江苏省南京市高淳区2014年中考二模数学试题

合集下载

2014南京中考数学试题(解析版)

2014南京中考数学试题(解析版)

2014南京中考数学试题(解析版)D6.(2014年江苏南京)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)分析:首先过点A作AD⊥x轴于点D,过点B 作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,易得△CAF≌△BOE,△AOD∽△OBE,然后由相似三角形的对应边成比例,求得答案.解:过点A作AD⊥x轴于点D,过点B作BE⊥x 轴于点E,过点C作CF∥y轴,过点A作AF∥x 轴,交点为F,∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE,在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴,即,∴OE=,即点B(,3),∴AF=OE=,∴点C的横坐标为:﹣(2﹣)=﹣,∴点D(﹣,4).故选B.点评:此题考查了矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2014年江苏南京)﹣2的相反数是,﹣2的绝对值是.分析:根据相反数的定义和绝对值定义求解即可.解:﹣2的相反数是2,﹣2的绝对值是2.点评:主要考查了相反数的定义和绝对值的定义,要求熟练运用定义解题.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.(2014年江苏南京)截止2013年底,中国高速铁路营运里程达到11000km,居世界首位,将11000用科学记数法表示为.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.解:将11000用科学记数法表示为:1.1×104.故答案为:1.1×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(2014年江苏南京)使式子1+有意义的x 的取值范围是.分析:根据被开方数大于等于0列式即可.解:由题意得,x≥0.故答案为:x≥0.点评:本题考查的知识点为:二次根式的被开方数是非负数.10.(2014年江苏南京)2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是cm,极差是cm.分析:根据众数的定义找出这组数据中出现次数最多的数,再根据求极差的方法用最大值减去最小值即可得出答案.解:168出现了3次,出现的次数最多,则她们身高的众数是168cm;极差是:169﹣166=3cm;故答案为:168;3.点评:此题考查了众数和极差,众数是一组数据中出现次数最多的数;求极差的方法是最大值减去最小值.11.(2014年江苏南京)已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣3时,y=.分析:先把点A(﹣2,3)代入y=求得k的值,然后将x=﹣3代入,即可求出y的值.解:∵反比例函数y=的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,∴反比例函数解析式为y=﹣,∴当x=﹣3时,y=﹣=2.故答案是:2.点评:本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.12.(2014年江苏南京)如图,AD是正五边形ABCDE的一条对角线,则∠BAD=.分析:设O是正五边形的中心,连接OD、OB,求得∠DOB的度数,然后利用圆周角定理即可求得∠BAD的度数.解:设O是正五边形的中心,连接OD、OB.则∠DOB=×360°=144°,∴∠BAD=∠DOB=72°,故答案是:72°.点评:本题考查了正多边形的计算,正确理解正多边形的内心和外心重合是关键.13.(2分)(2014年江苏南京)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.14.(2014年江苏南京)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.分析:易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.点评:本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.15.(2014年江苏南京)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为cm.分析:设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.解:设长为3x,宽为2x,由题意,得:5x+30≤160,解得:x≤26,故行李箱的长的最大值为78.故答案为:78cm.点评:本题考查了一元一次不等式的应用,解答本题的额关键是仔细审题,找到不等关系,建立不等式.16.(2014年江苏南京)已知二次函数y=ax2+bx+c 中,函数y与自变量x的部分对应值如表:x …﹣1 0 1 2 3 …y …10 5 2 1 2 …则当y<5时,x的取值范围是.分析:根据表格数据,利用二次函数的对称性判断出x=4时,y=5,然后写出y<5时,x的取值范围即可.解:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.点评:本题考查了二次函数与不等式,观察图表得到y=5的另一个x的值是解题的关键.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2014年江苏南京)解不等式组:.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,就是不等式组的解集.解:,解①得:x≥1,解②得:x<2,则不等式组的解集是:1≤x<2.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.18.(2014年江苏南京)先化简,再求值:﹣,其中a=1.分析:原式通分并利用同分母分式的减法法则计算,约分得到最简结果,将a的值代入计算即可求出值.解:原式=﹣==﹣,当a=1时,原式=﹣.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2014年江苏南京)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF 是菱形?为什么?分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解:当AB=BC时,四边形DBEF是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE 是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.20.(2014年江苏南京)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.分析:(1)由从甲、乙、丙3名同学中随机抽取环保志愿者,直接利用概率公式求解即可求得答案;(2)利用列举法可得抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.解:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为:;(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:.点评:本题考查的是列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(2014年江苏南京)为了了解某市120000名初中学生的视力情况,某校数学兴趣小组,并进行整理分析.(1)小明在眼镜店调查了1000名初中学生的视力,小刚在邻居中调查了20名初中学生的视力,他们的抽样是否合理?并说明理由.(2)该校数学兴趣小组从该市七、八、九年级各随机抽取了1000名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.请你根据抽样调查的结果,估计该市120000名初中学生视力不良的人数是多少?分析:(1)根据学生全部在眼镜店抽取,样本不具有代表性,只抽取20名初中学生,那么样本的容量过小,从而得出答案;(2)用120000乘以初中学生视力不良的人数所占的百分比,即可得出答案.解:(1)他们的抽样都不合理;因为如果1000名初中学生全部在眼镜店抽取,那么该市每个学生被抽到的机会不相等,样本不具有代表性;如果只抽取20名初中学生,那么样本的容量过小,样本不具有广泛性;(2)根据题意得:×120000=72000(名),该市120000名初中学生视力不良的人数是72000名.点评:此题考查了折线统计图,用到的知识点是用样本估计总体和抽样调查的可靠性,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.(8分)(2014年江苏南京)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为2.6(1+x)2万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.分析(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x),则第三年的可变成本为2.6(1+x)2,故得出答案;(2)根据养殖成本=固定成本+可变成本建立方程求出其解即可.解:(1)由题意,得第3年的可变成本为:2.6(1+x)2,故答案为:2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146,解得:x1=0.1,x2=﹣2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.点评:本题考查了增长率的问题关系的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据增长率问题的数量关系建立方程是关键.23.(2014年江苏南京)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)分析:设梯子的长为xm.在Rt△ABO中,根据三角函数得到OB,在Rt△CDO中,根据三角函数得到OD,再根据BD=OD﹣OB,得到关于x的方程,解方程即可求解.解:设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB•cos∠ABO=x•cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.24.(2014年江苏南京)已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x 轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?分析:(1)求出根的判别式,即可得出答案;(2)先化成顶点式,根据顶点坐标和平移的性质得出即可.(1)证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3,把函数y=(x﹣m)2+3的图象延y轴向下平移3个单位长度后,得到函数y=(x﹣m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点,所以,把函数y=x2﹣2mx+m2+3的图象延y轴向下平移3个单位长度后,得到的函数的图象与x 轴只有一个公共点.点评:本题考查了二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用,主要考查学生的理解能力和计算能力,题目比较好,有一定的难度.25.(2014年江苏南京)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h 后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.解:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B (0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.26.(2014年江苏南京)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC 的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.分析:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.解:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,∴PG=,BG=.若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形,∴HE=PG,PH=CE,∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.在Rt△OPH中,由勾股定理,,解得t=.②当⊙P与⊙O内切时,如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形,∴MG=OE,OM=EG,∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,在Rt△OPM中,由勾股定理,,解得t=2.综上所述,⊙P与⊙O相切时,t=s或t=2s.点评:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查点,总体题目难度不高,是一道非常值得练习的题目.27.(2014年江苏南京)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC 和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF 不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC 和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A,则△ABC≌△DEF.分析:(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,∵∠B=∠E,且∠B、∠E都是钝角,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.点评:本题考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.。

南京市2014届数学二模

南京市2014届数学二模

南京市2014届高三年级第二次模拟考试数 学 2014.03注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题..纸.上对应题目的答案空格内.考试结束后,交回答题纸. 参考公式:柱体的体积公式:V =Sh ,其中S 为柱体的底面积,h 为柱体的高.圆柱的侧面积公式:S 侧=2πRh ,其中R 为圆柱的底面半径,h 为圆柱的高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.函数f (x )=ln x +1-x 的定义域为 ▲ .2.已知复数z 1=-2+i ,z 2=a +2i(i 为虚数单位,a ∈R ).若z 1z 2为实数,则a 的值为 ▲ . 3.某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1000名学生的成绩,并根据这1000,350)内的学生人数共有 ▲ .4.盒中有3张分别标有1,2,3码,则两次抽取的卡片号码中至少有一个为偶数的概率为 ▲ .a(第3题图)5.已知等差数列{a n }的公差d 不为0,且a 1,a 3,a 7成等比数列,则a 1d的值为 ▲ .6.执行如图所示的流程图,则输出的k 的值为 ▲ .7.函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如下图所示,则f (π3)的值为▲ .8.在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=4x 的准线相交于A ,B 两点.若△AOB 的面积为2,则双曲线的离心率为 ▲ .9.表面积为12π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为 ▲ .10.已知|OA →|=1,|OB →|=2,∠AOB =2π3,OC →=12OA →+14OB →,则OA →与OC →的夹角大小为 ▲ .11.在平面直角坐标系xOy 中,过点P (5,3)作直线l 与圆x 2+y 2=4相交于A ,B 两点,若OA ⊥OB ,则直线l 的斜率为 ▲ .12.已知f (x )是定义在R 上的奇函数,当0≤x ≤1时,f (x )=x 2,当x >1时,f (x +1)=f (x )+f (1),且.(第7题图)若直线y =kx 与函数y =f (x )的图象恰有5个不同的公共点,则实数k 的值为 ▲ .13.在△ABC 中,点D 在边BC 上,且DC =2BD ,AB ∶AD ∶AC =3∶k ∶1,则实数k 的取值范围为 ▲ . 14.设函数f (x )=ax +sin x +cos x .若函数f (x )的图象上存在不同的两点A ,B ,使得曲线y =f (x )在点A ,B 处的切线互相垂直,则实数a 的取值范围为 ▲ .一、填空题:本大题共14小题,每小题5分,计70分.1.(0,1] 2.4 3.300 4.59 5.2 6.4 7.18. 5 9.12 10.60° 11.1或72312.22-2 13.(53,73) 14.[-1,1]二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面PAB ⊥平面ABCD ,PA ⊥PB , BP =BC ,E 为PC 的中点.(1)求证:AP∥平面BDE;(2)求证:BE⊥平面PAC.15.证:(1)设AC∩BD=O,连结OE.因为ABCD为矩形,所以O是AC的中点.因为E是PC中点,所以OE∥AP.…………………………………………4分因为AP/⊂平面BDE,OE⊂平面BDE,所以AP∥平面BDE.…………………………………………6分(2)因为平面PAB⊥平面ABCD,BC⊥AB,平面PAB∩平面ABCD=AB,所以BC⊥平面PAB.………………………………………8分因为AP⊂平面PAB,所以BC⊥PA.因为PB⊥PA,BC∩PB=B,BC,PB⊂平面PBC,所以PA⊥平面PBC.…………………………………………12分因为BE⊂平面PBC,所以PA⊥BE.因为BP=PC,且E为PC中点,所以BE⊥PC.因为PA∩PC=P,PA,PC⊂平面PAC,所以BE⊥平面PAC.…………………………………………14分16.(本小题满分14分)在平面直角坐标系xOy中,角α的顶点是坐标原点,始边为x轴的正半轴,终边与单位圆O交于点A (x 1 ,y 1 ),α∈(π4,π2).将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及△BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.16.解:(1)因为x 1=35,y 1>0,所以y 1=1-x 21=45.所以sin α=45,cos α=35. ………………………2分所以x 2=cos(α+π4)=cos αcos π4-sin αsin π4=-210. …………………………………6分(2)S 1=12sin αcos α=-14sin2α. …………………………………………8分因为α∈(π4,π2),所以α+π4∈(π2,3π4).所以S 2=-12sin(α+π4)cos(α+π4)=-14sin(2α+π2)=-14cos2α.……………………………10分因为S 1=43S 2,所以sin2α=-43cos2α,即tan2α=-43. …………………………………12分所以2tan α1-tan 2α=-43,解得tan α=2或tan α=-12. 因为α∈(π4,π2),所以tan α=2.………14分17.(本小题满分14分)如图,经过村庄A 有两条夹角为60°的公路AB ,AC ,根据规划拟在两条公路之间的区域内建一工厂P ,分别在两条公路边上建两个仓库M 、N (异于村庄A ),要求PM =PN =MN =2(单位:千米).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).(第16题图)PC解法一:设∠AMN =θ,在△AMN 中,MN sin60°=AMsin(120°-θ).因为MN =2,所以AM =433sin(120°-θ) . ………………………………………2分在△APM 中,cos ∠AMP =cos(60°+θ). …………………………………………6分AP 2=AM 2+MP 2-2 AM ·MP ·cos ∠AMP=163sin 2(120°-θ)+4-2×2×433 sin(120°-θ) cos(60°+θ) (8)分=163sin 2(θ+60°)-1633 sin(θ+60°) cos(θ+60°)+4 =83[1-cos (2θ+120°)]-833 sin(2θ+120°)+4 =-83[3sin(2θ+120°)+cos (2θ+120°)]+203=203-163sin(2θ+150°),θ∈(0,120°). …………………………………………12分 当且仅当2θ+150°=270°,即θ=60°时,AP 2取得最大值12,即AP 取得最大值23.答:设计∠AMN 为60 时,工厂产生的噪声对居民的影响最小.……………………………………14分解法二(构造直角三角形): 设∠PMD =θ,在△PMD 中,∵PM =2,∴PD =2sin θ,MD =2cos θ. ……………2分PNC在△AMN 中,∠ANM =∠PMD =θ,∴MN sin60°=AMsin θ, AM =433sin θ,∴AD =433sin θ+2cos θ,(θ≥π2时,结论也正确).……………6分 AP 2=AD 2+PD 2=(433sin θ+2cos θ)2+(2sin θ)2=163sin 2θ+833sin θcos θ+4cos 2θ+4sin 2θ …………………………8分 =163·1-cos2θ2+433sin2θ+4=433sin2θ-83cos2θ+203=203+163sin(2θ-π6),θ∈(0,2π3). …………………………12分 当且仅当2θ-π6=π2,即θ=π3时,AP 2取得最大值12,即AP 取得最大值23.此时AM =AN =2,∠PAB =30° …………………………14分 解法三:设AM =x ,AN =y ,∠AMN =α.在△AMN 中,因为MN =2,∠MAN =60°, 所以MN 2=AM 2+AN 2-2 AM ·AN ·cos ∠MAN ,即x 2+y 2-2xy cos60°=x 2+y 2-xy =4. …………………………………………2分 因为MN sin60°=AN sin α,即2sin60°=ysin α,所以sin α=34y ,cos α=x 2+4-y 22×2×x=x 2+(x 2-xy )4x=2x -y4. …………………………………………6分cos ∠AMP =cos(α+60°)=12cos α-32sin α=12.2x -y 4-32.34y =x -2y 4. (8)分在△AMP 中,AP 2=AM 2+PM 2-2 AM ·PM ·cos ∠AMP , 即AP 2=x 2+4-2×2×x ×x -2y4=x 2+4-x (x -2y )=4+2xy .………………………………………12分因为x 2+y 2-xy =4,4+xy =x 2+y 2≥2xy ,即xy ≤4. 所以AP 2≤12,即AP ≤23.当且仅当x =y =2时,AP 取得最大值23.答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小.………………………………14分18. (本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C ∶x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2,一条准线方程为x =2.P 为椭圆C 上一点,直线PF 1交椭圆C 于另一点Q . (1)求椭圆C 的方程;(2)若点P 的坐标为(0,b ),求过P ,Q ,F 2三点的圆的方程; (3)若F 1P →=λQF 1→,且λ∈[12,2],求OP →·OQ →的最大值.(1)解:由题意得⎩⎨⎧2c =2,a 2c=2, 解得c =1,a 2=2,所以b 2=a 2-c 2=1.所以椭圆的方程为x 22+y 2=1. …………………………………………2分(2)因为P (0,1),F 1(-1,0),所以PF 1的方程为x -y +1=0.由⎩⎨⎧x +y +1=0,x22+y 2=1, 解得⎩⎨⎧x =0,y =1,或⎩⎨⎧x =-43,y =-13,所以点Q 的坐标为(-43,-13). ……………………4分 因为k PF 1·k PF 2=-1,所以△PQF 2为直角三角形. ……………………6分 因为QF 2的中点为(-16,-16),QF 2=523,所以圆的方程为(x +16)2+(y +16)2=2518. ……………………8分(3)解法一:设P (x 1,y 1),Q (x 2,y 2),则F 1P →=(x 1+1,y 1),QF 1→=(-1-x 2,-y 2).因为F 1P →=λQF 1→,所以⎩⎨⎧x 1+1=λ(-1-x 2),y 1=-λy 2,即⎩⎨⎧x 1=-1-λ-λx 2,y 1=-λy 2,所以⎩⎨⎧(-1-λ-λx 2)22+λ2y 22=1,x222+y 22=1,解得x 2=1-3λ2λ. …………………………………………12分所以OP →·OQ →=x 1x 2+y 1y 2=x 2(-1-λ-λx 2)-λy 22=-λ2x 22-(1+λ)x 2-λ =-λ2(1-3λ2λ)2-(1+λ)·1-3λ2λ-λ=74-58(λ+1λ) . …………………………………………14分因为λ∈[12,2],所以λ+1λ≥2λ·1λ=2,当且仅当λ=1λ,即λ=1时,取等号.所以OP →·OQ →≤12,即OP →·OQ →最大值为12. …………………………………………16分19.(本小题满分16分)已知函数f (x )=ax +b xe x ,a ,b ∈R ,且a >0.(1)若a =2,b =1,求函数f (x )的极值; (2)设g (x )=a (x -1)e x -f (x ).① 当a =1时,对任意x ∈(0,+∞),都有g (x )≥1成立,求b 的最大值;② 设g ′(x )为g (x )的导函数.若存在x >1,使g (x )+g ′(x )=0成立,求b a的取值范围.解:(1)当a =2,b =1时,f (x )=(2+1x)e x ,定义域为(-∞,0)∪(0,+∞).所以f ′(x )=(x +1)(2x -1)x2e x . …………………………………………2分 令f ′(x )=0,得x 1=-1,x 2=12,列表由表知f (x )的极大值是f (-1)=e -1,f (x )的极小值是f (12)=4e .……………………………………4分(2)① 因为g (x )=(ax -a )e x -f (x )=(ax -b x-2a )e x ,当a =1时,g (x )=(x -b x-2)e x . 因为g (x )≥1在x ∈(0,+∞)上恒成立, 所以b ≤x 2-2x -xe x在x ∈(0,+∞)上恒成立. …………………………………………8分记h (x )=x 2-2x -xe x (x >0),则h ′(x )=(x -1)(2e x +1)e x .当0<x <1时,h ′(x )<0,h (x )在(0,1)上是减函数; 当x >1时,h ′(x )>0,h (x )在(1,+∞)上是增函数. 所以h (x )min =h (1)=-1-e -1.所以b 的最大值为-1-e -1. …………………………………………10分②:因为g (x )=(ax -b x-2a )e x ,所以g ′(x )=(b x 2+ax -bx-a )e x .由g (x )+g ′(x )=0,得(ax -b x-2a )e x +(bx2+ax -b x-a )e x =0,整理得2ax 3-3ax 2-2bx +b =0. 存在x >1,使g (x )+g ′(x )=0成立,等价于存在x >1,2ax 3-3ax 2-2bx +b =0成立. …………………………………………12分 因为a >0,所以b a=2x 3-3x 22x -1.设u (x )=2x 3-3x 22x -1(x >1),则u ′(x )=8x [(x -34)2+316](2x -1)2.因为x >1,u ′(x )>0恒成立,所以u (x )在(1,+∞)是增函数,所以u (x )>u (1)=-1, 所以b a>-1,即b a的取值范围为(-1,+∞). …………………………………………16分20.(本小题满分16分)已知数列{a n }的各项都为正数,且对任意n ∈N *,a 2n -1,a 2n ,a 2n +1成等差数列,a 2n ,a 2n +1,a 2n +2成等比数列.(1)若a 2=1,a 5=3,求a 1的值;(2)设a 1<a 2,求证:对任意n ∈N *,且n ≥2,都有a n +1a n<a 2a 1.解:(1)因为a 3,a 4,a 5成等差数列,设公差为d ,则a 3=3-2d ,a 4=3-d .因为a 2,a 3,a 4成等比数列,所以a 2=a 23a 4=(3-2d )23-d . ………………3分因为a 2=1,所以(3-2d )2 3-d =1,解得d =2,或d =34.因为a n >0,所以d =34. 因为a 1,a 2,a 3成等差数列,所以a 1=2a 2-a 3=2-(3-2d )=12.……………5分 (2)证法一:因为a 2n -1,a 2n ,a 2n +1成等差数列,a 2n ,a 2n +1,a 2n +2成等比数列,所以2a 2n =a 2n -1+a 2n +1,① a 2 2n +1=a 2n a 2n +2.②;所以a 22n -1=a 2n -2a 2n ,n ≥2.③所以a 2n -2a 2n +a 2n a 2n +2=2a 2n .因为a n >0,所以a 2n -2 +a 2n +2=2a 2n . …………7分即数列{a 2n }是等差数列.所以a 2n =a 2 +(n -1)(a 4-a 2).由a 1,a 2及a 2n -1,a 2n ,a 2n +1是等差数列,a 2n ,a 2n +1,a 2n +2是等比数列, 可得a 4=(2a 2-a 1)2a 2.………………8分所以a 2n =a 2 +(n -1)(a 4-a 2)=(a 2-a 1)n +a 1a 2.所以a 2n =[(a 2-a 1)n +a 1]2a 2.……………………10分所以a 2n +2=[(a 2-a 1)(n +1)+a 1]2a 2.从而a 2n +1=a 2n a 2n +2=[(a 2-a 1)n +a 1][(a 2-a 1)(n +1)+a 1]a 2.所以a 2n -1=[(a 2-a 1)(n -1)+a 1][(a 2-a 1)n +a 1]a 2.………………12分①当n =2m ,m ∈N *时,a n +1a n-a 2a 1=[(a 2-a 1)m +a 1][(a 2-a 1)(m +1)+a 1]a 2[(a 2-a 1)m +a 1]2a 2-a 2a 1=(a 2-a 1)(m +1)+a 1(a 2-a 1)m +a 1-a 2a 1=-m (a 1-a 2)2a 1[(a 2-a 1)m +a 1]<0. ……………14分②当n =2m -1,m ∈N *,m ≥2时,a n +1a n-a 2a 1=[(a 2-a 1)m +a 1]2a 2[(a 2-a 1)(m -1)+a 1][(a 2-a 1)m +a 1]a 2-a 2a 1=(a 2-a 1)m +a 1(a 2-a 1)(m -1)+a 1-a 2a 1=-(m -1)(a 1-a 2)2a 1[(a 2-a 1)(m -1)+a 1]<0.综上,对一切n ∈N *,n ≥2,有a n +1a n<a 2a 1. ………………16分证法二:①若n 为奇数且n ≥3时,则a n ,a n +1,a n +2成等差数列.因为a n +2a n +1-a n +1a n =a n +2a n -a 2n +1a n +1a n=(2a n +1-a n )a n -a 2n +1a n +1a n=-(a n +1-a n )2a n +1a n≤0,所以a n +2a n +1≤a n +1a n.………………9分②若n 为偶数且n ≥2时,则a n ,a n +1,a n +2成等比数列,所以a n +2a n +1=a n +1a n.………11分由①②可知,对任意n ≥2,n ∈N *, a n +2a n +1≤a n +1a n≤…≤a 3a 2.………13分又因为a 3a 2-a 2a 1=2a 2-a 1a 2-a 2a 1=2a 2a 1-a 12-a 22a 2a 1=-(a 1-a 2)2a 2a 1,因为a 1<a 2,所以-(a 1-a 2)2a 2a 1<0,即a 3a 2<a 2a 1.………15分综上,a n +1a n<a 2a 1.…………16分.南京市2014届高三年级第二次模拟考试数学附加题 2014.03注意事项:1.附加题供选修物理的考生使用. 2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答.题纸..上对应题目的答案空格内.考试结束后,交回答题纸. 21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答.卷卡指定区.....域内..作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,△ABC 为圆的内接三角形,AB =AC ,BD 为圆的弦,且BD ∥AC .过点A 作圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F .(1)求证:四边形ACBE 为平行四边形; (2)若AE =6,BD =5,求线段CF 的长.A .选修4—1:几何证明选讲解:(1)因为AE 与圆相切于点A ,所以∠BAE =∠ACB . 因为AB =AC ,所以∠ABC =∠ACB . 所以∠ABC =∠BAE .所以AE ∥BC .因为BD ∥AC ,所以四边形ACBE 为平行四边形.…………………………………4分 (2)因为AE 与圆相切于点A ,所以AE 2=EB ·(EB +BD ),即62=EB ·(EB +5),解得BE =4. 根据(1)有AC =BE =4,BC =AE =6.设CF =x ,由BD ∥AC ,得AC BD =CFBF ,即45=x 6-x ,解得x =83,即CF =83.………………………10分B .选修4—2:矩阵与变换已知矩阵A =⎣⎢⎡⎦⎥⎤1 a -1 b 的一个特征值为2,其对应的一个特征向量为α=⎣⎢⎢⎡⎦⎥⎥⎤21. AEBCFD第21题A 图(1)求矩阵A ;(2)若A ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤a b ,求x ,y 的值.解:(1)由题意,得⎣⎢⎡⎦⎥⎤1 a -1 b ⎣⎢⎢⎡⎦⎥⎥⎤21=2⎣⎢⎢⎡⎦⎥⎥⎤21,即⎩⎨⎧2+a =4,-2+b =2,解得a =2,b =4.所以A =⎣⎢⎡⎦⎥⎤1 2-1 4. ………………………………………5分 (2)解法一:A ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤a b ,即⎣⎢⎡⎦⎥⎤1 2-1 4 ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤24,所以⎩⎨⎧x +2y =2,-x +4y =4, ………………………………………8分解得⎩⎨⎧x =0,y =1. ………………………………………10分解法二:因为A =⎣⎢⎡⎦⎥⎤1 2-1 4,所以A -1=⎣⎢⎡⎦⎥⎤23 -1316 16. ………………………………………7分 因为A ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤a b ,所以⎣⎢⎢⎡⎦⎥⎥⎤x y =A -1⎣⎢⎢⎡⎦⎥⎥⎤a b =⎣⎢⎡⎦⎥⎤23 -13 1616⎣⎢⎢⎡⎦⎥⎥⎤24=⎣⎢⎢⎡⎦⎥⎥⎤01. 所以⎩⎨⎧x =0,y =1. ………………………………………10分C .选修4—4:坐标系与参数方程在极坐标系中,求曲线ρ=2cos θ关于直线θ=π4(ρ∈R )对称的曲线的极坐标方程.解法一:以极点为坐标原点,极轴为x 轴建立直角坐标系,则曲线ρ=2cos θ的直角坐标方程为 (x -1)2+y 2=1,且圆心C 为(1,0).………………………4分 直线θ=π4的直角坐标方程为y =x ,因为圆心C (1,0)关于y =x 的对称点为(0,1),所以圆心C 关于y =x 的对称曲线为x 2+(y -1)2=1. ………………………………………8分 所以曲线ρ=2cos θ关于直线θ=π4(ρR )对称的曲线的极坐标方程为ρ=2sin θ.…………………10分解法二:设曲线ρ=2cos θ上任意一点为(ρ′,θ′),其关于直线θ=π4对称点为(ρ,θ),则⎩⎨⎧ρ′=ρ,θ′=2k π+π2-θ.………………………………………6分将(ρ′,θ′)代入ρ=2cos θ,得ρ=2cos(π2-θ),即ρ=2sin θ.所以曲线ρ=2cos θ关于直线θ=π4(ρ∈R )对称的曲线的极坐标方程为ρ=2sin θ.…………………10分D .选修4—5:不等式选讲已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.证: 因为|x +5y |=|3(x +y )-2(x -y )|. ………………………………………5分 由绝对值不等式性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )| =3|x +y |+2|x -y |≤3×16+2×14=1.即|x +5y |≤1. ………………………………………10分【必做题】第22题、第23题,每题10分,共计20分.请在答.卷卡指定区域内.......作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)某中学有4位学生申请A ,B ,C 三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.(1)求恰有2人申请A 大学的概率;(2)求被申请大学的个数X 的概率分布列与数学期望E (X ). 22.(本小题满分10分)解(1)记“恰有2人申请A 大学”为事件A ,P (A )=C 42×2234=2481=827. 答:恰有2人申请A 大学的概率为827. ………………………………………4分(2)X 的所有可能值为1,2,3.P (X =1)=334=127, P (X =2)=C 43×A 32+3×A 3234=4281=1427,P (X =3)=C 42×A 3334=3681=49.X 的概率分布列为:所以X 的数学期望E (X )=1×127+2×1427+3×49=6527. ………………………………………10分23.(本小题满分10分)设f (n )是定义在N *上的增函数,f (4)=5,且满足:①任意n ∈N *,f (n )∈Z ;②任意m ,n ∈N *,有f (m )f (n )=f (mn )+f (m +n -1). (1)求f (1),f (2),f (3)的值; (2)求f (n )的表达式.23.解:(1)因为f (1)f (4)=f (4)+f (4),所以5 f (1)=10,则f (1)=2.……………………………………1分 因为f (n )是单调增函数,所以2=f (1)<f (2)<f (3)<f (4)=5.因为f (n )∈Z ,所以f (2)=3,f (3)=4. ………………………………………3分(2)解:由(1)可猜想f (n)=n+1.证明:因为f (n)单调递增,所以f (n+1)>f (n),又f(n)∈Z,所以f (n+1)≥f (n)+1.首先证明:f (n)≥n+1.因为f (1)=2,所以n=1时,命题成立.假设n=k(k≥1)时命题成立,即f(k)≥k+1.则f(k+1)≥f (k)+1≥k+2,即n=k+1时,命题也成立.综上,f (n)≥n+1.………………………………………5分由已知可得f (2)f (n)=f (2n)+f (n+1),而f(2)=3,f (2n)≥2n+1,所以3 f (n)≥f (n+1)+2n+1,即f(n+1)≤3 f (n)-2n-1.下面证明:f (n)=n+1.因为f (1)=2,所以n=1时,命题成立.假设n=k(k≥1)时命题成立,即f(k)=k+1,则f(k+1)≤3f (k)-2k-1=3(k+1)-2k-1=k+2,又f(k+1)≥k+2,所以f(k+1)=k+2.即n=k+1时,命题也成立.所以f (n)=n+1 ………………………………………10分THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。

2014年南京市高淳区二模参考答案

2014年南京市高淳区二模参考答案

(2)① 由函数图象可知,AB=2×2=4cm,BC=1×2=2cm. 当点 P 运动到点 B 时,△PAD 的面积为 a;作 BH⊥AD,垂足为 H. 在 Rt△ BHA 中,由∠A=60°,AB=4,得 BH=AB×sin60°=2 3, 1 ∴S△BAD= ×4×2 3=4 3,即 a=4 3. …………4 分 2 ∵P 从点 A 出发沿 AB-BC-CD 运动到达点 D 时路程为(4+2+2 3) =6+2 3(cm) ,∴运动时间为(6+2 3)÷2=3+ 3(s)……5 分 即点 G 的坐标为(3+ 3,0) . ………………6 分
A N F E B M C D
∵AM⊥BC,CN⊥AD, ∴∠ABM+∠BAM=90° ,∠CDN+∠DCN=90° , ∴∠BAM=∠DCN ∴△AEB ≌ △CFD. ………………3 分 ………………4 分
(2)∵△AEB ≌ △CFD, ∴AE=CF. ………………5 分
∵AD∥BC,CN⊥AD ∴∠BCN=∠CND=90° ∵AM⊥BC,∴∠AMB=90° ∴AM∥CN ………………6 分
ห้องสมุดไป่ตู้
即⊙O 的半径为 2. (其它解法参照给分)
5 27. (13 分)解: (1)B(-m,0) ,C(0,- m) . 2
………………2 分
5 (2)设 AC 的函数关系式为:y=kx+b,将 A(5,0) ,C(0,- m)的坐标代入 2
0=5k+b, 可得: 5m - 2 =b.
3 (1,3) (2,3) (3,3) ………5 分 …………6 分
1 2 3
以上共有 9 种可能的结果,且每种结果出现的可能性相同.
2 其中,出现数字之和为 3 的共有 2 种可能,即出现数字之和为 3 的概率 P1= ; 9 1 出现数字之和为 4 的共有 3 种可能,即出现数字之和为 4 的概率 P2= .……7 分 3 ∵P2>P1,∴乙选择数字 4 时获胜的概率比甲获胜的概率大. ………………8 分

2014年南京市中考数学二模试题(含答案)

2014年南京市中考数学二模试题(含答案)

2014年南京市中考数学二模试题(含答案)2014年中考数学模拟试题(二)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.-13的倒数为()A.13B.3C.-13D.-32.下列运算中,结果是的是()A.B.C.D.3.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状.B.调查你所在的班级同学的身高情况.C.调查我市食品合格情况.D.调查南京市电视台《今日生活》收视率.4.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④5.若干桶方便面摆放在桌面上,它的三个视图如下,则这一堆方便面共有()A.7桶B.8桶C.9桶D.10桶6.在△ABC中,∠ABC=30°,AB边长为6,AC边的长度可以在1、3、5、7中取值,满足这些条件的互不全等的三角形的个数是()A.3个B.4个C.5个D.6个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.10的平方根为▲.8.因式分解:ab2-a=▲.9.点P在第二象限内,且到两坐标轴的距离相等,则点P的坐标可以为▲.(填一个即可)10.关于x、y的二元一次方程组的解为▲.11.如图,将正五边形ABCDE的C点固定,并依顺时针方向旋转,若要使得新五边形A´B´C´D´E´的顶点D´落在直线BC上,则至少要旋转▲°.12.已知点A(1,y1)、B(–4,y2)在反比例函数y=kx(k<0)的图像上,则y1和y2的大小关系是▲.13.如图,在⊙O中,直径EF⊥CD,垂足为M,若CD=25,EM=5,则⊙O的半径为▲.14.二次函数图像过点(–3,0)、(1,0),且顶点的纵坐标为4,此函数关系式为▲.15.如图,在△ABC中,AB=AC=3,高BD=5,AE平分∠BAC,交BD于点E,则DE的长为▲.16.若,,,…,则的值为▲.(用含的代数式表示)三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算:18.(8分)先化简再求值:,其中是方程的根.19.(8分)(1)在一个不透明的盒子中,放入2个白球和1个红球,这些球除颜色外都相同.搅匀后从中任意摸出1个球,记录下颜色后放回袋中,再次搅匀后从中任意摸出1个球,请通过列表或树状图求2次摸出的球都是白球的概率;(2)现有一个可以自由转动的转盘,转盘被等分成60个相等的扇形,这些扇形除颜色外完全相同,其中40个扇形涂上白色,20个扇形涂上红色,转动转盘2次,指针2次都指向白色区域的概率为▲.20.(8分)为了解八年级学生每天的课外阅读情况,学校从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(说明:每组时间段含最小值不含最大值)(1)从八年级抽取了多少名学生?(2)①“2−2.5小时”的部分对应的扇形圆心角为▲度;②课外阅读时间的中位数落在▲内.(填时间段)(3)如果八年级共有800名学生,请估算八年级学生课外阅读时间不少于1.5小时的有多少人?21.(8分)已知:如图,在中,,的平分线交于,,垂足为,连结,交于点.(1)求证:;(2)过点作∥交于点,连结,求证:四边形EFCD为菱形.22.(8分)如图,在一次夏令营活动中,小明同学从营地出发,要到地的北偏东60°方向的处,他先沿正东方向走了730m到达地,再沿北偏东45°方向走,恰能到达目的地.求两地距离.(参考数据3≈1.73、2≈1.41) 23.(8分)某学校准备组织部分学生到少年宫参加活动,刘老师从少年宫带回来两条信息:信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,原来报名参加的学生有多少人?24.如图,△ABC中,⊙O经过A、B两点,且交AC于点D,∠DBC=∠BAC. (1)判断BC与⊙O有何位置关系,并说明理由;(2)若⊙O的半径为4,∠BAC=30°,求图中阴影部分的面积.25.(8分)提高南京长江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数图像如下.当车流密度不超过20辆/千米,此时车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数;当桥上的车流密度达到200辆/千米,造成堵塞,此时车流速度为0.(1)求当20≤x≤200时大桥上的车流速度v与车流密度x的函数关系式. (2)车流量y(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)满足y=x•v,当车流密度x为多大时,车流量y可以达到最大,并求出最大值.(精确到1辆/小时)26.(8分)已知平行四边形ABCD中,AB=5,BC=132,E为AB中点,F是BC边上的一动点.(1)如图①,若∠B=90°,作FG⊥CE交AD于点G,作GH⊥BC,垂足为H.求FH的长;(2)如图②,若sinB=35,连接FA交CE于M,当BF为多少时,FA⊥CE?27.(10分)【阅读理解】(1)发现一:一次函数y=kx+b(k、b为常数且k≠0),若k的绝对值越大,此一次函数的图像与过点(0,b)且平行于x轴的直线所夹的锐角就越大.根据发现请解决下列问题:图①是y=k1x+2、y=k2x+2、y=k3x+2、y =k4x+2四个一次函数在同一坐标系中的图像,比较k1、k2、、k3、k4的大小▲.(用“<”或“>”号连接)(2)发现二:我们知道函数y1=k1x+b1与y2=k2x+b2的交点的横坐标是方程k1x+b1=k2x+b2的解.类似的,=12x+1的解就是y=和y=12x+1的两个图像交点的横坐标.求含有绝对值的方程=12x+1的解.解:在同一直角坐标系中画出y=y=12x+1的图像如图②.由图像可知方程=12x+1的解有两个.情况一:由图像可知当x>1时,y==x-1,即x-1=12x+1,解得x =4情况二:由图像可知当x≤1时,y==-x+1,即-x+1=12x+1,解得x =0所以方程=12x+1的解为x1=4、x2=0利用以上方法,解关于x的方程=﹣12x+1.(3)【拓展延伸】解关于x的方程=ax(a为常数且a≠0).(用含a的代数式表示)2014年中考数学模拟试题(二)参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)题号123456答案DDBBCB二、填空题(本大题共10小题,每小题2分,共20分)7.±108.a(b-1)(b+1)9.(–1,1)(不唯一)10.x=1,y=111.72°12.y1<y213.314.y=–(x+1)2+415.25516.三、解答题(本大题共11小题,共88分)17.解:原式=33—2×32+4—3+1………………………………………………4分=3+5…………………………………………………………………………6分18.解:原式=………………………………………………………1分=×………………………………………………………3分=-…………………………………………………………………………5分解得x1=1,x2=0………………………………………………7分x1=1分式无意义;把x2=0代入原式=12……………………………………8分19.(1)画树状图略……………………………………………………………………4分所以P(2次摸出的球都是白球)=49.………………………………………6分(2)…………………………………………………………………………………8分20.(1)从八年级抽取了120名学生…………………………………………………4分(2)①36;②1−1.5小时.…………………………………………………6分(3)八年级学生课外阅读时间不少于 1.5小时的估计有240人…………………8分21.证明:(1)∵,的平分线交于,∴在△ACD和△AED中∴△ACD≌△AED………………………………2分∴AC=AE………………………………………………………………3分∴…………………………………………………………4分(2)四边形是菱形.……………………………………5分∵AC=AE,∴CH=HE∵∥,∴,又∴△FEH≌△DCH……………………………………7分∴FH=DH∴四边形是平行四边形.又∵∴四边形是菱形.………………………8分22.解:作CD⊥AB,垂足为D,在Rt△ACD中,tan∠CAB=…………1分在Rt△BCD中,tan∠CBD=…………2分设CD为x则AD==3x………3分BD==x………4分AB=AD-BD730=3x-x…………5分x=…………6分在Rt△BCD中,Sin∠CBD=BC=×2=1410………8分答:BC距离为1410米.23.设原来报名参加的学生有x人, (1)分依题意,得.…………………………………………………4分解这个方程,得x=20.…………………………………………………6分经检验,x=20是原方程的解且符合题意 (7)分答:原来报名参加的学生有20人. (8)分24.解:(1)BC是O的切线.连接BO并延长交⊙O于点E,连接DE,¬¬¬ (1)分则∠BDE=90°,………………………………………………………………………2分所以∠EBD+∠BED=90°,因为∠DBC=∠DAB,∠DAB=∠E,所以∠EBD+∠DBC=90°,…………………………………………………………3分即OB⊥BC,又点B在⊙O上,所以BC是O的切线 (4)分(2)由圆心角的性质可知,∠BOD=2∠A=60°,………………………………………5分即△BOD是边长为4的等边三角形,S扇形=83π………………………………………6分S△BOD=43……………………………………7分所以S阴影=S扇形–S△BOD=83π–43………………………………………………………8分25.解:(1)设v=kx+b,把(20,60)(200,0)代入60=20k+b,0=200k+b……………2分解得k=-13,b=2003v=-13x+2003…………………………………3分(2)当0≤x≤20时y=60x当x=20时y最大为1200辆;………………4分当20<x≤200时y=x•v=-13x2+2003x…………………………………5分=-13(x-100)2+100003……………………………………7分当x=100时,y最大为3333辆.因为3333>1200,所以当x=100时,y最大为3333辆.…………………8分26.解:(1)∠FMC=∠B=90°………………………………1分∠GFH+∠BCE=∠BEC+∠BCE=90°∠BEC=∠GFH………………………………………2分易证△BEC∽△HFG……………………………………3分BEFH=BCGH即2.5FH=6.55FH=2513………………4分(2)作AT⊥BC,ER⊥BC易证△REC∽△TFAREFT=RCAT………………5分AT=ABsinB=3BT=4ER=1.5CR=4.51.5FT=4.53…………………………6分FT=1…………………………7分BF=BT-FT=3………………8分27.(1)k4<k3<k2<k1………………………………………………………………………………………2分(2)在同一直角坐标系中画出y=y=-12x+1的图像,由图像可知方程=12x+1的解有两个.情况一:当x>-2时,y==x+2,即x+2=﹣12x+1.解得x=-23,…………………4分情况二:当x≤-2时,y==-x-2,即-x-2=-12x+1解得x=-6…………………6分所以方程=-12x+1.的解为x1=-23或x2=-6(3)当a<-1时,有一个解,-x+2=ax,解得x=2a+1;………………………………7分当-1≤a<0时,无解; (8)分当0<a<1时,有两个解,当x<2时,-x+2=ax,解得x=2a+1;当x≥2时,x-2=ax,解得x=21-a…………………………9分当a≥1时,有一个解,-x+2=ax,解得x=2a+1;…………………………………………10分。

2014年江苏省南京市中考数学试题及参考答案(word解析版)

2014年江苏省南京市中考数学试题及参考答案(word解析版)

2014年江苏省南京市中考数学试题及参考答案一、选择题(本大题共6小题,每小题2分,共12分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a63.若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:14.下列无理数中,在﹣2与1之间的是()A.B.C D5.8的平方根是()A.4 B.±4 C.D.±6.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.3,32⎛⎫⎪⎝⎭、2,43⎛⎫- ⎪⎝⎭B.3,32⎛⎫⎪⎝⎭、1,42⎛⎫- ⎪⎝⎭C.77,42⎛⎫⎪⎝⎭、2,43⎛⎫- ⎪⎝⎭D.77,42⎛⎫⎪⎝⎭、1,42⎛⎫- ⎪⎝⎭二、填空题(本大题共10小题,每小题2分,共20分)7.﹣2的相反数是,﹣2的绝对值是.8.截止2013年底,中国高速铁路营运里程达到11000km,居世界首位,将11000用科学记数法表示为.9.使式子1x的取值范围是.10.2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是cm,极差是cm.11.已知反比例函数kyx=的图象经过点A(﹣2,3),则当x=﹣3时,y=.12.如图,AD是正五边形ABCDE的一条对角线,则∠BAD=.13.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,连接BC ,若AB=,∠BCD=22°30′,则⊙O 的半径为 cm .14.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm ,扇形的圆心角θ=120°,则该圆锥的母线长l 为 cm .15.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm ,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm ,长与宽的比为3:2,则该行李箱的长的最大值为 cm .162则当y <的取值范围是 .三、解答题(本大题共11小题,共88分)17.(6分)解不等式组:32424x x x x +⎧⎨-+⎩≥<. 18.(6分)先化简,再求值:24142a a ---,其中a=1. 19.(8分)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,过点E 作EF ∥AB ,交BC 于点F .(1)求证:四边形DBFE 是平行四边形;(2)当△ABC 满足什么条件时,四边形DBFE 是菱形?为什么?20.(8分)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.21.(8分)为了了解某市120000名初中学生的视力情况,某校数学兴趣小组收集有关数据,并进行整理分析.(1)小明在眼镜店调查了1000名初中学生的视力,小刚在邻居中调查了20名初中学生的视力,他们的抽样是否合理?并说明理由.(2)该校数学兴趣小组从该市七、八、九年级各随机抽取了1000名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.请你根据抽样调查的结果,估计该市120000名初中学生视力不良的人数是多少?22.(8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.23.(8分)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)24.(8分)已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?25.(9分)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?26.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.27.(11分)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若,则△ABC≌△DEF.参考答案与解析一、选择题(本大题共6小题,每小题2分,共12分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【知识考点】中心对称图形;轴对称图形.【思路分析】根据轴对称图形与中心对称图形的概念求解.【解答过程】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选:C.【总结归纳】掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6【知识考点】幂的乘方与积的乘方.【思路分析】根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.【解答过程】解:原式=﹣a2×3=﹣a6.故选:D.【总结归纳】本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.3.若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:1【知识考点】相似三角形的性质.【思路分析】根据相似三角形面积的比等于相似比的平方计算即可得解.【解答过程】解:∵△ABC∽△A′B′C′,相似比为1:2,∴△ABC与△A′B′C′的面积的比为1:4.故选:C.【总结归纳】本题考查了相似三角形的性质,熟记相似三角形面积的比等于相似比的平方是解题的关键.4.下列无理数中,在﹣2与1之间的是()A.B.C D【知识考点】估算无理数的大小.【思路分析】根据无理数的定义进行估算解答即可.=-,﹣不成立;【解答过程】解:A.2-<,成立;B.21C1,不成立;D1,不成立,故答案为:B.【总结归纳】此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.5.8的平方根是()A.4 B.±4 C.D.±【知识考点】平方根.【思路分析】直接根据平方根的定义进行解答即可解决问题.±=,【解答过程】解:∵(28∴8的平方根是±故选:D.。

南京市高淳区2013-2014年八年级下期中检测数学试卷及答案

南京市高淳区2013-2014年八年级下期中检测数学试卷及答案

(第4题)高淳区2013~2014学年度第二学期期中质量调研检测八年级数学试卷一、选择题(每小题2分,共12分.请把正确答案的字母代号填在下表中)1.下列式子中是分式的为(▲).A .1+x xB .2x C .12+x D .3xy 2.下列图案既是中心对称,又是轴对称的是(▲).A .B .C .D . 3.下列算式正确的是(▲).A .22ab a b = B .121222+-=+---m m m mC .c a cb a b ++= D .b a b a b a b a -+=--222)( 4.如图所示,是八年级某班学生是否知道父母生日情况的扇形统计图. 其中,A 表示仅知道父亲生日的学生;B 表示仅知道母亲生日的学生; C 表示父母生日都知道的学生;D 表示表示父母生日都不知道的学生. 则该班40名学生中,知道母亲生日的人数有 (▲). A . 10 B .12 C .22 D .265.某啤酒厂搞捉销活动,一箱24瓶啤酒中有4瓶的瓶盖内印有“奖”字.小明的爸爸买了 一箱这种品牌的啤酒,他连续打开了其中的4瓶均未中奖.这时小明在剩下的啤酒中任B25% A35%C30% D 10%意打开一瓶,中奖的可能性是 ( ▲ ). A .61 B .51 C . 41D . 31 6.如图,在□ABCD 中,E 、F 、G 、H 分别是各边的中点.则在下列四个图形中,阴影部分的面积与其它三个阴影部分面积不相等的是(▲). A . B . C . D . 二、填空题(每小题2分,共20分)7.为了解现在中学生的身体状况,某市抽取100名初三学生测量了他们的体重.在这个问题中,样本是 . 8.当x = 时,分式11-+x x 的值为零. 9.分式xyzx y xy 61,4,13-的最简公分母是 . 10.某市抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下:则第四小组的频率c =_________.11.如图,将△ABC 的绕点A 顺时针旋转得到△AED , 点D 正好落在BC 边上.已知∠C =80°,则∠EAB = °.12.直角△ABC 中,∠BAC =90°,D 、E 、F 分别为AB 、BC 、AC 的中点,已知DF =3,则AE = .CDABE OFADBCF(第11题) BCD EBCD FB HAAAHHHCCC FFBBEEDD DGG F13.如图,在□ABCD 中,EF 经过对角线的交点O ,交AB 于点E ,交CD 于点F .若AB =5,AD =4,OF =1.8,那么四边形BCFE 的周长为 .14.一只不透明的袋中装有除颜色外完全相同的6个球,其中3个红球、3个黄球,将球摇匀. 从袋中任意摸出3个球,则其中至少有2个球同色的事件是 事件. (填“必然”、“不可能”、“随机”)15.某市从2008年开始加快了保障房建设进程,现将该市2008年到2012年新建保障房情 况进行统计,并绘制成如图所示的折线统计图和不完整的条形统计图.则由图分析可知,该市2011年新建保障房 套.16.如图,在等边三角形ABC 中,BC =6cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以 1cm/s 的速度运动,点F 从点B 出发沿射线BC 以2cm/s 的速度运动.如果点E 、F 同时出发,设运动时间为t (s ) 当t = s 时,以A 、C 、E 、F 为顶点四边形 是平行四边形.三、解答题(本大题共10小题,共68分)17.(1)(3分)约分:ba ab 2236; (2)(3分)约分:2222969b ab a b a +--.BACE G(第16题)(第13题)5%增长率 200820092010 2011 2012 年份某市2008-2012年新建保障房套数年增长率折线统计图 1200 200820092010 2011 2012 套数 年份1170某市2008-2012新建保障房套数条形统计图(第15题)(第20题) 18.(1)(3分)通分:232ab,bc a -; (2)(3分)通分: 922-x x ,62+x x .19.(5分)先化简分式aa aa a 444323-+-,然后在0,1,2三个数值中选择一个合适的a 的 值代入求值.20.(6分)(1)按要求作图:①△ABC 关于原点O 逆时针旋转90°得到 △A 1B 1C 1;②△A 1B 1C 1关于原点中心对称的△A 2B 2C 2. (2)△A 2B 2C 2中顶点B 2坐标为 .21.(6分)如图,平行四边形ABCD 中,AE ⊥BD , CF ⊥BD ,垂足分别为E 、F . 求证:四边形AECF 是平行四边形.22.(6分) 班主任张老师为了了解本班学生课堂发言情况,对前一天本班男、女生的发言次数进ADEF (第21题)BC(第23题)(第22题)行了统计,并绘制成如下频数分布折线图(图1) . (1) 该班共有 名学生;(2) 在张老师的鼓励下,该班学生第二天的发言次数比前一天明显增加,图2是全班第二天发言次数变化的人数的扇形统计图.根据统计图求第二天该班学生发言次数增加3次的人数和全班增加的总的发言次数.23.(6分)如图,在四边形ABCD 中,AC=BD ,且AC ⊥BD , E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.则四边形EFGH 是怎样的四边形?证明你的结论.24.(8分)投掷一枚质地均匀的正方体骰子.(1)下列说法中正确的有 .(填序号)图1图2A DCE BFGH次数不变的 人数20%增加1次的人数40%增加2次的人数30%增加3次的人数 第二天全班发言次数变化人数的扇形统计图0 124 5 671 2 3 4 5 6 1◆ ■男生女生频数(人)前一天男、女发言次数的频数分布折线图发言次数(次)3(第24题)(第25题)①向上一面点数为1点和3点的可能性一样大; ②投掷6次,向上一面点数为1点的一定会出现1次; ③连续投掷2次,向上一面的点数之和不可能等于13.(2)如果小明连续投掷了10次,其中有3次出现向上一面点数为6点,这时小明说:投掷正方体骰子,向上一面点数为6点的概率是103.你同意他的说法吗?说说你的理由. (3)为了估计投掷正方体骰子出现6点朝上的概率,小亮采用转盘来代替骰子做实验.下图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上红、白两种颜色,使得转动转盘,当转盘停止转动后,指针落在红色区域的概率与投掷正方体骰子出现6点朝上的概率相同.(友情提醒:在转盘上用文字注明颜色和扇形圆心角的度数.)25.(7分)已知:如图,在菱形ABCD 中,∠B= 60°,把一个含60°角的三角尺与这个 菱形叠合,使三角尺60°角的顶点与点A 重合,将三角尺绕点A 按逆时针方向旋转 . (1)如图1,当三角尺的两边分别与菱形的两边BC 、CD 相交于点E 、F . 求证:CE +CF =AB ;(2)如图2,当三角尺的两边分别与菱形的两边BC 、CD 的延长线相交于点E 、F .写出此时CE 、CF 、AB 长度之间关系的结论.(不需要证明)CDB EF图1图2A(第26题)26.(12分)如图1,在正方形ABCD 中,点E 为BC 上一点,连接DE ,把△DEC 沿DE 折叠得到△DEF ,延长EF 交AB 于G ,连接DG .(1) 求证:∠EDG=45°.(2) 如图2,E 为BC 的中点,连接BF . ①求证:BF ∥DE ;②若正方形边长为6,求线段AG 的长. (3) 当BE ︰EC = 时,DE =DG .八年级数学试卷参考答案及评分标准一、选择题(每小题2分,共12分.请把正确答案的字母代号填在下表中)二、填空题(每小题2分,共20分)AB CDEF G图1CDA BF GE 图27.100名初三学生的体重; 8.-1; 9.yz x 312; 10. 0.3; 11.20°; 12. 3; 13. 12.6; 14. 必然 15.900; 16. 2或6. 三、解答题(本大题共10小题,共68分) 17.(1)(3分)解:原式=aab bab ⋅⋅323…………………………………………………2分=ab2 …………………………………………………………………3分 (2)(3分)解:原式=2)3()3)(3(b a b a b a -+-……………………………………………2分= ba b a 33-+ …………………………………………………………3分18.(1)(3分)解:分母bc a ,32的最简公分母是bc a 23… ………………1分bca cb bc a bc b a b 2222323232=⋅⋅=, … ………………………………………………2分 bca a a bc a a bc a 23223333-=⋅⋅-=-… ………………………………………………3分 (2)(3分))3)(3(92+-=-x x x ,)3(262+=+x x ,它们的最简公分母是)3)(3(2+-x x …………………………1分)3)(3(24)3)(3(2922+-=+-=-x x x x x x x x ,………………………………2分)3)(3(2)3()3(262+--=+=+x x x x x x x x . ………………………………3分19.(5分)解:原式=)2)(2()2(2-+-a a a a a ………………………… ……………1分= 22+-a a ………………………………………………3分取a =1时, ……………………………………………4分.312121-=+-=原式…………………………………………5分20.(6分) (1)图略, 每个作图正确得2分. …………4分(2)(1,6) …………6分21.(6分)证明:连接AC 交BD 于O .∵四边形ABCD 是平行四边形,ADF O∴OA =OC .………………………………………2分 ∵AE ⊥BD , CF ⊥BD , ∴∠AEO =∠CFO=90°, 又∵∠AOE =∠COF ,∴△AEO ≌△CFO , ………………………4分 ∴OE =OF , ………… ………………5分 ∴四边形AEFG 是平行四边形. ………………6分 (其它证法参照得分)22.(6分)(1) 40 …………………………………………2分(2)发言次数增加3次的学生人数为:40(120%30%40%)4()⨯---=人.…4分 全班增加的总的发言次数为40%40130%4024316241252⨯⨯+⨯⨯+⨯=++=(次).……………6分23.(6分)四边形EFGH 是正方形.……………………1分证明:在△ABC 中,E 、F 分别是AB 、BC 的中点,∴EF =AC , ………………………2分 同理FG =BD ,GH =AC ,HE =BD ,∵A C =BD ,∴EF =FG =GH =HE , …………………3分∴四边形EFGH 是菱形. ……………………4分 设AC 与BD 交于点O ,AC 与EH 交于点M 在△ABD 中,E 、H 分别是AB 、AD 的中点, ∴EH ∥BD ,同理GH ∥AC , ∵AC ⊥BD ,∴∠BOC =90°,∵EH ∥BD ,∴∠EMC =∠BOC =90°, ………………………5分 ∵HG ∥AC ,∴∠EHG =∠EMC =90°,∴四边形EFGH 是正方形. ………………………6分24.(1) ①③… ………………………… …………………………………………2分(2)103是小明投掷正方体骰子,向上一面点数为6点的频率,不是概率.……3分一般地,在一定条件下大量重复同一试验时,随机事件发生的频率会在某个常数 附近摆动. …………………………………………………………………4分 只有当试验次数很大时,才能以事件发生的频率作为概率的估计值. ………5分 (3)本题答案不唯一,下列解法供参考…………………………………………8分AE BF GHOM CBCD25. (7分)(1)证明:连接AC . ∵四边形ABCD 是菱形, ∴AB =BC=CD=DA . ∵ ∠B= 60°, ∴∠D= 60°,∴△ABC 、△ACD 都是等边三角形, ……………1分 ∴AB =AC ,∠BAC=∠ACD =∠B =60°. ∵ ∠EAF= 60°, ∴∠BAC =∠EAF=60°, ∴∠BAC -∠EAC =∠EAF -∠EAC ,即∠BAE =∠CAF ………………………2分 ∴△BAE ≌△CAF , ………………………3分 ∴BE =CF , ………… ………………4分 ∴CE +CF =CB=AB . ………………………5分 (2) AB CE CF =-. ………………………7分 26.(12分)(1)证明:∵四边形ABCD 是正方形,∴DC=DA . ∠A=∠B=∠C=∠ADC = 90°. ∵ △DEC 沿DE 折叠得到△DEF , ∴∠DFE=∠C ,DC=DF ,∠1=∠2, ∴∠DFG=∠A ,DA=DF , 又∵DG=DG ,∴△DGA ≌△DGF , ………………………1分 ∴∠3=∠4, ………………………2分 ∴∠EDG=∠3+∠2==∠+∠FDC ADF 212121(∠ADF+∠FDC )= 45°.………3分 (2) ①证明:∵△DEC 沿DE 折叠得到△DEF ,E 为BC 的中点∴CE=EF=BE ,∠DEF=∠DEC .∴∠5=∠6, ………………………4分 ∵∠FEC=∠5+∠6,∴∠DEF+∠DEC=∠5+∠6 ∴2∠5=2∠DEC ,即∠5=∠DEC ……………5分 ∴BF ∥DE . ………………………6分 ②解:设AG=x ,则GF=x ,BG =6-x ,……………7分 由正方形边长为6,得CE=EF=BE=3,∴GE =EF +GF =3+x . ……………8分C B EF 图1DBCEF图12 134 C DA B F G E 图256 GDAA在Rt△GBE中,根据勾股定理得:22)2=+-……………9分x+)6(x3(3解得x=2,即线段AG的长为2.……………10分(3) 2……………12分。

江苏省南京市高淳区2013-2014学年度九年级数学第一学期期中质量调研检测试卷(含答案)

江苏省南京市高淳区2013-2014学年度九年级数学第一学期期中质量调研检测试卷(含答案)

(第4题)ABC DE FO(第6题)C P南京市高淳区2013~2014学年度第一学期期中质量调研检测九年级数学试卷一、选择题(每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合要求 的,请将正确选项的字母代号填涂在答题卷相应.....的位置上) 1.下列式子中,属于最简二次根式的是( ▲ )A . 3B .9C .18D .132.方程x (x -2)+x -2=0的解为( ▲ )A .x =2B .x 1=2, x 2=1C .x =-1D .x 1=2,x 2=-13.甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均环数x 及方差2s 如下表所示.若要选出一个成绩较好且状态稳定的运动员去参赛,那么应选运动员( ▲ ) A .甲 B .乙C .丙D .丁4.如图,在矩形ABCD 中,O 是对角线AC 、BD 的交点, 点E 、F 分别是OD 、OC 的中点.如果AC =10,BC =8,那么EF 的长为( ▲ )A .6B .5C .4D .35.若(x -1)2=1-x ,则x 的取值范围是( ▲ )A .x >1B .x ≥1C .x ≤1D .x <16.如图,Rt △ABC 中,∠ACB =90°,AC =BC =6cm .动点P 从点A 出发,沿AB 方向 以每秒2cm 的速度向终点B 运动;动点Q 从点B 出发,沿BC 方向以每秒1cm 的速度 终点C 运动.设动点P 、Q 同时出发,运动时间为t 秒. 将△PQC 沿BC 翻折,点P 的对应点为点P ',若四边形QP CP '为菱形,则t 的值为( ▲ )A . 2B . 2(第10题)(第16题)C . 2 2D . 3二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷相应位置.......上) 7.化简:3+6 3= ▲ .8.使x +1有意义的x 的取值范围为 ▲ .9.要使关于x 的方程x 2+k =0有两个不相等的实数根,k 的值可以是 ▲ .(写出符 合条件的一个值)10.甲、乙两人在相同的情况下各打靶10次,打靶的成绩如图,这两人10次打靶平均 命中环数都为7环,则s 2甲 ▲ s 2乙. (填“>”、“<”或“=”).11.已知等腰梯形的中位线的长为15,高为3,则这个等腰梯形的面积为 ▲ . 12.已知关于x 的一元二次方程 x 2+2kx +k ―1=0的一个根为0,则另一根为 ▲ . 13.已知菱形的一个内角是60°,边长为2,则该菱形的两条对角线长分别为 ▲ . 14.在四边形ABCD 中,AB =BC =CD =DA ,对角线AC 与BD 相交于点O .若不增加任何字母与辅助线,要使得四边形ABCD 是正方形,还需增加一个边或角的条件, 这个条件可以是 ▲ .15.如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上,将△BMN 沿MN 翻折,得△FMN .若MF ∥AD ,FN ∥DC , 则∠B = ▲ °.16.如图,在梯形ABCD 中,AB ∥CD ,AB =3CD ,对角线AC 、BD 交于点O ,中位线EF 与AC 、BD 分别交于M 、N 两点,则图中阴影部分的面积与梯形ABCD 面积的比值等于 ▲ .三、解答题(本大题共10小题,共88分.请在答题卷指定区域.......内作答,解答时应写出文 字说明、证明过程或演算步骤)17.(11分)计算:(1)12―20―27+35; (2)aba b a b a --22( a>0,b ≥0) ;(第15题)(3)(6-83)×2.18.(11分)解方程:(1) (x -2)2=4; (2)x 2+2x -1=0 (用配方法解);(3)25x 2-9(x -1) 2=0 .19.(7分)已知:如图,AC ⊥BC ,BD ⊥AD ,AC 与BD 交于O ,AC =BD .求证:(1)BC =AD ;(2)△OAB 是等腰三角形.20.(7分)一分钟投篮测试规定:满分为10分,成绩达到6分及以上为合格,成绩达到9分及以上为优秀.甲、乙两组各15名学生的某次测试成绩如下:(1)请补充完成下面的成绩分析表:(2)你认为甲、乙两组哪一组的投篮成绩较好?请写出两条支持你的观点的理由.ABCDO(第19题)GFEDCBA (第23题)21.(8分)如图,将矩形A 1B 1C 1D 1沿EF 折叠,使B 1点落在A 1D 1边上的B 点处;再将矩形A 1B 1C 1D 1沿BG 折叠,使D 1点落在D 点处且BD 过F 点. (1)求证:四边形BEFG 是平行四边形;(2)当∠B 1FE 是多少度时,四边形BEFG 为菱形?试说明理由.22.(7分)将一块长60m 、宽30m 的长方形荒地进行改造,要在其四周留一条宽度相等的人行道,中间部分建成一块面积为1000m²的长方形绿地,试求人行道的宽度.23.(8分)已知:如图,□ABCD 中,∠ADC 、∠DAB 的平分线DF 、AE 分别与线段BC 相交于点F 、E ,DF与AE 相交于点G . (1)求证:AE ⊥DF ;(2)若AD =10,AB =6,AE =4,求FG 的长.A B 11(第21题) (第22题)0<<90α︒︒24.(8分)先阅读,再解决问题.阅读:材料一 配方法可用来解一元二次方程.例如,对于方程x 2+2x -1=0可先配方(x +1)2=2,然后再利用直接开平方法求解方程.其实,配方还可以用它来解决很多问题.材料二 对于代数式3a 2+1,因为3a 2≥0,所以3a 2+1≥1,即3a 2+1有最小值1,且当a =0时,3a 2+1取得最小值为1.类似地,对于代数式-3a 2+1,因为-3a 2≤0,所以-3a 2+1≤1,即-3a 2+1有最大值1,且当a =0时,-3a 2+1取得最大值为1.解答下列问题:(1)填空:①当x = 时,代数式2x 2-1有最小值为 ;②当x = 时,代数式-2(x +1)2+1有最大值为 .(2)试求代数式2x 2-4 x +1的最小值,并求出代数式取得最小值时的x 的值.(要求写出必要的运算推理过程)25.(9分)已知关于x 的方程x 2-(2k +1) x +4(k -12)=0.(1)求证:无论k 取什么实数,这个方程总有实数根;(2)若等腰△ABC 的一边长a =4,另两边b 、c 恰好是这个方程的两根,求△ABC 的周长.26.(12分)如图1,梯形ABCD 中,AD ∥BC ,∠ABC =90°,且AD =1,AB =BC =2,对角线AC 和BD 相交于点O .点E 在AB 上,点F 在CB 延长线上,连结EF ,且BE =BF .(1)连结AF ,CE ,则线段AF 与CE 的位置关系是 ▲ ,数量关系是 ▲ ; (2)将图1中的△EBF 绕点B 逆时针方向旋转旋转 角( ),连结AF 、CE . 试在图2 中画出旋转后的图形,并判断此时(1)中的两个结论是否成立,写出你的猜 想并加以证明;(3)将图1中的△EBF 绕点B 逆时针旋转,使到一边BF 落在线段BO 上,此时△EBF 的一边EF 与BC 交于点M ,连结AF 、CE .试在图3中画出旋转后的图形,并解答下列问题:①此时(1)中的两个结论是否成立?(直接写出你的猜想,不必证明.) ②已知65=OF ,试求BM 的长.OFED C BA OD C BAOD CBA α2013~2014学年度第一学期期中质量调研检测试卷九年级数学答卷纸请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效18.(11分)解方程:(1) (x -2)2=4; (2)x 2+2x -1=0 (用配方法解);(3)25x 2-9(x -1) 2=0 .19.(7分)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效ABC DO(2)21.(8分) (1) (2)A B 11G F ED CB A23.(8分) (1)(2)25.(9分)(1)(2)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效九年级数学参考答案一、 选择题(每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.3+ 2 8.x ≥-1 9.答案不唯一 10.< 11.45 12.x =-213.2和2 3 14.答案不唯一,如∠A =90°或AC =BD 15. 95° 16. 14三、解答题(本大题共10小题,共88分) 17.(11分)计算:(1)解:原式=23―25―33+3 5 ……………………………………3分=5― 3 ……………………………………………………4分(2)解:当 a >0,b ≥0时,原式=ab b a b a --2 ……………2分 = ab b a - ………………………3分(3)解:原式=6×2-83× 2 ………………………………………1分 =23-12 3 …………………………………………………………3分=323 ………………………………………………………………4分 18.(11分)解方程:(1) 解:x -2=±2 ………………………………………………………2分 x 1=4,x 2=0 .…………………………………………………………3分(2)解:移项,配方,得(x +1)2=2…………………………………………2分x +1=± 2 ……………………………………………………………3分∴x 1=-1+2,x 2=-1- 2 .…………………………………………4分 (3)解:原方程可变形[][]0)1(35)1(35=---+x x x x ……………………………………………2分请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效ODACB图3即0)32)(38(=+-x x038=-x 或032=+x ………………………………………………………3分∴x 1=38,x 2=-32.……………………………………………………………4分19.(7分)证明:(1)∵AC ⊥BC ,BD ⊥AD ,∴∠C =∠D =90°. ……………2分 在Rt △CAB 和Rt △DBA 中,∵AC =BD ,AB =BA ,∴Rt △CBA ≌Rt △DAB (HL ). ………3分 ∴BC =AD ………4分(2)∵Rt △CBA ≌Rt △DBA ,∴∠CAB =∠DBA . ………5分∴在△OAB 中,OA =OB . …………………………………………6分 即△OAB 是等腰三角形. ……………………………………………7分20.(7分)解:(1)…………………………………………………………………………3分(2)认为甲组的投篮成绩较好.理由:①甲组成绩的合格率比乙组的高;②甲组成绩的优秀率比乙组的高. …7分 (每条理由各2分)认为乙组的投篮成绩较好.理由:①乙组成绩的中位数比甲组的高;②乙组成绩的方差比甲组的小.………7分21.(8分)(1)证明:∵A 1D 1∥B 1C 1, ∴ ∠B 1FE =∠FEB . 又∵∠B 1FE =∠BFE , ∴∠FEB =∠BFE .∴BE =BF . ……………1分同理可得:FG =BF .…………………2分∴BE =FG ………………………3分又∵BE ∥FG , ∴四边形BEFG 是平行四边形.…………………………4分 (2)当∠B 1FE =60°时,四边形EFGB 为菱形. 理由如下:∵∠B 1FE =60°,∴∠BFE =∠BEF =60°,∴△BEF 为等边三角形,即BE =EF .………………………6分 ∵四边形BEFG 是平行四边形,BE =EF .∴四边形BEFG 是菱形(一组邻边相等的平行四边形是菱形).…………8分22.(7分)解:设人行道的宽度为x m .ABC DO(第19题)A B 11GFEDCBA (第23题)根据题意,得(60-2x )(30-2x )=1000.……………………………………3分 整理方程,得x 2-45x +200=0,解得 x 1=40(不合题意,舍去),x 2=5 …………………………6分 所以,所求人行道的宽度是5m .………………………………………………7分 23.(8分)解:(1)在□ABCD 中,AB ∥DC ,∴∠ADC +∠DAB =180°. ………………1分 ∵DF 、AE 分别是∠ADC 、∠DAB 的平分线,∴ADC CDF ADF ∠=∠=∠21,.21DAB BAE DAE ∠=∠=∠ ∴)(21DAB ADC DAE ADF ∠+∠=∠+∠=90°.∴=∠AGD 180°-(DAE ADF ∠+∠)=90°.………………3分∴.DF AE ⊥ ………………4分 (2)在□ABCD 中,AD ∥BC ,∴∠ADF =∠CFD ,∠DAE =∠BEA . 又∵∠ADF =∠CDF ,∠DAE =∠BAE , ∴∠CDF =∠CFD ,∠BAE =∠BEA . ∴CD =CF ,BA =BE .∴CF =CD =6,BF =BC -CF =10-6=4.∴FE =BE -BF =6-4=2. ………………………………………5分 ∵ AB ∥DC ,∴△FGE ∽△DGA ,∴ADEF GAGE =,设GE =x ,则AG =4-x , ∴1024=-xx ,解得:x =32.…………………………7分 ∴在Rt △EGF 中,3242)32(2222=-=-=GE EF FG .………8分 24.(8分)(1)填空:① 0,-1; ……………………………………1分② -1,1.……………………………………3分(2)解:2x 2-4 x +1=1)2(22+-x x =1)112(22+-+-x x =1)1(22--x ……6分因为2)1(2-x ≥0, 所以1)1(22--x ≥-1, 即1)1(22--x 有最小值-1, 当x =1时,1)1(22--x 取得最小值-1. ………………………………8分 25.(9分)(1)证明:∵b 2-4ac =[]=-⨯⨯-+-)21(414)12(2k k 2)32(-k ≥0,……2分图3231OF EDCBA M∴无论k 取什么实数,这个方程总有实数根.……………………………3分 (2)①当a 为等腰△ABC 的底边时,则b ,c 为二腰,由题意可知:b =c所以,此时原方程有二个相等的实数根. 即2)32(-k =0,解得:k =1.5.当k =1.5时,原方程为x 2-4 x +4=0,方程的两根为x 1=x 2=2;此时,等腰三角形的三边长分别为3,2,2,△ABC 的周长=3+2+2=7.……6分 ②当a 为等腰△ABC 的一腰时,不妨设另一腰为b ,即b =a =3. 所以,此时原方程有一根为3.将x =3代入x 2-(2k +1) x +4(k -12)=0, 解得k =2.将k =2代入原方程,解得方程的另一根为x =2.此时,等腰△ABC 的三边长分别为3,3,2,△ABC 的周长=3+3+2=8.……8分 由①、②可知,所求△ABC 的周长为7或8. ………………………9分 26.(12分)解:(1)垂直,相等 ; …………………………………………2分(2)猜想:(1)中的两个结论仍然成立. 证明:∵∠ABC =∠EBF =90°,∴∠ABC+∠ABE =∠EBF+∠ABE . ∴∠CBE =∠ABF . …………3分 在△ABF 和△CBE 中,∵,,,BE BF CBE ABF CB AB =∠=∠= ∴△ABF ≌△CBE .∴CE AF =,.12∠=∠ …………………………4分 ∵=∠+∠3190°,.43∠=∠ ∴=∠+∠4290°,∴=∠590°……………………5分 ∴.CE AF ⊥ ………………6分(3)①(1)中的两个结论仍然成立. …………………………………8分②在Rt △DAB 中,.54122=+=+=AD AB BD …………9分∵AD ∥BC , ∴△AOD ∽△COB . ∴.OBODCB AD = ∵AD =1,BC =2,∴.21=OB OD∴==BD OB 32532, , ∵65=OF ∴.25=-==OF OB BF BE………10分 ∵∠1+∠FBM =90°,∠2+∠FBM =90°, ∴∠1=∠2,又∵=∠=∠OAB 345°∴△BME ∽△BOA . ………………………………11分∴BA BE OB BM = , ∴225352=BM ∴.65=BM ………………………………………………………………………12分。

江苏省南京市2014年中考数学试题(word版,含解析)

江苏省南京市2014年中考数学试题(word版,含解析)

2014年江苏省南京市中考数学试卷及解析(word版)一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2014年江苏南京)下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.分析:根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.点评:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.(2014年江苏南京)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解:原式=﹣a2×3=﹣a6.故选:D.点评:本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.3.(2014年江苏南京)若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:1分析:根据相似三角形面积的比等于相似比的平方计算即可得解.解:∵△ABC∽△A′B′C′,相似比为1:2,∴△ABC与△A′B′C′的面积的比为1:4.故选C.点评:本题考查了相似三角形的性质,熟记相似三角形面积的比等于相似比的平方是解题的关键.4.(2014年江苏南京)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C. D.分析:根据无理数的定义进行估算解答即可.解:A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故答案为B.点评:此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.5.(2014年江苏南京)8的平方根是()分析:根据众数的定义找出这组数据中出现次数最多的数,再根据求极差的方法用最大值减去最小值即可得出答案.解:168出现了3次,出现的次数最多,则她们身高的众数是168cm;极差是:169﹣166=3cm;故答案为:168;3.点评:此题考查了众数和极差,众数是一组数据中出现次数最多的数;求极差的方法是最大值减去最小值.11.(2014年江苏南京)已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣3时,y= .分析:先把点A(﹣2,3)代入y=求得k的值,然后将x=﹣3代入,即可求出y的值.解:∵反比例函数y=的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,∴反比例函数解析式为y=﹣,∴当x=﹣3时,y=﹣=2.故答案是:2.点评:本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.12.(2014年江苏南京)如图,AD是正五边形ABCDE的一条对角线,则∠BAD=.分析:设O是正五边形的中心,连接OD、OB,求得∠DOB的度数,然后利用圆周角定理即可求得∠BAD的度数.解:设O是正五边形的中心,连接OD、OB.则∠DOB=×360°=144°,∴∠BAD=∠DOB=72°,故答案是:72°.点评:本题考查了正多边形的计算,正确理解正多边形的内心和外心重合是关键.13.(2分)(2014年江苏南京)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.14.(2014年江苏南京)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.分析:易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.点评:本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.15.(2014年江苏南京)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为cm.分析:设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.解:设长为3x,宽为2x,由题意,得:5x+30≤160,解得:x≤26,故行李箱的长的最大值为78.故答案为:78cm.点评:本题考查了一元一次不等式的应用,解答本题的额关键是仔细审题,找到不等关系,建立不等式.16.(2014年江苏南京)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x …﹣1 0 1 2 3 …y …10 5 2 1 2 …则当y<5时,x的取值范围是.分析:根据表格数据,利用二次函数的对称性判断出x=4时,y=5,然后写出y<5时,x的取值范围即可.解:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.点评:本题考查了二次函数与不等式,观察图表得到y=5的另一个x的值是解题的关键.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2014年江苏南京)解不等式组:.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,就是不等式组的解集.解:,解①得:x≥1,解②得:x<2,则不等式组的解集是:1≤x<2.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.18.(2014年江苏南京)先化简,再求值:﹣,其中a=1.分析:原式通分并利用同分母分式的减法法则计算,约分得到最简结果,将a的值代入计算即可求出值.解:原式=﹣==﹣,当a=1时,原式=﹣.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2014年江苏南京)如图,在△ABC中,D、E分别是AB、AC 的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE 是平行四边形;(2)解:当AB=BC时,四边形DBEF是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.20.(2014年江苏南京)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.分析:(1)由从甲、乙、丙3名同学中随机抽取环保志愿者,直接利用概率公式求解即可求得答案;(2)利用列举法可得抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.解:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为:;(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:.点评:本题考查的是列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(2014年江苏南京)为了了解某市120000名初中学生的视力情况,某校数学兴趣小组,并进行整理分析.(1)小明在眼镜店调查了1000名初中学生的视力,小刚在邻居中调查了20名初中学生的视力,他们的抽样是否合理?并说明理由.(2)该校数学兴趣小组从该市七、八、九年级各随机抽取了1000名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.请你根据抽样调查的结果,估计该市120000名初中学生视力不良的人数是多少?分析:(1)根据学生全部在眼镜店抽取,样本不具有代表性,只抽取20名初中学生,那么样本的容量过小,从而得出答案;(2)用120000乘以初中学生视力不良的人数所占的百分比,即可得出答案.解:(1)他们的抽样都不合理;因为如果1000名初中学生全部在眼镜店抽取,那么该市每个学生被抽到的机会不相等,样本不具有代表性;如果只抽取20名初中学生,那么样本的容量过小,样本不具有广泛性;(2)根据题意得:×120000=72000(名),该市120000名初中学生视力不良的人数是72000名.点评:此题考查了折线统计图,用到的知识点是用样本估计总体和抽样调查的可靠性,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.(8分)(2014年江苏南京)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为 2.6(1+x)2万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.分析(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x),则第三年的可变成本为2.6(1+x)2,故得出答案;(2)根据养殖成本=固定成本+可变成本建立方程求出其解即可.解:(1)由题意,得第3年的可变成本为:2.6(1+x)2,故答案为:2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146,解得:x1=0.1,x2=﹣2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.点评:本题考查了增长率的问题关系的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据增长率问题的数量关系建立方程是关键.23.(2014年江苏南京)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)分析:设梯子的长为xm.在Rt△ABO中,根据三角函数得到OB,在Rt△CDO中,根据三角函数得到OD,再根据BD=OD﹣OB,得到关于x的方程,解方程即可求解.解:设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB•cos∠ABO=x•co s60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形,∴MG=OE,OM=EG,∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,在Rt△OPM中,由勾股定理,,解得 t=2.综上所述,⊙P与⊙O相切时,t=s或t=2s.点评:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查点,总体题目难度不高,是一道非常值得练习的题目.27.(2014年江苏南京)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E 都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A,则△ABC≌△DEF.分析:(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E 与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F 作DH⊥DE交DE的延长线于H,∵∠B=∠E,且∠B、∠E都是钝角,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.点评:本题考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.。

2014年江苏省南京市中考数学试卷(含解析版)

2014年江苏省南京市中考数学试卷(含解析版)

2014年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2014年江苏南京)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(2014年江苏南京)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a63.(2014年江苏南京)若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:14.(2014年江苏南京)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.5.(2014年江苏南京)8的平方根是()A.4 B.±4C.2 D.6.(2014年江苏南京)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C 的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2014年江苏南京)﹣2的相反数是,﹣2的绝对值是.8.(2014年江苏南京)截止2013年底,中国高速铁路营运里程达到11000km,居世界首位,将11000用科学记数法表示为.9.(2014年江苏南京)使式子1+有意义的x的取值范围是.10.(2014年江苏南京)2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是cm,极差是cm.11.(2014年江苏南京)已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣3时,y= .12.(2014年江苏南京)如图,AD是正五边形ABCDE的一条对角线,则∠BAD=.13.(2分)(2014年江苏南京)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.14.(2014年江苏南京)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.15.(2014年江苏南京)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为cm.16.(2014年江苏南京)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x …﹣1 0 1 2 3 …y …10 5 2 1 2 …则当y<5时,x的取值范围是.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2014年江苏南京)解不等式组:.18.(2014年江苏南京)先化简,再求值:﹣,其中a=1.19.(2014年江苏南京)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?20.(2014年江苏南京)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.21.(2014年江苏南京)为了了解某市120000名初中学生的视力情况,某校数学兴趣小组,并进行整理分析.(1)小明在眼镜店调查了1000名初中学生的视力,小刚在邻居中调查了20名初中学生的视力,他们的抽样是否合理?并说明理由.(2)该校数学兴趣小组从该市七、八、九年级各随机抽取了1000名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.请你根据抽样调查的结果,估计该市120000名初中学生视力不良的人数是多少?22.(8分)(2014年江苏南京)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.分析(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x),则第三年的可变成本为2.6(1+x)2,故得出答案;(2)根据养殖成本=固定成本+可变成本建立方程求出其解即可.23.(2014年江苏南京)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m (即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)24.(2014年江苏南京)已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?25.(2014年江苏南京)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y 与x之间的函数关系.(1)小明骑车在平路上的速度为 km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?26.(2014年江苏南京)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.27.(2014年江苏南京)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若,则△ABC≌△DEF.2014年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2014年江苏南京)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.【点评】掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.(2014年江苏南京)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6【分析】根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.【解答】原式=﹣a2×3=﹣a6.故选:D.【点评】本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.3.(2014年江苏南京)若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:1【分析】根据相似三角形面积的比等于相似比的平方计算即可得解.【解答】∵△ABC∽△A′B′C′,相似比为1:2,∴△ABC与△A′B′C′的面积的比为1:4.故选C.【点评】本题考查了相似三角形的性质,熟记相似三角形面积的比等于相似比的平方是解题的关键.4.(2014年江苏南京)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.【分析】根据无理数的定义进行估算解答即可.【解答】A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故答案为B.【点评】此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.5.(2014年江苏南京)8的平方根是()A.4 B.±4C.2 D.【分析】直接根据平方根的定义进行解答即可解决问题.【解答】∵,∴8的平方根是.故选D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.6.(2014年江苏南京)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C 的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)【分析】首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,易得△CAF≌△BOE,△AOD∽△OBE,然后由相似三角形的对应边成比例,求得答案.【解答】过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y 轴,过点A作AF∥x轴,交点为F,∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE,在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴,即,∴OE=,即点B(,3),∴AF=OE=,∴点C的横坐标为:﹣(2﹣)=﹣,∴点D(﹣,4).故选B.【点评】此题考查了矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2014年江苏南京)﹣2的相反数是,﹣2的绝对值是.【分析】根据相反数的定义和绝对值定义求解即可.【解答】﹣2的相反数是2,﹣2的绝对值是2.【点评】主要考查了相反数的定义和绝对值的定义,要求熟练运用定义解题.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.(2014年江苏南京)截止2013年底,中国高速铁路营运里程达到11000km,居世界首位,将11000用科学记数法表示为.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】将11000用科学记数法表示为:1.1×104.故答案为:1.1×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(2014年江苏南京)使式子1+有意义的x的取值范围是.【分析】根据被开方数大于等于0列式即可.【解答】由题意得,x≥0.故答案为:x≥0.【点评】本题考查的知识点为:二次根式的被开方数是非负数.10.(2014年江苏南京)2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是cm,极差是cm.【分析】根据众数的定义找出这组数据中出现次数最多的数,再根据求极差的方法用最大值减去最小值即可得出答案.【解答】168出现了3次,出现的次数最多,则她们身高的众数是168cm;极差是:169﹣166=3cm;故答案为:168;3.【点评】此题考查了众数和极差,众数是一组数据中出现次数最多的数;求极差的方法是最大值减去最小值.11.(2014年江苏南京)已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣3时,y= .【分析】先把点A(﹣2,3)代入y=求得k的值,然后将x=﹣3代入,即可求出y的值.【解答】∵反比例函数y=的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,∴反比例函数解析式为y=﹣,∴当x=﹣3时,y=﹣=2.故答案是:2.【点评】本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.12.(2014年江苏南京)如图,AD是正五边形ABCDE的一条对角线,则∠BAD=.【分析】设O是正五边形的中心,连接OD、OB,求得∠DOB的度数,然后利用圆周角定理即可求得∠BAD的度数.【解答】设O是正五边形的中心,连接OD、OB.则∠DOB=×360°=144°,∴∠BAD=∠DOB=72°,故答案是:72°.【点评】本题考查了正多边形的计算,正确理解正多边形的内心和外心重合是关键.13.(2分)(2014年江苏南京)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.【分析】先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.【解答】连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为2.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.14.(2014年江苏南京)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.【点评】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.15.(2014年江苏南京)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为cm.【分析】设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.【解答】设长为3x,宽为2x,由题意,得:5x+30≤160,解得:x≤26,故行李箱的长的最大值为78.故答案为:78cm.【点评】本题考查了一元一次不等式的应用,解答本题的额关键是仔细审题,找到不等关系,建立不等式.16.(2014年江苏南京)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x …﹣1 0 1 2 3 …y …10 5 2 1 2 …则当y<5时,x的取值范围是.【分析】根据表格数据,利用二次函数的对称性判断出x=4时,y=5,然后写出y<5时,x的取值范围即可.【解答】由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.【点评】本题考查了二次函数与不等式,观察图表得到y=5的另一个x的值是解题的关键.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2014年江苏南京)解不等式组:.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,就是不等式组的解集.【解答】,解①得:x≥1,解②得:x<2,则不等式组的解集是:1≤x<2.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x 介于两数之间.18.(2014年江苏南京)先化简,再求值:﹣,其中a=1.【分析】原式通分并利用同分母分式的减法法则计算,约分得到最简结果,将a的值代入计算即可求出值.【解答】原式=﹣==﹣,当a=1时,原式=﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2014年江苏南京)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)【解答】当AB=BC时,四边形DBEF是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE 是菱形.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.20.(2014年江苏南京)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.【分析】(1)由从甲、乙、丙3名同学中随机抽取环保志愿者,直接利用概率公式求解即可求得答案;(2)利用列举法可得抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.【解答】(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为:;(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:.【点评】本题考查的是列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(2014年江苏南京)为了了解某市120000名初中学生的视力情况,某校数学兴趣小组,并进行整理分析.(1)小明在眼镜店调查了1000名初中学生的视力,小刚在邻居中调查了20名初中学生的视力,他们的抽样是否合理?并说明理由.(2)该校数学兴趣小组从该市七、八、九年级各随机抽取了1000名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.请你根据抽样调查的结果,估计该市120000名初中学生视力不良的人数是多少?【分析】(1)根据学生全部在眼镜店抽取,样本不具有代表性,只抽取20名初中学生,那么样本的容量过小,从而得出答案;(2)用120000乘以初中学生视力不良的人数所占的百分比,即可得出答案.【解答】(1)他们的抽样都不合理;因为如果1000名初中学生全部在眼镜店抽取,那么该市每个学生被抽到的机会不相等,样本不具有代表性;如果只抽取20名初中学生,那么样本的容量过小,样本不具有广泛性;(2)根据题意得:×120000=72000(名),该市120000名初中学生视力不良的人数是72000名.【点评】此题考查了折线统计图,用到的知识点是用样本估计总体和抽样调查的可靠性,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.(8分)(2014年江苏南京)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为 2.6(1+x)2万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.分析(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x),则第三年的可变成本为2.6(1+x)2,故得出答案;(2)根据养殖成本=固定成本+可变成本建立方程求出其解即可.【解答】(1)由题意,得第3年的可变成本为:2.6(1+x)2,故答案为:2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146,解得:x1=0.1,x2=﹣2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.【点评】本题考查了增长率的问题关系的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据增长率问题的数量关系建立方程是关键.23.(2014年江苏南京)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m (即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)【分析】设梯子的长为xm.在Rt△ABO中,根据三角函数得到OB,在Rt△CDO 中,根据三角函数得到OD,再根据BD=OD﹣OB,得到关于x的方程,解方程即可求解.【解答】设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB•cos∠ABO=x•cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.【点评】此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.24.(2014年江苏南京)已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?【分析】(1)求出根的判别式,即可得出答案;(2)先化成顶点式,根据顶点坐标和平移的性质得出即可.(1)证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;(2)【解答】y=x2﹣2mx+m2+3=(x﹣m)2+3,把函数y=(x﹣m)2+3的图象延y轴向下平移3个单位长度后,得到函数y=(x ﹣m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点,所以,把函数y=x2﹣2mx+m2+3的图象延y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.【点评】本题考查了二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用,主要考查学生的理解能力和计算能力,题目比较好,有一定的难度.25.(2014年江苏南京)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y 与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?【分析】(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.【解答】(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.【点评】本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.26.(2014年江苏南京)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.【分析】(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.【解答】(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得 r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,。

2014江苏省南京市高淳县中考二模数学试卷及答案

2014江苏省南京市高淳县中考二模数学试卷及答案

2014江苏省南京市高淳县中考二模数学试卷及答案一、选择题(共6小题,每小题2分,共12分,请把答案填写在答题卡相应位置上)1.9的平方根是()2.-在数轴上对应的点为()A.点E B.点F C.点G D.点H3.不等式8-2x>0的解集在数轴上表示正确的是()4.如图,直线l1∥l2,∠1=40°,∠2=75°,则∠3等于()A.55°B.60°C.65°D.70°5.若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是()A.0 B.-1 C.2 D.-36.如图是两个完全相同的转盘,每个转盘被分成了面积相等的四个区域,每个区域内分别填上数字“1”“2”“3”“4”.甲、乙两学生玩转盘游戏,规则如下:固定指针,同时转动两个转盘,任其自由转动,当转盘停止时,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜.那么在该游戏中乙获胜的概率是()二、填空题(本大题共10小题,每小题2分,共20分.)xyOABCD (第13题)7.-6绝对值的结果是 .8.今年“五一”期间,某风景区接待游客的人数约为20300人,这一数据用科学记数法表示为 .12.如图,在下面网格图中(每个小正方形的边长均为1个单位),⊙A 与⊙B 的半径均为2,为使⊙A 与静止的⊙B 相切,那么⊙A 需由图示位置向右平移 个单位.ACP 0 P 1P 2P 3(第16题)15.将一个圆心角为120°,半径为6cm 的扇形围成一个圆锥的侧面, 则所得圆锥的高为 cm .16.如图,△ABC 中,AB =BC =CA =5.一电子跳蚤开始时在BC 边的P 0处,BP 0=2.跳蚤第一步从P 0跳到AC 边的P 1(第1次落点)处,且CP 1= CP 0;第二步从P 1跳到AB 边的P 2(第2次落点)处,且AP 2= AP 1;第三步从P 2跳到BC 边的P 3(第3次落点)处,且BP 3= BP 2;…;跳蚤按照上述规则一直跳下去,第n 次落点为P n (n 为正整数),则点P 2012与点P 2013之间的距离为 .三、解答题(本大题共12小题,共88分.)19.(6分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.(第14题)请根据图中提供的信息,回答下列问题:(1)扇形统计图中的值为▲%,该扇形圆心角的度数为▲;(2)补全条形统计图;20.(6分)如图,有一长方形的仓库,一边长为5米.现要将它改建为简易住房,改建后的住房分为客厅、卧室和卫生间三部分,其中客厅和卧室都为正方形,且卧室的面积大于卫生间的面积.若改建后卫生间的面积为6平方米,试求长方形仓库另一边的长.21.(6分)一批电子产品共3件,其中有正品和次品。

2014年江苏省南京市中考数学试卷答案及解析

2014年江苏省南京市中考数学试卷答案及解析

2014年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2014年江苏南京)下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.2.(2014年江苏南京)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a63.(2014年江苏南京)若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:1 4.(2014年江苏南京)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C. D.5.(2014年江苏南京)8的平方根是()A.4 B.±4C.2D.6.(2014年江苏南京)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2014年江苏南京)﹣2的相反数是,﹣2的绝对值是.8.(2014年江苏南京)截止2013年底,中国高速铁路营运里程达到11000km,居世界首位,将11000用科学记数法表示为.9.(2014年江苏南京)使式子1+有意义的x的取值范围是.10.(2014年江苏南京)2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是cm,极差是cm.11.(2014年江苏南京)已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣3时,y= .12.(2014年江苏南京)如图,AD是正五边形ABCDE的一条对角线,则∠BAD=.13.(2分)(2014年江苏南京)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.14.(2014年江苏南京)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.分析:易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.15.(2014年江苏南京)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为cm.16.(2014年江苏南京)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…﹣10123…y…105212…则当y<5时,x的取值范围是三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2014年江苏南京)解不等式组:.18.(2014年江苏南京)先化简,再求值:﹣,其中a=1.19.(2014年江苏南京)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?20.(2014年江苏南京)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.21.(2014年江苏南京)为了了解某市120000名初中学生的视力情况,某校数学兴趣小组,并进行整理分析.(1)小明在眼镜店调查了1000名初中学生的视力,小刚在邻居中调查了20名初中学生的视力,他们的抽样是否合理?并说明理由.(2)该校数学兴趣小组从该市七、八、九年级各随机抽取了1000名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.请你根据抽样调查的结果,估计该市120000名初中学生视力不良的人数是多少?22.(8分)(2014年江苏南京)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为 2.6(1+x)2万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.分析(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x),则第三年的可变成本为2.6(1+x)2,故得出答案;(2)根据养殖成本=固定成本+可变成本建立方程求出其解即可.23.(2014年江苏南京)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)24.(2014年江苏南京)已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?25.(2014年江苏南京)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h 后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?26.(2014年江苏南京)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O 为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.27.(2014年江苏南京)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC 和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A,则△ABC≌△DEF2014年江苏省南京市中考数学试卷及解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.分析:根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.点评:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解:原式=﹣a2×3=﹣a6.故选:D.点评:本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.3.分析:根据相似三角形面积的比等于相似比的平方计算即可得解.解:∵△ABC∽△A′B′C′,相似比为1:2,∴△ABC与△A′B′C′的面积的比为1:4.故选C.点评:本题考查了相似三角形的性质,熟记相似三角形面积的比等于相似比的平方是解题的关键.4.分析:根据无理数的定义进行估算解答即可.解:A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故答案为B.点评:此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.5.分析:直接根据平方根的定义进行解答即可解决问题.解:∵,∴8的平方根是.故选D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.6.分析:首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y 轴,过点A作AF∥x轴,交点为F,易得△CAF≌△BOE,△AOD∽△OBE,然后由相似三角形的对应边成比例,求得答案.解:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE,在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴,即,∴OE=,即点B(,3),∴AF=OE=,∴点C的横坐标为:﹣(2﹣)=﹣,∴点D(﹣,4).故选B.点评:此题考查了矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.分析:根据相反数的定义和绝对值定义求解即可.解:﹣2的相反数是2,﹣2的绝对值是2.点评:主要考查了相反数的定义和绝对值的定义,要求熟练运用定义解题.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将11000用科学记数法表示为:1.1×104.故答案为:1.1×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.分析:根据被开方数大于等于0列式即可.解:由题意得,x≥0.故答案为:x≥0.点评:本题考查的知识点为:二次根式的被开方数是非负数.10.分析:根据众数的定义找出这组数据中出现次数最多的数,再根据求极差的方法用最大值减去最小值即可得出答案.解:168出现了3次,出现的次数最多,则她们身高的众数是168cm;极差是:169﹣166=3cm;故答案为:168;3.点评:此题考查了众数和极差,众数是一组数据中出现次数最多的数;求极差的方法是最大值减去最小值.11.分析:先把点A(﹣2,3)代入y=求得k的值,然后将x=﹣3代入,即可求出y 的值.解:∵反比例函数y=的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,∴反比例函数解析式为y=﹣,∴当x=﹣3时,y=﹣=2.故答案是:2.点评:本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.12.分析:设O是正五边形的中心,连接OD、OB,求得∠DOB的度数,然后利用圆周角定理即可求得∠BAD的度数.解:设O是正五边形的中心,连接OD、OB.则∠DOB=×360°=144°,∴∠BAD=∠DOB=72°,故答案是:72°.点评:本题考查了正多边形的计算,正确理解正多边形的内心和外心重合是关键.13.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.14.解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.点评:本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.15.分析:设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.解:设长为3x,宽为2x,由题意,得:5x+30≤160,解得:x≤26,故行李箱的长的最大值为78.故答案为:78cm.点评:本题考查了一元一次不等式的应用,解答本题的额关键是仔细审题,找到不等关系,建立不等式.16..分析:根据表格数据,利用二次函数的对称性判断出x=4时,y=5,然后写出y<5时,x的取值范围即可.解:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.点评:本题考查了二次函数与不等式,观察图表得到y=5的另一个x的值是解题的关键.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,就是不等式组的解集.解:,解①得:x≥1,解②得:x<2,则不等式组的解集是:1≤x<2.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.18.分析:原式通分并利用同分母分式的减法法则计算,约分得到最简结果,将a的值代入计算即可求出值.解:原式=﹣==﹣,当a=1时,原式=﹣.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解:当AB=BC时,四边形DBEF是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.20.分析:(1)由从甲、乙、丙3名同学中随机抽取环保志愿者,直接利用概率公式求解即可求得答案;(2)利用列举法可得抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.解:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为:;(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:.点评:本题考查的是列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.分析:(1)根据学生全部在眼镜店抽取,样本不具有代表性,只抽取20名初中学生,那么样本的容量过小,从而得出答案;(2)用120000乘以初中学生视力不良的人数所占的百分比,即可得出答案.解:(1)他们的抽样都不合理;因为如果1000名初中学生全部在眼镜店抽取,那么该市每个学生被抽到的机会不相等,样本不具有代表性;如果只抽取20名初中学生,那么样本的容量过小,样本不具有广泛性;(2)根据题意得:×120000=72000(名),该市120000名初中学生视力不良的人数是72000名.点评:此题考查了折线统计图,用到的知识点是用样本估计总体和抽样调查的可靠性,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.解:(1)由题意,得第3年的可变成本为:2.6(1+x)2,故答案为:2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146,解得:x1=0.1,x2=﹣2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.点评:本题考查了增长率的问题关系的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据增长率问题的数量关系建立方程是关键.23.分析:设梯子的长为xm.在Rt△ABO中,根据三角函数得到OB,在Rt△CDO中,根据三角函数得到OD,再根据BD=OD﹣OB,得到关于x的方程,解方程即可求解.解:设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB?cos∠ABO=x?cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD?cos∠CDO=x?cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.24.分析:(1)求出根的判别式,即可得出答案;(2)先化成顶点式,根据顶点坐标和平移的性质得出即可.(1)证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3,把函数y=(x﹣m)2+3的图象延y轴向下平移3个单位长度后,得到函数y=(x﹣m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点,所以,把函数y=x2﹣2mx+m2+3的图象延y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.点评:本题考查了二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用,主要考查学生的理解能力和计算能力,题目比较好,有一定的难度.25.分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.解:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.26.(2014年江苏南京)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O 为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.分析:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.解:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得 r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,∴PG=,BG=.若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形,∴HE=PG,PH=CE,∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.在Rt△OPH中,由勾股定理,,解得 t=.②当⊙P与⊙O内切时,如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形,∴MG=OE,OM=EG,∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,在Rt△OPM中,由勾股定理,,解得 t=2.综上所述,⊙P与⊙O相切时,t=s或t=2s.点评:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查点,总体题目难度不高,是一道非常值得练习的题目.27.(2014年江苏南京)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A,则△ABC≌△DEF.分析:(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF 全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,∵∠B=∠E,且∠B、∠E都是钝角,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.点评:本题考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.2020-2-8。

2014年南京中考数学试卷及答案

2014年南京中考数学试卷及答案

2014年江苏省南京市中考数学试卷及解析(word版)一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2014年江苏南京)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(2014年江苏南京)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a63.(2014年江苏南京)若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:14.(2014年江苏南京)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.5.(2014年江苏南京)8的平方根是()A.4 B.±4 C.2D.6.(2014年江苏南京)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2014年江苏南京)﹣2的相反数是,﹣2的绝对值是.8.(2014年江苏南京)截止2013年底,中国高速铁路营运里程达到11000km,居世界首位,将11000用科学记数法表示为.9.(2014年江苏南京)使式子1+有意义的x的取值范围是.10.(2014年江苏南京)2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是cm,极差是cm.11.(2014年江苏南京)已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣3时,y=.12.(2014年江苏南京)如图,AD是正五边形ABCDE的一条对角线,则∠BAD=.分析:设O是正五边形的中心,连接OD、OB,求得∠DOB的度数,然后利用圆周角定理即可求得∠BAD的度数.13.(2分)(2014年江苏南京)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.14.(2014年江苏南京)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.分析:易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.15.(2014年江苏南京)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为cm.16.(2014年江苏南京)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x …﹣1 0 1 2 3 …y …10 5 2 1 2 …则当y<5时,x的取值范围是.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2014年江苏南京)解不等式组:.18.(2014年江苏南京)先化简,再求值:﹣,其中a=1.19.(2014年江苏南京)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?20.(2014年江苏南京)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.21.(2014年江苏南京)为了了解某市120000名初中学生的视力情况,某校数学兴趣小组,并进行整理分析.(1)小明在眼镜店调查了1000名初中学生的视力,小刚在邻居中调查了20名初中学生的视力,他们的抽样是否合理?并说明理由.(2)该校数学兴趣小组从该市七、八、九年级各随机抽取了1000名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.请你根据抽样调查的结果,估计该市120000名初中学生视力不良的人数是多少?22.(8分)(2014年江苏南京)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.24.(2014年江苏南京)已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?25.(2014年江苏南京)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?26.(2014年江苏南京)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.2014年江苏省南京市中考数学试卷及解析(word版)1.分析:根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.点评:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解:原式=﹣a2×3=﹣a6.故选:D.点评:本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.3.分析:根据相似三角形面积的比等于相似比的平方计算即可得解.解:∵△ABC∽△A′B′C′,相似比为1:2,∴△ABC与△A′B′C′的面积的比为1:4.故选C.点评:本题考查了相似三角形的性质,熟记相似三角形面积的比等于相似比的平方是解题的关键.4.分析:根据无理数的定义进行估算解答即可.解:A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故答案为B.点评:此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.5.分析:直接根据平方根的定义进行解答即可解决问题.解:∵,∴8的平方根是.故选D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.6.分析:首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,易得△CAF≌△BOE,△AOD∽△OBE,然后由相似三角形的对应边成比例,求得答案.解:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A 作AF∥x轴,交点为F,∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE,在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴,即,∴OE=,即点B(,3),∴AF=OE=,∴点C的横坐标为:﹣(2﹣)=﹣,∴点D(﹣,4).故选B.点评:此题考查了矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.分析:根据相反数的定义和绝对值定义求解即可.解:﹣2的相反数是2,﹣2的绝对值是2.点评:主要考查了相反数的定义和绝对值的定义,要求熟练运用定义解题.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将11000用科学记数法表示为:1.1×104.故答案为:1.1×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.分析:根据被开方数大于等于0列式即可.解:由题意得,x≥0.故答案为:x≥0.点评:本题考查的知识点为:二次根式的被开方数是非负数.10.分析:根据众数的定义找出这组数据中出现次数最多的数,再根据求极差的方法用最大值减去最小值即可得出答案.解:168出现了3次,出现的次数最多,则她们身高的众数是168cm;极差是:169﹣166=3cm;故答案为:168;3.点评:此题考查了众数和极差,众数是一组数据中出现次数最多的数;求极差的方法是最大值减去最小值.11.分析:先把点A(﹣2,3)代入y=求得k的值,然后将x=﹣3代入,即可求出y的值.解:∵反比例函数y=的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,∴反比例函数解析式为y=﹣,∴当x=﹣3时,y=﹣=2.故答案是:2.点评:本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.12.分析:设O是正五边形的中心,连接OD、OB,求得∠DOB的度数,然后利用圆周角定理即可求得∠BAD的度数.解:设O是正五边形的中心,连接OD、OB.则∠DOB=×360°=144°,∴∠BAD=∠DOB=72°,故答案是:72°.点评:本题考查了正多边形的计算,正确理解正多边形的内心和外心重合是关键.13.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.14.分析:易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.点评:本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.15.分析:设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.解:设长为3x,宽为2x,由题意,得:5x+30≤160,解得:x≤26,故行李箱的长的最大值为78.故答案为:78cm.点评:本题考查了一元一次不等式的应用,解答本题的额关键是仔细审题,找到不等关系,建立不等式.16.分析:根据表格数据,利用二次函数的对称性判断出x=4时,y=5,然后写出y<5时,x的取值范围即可.解:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.点评:本题考查了二次函数与不等式,观察图表得到y=5的另一个x的值是解题的关键.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,就是不等式组的解集.解:,解①得:x≥1,解②得:x<2,则不等式组的解集是:1≤x<2.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.18.分析:原式通分并利用同分母分式的减法法则计算,约分得到最简结果,将a的值代入计算即可求出值.解:原式=﹣==﹣,当a=1时,原式=﹣.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2014年江苏南京)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解:当AB=BC时,四边形DBEF是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.20.分析:(1)由从甲、乙、丙3名同学中随机抽取环保志愿者,直接利用概率公式求解即可求得答案;(2)利用列举法可得抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.解:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为:;(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:.点评:本题考查的是列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.分析:(1)根据学生全部在眼镜店抽取,样本不具有代表性,只抽取20名初中学生,那么样本的容量过小,从而得出答案;(2)用120000乘以初中学生视力不良的人数所占的百分比,即可得出答案.解:(1)他们的抽样都不合理;因为如果1000名初中学生全部在眼镜店抽取,那么该市每个学生被抽到的机会不相等,样本不具有代表性;如果只抽取20名初中学生,那么样本的容量过小,样本不具有广泛性;(2)根据题意得:×120000=72000(名),该市120000名初中学生视力不良的人数是72000名.点评:此题考查了折线统计图,用到的知识点是用样本估计总体和抽样调查的可靠性,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.分析(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x),则第三年的可变成本为2.6(1+x)2,故得出答案;(2)根据养殖成本=固定成本+可变成本建立方程求出其解即可.解:(1)由题意,得第3年的可变成本为:2.6(1+x)2,故答案为:2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146,解得:x1=0.1,x2=﹣2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.点评:本题考查了增长率的问题关系的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据增长率问题的数量关系建立方程是关键.23.解:设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB•cos∠ABO=x•cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.24.(2014年江苏南京)已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?分析:(1)求出根的判别式,即可得出答案;(2)先化成顶点式,根据顶点坐标和平移的性质得出即可.(1)证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3,把函数y=(x﹣m)2+3的图象延y轴向下平移3个单位长度后,得到函数y=(x﹣m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点,所以,把函数y=x2﹣2mx+m2+3的图象延y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.点评:本题考查了二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用,主要考查学生的理解能力和计算能力,题目比较好,有一定的难度.25.分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.解:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.26.解:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,∴PG=,BG=.若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形,∴HE=PG,PH=CE,∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.在Rt△OPH中,由勾股定理,,解得t=.②当⊙P与⊙O内切时,如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形,∴MG=OE,OM=EG,∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,在Rt△OPM中,由勾股定理,,解得t=2.综上所述,⊙P与⊙O相切时,t=s或t=2s.点评:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查点,总体题目难度不高,是一道非常值得练习的题目.27.(2014年江苏南京)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A,则△ABC≌△DEF.分析:(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,∵∠B=∠E,且∠B、∠E都是钝角,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.点评:本题考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.。

江苏省南京市高淳区中考数学二模试卷

江苏省南京市高淳区中考数学二模试卷

江苏省南京市高淳区中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)的值等于()A.2B.﹣2C.±2D.162.(2分)在△ABC中,∠C=90°,BC=3,AC=4,则sin A的值是()A.B.C.D.3.(2分)如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是()A.B.C.D.4.(2分)计算a2•()3的结果是()A.a B.a5C.D.5.(2分)已知反比例函数,下列结论中,不正确的是()A.图象必经过点(1,2)B.y随x的增大而增大C.图象在第一、三象限内D.若x>1,则0<y<26.(2分)如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E 在圆上,四边形BCDE为矩形,这个矩形的面积是()A.2B.C.D.二、填空题(本大题共10小题,每小题2分,共20分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)PM 2.5造成的损失巨大,治理的花费更大.我国每年因为空气污染造成的经济损失高达约5659亿元.将5659亿元用科学记数法表示为亿元.8.(2分)函数y=中,自变量x的取值范围是.9.(2分)分解因式:4x3﹣x=.10.(2分)计算:﹣×=.11.(2分)在平面直角坐标系中,点A的坐标是(﹣2,3),作点A关于x轴的对称点,得到点A′,再将点A'向右平移3个单位得到点A″,则点A''的坐标是.12.(2分)如图,在△ABC中,AB=BC,∠ABC=120°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=°.13.(2分)某班10名学生校服尺寸与对应人数如下表所示:尺寸(cm)160165170175180学生人数(人)13222则这10名学生校服尺寸的中位数为cm.14.(2分)二次函数y=x2﹣2x+m的图象与x轴的一个交点的坐标是(﹣1,0),则图象与x轴的另一个交点的坐标是.15.(2分)如图,点A、B、C在⊙O上,∠ACB的度数是20°,的长为π,则⊙O的半径是.16.(2分)已知二次函数y=m(x﹣1)(x﹣4)的图象与x轴交于A、B两点(点A在点B的左边),顶点为C,将该二次函数的图象关于x轴翻折,所得图象的顶点为D.若四边形ACBD为正方形,则m的值为.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组,并写出不等式组的整数解.18.(7分)先化简,再求值:(﹣)÷,其中a=2+.19.(7分)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数.从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)所抽取的样本容量为.(2)若抽取的学生成绩用扇形图来描述,则表示“第三组(79.5~89.5 )”的扇形的圆心角度数为多少?(3)如果成绩在80分以上(含80分)的同学可以获奖,请估计该校有多少名同学获奖.20.(8分)如图①、②、③是三个可以自由转动的转盘.(1)若同时转动①、②两个转盘,则两个转盘停下时指针所指的数字都是2的概率为;(2)甲、乙两人用三个转盘玩游戏,甲转动转盘,乙记录指针停下时所指的数字.游戏规定:当指针所指的三个数字中有数字相同时,就算甲赢,否则就算乙赢.请判断这个游戏是否公平,并说明你的理由.21.(8分)人民商场销售某种冰箱,每台进价为2500元,市场调研表明:当每台销售价定为2900元时,平均每天能售出8台;每台售价每降低50元,平均每天能多售出4台.设该种冰箱每台的销售价降低了x元.(1)填表:每天售出的冰箱台数(台)每台冰箱的利润(元)降价前8降价后(2)若商场要想使这种冰箱的销售利润平均每天达到5000元,则每台冰箱的售价应定为多少元?22.(10分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D 为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时.①求证:四边形BECD是菱形;②当∠A为多少度时,四边形BECD是正方形?说明理由.23.(7分)图①为平地上一幢建筑物与铁塔图,图②为其示意图.建筑物AB 与铁塔CD都垂直于地面,BD=20m,在A点测得D点的俯角为45°,测得C点的仰角为58°.求铁塔CD的高度.(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)24.(8分)某市举行“迷你马拉松”长跑比赛,运动员从起点甲地出发,跑到乙地后,沿原路线再跑回点甲地.设该运动员离开起点甲地的路程s(km)与跑步时间t(min)之间的函数关系如图所示.已知该运动员从甲地跑到乙地时的平均速度是0.2km/min,根据图象提供的信息,解答下列问题:(1)a=km;(2)组委会在距离起点甲地3km处设立一个拍摄点P,该运动员从第一次过P 点到第二次过P点所用的时间为24min.①求AB所在直线的函数表达式;②该运动员跑完全程用时多少min?25.(8分)已知二次函数y=﹣x2+2mx﹣2m2﹣3(m为常数).(1)求证:不论m为何值,该二次函数图象与x轴没有公共点;(2)如果把该函数图象沿y轴向上平移4个单位后,得到的函数图象与x轴只有一个公共点,试求m的值.26.(9分)如图,△ABC中,AB=AC,以AC为直径的⊙O与边AB、BC分别交于点D、E.过E的直线与⊙O相切,与AC的延长线交于点G,与AB交于点F.(1)求证:△BDE为等腰三角形;(2)求证:GF⊥AB;(3)若⊙O半径为3,DF=1,求CG的长.27.(10分)如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF,将纸片ACB的一角沿EF 折叠.(1)如图①,若折叠后点A落在AB边上的点D处,且使S四边形ECBF =3S△AEF,则AE=;(2)如图②,若折叠后点A落在BC边上的点M处,且使MF∥CA.求AE的长;(3)如图③,若折叠后点A落在BC延长线上的点N处,且使NF⊥AB.求AE 的长.江苏省南京市高淳区中考数学二模试卷参考答案一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.A;2.B;3.C;4.C;5.B;6.C;二、填空题(本大题共10小题,每小题2分,共20分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)7.5.659×103;8.x≥﹣2;9.x(2x+1)(2x﹣1);10.;11.(1,﹣3);12.30;13.170;14.(3,0);15.;16.±;三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答解答时应写出文字说明、证明过程或演算步骤)17.;18.;19.50;20.;21.400;8+×4;400﹣x;22.;23.;24.5;25.;26.;27.;。

江苏省南京市高淳区2014年中考数学二模试题

江苏省南京市高淳区2014年中考数学二模试题
(1)本次调查共抽样了 (2)补全条形统计图; (3)若该校九年级共有 450 名学生,试估计报名参加排球兴趣小组的人数. ▲ 名学生;
20. (8 分)如图,已知平行四边形 ABCD,过 A 作 AM⊥BC 于 M,交 BD 于 E,过 C 作
CN⊥AD 于 N,交 BD 于 F,连结 AF、CE.
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分,不需写出 解答过程,请把答案直接填写在答题卡相应的位置 上) ........ 1 1 7.- 的相反数为 ▲ ; - 的倒数为 ▲ . 2 2 8.函数 y= x-1中,自变量 x 的取值范围是 ▲ . 9.方程 3 2 - =0 的解为 2x x+1 ▲ .
B E M C 7
„„„„„„2 分 „„„„„„4 分 „„„„„„6 分
„„„„„„2 分
A
N F
D
∴∠BAM=∠DCN ∴△AEB ≌ △CFD.
„„„„„„3 分 „„„„„„4 分
(2)∵△AEB ≌ △CFD, ∴AE=CF. „„„„„„5 分
∵AD∥BC,CN⊥AD ∴∠BCN=∠CND=90° ∵AM⊥BC,∴∠AMB=90° ∴AM∥CN „„„„„„6 分
△PAD 的面积 y (cm )与点 P 的运动时间 x(s )的函数关系如图 2 所示,请你根据图象提供 的信息,解答下列问题: (1)AB= ▲ cm,BC= ▲ cm. (2)①求 a 的值与点 G 的坐标; ②用文字说明点 N 坐标所表示的实际意义. y (cm2)
C B a M N
2
P A 图1
„„„„„„7 分 „„„„„„8 分
即 AE∥CF, ∴四边形 AECF 是平行四边形.
21. (8 分)解(1)>; (2)乙应选择数字 4.

2014届中考二模数学试题含答案

2014届中考二模数学试题含答案

2014年初中毕业班第二次模拟测试数 学 试 卷说明:1.全卷共4页,考试用时为100分钟,满分为120分。

2.考生务必用黑色字迹的签字笔或钢笔在答题卷密封线左边的空格里填写自己的学校、班级、姓名、准考证号,并在答题卷指定的位置里填写座位号。

3.选择题选出答案后,请将所选选项的字母填写在答题卷对应题目的空格内。

4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卷的整洁。

考试结束时,将试卷和答题卷一并交回。

一、选择题(本大题共10小题,每小题3分,共30分。

在各题的四个选项中,只有—项是正确的,请将所选选项的字母填写在答题卷对应题目的空格内) 1、9的算术平方根是A .81B .3±C .3-D .32、据报道,肇庆团市委“情系农村”深化农村青年创业小额贷款工作,共发放贷款13 000 000多元,数字13 000 000用科学记数法表示为A .1.3×106B .1.3×107C .1.3×108D .1.3×1093、如图所示的几何体的主视图是4、下列计算正确的是 A.222)2(aa =- B.632a a a ÷= C.a a 22)1(2-=-- D.22a a a =⋅5、等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为 A . 12 B . 15 C . 12或15 D . 186、如图,线段DE 是△ABC 的中位线,∠B =60°,则∠ADE 的度数为 A .80° B .70° C .60° D .50°7、下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是8、在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的A .众数B .方差C .平均数D .中位数(第6题图)(第3题图)(第16题图)9、把不等式组2151x x -≤⎧⎨>⎩的解集在数轴上表示正确的是10、童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图中能反映y 与x 的函数关系式的大致图象是二、填空题:(本题共6个小题,每小题4分,共24分) 11、分解因式:24(1)x x --= ▲ .12、如果26a b -=,则42b a -= ▲ .13、已知菱形的两条对角线长分别为6和8,则菱形的边长为 ▲ .14、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为 ▲ . 15x 的取值范围是 ▲ . 16、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠C = 30°,CD =. 则阴影部分的面积S 阴影= ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17、计算:2014201(1)()(5)16sin 602π--⨯+---︒18、已知一次函数y x b =+的图象经过点B (0,),且与 反比例函数ky x=(k 为不等于0的常数)的图象有一交点 为点A (m ,1-) .求m 的值和反比例函数的解析式. 19、在图示的方格纸中(1)作出△ABC 关于MN 对称的图形△A 1B 1C 1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?四、解答题(二)(本大题3小题,每小题7分,共21分)20、如图,在小山的东侧A点处有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C点处,此时热气球上的人测得小山西侧B点的俯角为30°,求小山东西两侧A、B两点间的距离.(第20题图)21、为了了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在▲组,中位数在▲组;(2)求样本中,女生身高在E组的人数;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?(第22题图)22、如图,在平行四边形ABCD 中,∠ABC =60°,E 、F 分别 在CD 和BC 的延长线上,AE ∥BD .(1)求证:点D 为CE 的中点; (2)若EF ⊥BC ,EF =,求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23、现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费。

2014南京中考数学试题(解析版)

2014南京中考数学试题(解析版)

2014年江苏省南京市中考数学试卷及解析(word版)一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2014年江苏南京)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.分析:根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.点评:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.(2014年江苏南京)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解:原式=﹣a2×3=﹣a6.故选:D.点评:本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.3.(2014年江苏南京)若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:1分析:根据相似三角形面积的比等于相似比的平方计算即可得解.解:∵△ABC∽△A′B′C′,相似比为1:2,∴△ABC与△A′B′C′的面积的比为1:4.故选C.点评:本题考查了相似三角形的性质,熟记相似三角形面积的比等于相似比的平方是解题的关键.4.(2014年江苏南京)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.分析:根据无理数的定义进行估算解答即可.解:A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故答案为B.点评:此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.5.(2014年江苏南京)8的平方根是()A.4 B.±4 C.2D.分析:直接根据平方根的定义进行解答即可解决问题.解:∵,∴8的平方根是.故选D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.6.(2014年江苏南京)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4) D.(,)、(﹣,4)分析:首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,易得△CAF≌△BOE,△AOD∽△OBE,然后由相似三角形的对应边成比例,求得答案.解:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A 作AF∥x轴,交点为F,∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE,在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴,即,∴OE=,即点B(,3),∴AF=OE=,∴点C的横坐标为:﹣(2﹣)=﹣,∴点D(﹣,4).故选B.点评:此题考查了矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2014年江苏南京)﹣2的相反数是,﹣2的绝对值是.分析:根据相反数的定义和绝对值定义求解即可.解:﹣2的相反数是2,﹣2的绝对值是2.点评:主要考查了相反数的定义和绝对值的定义,要求熟练运用定义解题.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.(2014年江苏南京)截止2013年底,中国高速铁路营运里程达到11000km,居世界首位,将11000用科学记数法表示为.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将11000用科学记数法表示为:1.1×104.故答案为:1.1×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(2014年江苏南京)使式子1+有意义的x的取值范围是.分析:根据被开方数大于等于0列式即可.解:由题意得,x≥0.故答案为:x≥0.点评:本题考查的知识点为:二次根式的被开方数是非负数.10.(2014年江苏南京)2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是cm,极差是cm.分析:根据众数的定义找出这组数据中出现次数最多的数,再根据求极差的方法用最大值减去最小值即可得出答案.解:168出现了3次,出现的次数最多,则她们身高的众数是168cm;极差是:169﹣166=3cm;故答案为:168;3.点评:此题考查了众数和极差,众数是一组数据中出现次数最多的数;求极差的方法是最大值减去最小值.11.(2014年江苏南京)已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣3时,y=.分析:先把点A(﹣2,3)代入y=求得k的值,然后将x=﹣3代入,即可求出y的值.解:∵反比例函数y=的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,∴反比例函数解析式为y=﹣,∴当x=﹣3时,y=﹣=2.故答案是:2.点评:本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.12.(2014年江苏南京)如图,AD是正五边形ABCDE的一条对角线,则∠BAD=.分析:设O是正五边形的中心,连接OD、OB,求得∠DOB的度数,然后利用圆周角定理即可求得∠BAD的度数.解:设O是正五边形的中心,连接OD、OB.则∠DOB=×360°=144°,∴∠BAD=∠DOB=72°,故答案是:72°.点评:本题考查了正多边形的计算,正确理解正多边形的内心和外心重合是关键.13.(2分)(2014年江苏南京)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.14.(2014年江苏南京)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.分析:易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.点评:本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.15.(2014年江苏南京)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为cm.分析:设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.解:设长为3x,宽为2x,由题意,得:5x+30≤160,解得:x≤26,故行李箱的长的最大值为78.故答案为:78cm.点评:本题考查了一元一次不等式的应用,解答本题的额关键是仔细审题,找到不等关系,建立不等式.16.(2014年江苏南京)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x …﹣1 0 1 2 3 …y …10 5 2 1 2 …则当y<5时,x的取值范围是.分析:根据表格数据,利用二次函数的对称性判断出x=4时,y=5,然后写出y<5时,x的取值范围即可.解:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.点评:本题考查了二次函数与不等式,观察图表得到y=5的另一个x的值是解题的关键.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2014年江苏南京)解不等式组:.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,就是不等式组的解集.解:,解①得:x≥1,解②得:x<2,则不等式组的解集是:1≤x<2.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.18.(2014年江苏南京)先化简,再求值:﹣,其中a=1.分析:原式通分并利用同分母分式的减法法则计算,约分得到最简结果,将a的值代入计算即可求出值.解:原式=﹣==﹣,当a=1时,原式=﹣.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2014年江苏南京)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解:当AB=BC时,四边形DBEF是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.20.(2014年江苏南京)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.分析:(1)由从甲、乙、丙3名同学中随机抽取环保志愿者,直接利用概率公式求解即可求得答案;(2)利用列举法可得抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.解:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为:;(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:.点评:本题考查的是列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(2014年江苏南京)为了了解某市120000名初中学生的视力情况,某校数学兴趣小组,并进行整理分析.(1)小明在眼镜店调查了1000名初中学生的视力,小刚在邻居中调查了20名初中学生的视力,他们的抽样是否合理?并说明理由.(2)该校数学兴趣小组从该市七、八、九年级各随机抽取了1000名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.请你根据抽样调查的结果,估计该市120000名初中学生视力不良的人数是多少?分析:(1)根据学生全部在眼镜店抽取,样本不具有代表性,只抽取20名初中学生,那么样本的容量过小,从而得出答案;(2)用120000乘以初中学生视力不良的人数所占的百分比,即可得出答案.解:(1)他们的抽样都不合理;因为如果1000名初中学生全部在眼镜店抽取,那么该市每个学生被抽到的机会不相等,样本不具有代表性;如果只抽取20名初中学生,那么样本的容量过小,样本不具有广泛性;(2)根据题意得:×120000=72000(名),该市120000名初中学生视力不良的人数是72000名.点评:此题考查了折线统计图,用到的知识点是用样本估计总体和抽样调查的可靠性,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.(8分)(2014年江苏南京)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为 2.6(1+x)2万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.分析(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x),则第三年的可变成本为2.6(1+x)2,故得出答案;(2)根据养殖成本=固定成本+可变成本建立方程求出其解即可.解:(1)由题意,得第3年的可变成本为:2.6(1+x)2,故答案为:2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146,解得:x1=0.1,x2=﹣2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.点评:本题考查了增长率的问题关系的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据增长率问题的数量关系建立方程是关键.23.(2014年江苏南京)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)分析:设梯子的长为xm.在Rt△ABO中,根据三角函数得到OB,在Rt△CDO中,根据三角函数得到OD,再根据BD=OD﹣OB,得到关于x的方程,解方程即可求解.解:设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB•cos∠ABO=x•cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.24.(2014年江苏南京)已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?分析:(1)求出根的判别式,即可得出答案;(2)先化成顶点式,根据顶点坐标和平移的性质得出即可.(1)证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3,把函数y=(x﹣m)2+3的图象延y轴向下平移3个单位长度后,得到函数y=(x﹣m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点,所以,把函数y=x2﹣2mx+m2+3的图象延y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.点评:本题考查了二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用,主要考查学生的理解能力和计算能力,题目比较好,有一定的难度.25.(2014年江苏南京)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.解:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.26.(2014年江苏南京)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.分析:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.解:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,∴PG=,BG=.若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形,∴HE=PG,PH=CE,∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.在Rt△OPH中,由勾股定理,,解得t=.②当⊙P与⊙O内切时,如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形,∴MG=OE,OM=EG,∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,在Rt△OPM中,由勾股定理,,解得t=2.综上所述,⊙P与⊙O相切时,t=s或t=2s.点评:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查点,总体题目难度不高,是一道非常值得练习的题目.27.(2014年江苏南京)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A,则△ABC≌△DEF.分析:(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,∵∠B=∠E,且∠B、∠E都是钝角,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.点评:本题考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
2
3
(第 21 题)
22. (7 分)如图,利用热气球探测器测量大楼 AB 的高度.从热气球 P 处测得大楼顶部 B 的俯角为 37°,大楼底部 A 的俯角为 60°,此时热气球 P 离地面的高度为 120 m.试求大 楼 AB 的高度(精确到 0.1 m) . (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, 3≈1.73) P
④球 D. ③④
5.某次知识竞赛中,10 名学生成绩的统计表如下: 分数(分) 人数(人) 则下列说法中正确的是( ▲ ) A.学生成绩的极差是 4 C.学生成绩的众数是 5 B.学生成绩的中位数是 80 分 D.学生成绩的平均数是 80 分
y A8 A4 A7 O A3 A2 A6 A1 A5 x
B
A (第 22 题)
23. (7 分)建造一个深度为 2m 的长方体无盖水池,已知池底矩形的一边长是另一边长的 2 倍,池底的造价为 200 元∕m2,池壁的造价为 100 元∕m2.若总造价为 7200 元,求该长 方体水池池底矩形的边长.
2.下列图形中,是中心对称但不是轴对称的图形是( ▲ )
等边三角形
正方形

平行四边形
A. 3.计算(ab2)3 的结果是( ▲ ) A.ab6 B.ab8
B.
C.
D.
C.a3b6
D.a3b8
4.下列水平放置的四个几何体中,其主视图与俯视图相同的几何体为( ▲ )
①正方体 A.①②
②圆柱 B. ①④
③圆锥 C. ②④
E B M (第 20 题) C A N F D
21. (8 分)如图,一个可以自由转动的转盘被等分成 3 个扇形区域,上面分别标有 数字 1、2、3.甲、乙两位同学用该转盘做游戏. (1)若转动该转盘 1 次,且规定:转盘停止转动时,指针指向区域的数字为奇数 时 甲 获 胜 ,否 则 乙 获 胜 .记 甲 获 胜 的 概 率 为 P( 甲 ) ,乙 获 胜 的 概 率 为 P( 乙 ) , 则 P(甲) ▲ P(乙) . (填“>” 、 “<”或“=” ) (2)若两人各转动该转盘 1 次,且规定:游戏前每人各选定一个数字,如果两次转盘 停止转动时,指针指向区域的数字之和 与谁选的数字相同,则谁就获胜.在已知甲已 .... 选定数字 3 的情况下,乙为使自己获胜的概率比甲大,他应选择什么数字?试说明理由.
D A
E
10.如图,△ABC 中,D、E 分别是 AB、AC 的中点,则△ADE
B C (第 10 题)
与△ABC 的面积比为 ▲ .
11. 已知矩形一边长为 3³103cm, 另一边长为 400 cm, 将矩形面积用科学记数法表示为 ▲ cm2. 12.计算 2a² 6a (a≥0)的结果是 ▲ . 13.将一次函数 y=-2x+4 的图象向左平移 为 y=-2 x. 1-2m 1 14.若 A(-1,y1)、B(-2,y2)是反比例函数 y= (m 为常数,m≠ )图象上 x 2 的两点,且 y1>y2,则 m 的取值范围是 ▲ . 15.若等腰三角形的一个外角是 100° ,则其顶角的度数为 ▲ . 16.如图,AB 是⊙O 的直径,点 C 在⊙O 上,D 是⊙O 上的 一个动点,且 C,D 两点位于直径 AB 的两侧.连接 CD,过 A 点 C 作 CE⊥CD 交 DB 的延长线于点 E.若 AC=2 ,BC=4, 则线段 DE 长的最大值是 ▲ .
D (第 16 题) C E

个单位长度,所得图象的函数关系式
O
B
三、解答题(本大题共 11 小题,共 88 分.请在答题卡指定区域内作答,解答时应写出文字 说明、证明过程或演算步骤) 17. (5 分)计算: (2) 4 2
2 1
8 .
18. (5 分)化简:
2a 1 . 2 ab a b
60 1
70 1
80 5
]
90 2

100 1
6.如图,网格中的每个小正方形的边长都是 1,A1、A2、A3、…都在格点上,△ A1A2A 3、 △ A3A4A 5、△ A5A6A 7、…都是斜边在 x 轴上,且斜边长分别 为 2、4、6、…的等腰直角三角形.若△ A1A2A 3 的三个顶点
坐标为 A1(2,0) 、A2(1,-1) 、A3(0,0) ,则依图中所示 规律,A19 的坐标为( ▲ ) . A.(10,0) C.(2,8) B.(-10,0) D.(-8,0)
篮球 20%
根据图中的信息,解答下列问题: (1)本次调查共抽样了 (2)补全条形统计图; (3)若该校九年级共有 450 名学生,试估计报名参加排球兴趣小组的人数. ▲ 名学生;
20. (8 分)如图,已知平行四边形 ABCD,过 A 作 AM⊥BC 于 M,交 BD 于 E,过 C 作 CN⊥AD 于 N,交 BD 于 F,连结 AF、CE. (1)求证:△AEB ≌ △CFD; (2)求证:四边形 AECF 为平行四边形.
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分,不需写出 解答过程,请把答案直接填写在答题卡相应的位置 上) ........ 1 1 7.- 的相反数为 ▲ ; - 的倒数为 ▲ . 2 2 8.函数 y= x-1中,自变量 x 的取值范围是 ▲ . 9.方程 3 2 - =0 的解为 2x x+1 ▲ .
高 淳 区 2014 年 质 量 调 研 检 测 试 卷 ( 二 )
九年级数学
一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.在每小题所给出的四个选项中,恰 有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置 上) ....... 1.4的算术平方根是( ▲ ) A.2 B.±2 C.16 D.±16
2
19. (7 分)某校为开展每天一小时阳光体育活动,准备组建篮球、排球、羽毛球、乒乓球 四个兴趣小组,并规定每名学生只能参加 1 个小组,且不能不参加.该校对九年级学生报名 情况进行了抽样调查,并将所得数据绘制成了如下两幅统计图:
报篮球、排球、羽毛球、乒乓球兴 趣小组人数条形统计图 人数 20 15 10 5 篮球 羽毛球 排球 乒乓球 项目 (第 19 题) 排球 乒乓球 羽毛球 报篮球、排球、羽毛球、乒乓球兴 趣小组人数扇形统计图
相关文档
最新文档