小学奥数行程问题教案

合集下载

小学奥数行程问题教案

小学奥数行程问题教案

小学奥数行程问题教案一、教学目标1. 让学生理解行程问题的基本概念,如行程、速度、时间等。

2. 培养学生解决行程问题的基本思路和方法。

3. 提高学生逻辑思维能力和解决问题的能力。

二、教学内容1. 行程问题的基本概念介绍。

2. 行程问题的解决步骤和方法讲解。

3. 典型行程问题案例分析。

三、教学重点与难点1. 教学重点:行程问题的基本概念,行程问题的解决步骤和方法。

2. 教学难点:行程问题的灵活应用和解决。

四、教学方法1. 采用讲解法,讲解行程问题的基本概念和解决方法。

2. 采用案例分析法,分析典型行程问题。

3. 采用互动教学法,引导学生积极参与,提高解决问题的能力。

五、教学准备1. 教学课件或黑板。

2. 典型行程问题案例。

3. 练习题。

教案内容:一、教学目标让学生理解行程问题的基本概念,如行程、速度、时间等。

培养学生解决行程问题的基本思路和方法。

提高学生逻辑思维能力和解决问题的能力。

二、教学内容1. 行程问题的基本概念介绍。

行程:物体在一段时间内所经过的路线长度。

速度:物体单位时间内所经过的路线长度。

时间:物体完成一段行程所需的时间。

2. 行程问题的解决步骤和方法讲解。

步骤一:明确行程问题中的已知量和未知量。

步骤二:根据已知量和未知量之间的关系,列出方程。

步骤三:解方程,求解未知量。

步骤四:检验解是否符合实际情况。

3. 典型行程问题案例分析。

案例一:一个人以60千米/小时的速度行驶,行驶了3小时,求他行驶的距离。

案例二:两辆火车相向而行,第一辆火车以40千米/小时的速度行驶,第二辆火车以50千米/小时的速度行驶,两火车相遇需要多长时间?三、教学重点与难点1. 教学重点:行程问题的基本概念,行程问题的解决步骤和方法。

2. 教学难点:行程问题的灵活应用和解决。

四、教学方法1. 采用讲解法,讲解行程问题的基本概念和解决方法。

2. 采用案例分析法,分析典型行程问题。

3. 采用互动教学法,引导学生积极参与,提高解决问题的能力。

小学奥数行程问题教案

小学奥数行程问题教案

小学奥数行程问题教案教案标题:小学奥数行程问题教案教学目标:1. 学生能够理解行程问题的基本概念,并能够应用基本的数学运算解决行程问题。

2. 学生能够培养逻辑思维和问题解决能力,通过解决行程问题提高数学思维能力。

3. 学生能够将数学知识与实际生活相结合,认识到数学在日常生活中的应用。

教学准备:1. 教师准备白板、黑板笔、教学PPT等教具。

2. 学生准备纸笔,课前复习相关知识。

教学过程:Step 1:导入(5分钟)教师通过引入一个简单的行程问题,如小明从家里骑自行车到学校,全程5公里,他骑了3公里后又骑了2公里,问他离学校还有多远?引导学生思考如何解决这个问题。

Step 2:概念讲解(10分钟)教师通过PPT或黑板向学生讲解行程问题的基本概念,如:行程是指从一个地方到另一个地方的路程;行程问题是指通过已知的行程信息,计算未知行程的问题等。

Step 3:解题方法(15分钟)教师通过示例向学生介绍解决行程问题的常用方法,如:方法一:已知行程之和求未知行程:未知行程 = 已知行程之和 - 已知行程。

方法二:已知行程之差求未知行程:未知行程 = 已知行程 - 已知行程之差。

Step 4:练习与讨论(20分钟)教师出示几个不同类型的行程问题,让学生自主尝试解答,并进行讨论。

教师可提供不同难度的问题,以满足不同学生的需求。

Step 5:拓展应用(10分钟)教师通过生活实例或趣味问题,引导学生将所学的行程问题应用到实际生活中,培养学生的数学思维能力。

Step 6:小结与反思(5分钟)教师对本节课的内容进行小结,并鼓励学生对自己的学习进行反思,总结所学的知识和方法。

Step 7:作业布置(5分钟)教师布置相关的作业,巩固学生对行程问题的理解和应用能力。

教学延伸:1. 鼓励学生自主解决更复杂的行程问题,提高解决问题的能力。

2. 引导学生通过编写自己的行程问题,交流分享,提高表达和交流能力。

3. 鼓励学生参加奥数竞赛,提高数学思维和解决问题的能力。

行程问题教案(共五篇)

行程问题教案(共五篇)

行程问题教案(共五篇)第一篇:行程问题教案课题名称:行程问题教学目标:1:理解相遇、追及问题的中路程、时间、速度的关系2:能准确地画出线段图3:能结合线段图来抓住路程时间速度的关系来求解教学重点与难点:1:掌握把题意转化为线段图来解题2:掌握相遇、追及、行程问题中时间、路程、速度的数理关系教学内容知识点一:相遇问题1:两个物体在同一路段上两个不同的地点相对而行时,如果同时到达某一地点,通常叫做相遇。

2:基本公式:速度和×相遇时间=距离3:解题时的关键在于理清运动过程,抓住两者同时行驶的路程及速度和,同时结合线段图求解。

例题1:例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?分析与解答:这是一道相遇问题。

所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。

(基本相遇问题)练习:1,一辆货车和一辆客车同时从相距450千米的两地相向而行,货车每小时行40千米,客车每小时行50米,问:几小时后两车在途中相遇?2.两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?3.辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?例2:小明住东村,小牛住西村,小明和小牛同时从东村、西村出发到对方家走去,2小时后在途中相遇,小明每小时走3千米,小牛每小时走4千米,东西村相距多少千米?练习二:1,甲车每小时行50千米,乙车每小时行60千米,两车同时从两地相对开出,经过3小时两车可以相遇,两地之间相距多少千米?2,两辆汽车从相距450公里的两地相对开出,3小时后相遇,一辆汽车的速度是每小时80公里,求另一辆汽车的速度?课后作业:1、小明家和小牛家相距14千米,星期六小明和小牛同时从自己家出发向对方家里走去,小明每小时行3千米,小牛每小时走4千米,经过几小时两人在途中相遇?2、甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。

《行程问题》教案

《行程问题》教案

《行程问题》教案一、教学目标:1. 让学生理解行程问题的基本概念和数量关系。

2. 培养学生解决行程问题的能力和逻辑思维能力。

3. 通过对行程问题的学习,激发学生学习数学的兴趣。

二、教学内容:1. 行程问题的基本概念:行程、速度、时间、路程。

2. 行程问题的数量关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间。

3. 行程问题的解决方法:画图法、公式法、比例法。

三、教学重点与难点:重点:行程问题的基本概念和数量关系,解决行程问题的方法。

难点:行程问题的解决方法,尤其是比例法的应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究行程问题的解决方法。

2. 利用多媒体课件,直观展示行程问题的情境,帮助学生理解。

3. 组织学生进行小组讨论,培养学生的合作意识和团队精神。

五、教学过程:1. 导入:通过一个实际生活中的行程问题,引发学生对行程问题的兴趣。

2. 新课导入:介绍行程问题的基本概念和数量关系,让学生初步认识行程问题。

3. 实例讲解:通过具体实例,讲解行程问题的解决方法,引导学生学会运用公式法和比例法解决问题。

4. 练习巩固:布置一些练习题,让学生运用所学知识解决实际问题,巩固行程问题的解决方法。

5. 拓展提升:引导学生思考行程问题在不同情境下的解决方法,提高学生的逻辑思维能力。

7. 作业布置:布置一些课后作业,让学生进一步巩固所学知识。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。

2. 练习题评价:检查学生完成练习题的情况,评估学生对行程问题知识的掌握程度。

3. 小组讨论评价:评价学生在小组讨论中的表现,包括合作意识、沟通交流能力等。

七、教学资源:1. 多媒体课件:通过课件展示行程问题的情境,帮助学生直观理解。

2. 练习题:提供一些行程问题的练习题,让学生课后巩固所学知识。

3. 小组讨论:组织学生进行小组讨论,培养学生的合作意识和团队精神。

行程问题小升初奥数综合教案及练习

行程问题小升初奥数综合教案及练习

行程问题(一)教学目标:1. 理解行程问题的基本概念和基本公式。

2. 掌握行程问题的解题方法和技巧。

3. 培养学生的逻辑思维能力和解决问题的能力。

教学内容:1. 行程问题的基本概念:行程、速度、时间、路程。

2. 行程问题的基本公式:路程=速度×时间,时间=路程÷速度,速度=路程÷时间。

3. 行程问题的解题方法和技巧。

教学步骤:1. 引入行程问题的概念,让学生了解行程问题的基本元素:行程、速度、时间、路程。

2. 讲解行程问题的基本公式,让学生理解路程、时间、速度之间的关系。

3. 通过例题讲解行程问题的解题方法和技巧,让学生学会如何解决行程问题。

4. 练习题:让学生运用所学的知识和技巧解决实际问题。

教学评价:1. 课堂讲解:评价学生对行程问题基本概念和公式的理解程度。

2. 练习题解答:评价学生对行程问题解题方法和技巧的掌握程度。

行程问题(二)教学目标:1. 理解行程问题的基本概念和基本公式。

2. 掌握行程问题的解题方法和技巧。

3. 培养学生的逻辑思维能力和解决问题的能力。

教学内容:1. 行程问题的基本概念:行程、速度、时间、路程。

2. 行程问题的基本公式:路程=速度×时间,时间=路程÷速度,速度=路程÷时间。

3. 行程问题的解题方法和技巧。

教学步骤:1. 引入行程问题的概念,让学生了解行程问题的基本元素:行程、速度、时间、路程。

2. 讲解行程问题的基本公式,让学生理解路程、时间、速度之间的关系。

3. 通过例题讲解行程问题的解题方法和技巧,让学生学会如何解决行程问题。

4. 练习题:让学生运用所学的知识和技巧解决实际问题。

教学评价:1. 课堂讲解:评价学生对行程问题基本概念和公式的理解程度。

2. 练习题解答:评价学生对行程问题解题方法和技巧的掌握程度。

行程问题(三)教学目标:1. 理解行程问题的基本概念和基本公式。

2. 掌握行程问题的解题方法和技巧。

小学奥数之行程问题综合型详解教案

小学奥数之行程问题综合型详解教案

小学奥数之行程问题综合型详解教案行程问题综合性详解一、知识详解行程问题核心公式:S=V×T,因此总结如下:1、当路程一定时,速度和时间成反比2、当速度一定时,路程和时间成正比3、当时间一定时,路程和速度成正比从上述总结衍生出来的很多总结如下:4、追及问题:路程差÷速度差=时间5、相遇问题:路程和÷速度和=时间6、流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度+逆水速度)÷27、电梯问题:S=(人与电梯的合速度)×时间8、平均速度:V平=总路程S总÷总时间T总二、典例分析基础1、北京到天津的距离是138千米,甲、乙两人同时从两地出发,甲每小时行48千米,乙每小时行44千米,他们几小时能相遇?2、一辆汽车,从甲地到乙地。

如果每时行45千米,就要晚0.5时到达,如果每时行50千米,就可提前0.5时到达。

问甲、乙两地相距多少千米?4.4时,乘大客车要用几时?4、甲、乙两列火车同时从A、B两城相向开出,4小时相遇。

相遇时,两车所行路程的比是3:4,已知乙车每时行60千米,求A、B 两城相距多少千米?5、李明开车从甲地到乙地,3时行驶330千米,照这样计算,还需5时就可以到达乙地,甲乙两地相距多少千米?拔高6、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?(核心公式:时间=路程÷速度)解法一:逐步考虑去时:T=返回:T’=T总=解法二:整体思考全程共计:去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:所以总的时间为:7、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。

行程问题小学六年级奥数教案

行程问题小学六年级奥数教案

小学六年级奥数教案:行程问题第一讲行程问题走路、行车、一个物体的移动,总是要涉及到三个数量:距离走了多远,行驶多少千米,移动了多少米等等;速度在单位时间内(例如1小时内)行走或移动的距离;时间行走或移动所花时间.这三个数量之间的关系,可以用下面的公式来表示:距离=速度×时间很明显,只要知道其中两个数量,就马上可以求出第三个数量.从数学上说,这是一种最基本的数量关系,在小学的应用题中,这样的数量关系也是最常见的,例如总量=每个人的数量×人数.工作量=工作效率×时间.因此,我们从行程问题入手,掌握一些处理这种数量关系的思路、方法和技巧,就能解其他类似的问题.当然,行程问题有它独自的特点,在小学的应用题中,行程问题的内容最丰富多彩,饶有趣味.它不仅在小学,而且在中学数学、物理的学习中,也是一个重点内容.因此,我们非常希望大家能学好这一讲,特别是学会对一些问题的思考方法和处理技巧.这一讲,用5千米/小时表示速度是每小时5千米,用3米/秒表示速度是每秒3米一、追及与相遇有两个人同时在行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的距离,也就是要计算两人走的距离之差.如果设甲走得快,乙走得慢,在相同时间内,甲走的距离-乙走的距离= 甲的速度×时间-乙的速度×时间=(甲的速度-乙的速度)×时间.通常,“追及问题”要考虑速度差例1 小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米?解:先计算,从学校开出,到面包车到达城门用了多少时间.此时,小轿车比面包车多走了9千米,而小轿车与面包车的速度差是6千米/小时,因此所用时间=9÷6=1.5(小时).小轿车比面包车早10分钟到达城门,面包车到达时,小轿车离城门9千米,说明小轿车的速度是面包车速度是 54-6=48(千米/小时).城门离学校的距离是48×1.5=72(千米).答:学校到城门的距离是72千米.例2 小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远?解一:可以作为“追及问题”处理.假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是50 ×10÷(75- 50)= 20(分钟)?因此,小张走的距离是75× 20= 1500(米).答:从家到公园的距离是1500米.还有一种不少人采用的方法.家到公园的距离是一种解法好不好,首先是“易于思考”,其次是“计算方便”.那么你更喜欢哪一种解法呢?对不同的解法进行比较,能逐渐形成符合你思维习惯的解题思路.例3 一辆自行车在前面以固定的速度行进,有一辆汽车要去追赶.如果速度是30千米/小时,要1小时才能追上;如果速度是 35千米/小时,要 40分钟才能追上.问自行车的速度是多少?解一:自行车1小时走了30×1-已超前距离,自行车40分钟走了自行车多走20分钟,走了因此,自行车的速度是答:自行车速度是20千米/小时.解二:因为追上所需时间=追上距离÷速度差1小时与40分钟是3∶2.所以两者的速度差之比是2∶3.请看下面示意图:马上可看出前一速度差是15.自行车速度是35- 15= 20(千米/小时).解二的想法与第二讲中年龄问题思路完全类同.这一解法的好处是,想清楚后,非常便于心算.例4 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?解:画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是 4+ 8= 12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是1千米/分,爸爸骑行16千米需要16分钟.8+8+16=32.答:这时是8点32分.下面讲“相遇问题”.小王从甲地到乙地,小张从乙地到甲地,两人在途中相遇,实质上是小王和小张一起走了甲、乙之间这段距离.如果两人同时出发,那么甲走的距离+乙走的距离=甲的速度×时间+乙的速度×时间=(甲的速度+乙的速度)×时间.“相遇问题”,常常要考虑两人的速度和.例5 小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,几分钟后两人相遇?解:走同样长的距离,小张花费的时间是小王花费时间的36÷12=3(倍),因此自行车的速度是步行速度的3倍,也可以说,在同一时间内,小王骑车走的距离是小张步行走的距离的3倍.如果把甲地乙地之间的距离分成相等的4段,小王走了3段,小张走了1段,小张花费的时间是36÷(3+1)=9(分钟).答:两人在9分钟后相遇.例6 小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.解:画一张示意图离中点1千米的地方是A点,从图上可以看出,小张走了两地距离的一半多1千米,小王走了两地距离的一半少1千米.从出发到相遇,小张比小王多走了2千米小张比小王每小时多走(5-4)千米,从出发到相遇所用的时间是2÷(5-4)=2(小时).因此,甲、乙两地的距离是(5+ 4)×2=18(千米).本题表面的现象是“相遇”,实质上却要考虑“小张比小王多走多少?”岂不是有“追及”的特点吗?对小学的应用题,不要简单地说这是什么问题.重要的是抓住题目的本质,究竟考虑速度差,还是考虑速度和,要针对题目中的条件好好想一想.千万不要“两人面对面”就是“相遇”,“两人一前一后”就是“追及”.请再看一个例子.例7 甲、乙两车分别从A,B两地同时出发,相向而行,6小时后相遇于C点.如果甲车速度不变,乙车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点16千米.求A,B两地距离.解:先画一张行程示意图如下设乙加速后与甲相遇于D点,甲加速后与乙相遇于E点.同时出发后的相遇时间,是由速度和决定的.不论甲加速,还是乙加速,它们的速度和比原来都增加5千米,因此,不论在D点相遇,还是在E点相遇,所用时间是一样的,这是解决本题的关键.下面的考虑重点转向速度差.在同样的时间内,甲如果加速,就到E点,而不加速,只能到 D点.这两点距离是 12+ 16= 28(千米),加速与不加速所形成的速度差是5千米/小时.因此,在D点(或E点)相遇所用时间是28÷5= 5.6(小时).比C点相遇少用 6-5.6=0.4(小时).甲到达D,和到达C点速度是一样的,少用0.4小时,少走12千米,因此甲的速度是12÷0.4=30(千米/小时).同样道理,乙的速度是16÷0.4=40(千米/小时).A到 B距离是(30+ 40)×6= 420(千米).答: A,B两地距离是 420千米.很明显,例7不能简单地说成是“相遇问题”.例8 如图,从A到B是1千米下坡路,从B到C是3千米平路,从C到D是2.5千米上坡路.小张和小王步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问:(1)小张和小王分别从A, D同时出发,相向而行,问多少时间后他们相遇?(2)相遇后,两人继续向前走,当某一个人达到终点时,另一人离终点还有多少千米?解:(1)小张从 A到 B需要1÷6×60= 10(分钟);小王从 D到 C也是下坡,需要2.5÷6×60= 25(分钟);当小王到达 C点时,小张已在平路上走了 25-10=15(分钟),走了因此在 B与 C之间平路上留下 3- 1= 2(千米)由小张和小王共同相向而行,直到相遇,所需时间是2 ÷(4+ 4)×60= 15(分钟).从出发到相遇的时间是25+ 15= 40 (分钟).(2)相遇后,小王再走30分钟平路,到达B点,从B点到 A点需要走1÷2×60=30分钟,即他再走 60分钟到达终点.小张走15分钟平路到达D点,45分钟可走小张离终点还有2.5-1.5=1(千米).答:40分钟后小张和小王相遇.小王到达终点时,小张离终点还有1千米.二、环形路上的行程问题人在环形路上行走,计算行程距离常常与环形路的周长有关.例9 小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分.(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?解:(1 )75秒-1.25分.两人相遇,也就是合起来跑了一个周长的行程.小张的速度是500÷1.25-180=220(米/分).(2)在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈(一个周长),因此需要的时间是500÷(220-180)=12.5(分).220×12.5÷500=5.5(圈).答:(1)小张的速度是220米/分;(2)小张跑5.5圈后才能追上小王.例10 如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.解:第一次相遇,两人合起来走了半个周长;第二次相遇,两个人合起来又走了一圈.从出发开始算,两个人合起来走了一周半.因此,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,那么从A到D的距离,应该是从A到C距离的3倍,即A到D是80×3=240(米).240-60=180(米).180×2=360(米).答:这个圆的周长是360米.在一条路上往返行走,与环行路上行走,解题思考时极为类似,因此也归入这一节.例11 甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?解:画示意图如下:如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是40×3÷60=2(小时).从图上可以看出从出发至第二次相遇,小张已走了6×2-2=10(千米).小王已走了 6+2=8(千米).因此,他们的速度分别是小张10÷2=5(千米/小时),小王8÷2=4(千米/小时).答:小张和小王的速度分别是5千米/小时和4千米/小时.例12 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了3.5×7=24.5(千米),24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米.下面仍回到环行路上的问题.例13 绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10分钟.问:两人出发多少时间第一次相遇?解:小张的速度是6千米/小时,50分钟走5千米我们可以把他们出发后时间与行程列出下表:12+15=27比24大,从表上可以看出,他们相遇在出发后2小时10分至3小时15分之间.出发后2小时10分小张已走了此时两人相距24-(8+11)=5(千米).由于从此时到相遇已不会再休息,因此共同走完这5千米所需时间是5÷(4+6)=0.5(小时).2小时10分再加上半小时是2小时40分.答:他们相遇时是出发后2小时40分.例14 一个圆周长90厘米,3个点把这个圆周分成三等分,3只爬虫A,B,C 分别在这3个点上.它们同时出发,按顺时针方向沿着圆周爬行.A的速度是10厘米/秒,B的速度是5厘米/秒,C的速度是3厘米/秒,3只爬虫出发后多少时间第一次到达同一位置?解:先考虑B与C这两只爬虫,什么时候能到达同一位置.开始时,它们相差30厘米,每秒钟B能追上C(5-3)厘米0.30÷(5-3)=15(秒).因此15秒后B与C到达同一位置.以后再要到达同一位置,B要追上C一圈,也就是追上90厘米,需要90÷(5-3)=45(秒).B与C到达同一位置,出发后的秒数是15,,105,150,195,……再看看A与B什么时候到达同一位置.第一次是出发后30÷(10-5)=6(秒),以后再要到达同一位置是A追上B一圈.需要90÷(10-5)=18(秒),A与B到达同一位置,出发后的秒数是6,24,42,,78,96,…对照两行列出的秒数,就知道出发后60秒3只爬虫到达同一位置.答:3只爬虫出发后60秒第一次爬到同一位置.请思考, 3只爬虫第二次到达同一位置是出发后多少秒?例15 图上正方形ABCD是一条环形公路.已知汽车在AB上的速度是90千米/小时,在BC上的速度是120千米/小时,在CD上的速度是60千米/小时,在DA上的速度是80千米/小时.从CD上一点P,同时反向各发出一辆汽车,它们将在AB 中点相遇.如果从PC中点M,同时反向各发出一辆汽车,它们将在AB上一点N处相遇.求解:两车同时出发至相遇,两车行驶的时间一样多.题中有两个“相遇”,解题过程就是时间的计算.要计算方便,取什么作计算单位是很重要的.设汽车行驶CD所需时间是1.根据“走同样距离,时间与速度成反比”,可得出分数计算总不太方便,把这些所需时间都乘以24.这样,汽车行驶CD,BC,AB,AD所需时间分别是24,12,16,18.从P点同时反向各发一辆车,它们在AB中点相遇.P→D→A与P→C→B所用时间相等.PC上所需时间-PD上所需时间=DA所需时间-CB所需时间=18-12=6.而(PC上所需时间+PD上所需时间)是CD上所需时间24.根据“和差”计算得PC上所需时间是(24+6)÷2=15,PD上所需时间是24-15=9.现在两辆汽车从M点同时出发反向而行,M→P→D→A→N与M→C→B→N所用时间相等.M是PC中点.P→D→A→N与C→B→N时间相等,就有BN上所需时间-AN上所需时间=P→D→A所需时间-CB所需时间=(9+18)-12= 15.BN上所需时间+AN上所需时间=AB上所需时间=16.立即可求BN上所需时间是15.5,AN所需时间是0.5.从这一例子可以看出,对要计算的数作一些准备性处理,会使问题变得简单些.三、稍复杂的问题在这一节希望读者逐渐掌握以下两个解题技巧:(1)在行程中能设置一个解题需要的点;(2)灵活地运用比例.例16 小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?解:画一张示意图:图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是1.3÷(5.4-4.8)×60=130(分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A到甲地需要130÷2=65(分钟).从乙地到甲地需要的时间是130+65=195(分钟)=3小时15分.答:小李从乙地到甲地需要3小时15分.上面的问题有3个人,既有“相遇”,又有“追及”,思考时要分几个层次,弄清相互间的关系,问题也就迎刃而解了.在图中设置一个B点,使我们的思考直观简明些.例17 小玲和小华姐弟俩正要从公园门口沿马路向东去某地,而他们的家要从公园门口沿马路往西.小华问姐姐:“是先向西回家取了自行车,再骑车向东去,还是直接从公园门口步行向东去快”?姐姐算了一下说:“如果骑车与步行的速度比是4∶1,那么从公园门口到目的地的距离超过2千米时,回家取车才合算.”请推算一下,从公园到他们家的距离是多少米?解:先画一张示意图设A是离公园2千米处,设置一个B点,公园离B与公园离家一样远.如果从公园往西走到家,那么用同样多的时间,就能往东走到B点.现在问题就转变成:骑车从家开始,步行从B点开始,骑车追步行,能在A点或更远处追上步行.具体计算如下:不妨设B到A的距离为1个单位,因为骑车速度是步行速度的4倍,所以从家到A的距离是4个单位,从家到B的距离是3个单位.公园到B是1.5个单位.从公园到A是1+1.5=2.5(单位).每个单位是2000÷2.5=800(米).因此,从公园到家的距离是800×1.5=1200(米).答:从公园门口到他们家的距离是1200米.这一例子中,取计算单位给计算带来方便,是值得读者仿照采用的.请再看一例.例18 快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?解:画一张示意图:设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12.5-5=7.5(小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.有了上面“取单位”准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B停留1小时.快车行驶7小时,共行驶3×7=21(单位).从B到C再往前一个单位到D点.离A点15-1=14(单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14÷(2+3)=2.8(小时).慢车从C到A返回行驶至与快车相遇共用了7.5+0.5+2.8=10.8(小时).答:从第一相遇到再相遇共需10小时48分.例19 一只小船从A地到B地往返一次共用2小时.回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米.求A至B两地距离.解:1小时是行驶全程的一半时间,因为去时逆水,小船到达不了B地.我们在B之前设置一个C点,是小船逆水行驶1小时到达处.如下图第二小时比第一小时多行驶的行程,恰好是C至B距离的2倍,它等于6千米,就知C至B是3千米.为了示意小船顺水速度比逆水速度每小时多行驶8千米,在图中再设置D 点,D至C是8千米.也就是D至A顺水行驶时间是1小时.现在就一目了然了.D至B是5千米顺水行驶,与C至B逆水行驶3千米时间一样多.因此顺水速度∶逆水速度=5∶3.由于两者速度差是8千米.立即可得出A至B距离是 12+3=15(千米).答:A至B两地距离是15千米.例20 从甲市到乙市有一条公路,它分成三段.在第一段上,汽车速度是每小时40千米,在第二段上,汽车速度是每小时90千米,在第三段上,汽车速度是每小时50千米.已知第一段公路的长恰好是第三段的2倍.现有两辆汽车分别从甲、乙两市同时出发,相向而行.1小时20分后,在第二段的解一:画出如下示意图:当从乙城出发的汽车走完第三段到C时,从甲城出发的汽车走完第一段的到达D处,这样,D把第一段分成两部分时20分相当于因此就知道,汽车在第一段需要第二段需要30×3=90(分钟);甲、乙两市距离是答:甲、乙两市相距185千米.把每辆车从出发到相遇所走的行程都分成三段,而两车逐段所用时间都相应地一样.这样通过“所用时间”使各段之间建立了换算关系.这是一种典型的方法.例8、例13也是类似思路,仅仅是问题简单些.还可以用“比例分配”方法求出各段所用时间.第一段所用时间∶第三段所用时间=5∶2.时间一样.第一段所用时间∶第二段所用时间=5∶9.因此,三段路程所用时间的比是5∶9∶2.汽车走完全程所用时间是80×2=160(分种).例21 一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达.那么甲、乙两地相距多少千米?解:设原速度是1.%后,所用时间缩短到原时间的这是具体地反映:距离固定,时间与速度成反比.用原速行驶需要同样道理,车速提高25%,所用时间缩短到原来的如果一开始就加速25%,可少时间现在只少了40分钟, 72-40=32(分钟).说明有一段路程未加速而没有少这个32分钟,它应是这段路程所用时间真巧,320-160=160(分钟),原速的行程与加速的行程所用时间一样.因此全程长答:甲、乙两地相距270千米.十分有意思,按原速行驶120千米,这一条件只在最后用上.事实上,其他条件已完全确定了“原速”与“加速”两段行程的时间的比例关系,当然也确定了距离的比例关系.全程长还可以用下面比例式求出,设全程长为x,就有x∶120=72∶32.。

小学五年级奥数教案--第28讲-行程问题(一)

小学五年级奥数教案--第28讲-行程问题(一)

第28讲行程问题(一)一、专题简析:行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。

行程问题的主要数量关系是:路程=速度×时间。

知道三个量中的两个量,就能求出第三个量。

例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇,东、西两地相距多少千米?练习一1、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。

学校到少年宫有多少米?2、一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。

甲、乙两地相距多少千米?例2快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?练习二1、兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米?2、汽车从甲地开往乙地,每小时行32千米。

4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地?例3 甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。

求东、西两村相距多少千米?练习三1、甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。

甲到达B地后立即返回A地,在离B地3.2千米处与乙相遇。

A、B两地间的距离是多少千米?2、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米。

30分钟后小平到家,到家后立即原路返回,在离家350千米处遇到小红。

小红每分钟走多少千米?例4 甲、乙两车早上8点分别从A、B两地同时出发相向而行,到10点时两车相距112.5千米。

《行程问题》教案

《行程问题》教案

《行程问题》教案一、教学目标1. 知识与技能:(1)理解行程问题的基本概念,如路程、速度、时间等;(2)学会运用行程公式解决问题;(3)掌握行程问题的解题思路和方法。

2. 过程与方法:(1)通过实例分析,让学生感受行程问题的生活情境;(2)引导学生运用图示、方程等方法解决问题;(3)培养学生合作交流、归纳总结的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生面对实际问题,积极思考、解决问题的态度;(3)培养学生合作、交流的良好习惯。

二、教学内容1. 行程问题的基本概念及公式;2. 行程问题的常见类型及解题思路;3. 行程问题的实际应用。

三、教学重点与难点1. 教学重点:(1)行程问题的基本概念及公式;(2)行程问题的解题思路和方法。

2. 教学难点:(1)行程问题的转化和建模;(2)灵活运用行程公式解决问题。

四、教学方法1. 情境教学法:通过生活实例,引导学生感受行程问题;2. 启发式教学法:引导学生主动思考、探索行程问题的解题方法;3. 合作学习法:鼓励学生分组讨论、交流,共同解决问题。

五、教学准备1. 教学课件:行程问题的实例、图片等;2. 教学道具:计时器、图表等;3. 练习题:不同难度的行程问题题目。

六、教学过程1. 引入新课:通过一个实际生活中的行程问题,引发学生对行程问题的兴趣。

2. 自主学习:让学生自主探究行程问题的基本概念和公式。

3. 课堂讲解:讲解行程问题的常见类型及解题思路和方法。

4. 实例分析:分析典型行程问题,引导学生运用图示、方程等方法解决问题。

5. 练习巩固:让学生独立解决一些简单的行程问题,巩固所学知识。

七、课堂练习2. 选做题:从给定的几个行程问题中,选择一个自己喜欢的问题进行解答。

八、课堂小结1. 让学生总结本节课所学的行程问题的解题方法和技巧。

2. 强调学生在解决行程问题时,要注意分析题目的已知条件和所求答案。

九、课后作业1. 完成课后练习册上的相关题目;十、教学反思1. 反思本节课的教学效果,是否达到预期的教学目标;2. 针对学生的掌握情况,调整后续的教学计划和教学方法;3. 总结本节课的教学优点和不足,为今后的教学提供借鉴。

五年级《行程问题(四)流水》奥数教案

五年级《行程问题(四)流水》奥数教案

(五年级)备课教员:第二讲行程问题(四)流水一、教学目标:知识目标1.理解顺水速度、逆水速度、静水速度及水流速度等量的含义,掌握各量间的关系。

2.准确运用公式解流水行船问题。

能力目标初步养成独立思考、自主探究、合作交流的学习方式。

情感目标感受数学的趣味性,从情境中感悟数学的美。

二、教学重点:顺水速度、逆水速度、静水速度及水速等数量间的关系,流水行船问题的解题方法三、教学难点:准确理清顺水速度、逆水速度、静水速度及水速等数量间的关系。

四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:让学生了解流水行船问题的概念,从具体情境中掌握,理解并区分什么是顺水速度、逆水速度、静水速度、水流速度等。

】师:同学们,你们观察过水面吗?当一片叶子掉进水里,叶子会漂得越来越远,而且是顺着一个方向一直飘走,为什么呢?生:因为水在流动。

师:是的,水自己在流动,是有一定的速度,这是水自己的速度,我们把它叫做水流速度。

记住了吗?生:记住了。

师:船如果在静止的水中航行,这个时候船航行的速度我们把它叫做静水速度,也可以叫做船速,明白吗?生:……师:现在老师给你们看一个小动画(点击PPT),这是一艘小船,蓝色部分代表的是水,从左往右代表顺水的方向。

我们先看第一个动画。

(播放PPT)师:我们看到小船从左往右走,是顺着水流动的方向的,我们叫做顺水航行,速度叫做顺水速度,船的速度与水的速度是同一个方向,那么顺水速度就等于静水速度加水流速度。

能理解吗?生:……师:那我们再来看另一个动画,(播放PPT)从右往左逆着水流航行,船的行驶速度会不会变慢?生:……师:所以逆水速度=静水速度-水流速度。

那么通过这个公式我们还可以引申出更多的公式,这就是我们这节课要学习的。

【探究新知,引入新课:我们已经学过了追及相遇问题,了解路程=速度×时间这个公式,也学会运用它的变式,这节课我们要深入学习行程问题中的另一个题型:流水行船问题。

五年级奥数教案-11行程问题(第一课时)全国通用

五年级奥数教案-11行程问题(第一课时)全国通用

教案教材版本:实验版学校:第一课时200 米。

)师:在背向行驶的过程中,再相距200米,大家能否画出线段图呢?这种情况,根据线段图,你又能得出什么结论?生:专车行驶路程+公交车行驶路程=3000米+200米。

师:明白了这些情况,大家尝试列式,独立完成解答。

(请两名学生分别上台板演,全班集体指正点评。

)3.学生完成列式,集体交流。

4.总结。

在解决实际问题的过程中,要考虑全面,将所有可能的情况都考虑到。

相遇问题基本公式:速度和x相遇时间= 路程和路程和*速度和=相遇时间路程和*相遇时间=速度和答案:(3000-200)-(250+150)=7 (分)(3000+200)-(250+150)=8 (分)答:经过7分钟或8分钟,专车和公交车相距200米。

(二)呈现问题2例2:在一次赛跑中,飞速豹的对手先跑了10秒。

如果对手每秒跑10 米,飞速豹每秒跑30米。

那么飞速豹出发多少秒后就能追上它的对手?1.学生读题,明确题意。

2.师生互动,教师引导。

师:飞速豹比对手晚走了10秒,对手在前面,飞速豹在后面追,飞速豹为什么会追上对手呢?生:因为飞速豹比对手跑得快。

师:因为对手已经以10米/秒的速度跑了10秒,所以飞速豹要比对手多行驶多少米,就可以追上对手呢?生:飞速豹在相同时间内,比对手多行驶10X 10米,就可以追上对手了。

师:同相遇问题一样,大家可以画出线段图吗?(学生尝试画出线段图,教师适时出示课件解析)师:我们将10X 10米称作“追及路程”或者“路程差”,现在要求追上时所用的时间,该怎么求呢?生:追及时间=追及路程十速度差。

3.学生尝试独立元成。

4.总结交流。

追及问题基本公式:路程差-追及时间X速度差追及时间-路程差•速度差速度差-路程差•追及时间答案:(10X 10)^(30-10)=5 (秒)答:飞速豹5秒后就能追上它的对手。

(三)呈现问题3例3:多利和急速羊同时从环形跑道的同一地点出发,急速羊每秒能跑15米,多利每秒能跑5米。

《行程问题》教案

《行程问题》教案

《行程问题》教案一、教学目标1. 让学生理解行程问题的基本概念,掌握行程问题的解题方法。

2. 培养学生的逻辑思维能力和解决实际问题的能力。

3. 通过行程问题的学习,激发学生的学习兴趣,提高学生对数学的热爱。

二、教学内容1. 行程问题的定义及分类。

2. 行程问题的解题步骤及方法。

3. 行程问题在实际生活中的应用。

三、教学重点与难点1. 教学重点:行程问题的解题方法及实际应用。

2. 教学难点:行程问题中的速度、时间和路程的关系。

四、教学方法1. 采用问题驱动法,引导学生主动探究行程问题的解题方法。

2. 利用实例分析,让学生了解行程问题在实际生活中的应用。

3. 采用小组讨论法,培养学生的合作能力。

五、教学准备1. 准备相关课件、教案、练习题等教学资源。

2. 准备实际生活中的行程问题案例,以便进行实例分析。

3. 准备小组讨论的材料,如白板、记号笔等。

六、教学过程1. 引入新课:通过一个简单的行程问题引出本节课的主题,激发学生的兴趣。

2. 讲解行程问题的定义及分类:解释行程问题的基本概念,区分不同类型的行程问题。

3. 讲解行程问题的解题步骤:引导学生掌握解决行程问题的方法和步骤。

4. 实例分析:通过实际案例,让学生了解行程问题在生活中的应用。

5. 小组讨论:让学生分小组讨论行程问题的解题方法,培养学生的合作能力。

七、课堂练习1. 布置练习题:让学生巩固所学知识,提高解题能力。

2. 解答疑问:在学生练习过程中,解答他们遇到的问题。

3. 批改作业:对学生的练习情况进行评价,及时反馈。

八、课后作业1. 布置课后作业:让学生进一步巩固行程问题的解题方法。

2. 提醒截止时间:告知学生课后作业的提交时间。

3. 鼓励自主学习:鼓励学生在课后自主学习,提高能力。

九、教学评价1. 课堂表现:评价学生在课堂上的参与程度、提问回答等情况。

2. 练习作业:评价学生的练习成果,了解掌握程度。

3. 课后作业:评价学生的课后学习情况,了解巩固程度。

五年级《行程问题》奥数教案

五年级《行程问题》奥数教案

备课教员:第五讲行程问题一、教学目标:1、能通过画线段图或实际演示,理解什么是“同时出发”、“相向而行”、“相遇”等术语,形成空间表象。

2、掌握两个物体运动中,速度、时间、路程之间的数量关系,会根据此数量关系解答求路程的相遇应用题。

能用不同方法解答相遇求路程的应用题,培养学生的求异思维能力。

3、通过阐明数学在日常生活的广泛应用,激发学生学习数学的兴趣。

二、教学重点:掌握相遇问题的结构特点,弄懂每经过一个单位时间两物体的变化,并能根据速度、时间、路程的数量关系解相遇求路程的应用题。

三、教学难点:理解行程问题中的“相遇求路程”的解题思路四、教学准备:PPT五、教学过程:第一课时(40分钟)一、外星游记(5分钟)师:老师遇到了困难,需要同学们帮忙,你们要不要帮忙?生:要。

师:今天我和妈妈打赌,晚上回家我要和她同时到家,但是我妈妈比我下班早。

生:那老师可以走得比老师妈妈快点。

师:那要快多少呢,我妈妈平时一分钟能走40米,她的公司到家里有1000米,而且她是5点钟下班的,我到家的距离是810米,我是5点10分下班。

生:不知道。

师:那你们想到了再告诉我好不好?生:好。

师:今天我们学习的课题与我这个问题有关。

【出示课题:行程问题】二、星海遨游(30分钟)(一)星海遨游1(10分钟)甲、乙两地相距450千米,快慢两列火车同时从两地相向开出。

3小时后两车在距中点12千米处相遇,快车每小时比慢车每小时快多少千米?师:快车和慢车同时从两地相向开出,3小时后两车距中点12千米处相遇,哪辆车行得更多?生:快车。

师:快车多行了多少呢?生:多行了12×2=24(千米)师:这里要计算快车每小时比慢车每小时快多少千米,那我们是不是只要用快车比慢车多行的距离除以时间就能算出了?生:是。

板书:12×2=24(千米)24÷3=8(千米)答:快车每小时比慢车每小时快8千米。

(一)星海历练1(5分钟)甲乙两辆摩托车同时从东与西两地相向开出,甲每小时行40千米,乙每小时行32千米,两车在距中点8千米处相遇,东西两地相距多少千米?分析:甲乙两车同时从两地相向开出,两车在距中点8千米处相遇。

四年级行程问题教案(汇总5篇)

四年级行程问题教案(汇总5篇)

四年级行程问题教案(汇总5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、述职报告、合同协议、演讲致辞、规章制度、策划方案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, job reports, contract agreements, speeches, rules and regulations, planning plans, insights, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!四年级行程问题教案(汇总5篇)作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。

五年级奥数培优行程问题综合教案

五年级奥数培优行程问题综合教案

行程问题教学目标:①知识与技能目标:使学生学会分析等量关系,并能解答行程问题②过程与方法目标:让学生在探索、认识行程问题的过程中理解运用数量关系的公式解决问题,帮助学生建立行程问题的概念③情感态度与价值观目标:懂得我们每天在学习无时无刻与困难相遇,我们要勇敢的面对并战胜它教学重点:把题意转化为线段图来解题教学难点:掌握追及行程问题中的时间,路程,速度的数量关系[知识引领与方法]追及问题:路程差÷速度差=追及时间(时间)行程问题(二)[例题精选及训练]【例1】货车和客车同时从东西两地相向而行,货车每小时行驶48千米,客车每小时行驶42千米,两车在离中点18千米处相遇。

求东西两地相距多少千米?提示:由条件“货车每小时行驶48千米,客车每小时行驶42千米”可知货车、客车的速度和是48+42=90千米,由于货车比客车速度快,当货车过了中点又行驶了18千米时,客车距中点还有18千米,因此客车比货车多行驶18×2=36千米。

因为货车每小时比客车多行驶48-42=6千米,这样货车多行驶36千米需要36÷6=6小时,即两车相遇的时间。

所以两地相距90×6=540千米。

练习:1.甲、乙两人同时分别从两地骑车相向而行,甲每小时行驶20千米,乙每小时行驶18千米。

两人相遇时距全程中点3千米。

求全程长多少千米?2.甲、乙两辆汽车同时从东、西两城相向开出,甲车每小时行驶60千米,乙车每小时行驶56千米,两车距中点16千米处相遇。

求东、西两城相距多少千米?3.快车和慢车同时从南、北两地相对开出。

已知快车每小时行驶40千米,经过3小时后,快车已驶过中点25千米,这时与慢车还相距7千米。

慢车每小时行驶多少千米?【例2】甲乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行驶13千米,乙步行每小时走5千米,几小时后甲可以追上乙?提示:这是一道追及问题。

根据题意,甲追上乙时,比乙多行驶了24千米(路程差)。

小学奥数行程问题(教师版)

小学奥数行程问题(教师版)

行程问题1、使学生理解速度的概念,掌握速度×时间=路程这组数量关系。

学会速度的写法。

2、引导学生自主探索速度×时间=路程这组数量关系,并应用它去解决问题。

3、提高学生学习的兴趣,扩大认知视野,使学生感受人类创造交通工具的智慧和自然界的多姿多彩。

本讲主要是对行程问题的一些综合训练,需要对之前所学知识有所掌握,难度稍大,需要选择使用。

行程问题常用的解题方法有⑴公式法即根据常用的行程问题的公式进行求解,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式;有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件;⑵图示法在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具.示意图包括线段图和折线图.图示法即画出行程的大概过程,重点在折返、相遇、追及的地点.另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法;⑶比例法行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题; ⑷分段法在非匀速即分段变速的行程问题中,公式不能直接适用.这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来;⑸方程法在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解.1: 甲、乙两人分别从相距 35.8千米的两地出发,相向而行.甲每小时行 4 千米,但每行 30 分钟就休息 5 分钟;乙每小时行 12 千米,则经过________小时________分的时候两人相遇.【解析】经过 2 小时 15 分钟的时候,甲实际行了 2 小时,行了 4×2=8千米,乙则行了1122274⨯=千米,两人还相距 35.8-27-8=0.8千米,此时甲开始休息,乙再行 0.8÷12×60=4分钟就能与甲相遇.所以经过 2 小时 19 分的时候两人相遇.2:龟兔赛跑,全程6千米,兔子每小时跑15千米,乌龟每小时跑3千米,乌龟不停的跑,但兔子边跑边玩,它先跑1分钟后玩20分钟,又跑2分钟后玩20分钟,再跑3分钟后玩20分钟……问它们谁胜利了?胜利者到终点时,另一个距离终点还有多远?【解析】乌龟不停的跑,所以乌龟跑完全程需要632÷=(小时),即120分钟,由于兔子边跑边玩,120205123455=⨯++++++(),也就是兔子一共跑了12345520+++++=(分钟),跑了2060155÷⨯=(千米),即乌龟到达终点时,兔子刚刚跑了5千米,所以乌龟胜利了,领先兔子651-=(千米)3:邮递员早晨 7 时出发送一份邮件到对面山里,从邮局开始要走 12 千米上坡路,8 千米下坡路.他上坡时每小时走 4 千米,下坡时每小时走 5 千米,到达目的地停留 1 小时以后,又从原路返回,邮递员什么时候可以回到邮局?【解析】从整体上考虑,邮递员走了12+8=20千米的上坡路,走了12+8=20千米的下坡路,所以共用时间为:20÷4+20÷5=9 (小时),邮递员是下午7+10-12=5 (时) 回到邮局。

《行程问题》教学设计(精选5篇)

《行程问题》教学设计(精选5篇)

《行程问题》教学设计《行程问题》教学设计(精选5篇)作为一位优秀的人民教师,通常需要准备好一份教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。

教学设计应该怎么写才好呢?以下是小编帮大家整理的《行程问题》教学设计(精选5篇),希望对大家有所帮助。

《行程问题》教学设计1教学要求:1.能通过画线段图或实际演示,理解什么是”同时出发“”相向而行“、”相遇“等术语,形成空间表象。

2.弄通每经过一个单位时间,两个物体之间的距离变化。

3.掌握两个物体运动中,速度、时间、路程之间的数量关系,会根据此数量关系解答求路程的相遇应用题。

能用不同方法解答相遇求路程的应用题,培养学生的求异思维能力。

4.通过阐明数学在日常生活的广泛应用,激发学生学习数学的兴趣。

教学重点:掌握相遇问题的结构特点,弄通每经过一个单位时间两物体的变化,并能根据速度、时间、路程的数量关系解相遇求路程的应用题。

教学难点:理解行程问题中的”相遇求路程“的解题思路。

教学过程:一、激发1.口答:(1)张华从家到学校每分钟走60米,3分钟走多少米?(2)汽车每小时行40千米,6小时行多少千米?要求:读题列出算式并说出数量关系。

板书:速度×时间=路程提问:这两题研究的是什么?2.揭题:以前研究的行程应用题,是指一个物体、一个人的运动情况,今天我们根据这个数量关系研究两个物体或两个人运动的一种情况。

(板书:应用题)二、尝试1.出示准备题:张华家距李诚家390米,两人同时从家里出发向对方走去。

李诚每分钟走60米,张华每分钟走70米。

(1)读题看线段图,汇报你知道了什么?(回答:这题是两个人同时出发,对着而行;是两个人共同走这段路程的。

)60米60米70米70米张华李诚390米(2)边看演示边说明:象这样两个人对着而行,我们叫它相向而行或相对而行。

(3)看多媒体或实物演示:汇报你发现了什么?(1分钟,张华走了60米,李诚走了70米;2分钟张华走了120米,李诚走了140米,两人的路程和是260米,两人还距离130米;两人走3分钟分别走了180米、210米,两人间的距离变成了0米。

【五升六】小学数学奥数第10讲:火车行程问题-教案

【五升六】小学数学奥数第10讲:火车行程问题-教案

六年级 备课教员:×××第10讲 火车行程问题一、教学目标: 1. 了解火车行程问题的特殊性。

2. 运用画图法(线段图)找出正确的路程。

3. 运用画图法(线段图)分析相遇、追及问题并能用方程解。

4. 思维迁移能力得到提升。

二、教学重点: 1. 了解火车行程问题的特殊性。

2. 运用画图法分析相遇问题、追及问题并用方程解题。

三、教学难点: 运用画图法分析相遇问题、追及问题并用方程解题。

四、教学准备: PPT五、教学过程:第一课时(50分钟)一、 导入(5分)师:同学们,你们有过送亲人去火车站吗?生:送过。

师:哪位同学说下你当时送别的情景呢?生:我看着亲人坐上了火车,火车慢慢启动了,我依依不舍地和亲人告别,但 火车还是开走了。

师:是的,火车虽然很长,但还是留不住我们的亲人。

老师问你们一个问题。

你站在站头,一列火车慢悠悠地开过来,火车开到你面前到离开你,它行驶了多少路程呢?(PPT 出示)生:一列火车的长度。

师:不错。

那如果这列火车过一个桥洞,那它行驶的路程是什么。

这就是我们 今天要讲的课题。

板书:火车行程问题二、探索发现授课(40分)(一)例题一:(10分)一列火车长150米,每秒钟行19米。

全车通过长800米的大桥,需要多少时间?(PPT 出示)师:我们来回忆下行程公式。

哪位同学来说下?生:路程=速度×时间,时间=路程÷速度。

师:不错,我们先来看下屏幕上的解题过程对不对?板书:800÷19=19242(秒)(PPT出示)生:不对。

师:是的,同学们是不是发现题目中有个条件没用到,火车长150米?那我们要怎么应用这个条件呢,我们来看下屏幕。

(PPT出示)师:同学们,我们先来看下车头,它行驶了多少路程呢?生:800+150,950米。

师:不错,看来同学们自己已经发现了这类行程问题的特殊性。

我们在做这类行程问题我们要注意别忘记计算的是什么?生:别忘记计算火车的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学过程
一、知识点
行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:
(1)相遇问题;(2)相离问题;(3)追及问题。

(4)行船问题。

1、行程问题的主要数量关系是:距离= 速度+时间。

它大致分为以下三种情况:
(1)相向而行:相遇时间二距离宁速度和。

(2)相背而行:相背距离二速度和X时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间二追及距离+速度差
在环形跑道上,速度快的在前,慢的在后。

追及距离二速度差x时间
2、行船问题:
船顺水速度= 船静水速度+水流速度
船逆水速度= 船静水速度- 水流速度
水流速度二(船顺水速度-船逆水速度)宁2
船静水速度二(船顺水速度+船逆水速度)宁2
解决行程问题时,要注意充分利用图标把题中的情节形象地表示出来,有助于分
析数量关系,有助于迅速地找到解题思路。

例题1 :两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。

甲车
比乙车早到48分钟,当甲车到达时,乙车还距工地24千米。

甲车行完全程用了
多少小时?
解题思路:解答本题的关键是正确理解“已知甲车比乙车早到48分钟,当甲车到达时,乙车还距工地24千米”。

这句话的实质就是:“乙48分钟行了24千米”。

可以先求乙的速度,然后根据路程求时间。

也可以
先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。

解法一:乙车速度:24-48 X 60= 30 (千米/小时)
甲行完全程用的时间:165-30- 48= 4.7 (小时)
60
解法二:48X(165-24)- 48=282(分钟)=4.7 (小时)
答甲车行完全程用了4.7小时
例题2 :两辆汽车同时从东、西两站相向开出。

第一次在离东站60千米的地方相遇。

之后,两车继续以原来的速度前进。

各自到达对方车站后都立即返回。


在距中点西侧30千米处相遇。

两站相距多少千米?
解题思路:从两辆汽车同时从东、西两站相对开出到第二次相遇共行了三个全程。

两辆汽车行一个全程时,
从东站出发的汽车行了60千米,两车走三个全程时,这辆汽车走了3个60千米。

这时这辆汽车距中点30千米,也就是说这辆汽车再行30千米的话,共行的路程相当于东、西两站路程的 1.5倍。

找到这个关系,东、西两站之间的距离也就可以很快求出来了。

所以
(60X 3+30)- 1.5=140 (千米)
答:东西两站相距140千米。

例题3:有一船行驶于120千米长的河中,逆行需10小时,顺行要6 小时,求船速和水速。

解题思路:这题条件中有行驶的路程和行驶的时间,这样可分别算出船在逆流时的行驶速度和顺流时的行驶速度,再根据和差问题就可以算出船速和水速。

列式为
逆流速:120- 10=12 (千米/时)
顺流速:120-6=20 (千米/时)
船速:(20+12)+ 2=16 (千米/ 时)
水速:(20-12)- 2=4 (千米/时)
答:船速是每小时行16千米,水速是每小时行4千米。

二、巩固练习:
1 、甲、乙两地之间的距离是420 千米。

两辆汽车同时从甲地开往乙地。

第一辆汽车每小时行4
2 千米,第二辆汽车每小时行28 千米。

第一辆汽车到乙地立即返回。

两辆车从开出到相遇共用多少小时?
2、A B两地相距300千米,甲车由A地到B地需15小时,乙车由B地到A地需
10小时。

两车同时从两地开出,相遇时甲车距B地还有多少千米?
3、甲、乙两辆汽车早上8点钟分别从A 、B 两城同时相向而行。

到10点钟时两车 相距 112.5 千米。

继续行进到下午 1 时,两车相距还是 的距离是
多少千米?
4 两辆汽车同时从南、北两站相对开出,第一次在离南站
后两车继续以原来的速度前进。

各自到站后都立即返回,
处相遇。

两车相距多少千米? 5、两列火车同时从甲、乙两站相向而行。

第一次相遇在离甲站
40 千米的地方。

两车仍以原速继续前进。

各自到站后立即返回,又在离乙站
20 千米的地方相遇
两站相距多少千米?112.5 千米。

A 、 B 两地间 55 千米的地方相遇,之 又在距中点南侧 15千米
6甲、乙两辆汽车同时从A B两地相对开出。

第一次相遇时离A站有90千米然后各按原速继续行驶,分别到达对方车站后立即沿原路返回。

第二次相遇时离
A地的距离占A、B两站间全程的65%。

A B两站间的路程是多少千米?
7、有只大木船在长江中航行。

逆流而上5 小时行5 千米,顺流而下1 小时行5 千米。

求这只木船每小时船静水中划行速度和河水的流速各是多少?
8、有一船完成360 千米的水程运输任务。

顺流而下30 小时到达,但逆流而上则需60 小时。

求河水流速和静水中划行的速度?
9 一艘轮船以同样的速度往返于甲、乙两个港口,它顺流而下行了7 小时,逆流而上行了10 小时。

如果水流速度是每小时3.6 千米,求甲乙两个港口之间的距离?
10、甲、乙两车同时从A地开往B地,乙车6小时可以到达,甲车每小时比乙车
慢8千米,因此比乙车迟一小时到达。

A、B两地间的路程是多少千米?
11、龟兔赛跑,同时除法,全程7000米,龟以每分钟30 米的速度爬行,兔每分钟跑330 米,兔跑了10 分钟就停下来睡了200分钟,醒来后立即以原速往前跑。

当兔追及龟时,离终点的距离是多少米?。

相关文档
最新文档