初等变换与初等矩阵
初等变换与初等矩阵
1 (k 1,2,, r) ,然后再对矩阵作第三种
bk
初等行变换,则矩阵A就可以化为简化阶 梯形
0 0
1 0
0
0 1
0 0
0 0 0 0 0 1
0 0 0 0 0 0 0 0
r4 12r3
0 0 0
0 0 0
1 0 0
2 1
2 0
6 12
这就是矩阵 A的阶梯形. 再对其进行初
等行变换 1 3 2 2 1
A
0 0 0
0 0 0
1 0 0
2 1
2 0
6 12
1 3 0 6 3
( 12)rr13, r2112r4
0 0 0
0 0 0
1 0 0
2 1 0
1 13
Ps P2 P1 AQ1Q2 Qt B
若记P= P1,P2,…,Ps,Q=Q1,Q2,…,Qt , 则 P为 m阶可逆矩阵, Q为 n阶可逆矩阵, 于是得到
推论1 mn矩阵A与B等价存在m阶 可逆矩阵P与n阶可逆矩阵 Q ,使得
PAQ B
结合定理2.5.2,我们有 推论2 对于任意非零mn矩阵A,必 存在m阶可逆矩阵 P与 n阶可逆矩阵Q,使 得
外,还满足条件: (3) 各非零行的第一个非零元素均为1,
且所在列的其它元素都为零,
则称 A为简化阶梯形矩阵.
例如
0 2 1 4 A 0 0 5 7
0 0 0 0
1 2 0 5 3
B
0 0 0
0 0 0
4 0 0
8 3 0
3 10
为阶梯形矩阵;
1 2 0 0 2 C 0 0 1 0 1
初等变换与初等矩阵
2.3初等变换与初等矩阵授课题目 2.3初等变换与初等矩阵授课时数:4课时教学目标:掌握初等变换的定义,初等矩阵与初等变换的关系,矩阵的等价标准形,阶梯形矩阵,和行简化阶梯形矩阵教学重点:用初等变换求矩阵的等价标准形、阶梯形矩阵,和行简化阶梯形矩阵教学难点:求矩阵的等价标准形、阶梯形矩阵,、行简化阶梯形矩阵教学过程:用初等变换化简矩阵A为B,通过B的性质来探讨A的性质,这是研究矩阵的重要手段。
为了把变换过程用运算的式子表示出来,我们要引入初等矩阵,研究初等矩阵与初等变换的关系。
一.初等变换与初等矩阵1.初等变换(1)定义定义1矩阵的初等行(列)变换是指下列三种变换:1)换法变换:交换矩阵某两行(列)的位置;2)倍法变换:用一个非零数乘矩阵的某一行(列);3)消法变换:把矩阵的某一行(列)的k倍加到另一行(列)上去,k为任意数。
矩阵的初等行变换和初等列变换统称为初等变换。
(2)记法分别用[i,j],[i(k)],[i • j(k)]表示三种行(列)变换,写在箭头上面表示行变换,写在箭头下面表示列变换。
或者行变换用R.. R j,kR j,R j ■ kR j,列变换用C- C j,kC i,C i kC j例110-12if T10-12100 2A =2312033-203 3 -2-121丿J-121丿-1 3 1丿2.初等矩阵(1 )初等矩阵的定义定义2由单位矩阵I 经过一次初等变换得到的矩阵称为初等矩阵 每个初等变换都有一个与之相应的初等矩阵(110 1 :11 : 1 0 1i 行二 Di(k )i 行= T j (k) j 行1 k+ .a1j 列(1i 行 = T j (k) j 行 bR j 、D j (k)、T ij (k)分别叫做换法阵、倍法阵、消法阵。
* T j (k)是从行的角度来定义,进行列消法变换时,要转化为行来表示。
二. 初等变换与初等矩阵的关系1、 问题能否用矩阵的乘积的等式把初等变换的过程表示出来? 如果能够,这对研究矩阵的关系是有很大帮助的。
《线性代数》3.2矩阵的初等变换与初等矩阵
r1 r3 1 0 r2 r3 0 1 再r3 2 0 0 2 A 4 1 3
0 0 1
1 2 1
2 1 1 4 2 1 1 1 1 3 2 1 1 1 2
x1 BE3 1, 2 y1 x2 y2
x2 y2
0 1 0 x3 1 0 0 y3 0 0 1
x1 x3 y1 y3
1 3 0 a1 a2 E3 1, 2 3 A 0 1 0 b1 b2 0 0 1 c c 1 2 a1 3b1 a2 3b2 b1 b2 c c 1 2
ri krj ci kc j
初等行变换和初等列变换统称为初等变换.
2.等价 定义3.2.2
若矩阵A 经过有限次的初等行变换变成 B,
r 则称矩阵A与矩阵B 行等价,记为 A B
若矩阵 A 经过有限次的初等列变换变成B,
则称矩阵A与矩阵B 列等价,记为 A
c
B
若矩阵 A经过有限次的初等变换变成B, 则称矩阵A与矩阵B 等价,记为 A B
ET i, j E i, j ;ET i k E i k ; E i j k E j i k .
T
定理3.2.1 对于一个m×n 矩阵 A进行一次初等行变换, 相当于在A的左边乘以相应的 m阶初等矩阵;对A施行 一次初等列变换,相当于在A的右边乘以相应的 n阶
初等矩阵. 验证 设初等矩阵为三阶的.
0 1 0 E3 1, 2 1 0 0 0 0 1 x1 B y1
初等变换与初等矩阵课件
0 0 0
3 0 0
2 0 0
1
0
0
1 0 0 0
c2
1 3
c3 2c2
c4 c2
0 0
1 0
0 0
0 0
I2 O
O O
,
0 0 0 0
最后一个分块矩阵称为矩阵C1的等价标准形矩阵, 简称标准形,分块矩阵的左上角的单位阵的阶数恰9
好等于行阶梯形(或行最简形)矩阵中非零行的行
1 0 2 0 0 1
0 2 3 1 0 1
1 0 2 0 0 1
1 0 2 0 0 1
r2 3r3
r1 r3
0
1
6
0
1
3
r3 2r2
0
1
6
0
1
3
0 2 3 1 0 1
0 0 9 1 2 5
1
r3
1 9
r2 6r3
0
r1 2r3
0
0 1 0
0 0 1
2
9 2 3 1 9
如果A是可逆矩阵,我们可以用初等行变换的方法
求A1B:
A1 A, B I, A1B ,
32
或用初等列变换的方法求BA1:
A
B
A1
I BA1
.
例2.27 求矩阵X,使AX B,其中
1 2 3 2 5
A
2
3
2 4
1 3
,
B
3 4
1 3
.
解 对分块矩阵 A, B施行初等行变换:
B
1 4 3
1 6
6
2 2
9
1 2
7
4 94
1 1 2
初等变换与初等矩阵
⎡ A⎤ 出 A-1[见 P.68 例 2 的运算(有小错)];也可把 A 和 I 做成列分块矩阵 ⎢⎢L⎥⎥ ,右
⎢⎣ I ⎥⎦ 乘初等矩阵(即进行初等列变换),最后求出 A-1(结果相同).
作业(P.71):1(1) ; 2(2) ; * 6(1).
和
⎢⎢⎢⎡−116
⎢2
⎢⎢⎣−
1 6
− 13 6 3
2 −1
6
4⎤
3
⎥ ⎥
−1⎥ .
⎥
1⎥
3 ⎥⎦
即
A−1 = ⎢⎢⎢⎡−116
− 13 6 3
4⎤
3
⎥ ⎥
−1⎥ .
⎢2 2
⎥
⎢⎢⎣−
1 6
−1 6
1⎥ 3 ⎥⎦
四.分块矩阵的初等变换(简介)
仍以上面求 A 的逆矩阵 A-1 为例,可把 A 和 I 做成行分块矩阵 [A M I ](把
⎥ ⎥ ⎥
⎢⎣
1⎥⎦ ⎢⎣ Am ⎥⎦ ⎢⎣ Am ⎥⎦
2.[ 关于矩阵的等价标准形 ] 表述①任意矩阵 Am×n 都有自己的等价标准形
⎡ Ir ⎢⎣0 q ×r
0r × p 0q×p
⎤ ⎥ ⎦
,其中
0
≤
r
≤
min(m,
n)
;表述②对任意矩阵
Am×n
都存在有限个
m
阶
的初等矩阵 P1 、P2 、… 、P s 和 n 阶的初等矩阵 Q1 、Q 2 、… 、Q t 、、、,使得
⎡2 3 1⎤ 以 A = ⎢⎢0 1 3⎥⎥ 为例[P.68 例 2],对 A 和 I 进行同样的初等行变换:
初等矩阵及初等变换
初等矩阵及初等变换矩阵的初等变换⼜分为矩阵的初等⾏变换和矩阵的初等列变换。
1)初等⾏变换:所谓数域P上矩阵的初等⾏变换是指下列 3 种变换:a. 以P中⼀个⾮零的数k乘矩阵的第i⾏,即为E i(k),那它的逆矩阵⾃然就是E i(1 k)。
b. 把矩阵第i⾏的k倍加到第j⾏,这⾥k是P中的任意⼀个数,记为E ij(k),要想把第j⾏变回去,⾃然得减掉第i⾏的k倍,即E ij(−k)。
c. 互换矩阵中第i⾏和第j⾏,记为E ij,逆矩阵为E ij,这是很显然的,就是再交换⼀次就变回去了。
2)初等列变换:所谓数域P上矩阵的初等列变换是指下列 3 种变换:a. 以P中⼀个⾮零的数k乘矩阵的第i列,记为E i(k)。
b. 把矩阵的第i列的k倍加到第j列,这⾥k是P中的任意⼀个数,记为E ij(k)。
c. 互换矩阵中第i列和第j列,记为E ij。
初等矩阵:由单位矩阵E经过⼀次初等变换得到的矩阵称为初等矩阵。
矩阵经过初等变换后不会改变它原来的秩,因为初等矩阵是满秩的⽅阵,所以它是可逆的,如PA=B于是有r(B)≤r(A)因为P可逆,所以有A=P−1B于是r(A)≤r(B)所以r(A)=r(B)注:如果不了解这个过程,可以先去阅读。
左⾏右列定理:初等矩阵P左乘或(右乘) A得到PA(AP),就是对A做了⼀次与P相同的初等⾏(列)变换。
即要使矩阵A做出和初等阵相同的列变换,则A右乘P。
要使矩阵A做出和初等阵相同的⾏变换,则A左乘P。
为什么是这样的呢?可以阅读。
其实就是从向量⾓度来理解矩阵乘法,对于矩阵相乘AB=C,我们可以这样理解:1)矩阵C的每⼀个⾏向量是矩阵B的⾏向量的线性组合,组合的系数是矩阵A的每⼀⾏。
2)矩阵C的每⼀个列向量是矩阵A的列向量的线性组合,组合的系数是矩阵B的每⼀列。
Processing math: 100%。
2.5 初等变换与初等矩阵
A1
A1
因此
A
E ERT
E
A 1
初等变换 求逆法
A 1 AA1 E 类似的 A A 1 EA1 E A 1 E 1 1 ps p2 p1 1 E A A ECT E 因此 A 1 E
a11 ai 1 ka j 1 Em ( i , j ( k )) A a j1 a m1 基本事实
ain a jn ( ri ) a jn ( r j ) amn a1n
a11 a12 a j1 a j 2 Em ( i , j ) A a ai 2 i1 a m 1 am 2 a11 a1 j a21 a2 j AEn ( i , j ) a m 1 amj ( ci )
例4
1 0 0 0 1 1 1 1 0 , B 1 0 1 ,求 X ,使 A 1 1 1 1 1 0
AXA BXB AXB BXA E .
四、小结
1、矩阵的初等变换(Elementary transformation) ri rj ci c j ; 初等行(列)变换 ri k ci k ; ri krj ci kc j .
Th A B AQ B
ECT 一次
ET ET 3、 Th if A B B A
定义 如果矩阵 A 经过有限次初等变换变成矩阵 B , 就称矩阵 A 与 B 等价,记作 A ~ B 等价关系的性质: (1)反身性: A ~ A; (2)对称性: if A ~ B , B ~ A; (3)传递性: if A ~ B , B ~ C A ~ C. 具有上述三条性质的关系就称为等价. Th A B PAQ B 定理: , Q 为可逆阵 P Er O Th R A标准形 PAQ A r O O 1 p1 , p2 , , ps , 定理: Th if A 有限个初等矩阵
线性代数:矩阵的初等变换和初等矩阵
a12 3a22
a13 3a23
a11 a21
a12 a22
a13 a23
2 0 0
0 1 0
0 0 1
2a11 2a12
a12 a22
a13 a23
10
a11 a21
a12 a22
a13 a23
c1 2
2a11 2a12
a13 a23
a12 a22
3、以数k 0乘某行(列)加到另一行(列)上去
矩阵的初等变换和 初等矩阵
1
一、矩阵的初等变换初等矩阵
定义 下面三种变换称为矩阵的初等行变换:
1 对调两行(对调i, j两行,记作ri rj); 2 以数 k 0 乘以某一行的所有元素;
(第 i 行乘 k,记作 ri k)
3 把某一行所有元素的k 倍加到另一行
对应的元素上去(第 j 行的 k 倍加到第 i 行上
相当于对矩阵 A 施行第一种初等列变换: 把 A 的第 i 列与第 j 列对调(ci c j ).
7
2、以数 k 0 乘某行或某列
以数k 0乘单位矩阵的第i行(ri k),得初等 矩阵E (i (k )).
1
1
E(i(k))
k
第
i
行
1
1
8
以 Em (i(k)) 左乘矩阵A,
25
三、初等变换法求逆矩阵
当A可逆时,由推论4,A P1P2 Pl,有 Pl1Pl11P11 A E, 及 Pl1Pl11P11E A1,
Pl1Pl11P11 A E
Pl1Pl11P11 A Pl1Pl11P11E E A1
即对 n 2n 矩阵 ( A E) 施行初等行变换, 当把 A 变成 E 时,原来的 E 就变成 A1.
矩阵的初等变换与初等矩阵
Er O
O O
0
00
0
的矩阵等价,称之为 A 的标准形.其中r是行阶梯形矩
阵非零行的行数.
§3 矩阵的初等变换与初等矩阵
二、初等矩阵
定义 由单位矩阵 E 经过一次初等变换得到的
矩阵,称为初等矩阵.
三种初等变换对应着三种初等矩阵:
1. 对调两行或两列; 2.以数 k 0 乘某行或某列; 3.以数 k 乘某行(列)加到另一行(列)上去.
行阶梯形矩
阵的特点: 阶梯 线下方的元素全 为零; 每个台阶 只有一行, 台阶 数即是非零行的 行数, 阶梯线的 竖线(每段竖线 的长度为一行) 后面的第一个元 素为非零元,也 就是非零行的第 一个非零元.
例如
1 2 0 0
0
0
1
0
0 0 0 1
1 2 1 0
E(i, j)A: 对换 A的 i, j 两行; AE(i, j): 对换 A的 i, j 两列. E(i(k))A :用非零数 k乘 A 的第 i 行; AE(i(k)) :用非零数 k 乘 A 的第 i 列.
E(i, j(k))A :A 的第 j 行乘以 k加到第 i 行 ;
第二章 矩阵
§1 矩阵的概念与运算 §2 可逆矩阵与逆矩阵 §3 矩阵的初等变换与初等矩阵 §4 矩阵的秩与矩阵的分块
习题课
§3 矩阵的初等变换与初等矩阵
一、矩阵的初等变换 二、初等矩阵 三、用初等变换求矩阵的逆
§3 矩阵的初等变换与初等矩阵
一、矩阵的初等变换
定义1 下面三种变换称为矩阵的初等行(列)变换:
1) 用非零数k乘矩阵的某一行(列); k ri,k ci 2) 把矩阵的某行(列)的k倍加到另一行() 互换矩阵中两行(列)的位置. ri rj,ci c j 矩阵A经初等行(列)变换变成矩阵B,一般地A≠B.
矩阵的初等变换与初等矩阵
定义3 :如果行阶梯型矩阵满足下列两个 条件,则称其为行最简阶梯型矩阵
非零行的首非零元都是1 b 首非零元所在列的其余元素都 是零
a
例
1 0 0 r r 1 1 3 A 0 2 0 0 1 0 3 0
0 0 1 r2 1 0 0 2 2 0 0 1 0 1 3 r3 0 0 1 0 3
0 3 2 2 A与B之间用记号 或 0 0 0 0 连接。
2 3
定义2:满足下列条件的矩阵称为行阶梯型矩阵
a 矩阵的零行(元素全为零的行)在非 零行(元素不全为零的行)的下方 b 矩阵的每一个非零行的非零首元都出 现在上一行非零首元的右边 1 2 1 3 0 3 2 0 例 0 6 4 8
1 3 1 4 0 6 4 4 0 0 0 0
r( A) 2
1 1 2.B 3 1 1 1 ( )r 2 0 0 0
2
2 3 0 1 1 1 2 0 2 3 1 1 7 10 0 3
2 1 0 0 3 1 3 0
例:求矩阵的秩:
2 2 3 8 1. A 2 12 2 12 1 3 1 4
1 4 1 3 A 2 12 2 12 r1 r3 2 3 8 2
3 r2 r3 2
1 4 1 3 ( 2 ) r1 r2 0 6 4 4 ( 2 ) r1 r3 0 9 6 6
矩阵的初等变换
矩阵的初等变换是线性代数中一个重要的工具.
以下三种变换分别称为矩阵的第一、第二、第三种初 等变换:
(i ) 对换矩阵中第 , j两行(列)的位置,记作 i rij (cij )或ri rj (ci c j )
2.5矩阵的初等变换和初等矩阵
§2。
5 矩阵的初等变换和初等矩阵矩阵的初等变换源于线性方程组消元过程中的同解变换,它在将矩阵变换为简单形式、解线性方程组、求矩阵的逆阵、解矩阵方程以及研究矩阵的秩等方面起着重要的作用。
一 矩阵的初等变换和矩阵等价定义2。
10 设A 是矩阵,下面三种变换称为矩阵的初等行变换: n m ×(1) 交换A 的第行和第行的位置,记为i j j i r r ↔; A 的第i 行各元素,记为;i kr (2) 用非零常数乘以k 的第i 行各元素的倍加到第行对应元素,记为A j k i j kr r +。
(3) 将 若把定义2。
10中的行改为列,便得到三种对应的初等列变换,记号分别为;;。
j i c c ↔i kc i j kc c + 矩阵的初等行(列)变换统称为矩阵的初等变换。
例如⎯⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−↔31132100101792r r ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−179200101321⎯⎯→⎯+242c c ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−177********21值得注意的是,初等变换将一个矩阵变成了另一个矩阵,在一般情况下 ,变换前后的两个矩阵并不相等,因此进行初等变换只能用来表示,而不能用等号。
另外,矩阵的初等变换可以逆向操作,即若矩阵→i r k1A B B 经过、i kr i j kc c +变换成了矩阵,那么对施以及,就可以将矩阵B A i j kc c −。
复原为矩阵A B A B 定义2。
11 如果矩阵经过有限次初等变换后化为矩阵,则称等价于矩阵,简记为B A ~。
由定义可以得到以下关于矩阵等价的一些简单性质:A A ~(1) 反身性:;(2) 对称性:则,~B A A B ~;B A ~且,则。
C B ~C A ~(3) 传递性: 定理2。
3 任意矩阵()nm ija A ×=都与形如的矩阵等价。
矩阵称为矩阵⎟⎟⎠⎞⎜⎜⎝⎛000rE ⎟⎟⎠⎞⎜⎜⎝⎛000r E ),min(1n m r ≤≤A 的标准形。
2.3 矩阵的初等变换与初等矩阵
~
3 0 2 0 1 0 0 2 1 1 0 0 0 9 4 0 2 3
3 0 2 0 1 0 ~ 0 2 1 1 0 0 r3 9 r2 0 0 1 9 4 6 3 0 0 18 9 12 r1 2 r3 0 2 0 8 4 6 ~ r2 r3 0 0 1 9 4 6
4 1 2 1
00 00 11 00
0 0 10 20 30 00 00 00 00
9 4 6 0 0 0 2 0 8 3 0 00
矩 阵 A 的 标 准 型
例4.2
设
1 1 2 1 A 1 1 1 0 2 0 1 1
的等价标准形.
求
A
注:
1.任一矩阵都可经过初等行变换化成行阶梯矩阵; 2.任一矩阵都可经过初等行变换化成行最简矩阵;
3.任一矩阵都可经初等变换r
Er 0, E r 都是 0
0 的特殊情况. 0
O Er 。 O O
行阶梯形矩阵
也就是指可以画一条阶梯折线,
折线的下方元素全为零;并且每个阶梯只有一行,
阶梯数即为非零行的行数,阶梯线每一竖线后面第
一个元素为非零元.
3 3 2 1 0 1 0 , B 0 0 1 2 5 如: A 0 0 0 0 0 6 0 1 1 0 0 0 8 0 0 2 5 0 0 5 2 4 0 2 1 0 4 , C 0 3 0 0
0 1 1 3 0 0 0 0 0 2 0 0 0 2 0 8 1 3 0 0
为行阶梯矩阵.
行最简形矩阵
是指行阶梯形矩阵中除每一竖线后面的第一个
初等变换与初等矩阵
华南农业大学理学院应用数学系
1.2 初等变换与初等矩阵
➢1.2.1 初等变换 ➢1.2.2 初等矩阵及其性质 ➢1.2.3 初等变换与逆矩阵
1.2.1 初等变换
a11x1a12x2 a1nxn b1
( 1 )
a21x1a22x2 a2nxn b2 ........................................
am1x1am2x2 amnxn bm
m个方程 ,
n个未知数
对此线性方程组,可做如下三种同解变换: (1) 互换两个方程的位置; (2) 把某一个方程的两边同乘以一个非零常数c; (3) 将某一个方程加上另一个方程的k倍. 这三种变换都称为初等变换.
这三种 变换都 是可逆
的
设方程组 (1) 经过某一初等变换后变为另一个方程组,
R1 ij
Rij
(Ri())1Ri(1)
(R ij())1R ij()
定理1.2 有限个初等矩阵的乘积必可逆.
性质1.5 用初等矩阵左乘某矩阵,其结果等价于对该矩阵作
相应的初等行变换;用初等矩阵右乘某矩阵,其结果等效于对该 矩阵作相应的初等列变换.
例
1 0 01 2 3 1 2 3
R12(1)A1
k ri
第i行变
rj kri 第j行变
列变换 Column
交换i, j两列 第 i 列乘数K
第 i 列乘数K后加 到第 j 列上去
ci cj k ci
第i、j列变 第i列变
cj kci 第j列变
例 利用矩阵的行初等变换解方程组
2x2 x3 1 x1 x2 x3 0
2x1 x2 x3 2
的对应元素上去。
线性代数:矩阵的初等变换和初等矩阵
是把“r”换成“c”).
定义 矩阵的初等列变换与初等行变换统称为 2 初等变换.
矩阵的初等变换是矩阵的一种基本运算,应 用广泛.
定义 由单位矩阵 E 经过一次初等变换得到的方 阵称为初等矩阵.
三种初等变换对应着三种初等方阵. 1. 对调两行或两列; 2.以数 k 0 乘某行或某列; 3.以数 k 乘某行(列)加到另一行(列)上去.
a13 a23
a12 a22
5
a11 a21
a12 a22
a13 a23
c2
c3
a11 a12
a13 a23
a12 a22
用 m 阶初等矩阵 Em (i, j) 左乘 A (aij )mn,得
a11
a12
a1n
Em
(i
,
j)
A
a j1
aj2
a jn
第
i
行
ai1
ai 2
1
0
c1
2c3
0
1
0 E(3,1(2))
0 0 1
2 0 1
1 2
10
a11 a21
a12 a22
a13 a23
a21
a11 2a11
a12 a22 2a12
a23
a13 2a13
a11 a21
a12 a22
a13 a23
r2 2r1
a21
a11 2a11
a12 a22 2a12
相当于对矩阵 A 施行第一种初等列变换: 把 A 的第 i 列与第 j 列对调(ci c j ).
7
2、以数 k 0 乘某行或某列
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A A11
A12
A13
A14
A15 .
3
2.分块矩阵的运算规则 分块矩阵运算把握2点,第一,子块当元素看可运算, 第二,子块当矩阵看也可运算。如:
设矩阵A与B为同型矩阵,采用相同的分块法,有
A11 A1r A , A A sr s1
其中 Aij与 B ij 为同型矩阵,那么
第六讲时间: 年 月 日; 星期
教学目的 掌握等价概念,理解阶梯形、最简形和标准 作业
形矩阵。理解初等矩阵与初等变换的关系定 理,理解相应推论,会用初等变换求逆矩阵 和解方程组。
重点
难点 讲授方法
初等变换的代数化定理
初等变换与初等矩阵的关系 按照章节顺序讲授
讲授内容主 初等变换初等阵,分清左乘左边乘;左乘可 线 逆行变换,求逆还能解方程。子式定义求变 换
a12 a1n a 22 a 2 n a m 2 a mn a1n b1 a 2 n b2 , a mn bm
按分块矩阵的记法 B A | b, 或 B A, b a1 , a 2 ,, a n , b, 利用矩阵乘法,此方程组可记作
a12 a 22 am 2
a11 a 21 a m1
x1 x2 x , x n
b1 b2 b , b m
a11 a B 21 a m1
A11 A21 A . A 31 A 41
a11 a12 a 21 a 22 a a 32 31 a 41 a41
线性代数 第三章
a13 a 23 a 33 a43
a14 a 24 a 34 a44
a15 a 25 a 35 a45
(b)若 Ai 0 i 1,, s , 则 A 0, 并有
A11 O 1 A2 A 1 . O 1 As
线性代数 第三章
5
第六讲:分块矩阵、初等变换与初等矩阵
同理,容易验证如下结论
0 0 若B B r 0 B2 0 B1 0 0
且子块
Bi i 1,2,3r
均可逆,则B可逆,且
0 0 Br1 0 0
B 1
0 0 B 1 1
1 Br 1
线性代数 第三章
6
第六讲:分块矩阵、初等变换与初等矩阵
3.分块运算的作用
1.分块运算使得矩阵结构简单,利于诠释一些问题和概念
第六讲:分块矩阵、初等变换与初等矩阵
B11 B1r B , B B sr s1
A11 B11 A1r B1r A B . A B A B s1 sr sr s1
线性代数 第三章
4
ai 1 x1 ai 2 x2 ain x2 bi
即
线性代数 第三章
8
第六讲:分块矩阵、初等变换与初等矩阵
例1(2004、4)
0 1 0 设A 1 0 0 , B P 1 AP , 其 中P为3阶 可 逆 矩 阵 , 则 B 2004 2 A2 __ 0 0 1 An A 0 分析:利用 0 B 0
练习册 第 17-21页 T1-5 其中交: P17-20, T1-3
内容概括
初等矩阵左右乘,变换成了乘逆阵,求逆还 能解方程。子式定义的秩初等行变换求
线性代数 第三章
1
第六讲:分块矩阵、初等变换与初等矩阵
本次课讲:
第三章第一节和第二节
下次课讲:
第三章第三节第四节 下次上课时交作业第17页到第18页
线性代数 第三章
2
第六讲:分块矩阵、初等变换与初等矩阵
一、分块矩阵——1.分块矩阵的概念
将矩阵 A用若干条纵线和横线分成许多小矩阵, 每一 个小矩阵称为 A 的子块, 以子块为元素的形式上的矩阵称为 分块矩阵 如
a11 a12 a 21 a 22 a a 32 31 a 41 a41 a13 a 23 a 33 a43 a14 a 24 a 34 a44 a15 a 25 a 35 a45
Ax b.
将B按列分块
7
线性代数 第三章
第六讲:分块矩阵、初等变换与初等矩阵
若将系数矩阵 A 按行分成 m 块,则线性方程组可记作
1T b1 T 2 b2 x , b T m m
如
a11 x1 a12 x 2 a1n x n b1 a x a x a x b 21 1 22 2 2n n 2 a m 1 x1 a m 2 x 2 a mn x n bm
记 A a ij
第六讲:分块矩阵、初等变换与初等矩阵
4.分块对角矩阵:设 A 为 n 阶矩阵,如果A的对角线分块 矩阵为方阵,且只在对角线上有非零子块,其余子块都为 零矩阵,即 A1
A A2 , As
其中 A1 , A2 ,, As 都是方阵, 那么称 A 为分块对角矩阵。 分块对角矩阵有下列性质: (a) A A1 A2 As ;
这就相当于把每个方程
iT x bi i 1,2,, m. 记作 若将系数矩阵 A 按列分成 n 块,则线性方程组可记作
x1 a1 , a2 ,, an x 2 b, x n x1 a1 x2 a 2 xn a n b,