory[i].state=1;hangUp--;cout<<"已经成功唤醒进程\n";}else if (internalMemory[i].state==0){cout<<"\n要换醒的进程不存在\n";}else{cout<<"\n要唤醒的进程已被挂起\n";}break;}}if (flag){cout<<"\n要唤醒的进程已被挂起\n"<<endl;}}8.实现的结果。

操作系统 实验2进程控制管理 实验报告

操作系统 实验2进程控制管理 实验报告
else
{
while((p2=fork( ))= = -1); /*创建子进程p2*/
if(p2= =0)
for(i=0;i<10;i++)
printf("son %d\n",i);
else
for(i=0;i<10;i++)
printf("parent %d\n",i);
}
}
5.退出后,用同样方法查看此文件的代码内容。
2)修改上述程序,每一个进程循环显示一句话。子进程显示'daughter…'及'son……',父进程显示'parent……',观察结果,分析原因。
实验用到的软件(:)
虚拟机VMWare/Virtual Box
fedora15
实验内容及关键步骤(代码)Q3(15分)
1.按照上一次实验的步骤,进入后需要切换到管理员,输入“su root”,输入密码之后,可以输入“ls”查看目录下的文件。附加:为了熟悉上一节实验课内容,我先创建了一个myleb2的文件夹,然后再在这个文件夹里创建一个子文件夹love,再在里面编译。
6.查看无问题后,输入“gcc –o test2 test2.c”,修改运行文件名,然后查看该文件夹下的所有文件,能看到“test2”运行文件。
7.运行“test2”文件,输入“./test2”,可查看运行结果为“daughter 0,daughter 1,daughter 2,daughter 3….. daughter 9”。
3.首先是读入文件内容,再次是看文件有没有指定程序运行,如果有则运行,如果没有则输出出错的信息。
实验中的问题及解决办法:

(完整word版)实验二进程管理

(完整word版)实验二进程管理

实验二进程管理(一)实验目的或实验原理1.加深对进程概念的理解,明确进程和程序的区别。

2.进一步认识并发执行的实质。

3.分析进程竞争资源现象,学习解决进程互斥的方法。

4.了解Linux系统中进程通信的基本原理.(二)实验内容1.进程的创建。

2.进程的控制.3.①编写一段程序,使其现实进程的软中断通信。

要求:使用系统调用fork()创建两个子进程,再用系统调用signal()让父进程捕捉键盘上来的中断信号(即按DEL键);当捕捉到中断信号后,父进程用系统调用Kill()向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止:Child Processll is Killed by Parent!Child Processl2 is Killed by Parent!父进程等待两个子进程终止后,输出如下的信息后终止Parent Process is Killed!②在上面的程序中增加语句signal (SIGNAL,SIG-IGN) 和signal (SIGQUIT,SIG—IGN), 观察执行结果,并分析原因。

4.进程的管道通信。

编制一段程序,实现进程的管理通信。

使用系统调用pipe()建立一条管道线;两个子进程P1和P2分别向管道中写一句话:Child 1 is sending a message!Child 2 is sending a message!而父进程则从管道中读出来自于两个子进程的信息,显示在屏幕上。

要求父进程先接收子进程P1发来的消息,然后再接收子进程P2发来的消息。

实验2 指导[实验内容]1.进程的创建〈任务〉编写一段程序,使用系统调用fork()创建两个子进程。

当此程序运行时,在系统中有一个父进程和两个子进程活动。

让每一个进程在屏幕上显示一个字符;父进程显示字符“a",子进程分别显示字符“b”和“c”.试观察记录屏幕上的显示结果,并分析原因。

〈程序〉#include〈stdio。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验项目二进程管理
一、实验目的
1.理解进程的概念,掌握父、子进程创建的方法。

2.认识和了解并发执行的实质,掌握进程的并发及同步操作。

二、实验内容
1.编写一C语言程序,实现在程序运行时通过系统调用fork( )
创建两个子进程,使父、子三进程并发执行,父亲进程执行
时屏幕显示“I am father ,”儿子进程执行时屏幕显示“I am son ”,女儿进程执行时屏幕显示“ I am daughter。


2.多次连续反复运行这个程序,观察屏幕显示结果的顺序,直
至出现不一样的情况为止。

记下这种情况,试简单分析其原
因。

3.修改程序,在父、子进程中分别使用wait() 、exit()等系统调用
“实现”其同步推进,并获取子进程的ID 号及结束状态值。

多次反复运行改进后的程序,观察并记录运行结果。

三、源程序及运行结果
源程序 1:
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
int main()
{
pid_t pid;
char *a;
int num;
printf("starting:\n");
pid = fork();
if (pid == -1)
{
printf("failed");
exit(1);
}
else if (pid == 0)
{
a = "I am son";
}
else
{
a = "I am father";
pid = fork();
if (pid == -1)
{
printf("failed");
exit(1);
}
else if (pid == 0)
{
a = "I am daughter";
}
}
for (num=3;num>0;num--)
{
puts(a);
sleep(1);
}
exit(0);
}
运行结果:
源程序 2:
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/wait.h>
int main()
{
pid_t pid;
char *message;
int n;
int exit_code;
printf("fork starting.....\n");
pid = fork();
if (pid == -1)
{
printf("fork failed!");
exit(1);
}
else if (pid == 0)
{
message = "I am son";
n = 3;
exit_code = 99;
}
else
{
message = "I am father";
n = 3;
exit_code = 0;
pid = fork();
if (pid == -1)
{
printf("fork failed!");
exit(1);
}
else if (pid == 0)
{
message = "I am daughter";
n = 3;
exit_code = 100;
}
}
for (;n>0;n--)
{
puts(message);
sleep(1);
}
if(pid !=0)
{
int statue;
pid_t child_pid;
child_pid = wait(&statue);
printf("This is the children process: pid = %d\n",child_pid);
if(WIFEXITED(statue))
printf("child exited with code %d\n",WEXITSTATUS(statue));
else
printf("child terminated abnormally!");
}
exit(exit_code);
}
运行结果:
四、实验分析与总结
1.实验内容 1 运行结果为什么无固定顺序, fork() 函数创建进程
是如何并发执行的。

2.实验内容 3 是如何实现父子进程的同步执行的。

答: 1.因为利用fork() 函数创建的三个进程抢占cpu 不同,从而导致三个进程被 cpu 调用执行的顺序不同,从而输出的结果无固定顺序;fork() 函数调用成功后,子进程与父进程并发执行相同的代码,但由
于子进程也继承了父进程的程序指针,所以子进程是从fork()后的语句开始执行,另外fork 在子进程和父进程中的返回值是不同的,
在父进程中返回子进程的PID,而在子进程中返回0,使父进程和子进程执行不同的分支,从而实现了进程的并发执行。

2.该程序段主要使用了函数wait()和exit(),这是因为父进程必须等待两个子进程终止后才终。

在父进程中调用wait() 函数,则父进程被阻塞,进入等待队列,等待子进程结束。

子进程终止时执行
exit()向父进程发终止信号,当接到信号后,父进程提取子进程的
结束状态值,从wait() 返回继续执行原程序,从而实现了父、子进程
的同步推进。

总结:通过这次实验,我加深对进程概念的理解,进程是程序在一个
数据集合上运行的过程,是系统进行资源分配和调度的一个独立单
位,进程有如下特征:(1)结构特征:可并发执行( 2)动态性:是
进程实体的一次执行过程(3)并发性:是多个进程实体同存于内存中,且能在一段时间内同时运行(4)独立性:进程实体是一个能独立运行、分配资源,接受调度的基本单位( 5)异步性:进程实体按异步方式运行。

相关文档
最新文档