第4章红外吸收光谱法.

合集下载

仪器分析3—红外吸收光谱法

仪器分析3—红外吸收光谱法

傅立叶变换红外光谱仪
样品池
红外光源
摆动的 凹面镜
迈克尔逊 干扰仪
参比池
摆动的 凹面镜
检测器 干涉图谱 计算机 解析 还原
M1 II
同步摆动
I M2
红外谱图
BS
D
仪器组成
第五节 红外光谱法应用
红外光谱法由于操作简单,分析速度 快,样品用量少,不破坏样品,特征性 强等优点,在有机定性分析中应用广泛。 利用红外光谱可对化合物进行鉴定或结 构测定。 但由于吸收较复杂,在定量分析方面 应用受到一定限制。
第四章 红外吸收光谱分析法(IR)
Infrared Absorption Spectrometry
第一节
红外光谱基本知识
1、红外线波长范围: 光学光谱区域:10nm ~1000μm; 其中:10nm ~400nm为紫外光区 400nm ~760nm为可见光区, 760nm ~ 1000μm为红外光区。 为表示方便,红外光不用nm(纳米) 而用微米( μm)表示其波长。
由原理图可见,红外分光光度计也主要 由光源、样品吸收池、单色器、检测器、 记录仪等部件构成。 1、光源:能斯特灯或硅碳棒
红外光谱仪中所用的光源通常是一种惰性固体,用 电加热使之发射高强度的连续红外辐射。 常用的是Nernst灯或硅碳棒。 Nernst灯是用氧化锆、氧化钇和氧化钍烧结而成的 中空棒和实心棒。工作温度约为1700℃,在此高温下导 电并发射红外线。但在室温下是非导体,因此,在工作 之前要预热。它的特点是发射强度高,使用寿命长,稳 定性较好。 硅碳棒是由碳化硅烧结而成,工作温度在1200-1500℃ 左右。
ε>100 非常强峰(vs) 20<ε<100 强 峰(s) 10<ε<20 中强峰(m) 1<ε<10 弱 峰(w)

第四章 红外光谱

第四章  红外光谱
一、波长和波数
电磁波的波长( )、频率( v)、能量(E)之间的关系:
2020/3/20
3
二、红外光谱的表示方法
红外光谱是研究波数在4000-400cm-1范围内不同
波长的红外光通过化合物后被吸收的谱图。谱图以波 长或波数为横坐标,以透过率为纵坐标而形成。
横坐标:波长/λ或波数/cm-1。 纵坐标:吸光度A或透过率T,
N为分子中成键原子的个数。
例1: H O H 为非线状分子,应有3N-6=9-6=3个峰。
2020/3/20
15
例2:O=C=O为线状分子,便有3N-5=9-5= 4个峰。
Why? ①νs O=C=O 不改变分子的偶极矩; ②δs O=C=O 与δw + O=C=O + 简并。
2020/3/20
16
1900~2500 cm-1,主要是:C≡C、C≡N 三键和 C=C=C、C=N=O 等累积双键的伸缩振动吸收峰。
(3) Y=Z双键伸缩振动区(第三峰区) :
1500~1900 cm-1,主要是:C=O、C=N、C=C等双 键存在。
2020/3/20
13
2)指纹区:
<1500 cm-1的低频区,主要是:C-C、C-N、 C-O等单键和各种弯曲振动的吸收峰,其特点是谱带 密集、难以辨认。
2020/3/20
1
4.1 基本原理
红外光谱就是当红外光照射有机物时,用仪器记录 下来的吸收情况(被吸收光的波长及强度等),用来进行 分析的方法。红外线可分为三个区域:
红外光谱法主要讨论有机物对中红区的吸收(振动能 级跃迁)。
2020/3/20
2
红外光谱的基本原理:
用不断改变波长的红外光照射样品,当某一波长的频 率刚好与分子中某一化学键的振动频率相同时,分子就会 吸收红外光,产生吸收峰。用波长(λ)或波长的倒数波 数(cm-1)为横坐标,百分透光率(T%)或吸收度(A) 为纵坐标做图,得到红外吸收光谱图(IR)。分子振动所 需能量对应波数范围在400 cm-1~4000 cm-1。

红外吸收光谱法-基本原理

红外吸收光谱法-基本原理
红外吸收光谱法
基本原理
红外光谱的发展
Discovery of infrared Light
William Herschel
红外吸收光谱法
▪ 在未知物结构解析中有重要应用 ▪ “四大波谱”技术之一 ▪ 利用物质分子对红外辐射(0.78-40 μm)的特征吸收鉴别物质分子结构或定量分析
分子振动 分子转动
O=C=O
不对称伸缩振动
分子的振动类型
分子基团的振动频率(双原子分子)
1 k 2
虎克定律
伸缩振动频率的计算
▪ H-Cl为例
1 k 2
k 5.1N / cm
m1 m2 35.51.0 0.97
m1 m2 35.5 1.0
H Cl
1
2
k
2993 cm1
基频吸收峰
红外振动频率的分类
分子的振动类型
分子振动方式
伸缩振动 变形振动
对称伸缩振动 不对称伸缩振动 面内变形振动
面外变形振动
剪式振动 面内摇摆振动 面外摇摆振动 面外扭曲振动
伸缩振动
对称伸缩振动 Symmetric stretching
不对称伸缩振动 Asymmetric stretching
弯曲振动
剪式振动 Deformation
面外摇摆振动 Wagging
面内摇摆振动 Rocking
扭Hale Waihona Puke 振动 Twisting分子的振动自由度
N个原子组成的分子,3N个自由度 3N=平动自由度+转动自由度+振动自由度
由N个原子组成的分子:平动自由度=3 由N个原子组成的线形分子:转动自由度=2 由N个原子组成的非线形分子:转动自由度=3

红外吸收光谱分析 - 红外吸收光谱分析

红外吸收光谱分析 - 红外吸收光谱分析

归属
CH 3 | CH3 — C — | CH 3
吸收峰 3360 1195
振动形式
OH
COHale Waihona Puke 归属 —OH可能结构为
CH 3 | CH 3 — C — OH |
CH 3
例2 C10H10O4
U 2 210 10 6 (可能有苯环) 2
峰位 1727cm-1 1288 1126
第四节 红外吸收光谱分 析
一、试样的制备(样品纯度>98%)
1.固体试样:KBr压片法
2.液体试样:夹片法(液体试样滴在一片KBr
窗片上,用另一片KBr窗片夹住后测定)
知识点12:红外光谱解析方法
二、IR光谱解析方法
1.计算不饱和度
U 2 2n4 n3 n1 2
意义:
U 0 无双键或环状结构 U 1 可能含一个双键或一个环 U 2 含两个双键,或一个双键 环,或一个叁键 U 4 苯环 U 5 苯环 一个双键
• 3.某未知物的沸点202℃,分子式为 C8H8O,试判断其结构。
4.某化合物的分子式为C8H10O2, 试推断其结构式。
• 5.已知未知物的分子式为C7H9N, 推出其结构。
6.已知某化合物的分子式为 C9H10O2,试推断结构式。
O
CH2OCCH3
CH3 NH2
O C CH3
答案!
OH OH CH CH2
2.确定官能团或结构碎片
3.推出可能的结构 4.核对分子式和不饱和度 5.和Saltler标准光谱对照
例1 C4H10O
U 2 8 10 (0饱和脂肪族化合物) 2
吸收峰 2970cm-1 2874 1476 1395 1363

红外吸收光谱法

红外吸收光谱法

C CH3 O
CH3
1686
H3C
CH3
C CH3
O
CH3
1693
α,β不饱和酮
23
(6)氢键效应
由于氢键改变了原来化学键的力常数,对峰位,峰强产
生极明显影响。移向低波数,增加,并变宽。 移向高波
数。
R
O
H NH R
游离
C=O
1690
HN H O
氢键 1650
N-H
3500
3400
N-H
1650-1620
T(%)
2)红外光谱的表示方法:
红外光谱以T~ (μm) 或 T~波数1/λ ( cm-1 )来表示,
苯酚的红外光谱。
可以用峰数,峰位,峰形,峰强来描述。
3
3) 红外光区划分
红外光谱 (0.75~1000m)
近红外(泛频) (0.75~2.5 m)
中红外(振动区) (2.5~25 m)
远红外(转动区) (25-1000 m)
1576cm-1 1611cm-1
CH2 CH2
CH2
1781cm-1 1678cm-1 1657cm-1
1644cm -1
CH2 1651cm-1
22
(5)位阻应效
共轭效应会使基团吸收频率移动。若分子中存在空间 阻碍,使共轭受到限制,则基团吸收接近正常值。
C CH3 O
υc=o/cm-1 1663
1000~800 (面外摇摆)
(1) = CH >3000 cm-1为不饱和碳上质子振动吸收,是与饱 和碳上质子的重要区别。
(2) C=C的 位置及强度 与烯碳的取代情况及分子对称性 密切相关。
末端烯烃 C=C吸收最强,双键移向碳链中心时结构对称 性增强, C=C带减弱。顺式较反式强。

红外吸收光谱分析法

红外吸收光谱分析法

红外吸收光谱分析法
一、红外吸收光谱分析法概述
红外吸收光谱分析法是一种利用物质的红外光吸收能力来探测它们的物质组成的技术。

它特别适用于有机化合物和无机化合物的光谱分析。

通过分析红外吸收光谱,可以检测物质中的有机键、C-H键、C-O键或N-H 键的存在和位置,从而鉴定出物质的化学结构和性质。

红外光吸收法的原理是,物质中的分子、晶体或其他结构会在不同的波长处吸收光,产生光谱,这些吸收光谱是物质的独特特征,反映出物质的特性。

根据这种特性,分析用不同波长的光照射样品,并从所得到的光谱中提取出电子激发、分子振动等信息,从而得到物质的结构和性质。

二、红外吸收光谱分析法基本原理
红外吸收光谱分析法的原理是,当物质受到红外幅射的照射时,它的分子会产生振动和旋转,这些振动和旋转的能量会转化为更高能量的电子跃迁。

这些电子跃迁会引起物质材料吸收一些具有特定波长的红外光,从而产生在不同波长的吸收光谱,通过分析这些吸收光谱,就可以求取物质分子的结构和性质。

红外吸收光谱法

红外吸收光谱法

图4.3 聚苯乙烯红外光谱图
四、紫外吸收光谱与红外吸收光谱的区别
1. 光谱产生的机制不同 紫外:电子光谱; 红外:振-转光谱
2. 研究对象和使用范围不同 紫外:研究不饱和化合物,具有共轭体系; 红外:凡是在振动中伴随有偶极矩变化的化合
物都是红外光谱研究的对象。可研究几乎所有的有 机物。
04:04:06
04:04:06
二、红外光区的划分
表4.1 红外光谱区划分


/m
/cm-1
能级跃迁类型
近红外(泛频区)
0.78~2.5
12820~4000
O-H、N-H和C-H键的 倍频吸收区
中红外(基本振动区) 2.5~50 4000~00~10
04:04:06
红外光谱的表示方法
红外光谱图:纵坐标为透光率(或吸光度),横坐标为波长 λ( m )和波数1/λ ,单位:cm-1。 / cm1 104
/ m
04:04:06
图4.1 苯酚的IR吸收光谱
04:04:06
图4.2乌桕油的IR光谱
04:04:06
04:04:06
分子的转动,骨架振 动
最常用的
2.5~15 4000~650
04:04:06
3. 红外光谱特点 1)红外吸收只有振-转跃迁,能量低; 2)应用范围广:除单原子分子及单核分子外,几乎所有有
机物均有红外吸收; 3)分子结构更为精细的表征:通过IR谱的波数位置、波峰
数目及强度确定分子基团、分子结构; 4)定量分析; 5)固、液、气态样均可用,且用量少、不破坏样品; 6)分析速度快。
五、红外光谱法的特点和应用
特点:与紫外-可见吸收光谱比较 (1) 除了单原子分子和同核双原子分子等少数 分子外,几乎所有化合物均可用红外吸收光谱法 进行研究。适用范围广。 (2)红外光谱可对物质的组成和结构特征提供 十分丰富的信息。其最重要和最广泛的用途是对 有机化合物进行结构分析。

第四章 红外分光光光度法(书后习题参考答案)

第四章 红外分光光光度法(书后习题参考答案)

第四章 红外分光光光度法(书后习题参考答案)1.CO 的红外光谱在2 170cm -1处有一振动吸收峰.问(1)CO 键的力常数是多少?(2)14CO 的对应峰应在多少波数处发生吸收? 解:碳原子的质量2323100.210022.612--⨯=⨯=C m g氧原子的质量2323106.210022.616--⨯=⨯=O m g (1) σ =2071cm -1O C O C m m m m k c ⋅+=)(21πσ 2346210210)6.22(106.22)217010314.32()2(--⨯+⨯⨯⨯⨯⨯⨯⨯=+=O C O C m m m m c k σπ =18.6×105 dyn·cm -1=18.6N·cm -1(厘米克秒制)(2)14CO 2323103.210022.614-⨯=⨯=C m g2071106.23.210)6.23.2(106.1810314.3214623510≈⨯⨯⨯+⨯⨯⨯⨯⨯⨯=--σcm -1或O C O C O C O C m m m m m m m m +⋅⨯⋅+=1212141412σσ σ =2080cm -12.已知C―H 键的力常数为5N/cm ,试计算C―H 键伸展振动的吸收峰在何波数?若将氘(D )置换H ,C―D 键的振动吸收峰为多少波数.解:C-H 键:k =5N·cm -1=5.0×105dyn·cm -1碳原子的质量:m C =2.0×10-23g, 氢原子的质量:23231017.010022.61--⨯=⨯=H m g氘原子的质量: 23231034.010022.62--⨯=⨯=D m g 依2121)(21m m m m k c ⋅+=πσ得29961017.00.210)17.00.2(10510314.3214623510≈⨯⨯⨯+⨯⨯⨯⨯⨯⨯=--σcm -121991034.00.210)34.00.2(10510314.3214623510≈⨯⨯⨯+⨯⨯⨯⨯⨯⨯=--σcm -13.指出以下振动在红外光谱中是活性的还是非活性的分 子 振 动(1)CH 3一CH 3 C―C 伸缩振动(2)CH 3一CC13 C―C 伸缩振动(3)SO 2 对称伸缩振动(4)CH 2=CH 2 C―H 伸缩振动C CH H(5)CH 2=CH 2 C―H 伸缩振动C CH H(6)CH 2=CH 2 CH 2摆动 C CHH H(7)CH 2=CH 2 CH 2扭曲振动C CHH H H解:非红外活性:(1), (5), (7)红外活性:(2), (4), (6), (8)4.下面三个图形(图4-20)分别为二甲苯的三种异构体的红外光谱图。

红外吸收光谱法

红外吸收光谱法

作业题第四章红外分光光度法第一节概述填空题1、红外光区位于光区和光区之间,波长范围为,习惯上又可将其细分为、和三个光区,应用较多的是光区。

2、红外谱图纵坐标一般为,横坐标一般为。

简答题:红外分光光度法的特点。

第二节基本原理1、分子内部的运动方式有三种,即:、和,相应于这三种不同的运动形式,分子具有能级、能级和能级。

2、一般多原子分子的振动类型分为振动和振动。

3、乙烷的振动自由度是。

4、甲酸的振动自由度是。

判断题:1、对称结构分子,如H2O分子,没有红外活性。

()2、水分子的H-O-H对称伸缩振动不产生吸收峰。

()选择题:1、试比较同一周期内下列情况的伸缩振动(不考虑费米共振与生成氢键)产生的红外吸收峰, 频率最小的是( )A C-HB N-HC O-HD F-H3、判断下列各分子的碳碳对称伸缩振动在红外光谱中哪个是非活性的()A.CH3CH3 B. CH3CCl3C.C CHClHCl D.C CHClClH6、乙烯分子的振动自由度为:A.20B.13C.12D.6E.15答案:DADCCCDEB简答题:1、红外吸收光谱与紫外-可见吸收光谱在谱图的描述及应用方面有何不同?2、什么是红外非活性振动?3、分子吸收红外辐射而发生能级跃迁的必要条件是什么?4、峰位的影响应因素有哪些?5、红外吸收峰强度取决于什么?6、以亚甲基为例说明分子的基本振动模式。

7、特征区和指纹区各有何特点?它们在图谱解析中主要解决哪些问题?第三节红外光谱和分子结构的关系填空题:1、在苯的红外吸收光谱图中(1) 3300~3000cm-1处, 由________υ=CH ________________振动引起的吸收峰(2) 1675~1400cm-1处, 由________υC=C ________________振动引起的吸收峰(3) 1000~650cm-1处, 由__________γC-H ______________振动引起的吸收峰简答题:1、试用红外光谱法区别下列异构体:(1)CH3CH2CH2CH2OH CH3CH2OCH2CH3(2)CH3CH2COOH CH3COOCH3(3)O O2、试解释下列各组化合物羰基C=O伸缩振动吸收频率变化的原因。

红外吸收光谱分析法 红外谱图解析

红外吸收光谱分析法 红外谱图解析

顺式烯 乙烯基烯 亚乙烯基烯
08:12:21
R1 H R1 H R1 R2
1660cm-1
1660-1630cm-1
中强,尖
总结
ⅰ 分界线1660cm-1 ⅱ 顺强,反弱
ⅲ 四取代(不与O,N等相连)无υ
ⅳ 端烯的强度强
(C=C)峰
ⅴ共轭使υ
下降20-30 cm-1 (C=C)
H C C R R1 C C R2
08:12:21
υ υ
C C
2140-2100cm-1 (弱) 2260-2190 cm-1 (弱)
C C
c)C-H 变形振动(1000-700 cm-1 )
面内变形(=C-H)1400-1420 cm-1 (弱) 面外变形(=C-H) 1000-700 cm-1 (有价值)
R1 H R1 R2 R1 R2 C C R4
O—H,C—O
a)-OH 伸缩振动(>3600 cm-1) b)碳氧伸缩振动(1100 cm-1)
C Cα C Cα′ C C Cα″ β
υ
(C-O)
OH
υ
游 离 仲-OH 醇, 叔-OH 酚 酚-OH 伯-OH
(—OH) 3640cm-1 3630cm-1 3620cm-1 3610cm-1
1050 cm-1 1100 cm-1 1150 cm-1 1200 cm-1
第四章 红外吸收光谱分 析法
infrared absorption spec-troscopy,IR
一、红外谱图解析
analysis of infrared spectrograph
二、未知物结构确定
structure determination of compounds

仪器分析 第四章--红外吸收光谱法

仪器分析  第四章--红外吸收光谱法

章节重点:
分子振动基本形式及自由度计算;
红外吸收的产生2个条件;
各类基团特征红外振动频率;
影响红外吸收峰位变化的因素。
第八章 红外吸收光谱分 析法
第三节 红外分光光度计
1. 仪器类型与结构
2. 制样方法
3. 联用技术
1. 仪器类型与结构
两种类型:色散型 干涉型(傅立叶变换红外光谱仪)
弯曲振动:
1.4 振动自由度
多原子分子振动形式的多少用振动自由度标示。

三维空间中,每个原子都能沿x、y、z三个坐标方向独 立运动,n个原子组成的分子则有3n个独立运动,再除 掉三个坐标轴方向的分子平移及整体分子转动。

非线性分子振动自由度为3n-6,如H2O有3个自由度。 线性分子振动自由度为3n-5,如CO2有4个自由度。
某些键的伸缩力常数:
键类型: 力常数: 峰位:源自-CC15 2062 cm-1
-C=C10 1683 cm-1
-C-C5 1190 cm-1
-C-H5.1 2920 cm-1
化学键键强越强(即键的力常数K越大),原子折合 质量越小,化学键振动频率越大,吸收峰在高波数区。
1.2 非谐振子
实际上双原子分子并非理想的谐振子!随着振动量子 数的增加,上下振动能级间的间隔逐渐减小!
(1)-O-H,37003100 cm-1,确定醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐 ,强吸收;当浓度较大时,发生缔合作用,峰形较宽。
注意区分: -NH伸缩振动:3500 3300 cm-1 峰型尖锐
(2)饱和碳原子上的-C-H -CH3 2960 cm-1 2870 cm-1 反对称伸缩振动 对称伸缩振动

第4章 红外吸收光谱法(无机)

第4章 红外吸收光谱法(无机)

3.振动的非谐性 振动的基频: 振动的基频: 0→1振动能级的跃迁 v 0→1 振动的倍频: 振动的倍频: 0 → 2、3、4….振动能级的跃迁 v 0→2、 v 0→3 、 v 0→4 振动的组频: 振动的组频: 基频的和 振动的差频: 振动的差频: 基频的差 v 10 → 1 + v 20 → 1 v 10 → 1 - v 20 → 1

κ µ
振动能级的跃迁, 基本振动频率或 当△V =1时,0→ 1振动能级的跃迁,称为基本振动频率或基频吸收带。 时 振动能级的跃迁 称为基本振动频率 基频吸收带。 例1: 由表中查知 C=C 键的 k= 9.5 ~9.9 (N/cm) ,令其为9.6, 计算正己 令其为9.6, 烯中C=C键伸缩振动频率,实测值为1652 C=C键伸缩振动频率 烯中C=C键伸缩振动频率,实测值为1652 cm-1
五、影响红外吸收峰强度的因素
1.红外吸收峰强度的分类 . ε >100 20<ε<100 10<ε< 20 1<ε<10 非常强吸收峰 强吸收峰 中强吸收峰 弱吸收峰 vs s m w
2. 红外吸收峰强度的影响因素 振动能级的跃迁几率 振动的基频(v0→1) 的跃迁几率大于振动的倍频(v0→2、v 振动的基频 的跃迁几率大于振动的倍频 的吸收峰强度比倍频(v ,因此基频( 0→3、v 0→4),因此基频 v 0→1) 的吸收峰强度比倍频 0→2、 v0→3、v0→4 )强。 强 振动能级跃迁时, 振动能级跃迁时,偶极矩的变化 同样的基频振动(v 偶极矩的变化越大 同样的基频振动 0→1),偶极矩的变化越大,吸收峰也 越强。 越强。 化学键两端连接原子的电负性相差越大, 化学键两端连接原子的电负性相差越大,或分子的对称 性越差,伸缩振动时偶极矩的变化越 偶极矩的变化越大 吸收峰也越强。 性越差,伸缩振动时偶极矩的变化越大,吸收峰也越强。 吸收峰强度: 反对称伸缩振动>对称伸缩振动 对称伸缩振动>变形振动 吸收峰强度: 反对称伸缩振动 对称伸缩振动 变形振动 vC=O> vC=C

红外吸收光谱法

红外吸收光谱法

红外吸收光谱法
二、红外吸收光谱的产生条件 红外吸收光谱的产生有两个条件:
1、只有当吸收的红外辐射能量与能级间的跃迁相当时, 才会产生吸收谱带。
2、只有偶极矩发生变化的振动,才能出现吸收谱带。 通常可用分子的偶极矩μ来描述分子极性的大小。设正 负电中心的电荷分别为+q和-q,正负电荷中心距离为d, 则 μ= q × d
O
续改变频率的红外光照射某试样,由于该试
d
样对不同频率的红外光的吸收与否,使通过
试样后的红外光在一些波长范围内变弱(被 H
H
吸收),在另一些范围内则较强(不吸收)。 +q
+q
将分子吸收红外光的情况用仪器记录,就得
到该试样的红外吸收光谱图。
HCl、H2O 的偶极矩
红外吸收光谱法
三、红外光谱法的特点 除 了 单 原 子 分 子 和 同 核 分 子 如 Ne、He、O2、H2 等 外 ,1451
1544
1148
586
1746
1247
704
A
1315
777
894
3347
b
1662
1031 1071
1541
538
2926
1408
702
1250
782
891
4000.0
多色光的干涉图等于所有各单色光干涉图的加合,故得 到的是具有中心极大,并向两边迅速衰减的对称干涉图。
红外吸收光谱法
➢ 傅里叶变换红外分光光度计(FTIR)
T%

涉 强
傅里叶变换

光程差S
多色光的干涉图
波数 cm -1 红外光谱图
(3) 红外显微系统

红外吸收光谱法(IR)

红外吸收光谱法(IR)

• 3、红外吸收光谱与分子结构的关系 一、基团的特征峰与相关峰 1、特征峰与相关峰 特征峰——具有能代表某基团存在并有较高强 度的特征频率的吸收峰。可用以鉴定官能团。 相关峰——某基团的一组特征峰构成该基团的 相关峰。 2、红外光谱的分区 常见有机物基团在4000~670cm-1有特征基团频 率。红外光谱划分为6个区域:
有些因素使红外吸收峰增多 (1)倍频和组合频的出现 (2)振动耦合 (3)费米(Fermi)共振 振动耦合——当两个基团位置相邻,且振动频率相近,有一个 公用原子连接,相应的特征峰发生分裂形成两个峰。 费米共振——泛频峰与基频峰的耦合 影响吸收峰强弱的因素:分子在振动能级之间的跃迁概率和振 动过程中的偶极矩的变化。 A、分子由基态振动能级(0=0)向第一激发态(1=0)跃迁的 概率较大,因此基频峰较强,倍频峰较弱或很弱。 B、极性基团(O-H、C=O、N-H 等)振动时,偶极矩变化 较大,有较强的吸收峰; 非极性基团(C-C、C=C等)的吸收峰较弱;分子越对称, 吸收峰越弱。
偶极矩() =分子所带电量(q)正负电荷中心距离(d) 非极性双原子分子(N2、O2、H2): 分子完全对称(d=0),无红外吸收。 极性分子( 0): 由于分子中的振动使d的瞬时值不断变化,从而不 断变化,有一个固定的变化频率。当照射的红外光 的频率与分子的偶极矩的变化频率相匹配时,分子 的振动(红外活性振动)与红外光发生振动偶合而 增加振动能,振幅加大,即分子由振动基态跃迁到 激发态。——吸收红外光
• (2).傅里叶变换红外吸收光谱仪(FTIR)简介 原理:检测器得到一个干涉强度对光程差和红外光频率的函 数图,经过电子计算机进行复杂的傅立叶变换,得到普通的 吸光度或透光率随波数变化的红外光谱图。
(2)傅里叶变换红外光谱仪 (FTIR)

仪器分析 第4章 红外吸收光谱法

仪器分析 第4章  红外吸收光谱法

4.2 基本原理
4.2.3 多原子分子的振动类型(P56)
伸缩振动 (υ):键长发生变化 1.简正振动基本形式 变形振动 (δ):键角发生变化
伸缩振动(υ)
对称伸缩振动(υs)
不对称伸缩振动(υas)
变形振动(δ)
面内变形振动(β)
面外变形振动(γ)
亚甲基的各种振动形式
2. 基本振动的理论数(分子振动自由度)
4.4 试样的处理和制备
4.4 试样的处理和制备
4.4.1 红外光谱法对试样的要求 (1)单一组分纯物质,纯度 > 98%; (2)样品中不含游离水; (3)要选择合适的浓度和测试厚度, 使大多数吸收峰透射比处于10%~80%。
4.4 试样的处理和制备
4.4.2 制样方法 1.气体样品的制备 2.液体和溶液样品的制备 3.固体样品的制备
分子振动自由度:多原子分子的基本振动
数目,也就是基频吸收峰的数目。
基频吸收峰:分子吸收一定频率的红外光后,
其振动能级由基态跃迁到第一
激发态时所产生的吸收峰。
2. 基本振动的理论数
线型分子振动自由度 = 3N – 5(如CO2)
非线型分子振动自由度 = 3N – 6(如H2O)
图5.12 CO2分子的简正振 动形式
来指导谱图解析。
基本概念
基团频率区: 在4000~1300cm-1 范围内的吸收峰,有一 共同特点:既每一吸收峰都和一定的官能 团相对应,因此称为基团频率区。
在基团频率区,原则上每个吸收峰都可以找到归属。
基本概念
指纹区: 在1300~400cm-1范围内,虽然有些吸收也对应 着某些官能团,但大量吸收峰仅显示了化合物 的红外特征,犹如人的指纹,故称为指纹区。

分析化学(仪器分析)第四章-仪器分析(IR)

分析化学(仪器分析)第四章-仪器分析(IR)

30
第二节 红外吸收基本理论
振动过程中偶极矩发生变化(△≠0) 的分子振动能引起可观测的红外吸收光谱, 称之为红外活性的。 振动过程中偶极矩不发生变化(△=0) 的分子振动不能产生红外吸收光谱,称为非 红外活性的。
31
第二节 红外吸收基本理论
绝大多数化合物在红外光谱图上出现的峰数远 小于理论上计算的振动数,这是由如下原因引起的: (1)没有偶极矩变化的振动,不产生红外吸收; (2)相同频率的振动吸收重叠,即简并; (3)仪器不能区别频率十分接近的振动,或吸收带 很弱,仪器无法检测; (4)有些吸收带落在仪器检测范围之外。
33
第二节 红外吸收基本理论
(二)吸收谱带的强度
红外吸收谱带的强度取决于分子振动时偶极矩 的变化,红外光谱的强度与分子振动时偶极矩变 化的平方成正比。 偶极矩的变化与分子的极性以及分子结构的对 称性,也就是固有偶极矩有关。极性较强的基团 (如C=O,C-X等)吸收强度较大,极性较弱的 基团(如C=C、C-C、N=N等)吸收较弱。分子 的对称性越高,振动中分子偶极矩变化越小,谱 带强度也就越弱。
28
第二节 红外吸收基本理论
在倍频峰中,二倍频峰还比较强。三倍频峰以 上,因跃迁几率很小,一般都很弱,常常不能测到。 除此之外,还有合频峰(1+2,21+2, ),差频峰( 1-2,21-2, )等,这些 峰多数很弱,一般不容易辨认。倍频峰、合频峰和 差频峰统称为泛频峰,泛频峰一般都很弱。
11
第二节 红外吸收基本理论
根据Hooke定律,分子 简谐振动的频率的计算 公式为
12
第二节 红外吸收基本理论
式中k为化学键的力常数,定义为将两原子由 平衡位置伸长单位长度时的恢复力(单位为Ncm -1)单键、双键和三键的力常数分别近似为 5、 1 0和15 Ncm-1;c为光速(2.9981010cm s-1), 为折合质量,单位为g,且 影响分子振动频率的直接原因是原子质量和 化学键的力常数。

第四章 红外光谱分析法

第四章  红外光谱分析法

第四章红外光谱分析法§4—1红外光谱简介红外辐射泛指位于可见光和微波段之间的那一部分电磁波谱.对有机化学家最有实际用处的是只限于4000—666厘米-1(2.5-15.0微米)之间的范围.最近,对近红外区14290—4000(0.7一2.5微米)和远红外区700—200厘米-1(14.3—50微米)的兴趣正在增加.在红外光谱分析中,一个十分简单的分子也可以给出一个非常复杂的红外光谱图.有机化学家就是利用这种光谱图的复杂性,将一个未知化合物的光谱图与一个可靠的标准品的光谱图相互比较,两张光谱图中峰对峰的完全一致对于鉴定就是最好的证据.除了光学对映体外的任何两个化合物均不可能给出相同的红外光谱图.虽然,红外光谱图是整个分子的特性,但是不管分子其余部分的结构如何,结果是某一特定的原子基团总是在相同的或者几乎是相同的频率处产生吸收谱带.正是这种特征谱带的不变性使化学家可以,通过简单的观察并参考有关特征基团频率的综合图嵌来获得有用的结构信息.我们将主要依靠这些特征基团频率.由于我们并不单纯依靠红外光谱图进行鉴定,因此,并不需要对红外光谱图进行详细的分析.根据我们的总的计划,在这里将提出为达到下列目的,所必需的理论:即把红外光谱图与其它的光谱数据一起用来确定分子结构.因为大多数大学的和工业的实验室都把红外分光光度计作为有机化学家的一种常备的基本工具,在这一章中将比其它各章较详细地叙述仪器和样品制备.红外光谱法作为实用有机化学家的一种工具,从已经出版书籍的数目可以明显地看到.在这些书中,有的是全部地、有的是部分地讨论了红外光谱法的应用。

.一、红外光的表征近红外(泛频区)0.75-2.5微米;13334-4000波数中红外(基频区) 2.5 -25 微米4000-400 波数远红外(转动区)25-1000微米400-10 波数由于中红外区能最深刻地反映分子内部所进行的各种物理过程以及分子结构方面的各种特性,对于解决分子结构和化学组成各种问题最为有效。

红外光谱基本原理

红外光谱基本原理
特征峰可用以鉴定官能团的存在,但必须用一 组相关峰来作为旁证。
22
二、红外光谱的分区
常见的有机化合物基团频率出现的范围:4000 600 cm-1 可分为:4000-1300cm-1的高波数段官能团区,以及1300cm-1 以下的低波数段指纹区。
官能团区的峰是由伸缩振动产生的,基团的特征吸收峰一般位于该区, 分布较稀疏,容易分辨。
6
红外光谱的表示方法
红外光谱图:
纵坐标为透光率T%,横坐标为波长λ(m )或波数1/λ(cm-1) 可以用峰数,峰位,峰形,峰强来描述。 应用:有机化合物的结构解析。 定性:基团的特征吸收频率; 定量:特征峰的强度;
7
第一节 红外光谱法的基本原理 一、产生红外吸收的条件
满足两个条件: (1)红外辐射光子的能量与分子振动能级跃迁所需能量相同。 (2)辐射与物质间有相互耦合作用(偶极距有变化)。
5
红外光谱与紫外可见光谱的区别
1.光谱产生的机制不同
分子振动和转动能级的跃迁;价电子和分子轨道上的电子在电子能级
上的跃迁。
2. 研究对象不同
在振动中伴随有偶极矩变化的化合物;不饱合有机化合物特别是具有 共轭体系的有机化合物。
3.可分析的试样形式不同,使用范围不同
气、液、固均可,既可定性又可定量,非破坏性分析;既可定性又可 定量,有时是试样破坏性的。
12
/ cm1 1 1 k 1307 k'
2c
Ar
k单位:dyn·cm-1;k’单位:N·cm-1,与键能和键长有关,
为双原子的原子质量折合质量: =m1·m2 /(m1+m2),
Ar为双原子的原子量的折合质量:Ar =M1·M2/ M1+M2 发生振动能级跃迁需要能量的大小取决于键两端原子的

第四章红外吸收

第四章红外吸收

二是用于化学组成的分析
红外光谱最广泛的应用在于对物质的化学 组成进行分析,用红外光谱法可以根据光 谱中吸收峰的位置和形状来推断未知物结 构,依照特征吸收峰的强度来测定混合物 中各组分的含量,它已成为现代结构化学、 分析化学最常用和不可缺少的工具。
2 红外光区的划分
习惯上按红外线波长,将红外光谱分成三个区域: (1)近红外区:0.78~2.5μm(12 820~4 000cm-1),
电磁辐射范围:射线~无线电波所有范围; 相互作用方式:发射、吸收、反射、折射、散射、干 涉、衍射等; 光分析法在研究物质组成、结构表征、表面分析等方 面具有其他方法不可区代的地位;
三个基本过程:
(1)能源提供能量; (2)能量与被测物之间的相互作用; (3)产生信号。
基本特点:
(1)所有光分析法均包含三个基本过程; (2)选择性测量,不涉及混合物分离(不同于色谱分析); (3)涉及大量光学元器件。
电子能级间跃迁的同时,总伴随有振动和 转动能级间的跃迁(图10-1所示). 即电子光 谱中总包含有 振动能级和转动能级间跃迁 , 因而产生的谱线呈现宽谱带。所以分子光谱 是一种带状光谱,它包含若干谱带系,一个 谱带系含有若干谱带,同一谱带内又含有若 干光谱线.
4.1 红外吸收光谱分析概述
红外吸收光谱法:
第四章
红外吸收光谱
(Infrared absorption spectroscopy, IR)
一、光分析法及其特点
optical analysis and its characteristics
光分析法:基于电磁辐射能量与待测物质相互作用后 所产生的辐射信号与物质组成及结构关系所建立起来的分析 方法;
主要用于研究分子中的O—H、N—H、C—H键的振动 倍频与组频。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由基态振动能级(v = 0)跃迁至第一振动激发态 (v = 1)产生的吸收峰称为基频峰。其峰位等于分
子的振动频率。
由基态振动能级(v = 0)跃迁至第二振动激发态 (v = 2)产生的吸收峰称为二倍频峰(也叫第一倍频
峰 )。
17:08:43
由基态振动能级(v = 0)跃迁至第三振动激发
态(v =3)产生的吸收峰称为三倍频峰(也叫第二倍
17:08:43

IR光谱用T-λ 曲线或T-曲线表示。纵坐标为
百分透射比T%,吸收峰向下,向上则为谷。横坐
标为波长λ (单位μ m)或波数 (单位cm-1)。
两者的关系是:/cm-1= 104/(λ /μ m) = 1/(λ /cm)
1。
中红外区的范围为4000-400cm-

用波数描述吸收谱带比较简单,且便于与Raman 光谱比较。
性越强,偶极矩变化越小。
如三氯乙烯结构不对称,在吸收光谱上有
C=C振动峰,而四氯乙烯结构对称,则不出现 C=C吸收峰。
峰强度可用很强(vs)、强(s)、中(m)、弱
(w)、很弱(vw)等来表示。
此外振动简并、检测灵敏度、检测的波长范围
等因素也会影响吸收峰的强度。
17:08:43
三、基团振动与红外光谱区 基团频率 通过对大量标准样品的红外光谱的研 究,处于不同有机物分子的同一种官能 团的振动频率变化不大,即具有明显的 特征性。 这是因为连接原子的主要为价键力, 处于不同分子中的价键力受外界因素的 影响有限!即各基团有其自已特征的吸 收谱带。
2
图4.12 CO2分子的简正振动形式
17:08:43
从图中可知,非线性分子绕x、y和z轴转动,均改 变了原子的位置,都能形成转动自由度。因此,非线 性分子的振动自由度为 3N—6 。理论上一个振动自 由度,在红外光谱上相应产生一个基频吸收带。
例如 , 三个原子的非线性分子 H2O 有 3 个振动自 由度,红外光谱图中对应出现三个吸收峰 , 分别为: -1 -1 -1 3650cm ,1595c m ,3750 cm 。同样 , 苯在红外光 谱上应出现3×12-6=30个峰。
17:08:43
红外光谱的表示方法
红外光谱图:纵坐标为透光率(或吸光度),横坐标为波长
λ( m )和波数1/λ
,单位:cm-1。
10 4 / cm / m
1
17:08:43
图4.1 苯酚的IR吸收光谱
17:08:43
图4.2乌桕油的IR光谱
17:08:43
图4.3 聚苯乙烯红外光谱图
根据量子理论,红外光谱的强度与分子振动
时偶极矩变化的平方成正比。
偶极矩的变化与固有偶极矩有关。一般极性
比较强的分子或基团吸收强度都比较大,极性比 较弱的分子或基团吸收强度都比较弱。 如极性强的基团C=O,C-X等振动,吸收强度较 大。
17:08:43
偶极矩的变化还与结构的对称性有关,对称
特点:与紫外-可见吸收光谱比较 (1) 除了单原子分子和同核双原子分子等少数 分子外,几乎所有化合物均可用红外吸收光谱法 进行研究。适用范围广。
(2)红外光谱可对物质的组成和结构特征提供
十分丰富的信息。其最重要和最广泛的用途是对
有机化合物进行结构分析。
17:08:43
(3)红外吸收可用于定量分析。但是由于 红外辐射能量较小,分析时需要较宽的光 谱通带,而物质的红外吸收峰又比较多, 难以找出不受干扰的检测峰,因此,定量 分析应用较少。 (4)红外吸收光谱是一种非破坏性分析 方法,对于试样的适应性较强。样品可以 是液体、固体、气体。
频峰)。 由于分子的非谐振性质,各倍频峰并非正好是 基频峰的整数倍,而是略小一些。
除此之外,还有合频峰、差频峰等,统称泛频
峰,一般很弱,不易辨认。
17:08:43
(三) 分子振动的形式
振动的基本类型
1.伸缩振动
伸缩振动是指原子沿着价键方向来回
运动,即振动时键长发生变化,键角不变。 它又分为对称伸缩振动(s)和不对称伸缩振动 ( as)。在对称的情况下,两个氢原子同时离开碳
17:08:43
应 用:结构分析,定性,定量 具有快速,样品需要量少,气态、液 态、固态样品都可测等特点。与色谱等 联用(GC-FTIR)具有强大的定性功能 局限性:灵敏度低,样品必须纯制。
17:08:43
第二节
红外吸收基本原理
一 分子的振动 (一) 双原子分子振动
谐振子模型 双原子分子化学键的振动类 似于连接两个小球的弹簧 分子的振动总能量:
17:08:43
四、紫外吸收光谱与红外吸收光谱的区别
1. 光谱产生的机制不同
紫外:电子光谱;
红外:振-转光谱
2. 研究对象和使用范围不同
紫外:研究不饱和化合物,具有共轭体系; 红外:凡是在振动中伴随有偶极矩变化的化合 物都是红外光谱研究的对象。可研究几乎所有的有 机物。
17:08:43
五、红外光谱法的特点和应用
第四章 红外吸收光谱法 Infrared Absorption Spectrometry,IR
17:08:43
第一节
一、 定义


依据物质对红外辐射的特征吸收建立 起来的一种光谱分析方法。分子吸收 红外辐射后发生振动能级和转动能级 的跃迁,因而红外光谱又称分子振动转动光谱。
17:08:43
红外光谱属分子吸收光谱。样品受到频率 连续变化的红外光照射时,分子吸收其中一 些频率的辐射,分子振动或转动引起偶极 矩的净变化,使振-转能级从基态跃迁到激 发态,相应于这些区域的透射光强度减弱, 记录百分透过率T%对波数或波长的曲线, 即得红外光谱。
(1) 没有偶极矩变化的振动,不产生红外吸收; (2) 相同频率的振动吸收重叠,即简并; (3) 仪器不能区别那些频率十分接近的振动或因吸 收带很弱仪器检测不出;
(4) 有些吸收带落在仪器检测范围之外。
17:08:43
(二) 吸收谱带的强度
分子振动时偶极矩是否变化决定了该分子能
否产生红外吸收,而偶极矩变化的大小又决定了 吸收谱带的强弱。
图4.10
17:08:43
非线性分子(如H2O)的转动
理论振动数(峰数)
设分子的原子数为n
对于非线形分子,理论振动数=3n-6
如H2O分子,其振动数为3×3-6=3
对于线形分子,理论振动数=3n-5
如CO2分子,其理论振动数为3×3-5=4
17:08:43
图4.11 水分子的简正振动形式
17:08:43
二、红外吸收产生的条件和强度
分子吸收辐射产生振转跃迁必须满足两个条件: 条件一:辐射光子的能量应与振动跃迁所需能量 相等。 根据量子力学原理,分子振动能量Ev 是量子 化的,即 EV=(V+1/2)h 为分子 振 动频 率 ,V 为振动 量子 数 , 其 值 取 0,1,2,… 分子中不同振动能级差为 EV= Vh 也就是说 , 只有当 EV=Ea 或者 a= V时 ,才可 能发生振转跃迁。例如当分子从基态(V=0)跃迁 到第一激发态(V=1),此时V=1,即a= 。
17:08:43
aa'是谐振子位能曲线, bb'是真实双原子分子振动位能曲线
从图看出,当振动量子数ν较小时,真实的分 子振动与谐振子振动比较近似,此时,可用谐 振子振动的规律近似地描述分子振动。
17:08:43
从公式可以看出:
1 Ev ( v )h (v = 0, 1, 2, · · · ) 2
17:08:43
图4.7 水分子和CO2的简正振动形式
17:08:43
(四)分子的振动自由度
多原子分子振动形式的多少可以用 振动自由度来描述。
振动自由度就是独立的振动数目。
在三维空间中,每个原子都能沿x, y,z三个坐标方向独立运动,对于由n个 原子组成的分子则有3n个独立运动,即 3n个运动自由度。
17:08:43
三、红外光谱的表示方法

当一束具有连续波长的红外光通过物质 时,其中某些波长的光就要被物质吸收。 物质分子中某个基团的振动频率和红外 光的频率一致时,二者发生共振,分子吸 收能量,由原来的基态振动能级跃迁到能 量较高的振动能级,将分子吸收红外光 的情况用仪器记录下来,就得到红外光谱 图。
m1m2 m1 m2
若原子的质量用原子质量单位(u,1u=1.66×10-24g) 表示,则成键两原子的折合质量应为:
m1m2 (m1 m2 ) 6.021023
17:08:43

从分子简谐振动方程可知,分子振动频率与化 学键的键力常数、原子质量有关系.
折合质量相同时,振动频率取决于化学键的 强度
17:08:43
1 (频率) 2
1 k .......... ....... 或 (波数) 2c
k
以上两式称为分子简谐振动方程式。不仅
可以用于双原子分子振动的频率或波数,而且
也适用于复杂分子中一些化学键的振动频率或
波数的计算。
17:08:43

k为化学键的力常数(单位:N· cm-1 ),为双 原子折合质量(单位为g)
1 Ev (v )h (v = 0, 1, 2, · · · ) 2
式中, v 为振动量子数,ν为分子 振动频率。
17:08:43
在室温时,分子处于基态(v = 0),此时伸
缩振动振幅很小。当有红外辐射照射分子时,若
辐射光子所具有的能量恰好等于分子振动能级差
时,则分子吸收光子能量跃迁至振动激发态,导 致振幅增大。 分子的两个原子以其平衡点为中心,以很小 的振幅(与核间距相比)作周期性“简谐”振动, 其振动可用经典刚性振动描述。分子简谐振动频 率的计算公式为:
相关文档
最新文档