2017年江苏省苏州市张家港市中考数学一模试卷

合集下载

2017年江苏省苏州市中考数学一模试卷

2017年江苏省苏州市中考数学一模试卷

2017年江苏省苏州市中考数学一模试卷一、选择题本大题共10小题,每小题3分,共30分.1.(3分)的倒数是()A.B.﹣C.D.﹣2.(3分)某细胞截面可以近似看成圆,它的半径约为0.000 000787m,则0.000 000787用科学记数法表示为(),若△CDE的周长为21,则BC的长为()A.16 B.14 C.12 D.68.(3分)抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,且经过点(3,0),则a﹣b+c的值为()A.﹣1 B.0 C.1 D.29.(3分)如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点测得该塔顶端F 的仰角分别为45°和60°,矩形建筑物宽度AD=20m,高度DC=30m则信号发射塔顶端到地面的高度(即FG的长)为()A.(35+55)m B.(25+45)m C.(25+75)m D.(50+20)m10.(3分)在平面直角坐标系中,Rt△AOB的两条直角边OA、OB分别在x轴和y轴上,OA=3,OB=4.把△AOB绕点A顺时针旋转120°,得到△ADC.边OB上的一点M旋转后的对应点为M′,当AM′+DM取得最小值时,点M的坐标为()1314.(3C15.(316.(317.(318.(3PC,以的长为.三、解答题本大题共10小题,共76分19.(5分)计算:+|﹣|﹣﹣tan30°.20.(5分)解不等式组:.21.(6分)先化简,再求值:(1﹣)÷,其中x=+1.22.(6分)某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?23.(8分)九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔.(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是.(2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生来自同一个班级的概率.24.(8,使BC25.(8(2,6),B(m,,AC与)求证:=;26.(10E.过27)(的坐标为(,),顶点的坐标为(,);(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点Q沿折线A→O→C向终点C运动,速度为每秒k个单位,当运动时间为2秒时,以P、Q、C为顶点的三角形是等腰三角形,求此时k的值.(3)若正方形OABC以每秒个单位的速度沿射线AO下滑,直至顶点C落到x轴上时停止下滑.设正方形OABC在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围.28.(10分)如图,在平面直角坐标系中,抛物线y=ax 2﹣2ax ﹣3a (a >0)与x 轴交于A 、B 两点(点A 在点B 左侧),经过点A 的直线l :y=kx +b 与y 轴交于点C ,与抛物线的另一个交点为D ,且CD=4AC .(1)直接写出点A 的坐标,并用含a 的式子表示直线l 的函数表达式(其中k 、b 用含a 的式子表示).(2)点E 为直线l 下方抛物线上一点,当△ADE 的面积的最大值为时,求抛物线的函数表达式;(3)设点P 是抛物线对称轴上的一点,点Q 在抛物线上,以点A 、D 、P 、Q 为顶点的四边形能否1. C 7.DE=CE=AC=8.x==25(+ (+×=(+25)顺时针边上的AD′DE=3=AE=, (),),+,),1113÷=24015.16.则=,=,(不合题意舍去),x 2==..==F ,, =(, ,BP==19.解:+|+=2021.)÷===,当x=+==.22.23.=故答案为:=,CE⊥BC,y=x>0,x轴垂D,BD?AE=3∴Array)知,,∴=∴=27.∴C ),(2作QD (作A’F==OO′=EO′=S=交x 轴A’O=A′O=A′F=.S=(+t )×..2﹣2ax=,=把A,(2设E(∴由∴S△=)a的面积的最大值为a=,a=.y=x x(3①若=(﹣1 =,a=,),与PQ﹣5a)=,a=综上所述,以点A、D、P、Q为顶点的四边或(1,4).形能成为矩形,点P的坐标为(1,)。

2017中考数学一模检测试卷(有答案)_题型归纳

2017中考数学一模检测试卷(有答案)_题型归纳

2017中考数学一模检测试卷(有答案)_题型归纳中考作为考生迈入重点高中的重要考试,备受家长和考生的关注,多做题,多练习,为中考奋战,小编为大家整理了中考数学一模检测试卷,希望对大家有帮助。

A级基础题1.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出1个小球,其标号大于2的概率为()A.15B.25C.35D.452.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取1张,那么取到字母e的概率为____________.3.2012~2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小4.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出1个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个B.不足3个C.4个D.5个或5个以上5.有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是________.6.在一个不透明的盒子中,共有“一白三黑”四个围棋子,它们除了颜色之外没有其他区别.(1)随机地从盒中提出一子,则提出白子的概率是多少?(2)随机地从盒中提出一子,不放回再提第二子.请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.B级中等题7从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.8.襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是________.9.在一个口袋中有4个完全相同的小球,把它们分别标上1,2,3,4.小明先随机地摸出1个小球,小强再随机的摸出1个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时,小明获胜,否则小强获胜.(1)若小明摸出的球不放回,求小明获胜的概率;(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由. 10.如图7­2­3,大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A1,A2),(B1,B2)].(1)若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;(2)若从这四只拖鞋中随机地取出两11.(2013年江西)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是()A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物参考答案:1.C2.273.A4.D5.236.解:(1)∵共有“一白三黑”四个围棋子,∵P(白子)=14.(2)画树状图如图73.∵共有12种等可能的结果,恰好提出“一黑一白”子的有6种情况,∵P(一黑一白)=612=12.图737.25 8.199.解:(1)画树状图如图74.∵共有12种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,∵小明获胜的概率为:12.(2)画树状图如图75.图75∵共有16种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,∵P(小明获胜)=38,P(小强获胜)=58,∵P(小明获胜)≠P(小强获胜),∵他们制定的游戏规则不公平.10.解:(1)∵若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,有A1A2,A1B2,B1B2,B1A2四种情况,恰好匹配的有A1A2,B1B2两种情况,∵P(恰好匹配)=24=12.(2)方法一,画树状图如图76.图76∵所有可能的结果为A1A2,A1B1,A1B2,A2A1,A2B1,A2B2,B1A1,B1A2,B1B2,B2A1,B2A2,B2B1,∵从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∵P(恰好匹配)=412=13.方法二,列表格如下:A1B2 A2B2 B1B2 -A1B1 A2B1 - B2B1A1A2 - B1A2 B2A2- A2A1 B1A1 B2A1可见,从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∵P(恰好匹配)=412=13.11.解:(1)A(2)设甲、乙、丙三人的礼物分别记为a,b,c,根据题意画出树状图如图77.一共有6种等可能的情况,三人抽到的礼物分别为abc,acb,bac,bca,cab,cba,3人抽到的都不是自己带来的礼物的情况有bca,cab有2种,所以,P(A)=26=13.希望这篇中考数学一模检测试卷,可以帮助更好的迎接即将到来的考试!。

张家港中考模拟数学试卷

张家港中考模拟数学试卷

1. 若a,b是方程x^2-4x+3=0的两根,则a+b的值为:A. 1B. 3C. 4D. 72. 下列函数中,y是x的二次函数的是:A. y=2x^2+3x+1B. y=3x+2C. y=x^2+1D. y=x^3+13. 在直角坐标系中,点A(-2,3),点B(2,-3),则线段AB的中点坐标为:A. (0,0)B. (0,3)C. (-2,-3)D. (2,3)4. 若等差数列{an}的公差为d,首项为a1,第n项为an,则前n项和Sn为:A. Sn=n(a1+an)/2B. Sn=n(a1+an)/2+dC. Sn=(a1+an)n/2D.Sn=(a1+an)n/2-d5. 若函数f(x)=ax^2+bx+c(a≠0)的图像开口向上,则下列结论正确的是:A. a>0,b>0,c>0B. a>0,b<0,c>0C. a<0,b>0,c>0D. a<0,b<0,c>06. 在等腰三角形ABC中,AB=AC,若∠BAC=40°,则∠ABC的度数为:A. 40°B. 50°C. 60°D. 70°7. 若log2x+log2(x+1)=3,则x的值为:A. 1B. 2C. 4D. 88. 下列不等式中,正确的是:A. 3x>2x+1B. 3x<2x+1C. 3x≤2x+1D. 3x≥2x+19. 若等比数列{bn}的公比为q,首项为b1,第n项为bn,则前n项和Sn为:A. Sn=b1(1-q^n)/(1-q)B. Sn=b1(1-q^n)/(1+q)C. Sn=b1(1-q^n)/(q-1)D. Sn=b1(1+q^n)/(q-1)10. 若等差数列{an}的公差为d,首项为a1,第n项为an,则第n项an与第n+1项an+1的差为:A. dB. 2dC. d/2D. -d11. 若等差数列{an}的首项为a1,公差为d,则第n项an=______。

2017年江苏省各市中考数学试题汇总(13套)

2017年江苏省各市中考数学试题汇总(13套)

文件清单:2017年中考真题精品解析数学(江苏无锡卷)(含答案)2017年中考真题精品解析数学(江苏连云港卷)(含答案)2017年江苏省徐州市中考数学试卷(含答案)2017年江苏省淮安市中考数学试卷(含答案)2017年江苏省盐城市中考数学试卷(含答案)2017年苏州市初中毕业暨升学考试试卷(含答案)2017年南京市初中毕业生学业考试(含答案)2017年江苏省南通市中考数学试题(含答案)2017年江苏省常州市中考数学试题及答案(含答案)2017年江苏省扬州市中考数学试题(含答案)2017年江苏省泰州市中考数学试题(含答案)2017年江苏省镇江市中考数学试题(含答案)2017年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是( )A .15B .±5C .5D .﹣152.函数=2-xy x 中自变量x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x >23.下列运算正确的是( )A .(a 2)3=a 5B .(ab )2=ab 2C .a 6÷a 3=a 2D .a 2•a 3=a 54.下列图形中,是中心对称图形的是( )A .B .C .D .5.若a ﹣b=2,b ﹣c=﹣3,则a ﹣c 等于( )A .1B .﹣1C .5D .﹣56.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是( )成绩(分) 70 80 90男生(人) 5 10 7女生(人) 4 13 4A .男生的平均成绩大于女生的平均成绩B .男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=39.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.25D.3210.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD 翻折得到△AED,连CE,则线段CE的长等于()A.2 B.54C.53D.75二、填空题(本大题共8小题,每小题2分,共16分)11.计算123的值是.12.分解因式:3a2﹣6a+3=.13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.15.若反比例函数y=kx的图象经过点(﹣1,﹣2),则k的值为.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为cm2.17.如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由»AE,EF,»FB,AB所围成图形(图中阴影部分)的面积等于.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.三、解答题(本大题共10小题,共84分)19.计算:(1)|﹣6|+(﹣2)3+(7)0;(2)(a+b)(a﹣b)﹣a(a﹣b)20.(1)解不等式组:11x-2(+2)22x3①x②+>≤⎧⎪⎨⎪⎩(2)解方程:532x-12x =+21.已知,如图,平行四边形ABCD 中,E 是BC 边的中点,连DE 并延长交AB 的延长线于点F ,求证:AB=BF .22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人)153 550 653 b 725累计总人数(人)3353 3903 a 5156 5881(1)表格中a=,b=;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T 变换后得到点N(63,则点M的坐标为.x图象上异于原点O的任意一点,经过T变换后得到点B.(2)A是函数y=32①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号A型B型处理污水能力(吨/月)240 180已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是( )A .15B .±5C .5D .﹣15【答案】D .【解析】试题解析:∵﹣5×(﹣15)=1,∴﹣5的倒数是﹣15.故选D .考点:倒数2.函数=2-xy x 中自变量x 的取值范围是()A .x ≠2B .x ≥2C .x ≤2D .x >2【答案】A .考点:函数自变量的取值范围.3.下列运算正确的是( )A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a5【答案】D.【解析】试题解析:A、(a2)3=a6,故错误,不符合题意;B、(ab)2=a2b2,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、a2•a3=a5,正确,符合题意,故选D.考点:1.同底数幂的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方.4.下列图形中,是中心对称图形的是()A.B.C.D.【答案】C.考点:中心对称图形.5.若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣5【答案】B【解析】试题解析:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选B考点:整式的加减.6.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()成绩(分)70 80 90男生(人) 5 10 7女生(人) 4 13 4A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数【答案】A.考点:1.中位数;2.算术平均数.7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%【答案】C.【解析】试题解析:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,=0.5=50%,x2=﹣2.5(不合题意舍去),解得:x1答即该店销售额平均每月的增长率为50%;故选C.考点:一元二次方程的应用.8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3【答案】B.故选B.考点:命题与定理.9.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.25D.32【答案】C.【解析】试题解析:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,AH=22AD DH-=12,∴HB=AB﹣AH=8,在Rt△BDH中,BD=2285DH BH+=,设⊙O与AB相切于F,连接AF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,考点:1.切线的性质;2.菱形的性质.10.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD 翻折得到△AED,连CE,则线段CE的长等于()A .2B .54C .53D .75【答案】D .【解析】试题解析:如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC=4,AB=3,∴BC=2234+=5,∵CD=DB ,∴AD=DC=DB=52,∵12•BC•AH=12•AB•A C ,∴AH=125,在Rt △BCE 中,22222475()55BC BE -=-= .故选D.考点:1.翻折变换(折叠问题);2.直角三角形斜边上的中线;3.勾股定理.二、填空题(本大题共8小题,每小题2分,共16分)11.计算123⨯的值是.【答案】6.【解析】试题解析:123⨯==6.⨯=12336考点:二次根式的乘除法.12.分解因式:3a2﹣6a+3=.【答案】3(a﹣1)2.考点:提公因式法与公式法的综合运用.13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.【答案】2.5×105.【解析】试题解析:将250000用科学记数法表示为:2.5×105.考点:科学记数法—表示较大的数.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.【答案】11.【解析】试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.考点:1.有理数大小比较;2.有理数的减法.的图象经过点(﹣1,﹣2),则k的值为.15.若反比例函数y=kx【答案】2.【解析】试题解析:把点(﹣1,﹣2)代入解析式可得k=2.考点:待定系数法求反比例函数解析式.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为c m2.【答案】15π.考点:圆锥的计算.17.如图,已知矩形ABCD 中,AB=3,AD=2,分别以边AD ,BC 为直径在矩形ABCD 的内部作半圆O 1和半圆O 2,一平行于AB 的直线EF 与这两个半圆分别交于点E 、点F ,且EF=2(EF 与AB 在圆心O 1和O 2的同侧),则由»AE,EF ,»FB ,AB 所围成图形(图中阴影部分)的面积等于 .【答案】534﹣6.【解析】试题解析:连接O 1O 2,O 1E ,O 2F ,则四边形O 1O 2FE 是等腰梯形,过E 作EG ⊥O 1O 2,过F ⊥O 1O 2,∴四边形EGHF 是矩形, ∴GH=EF=2, ∴O 1G=12, ∵O 1E=1,∴GE=32,∴1112O G O E =; ∴∠O 1EG=30°, ∴∠AO 1E=30°, 同理∠BO 2F=30°,∴阴影部分的面积=S 矩形ABO2O1﹣2S 扇形AO1E ﹣S 梯形EFO2O1=3×1﹣2×2301360π⨯⨯=12(2+3)×32=3﹣534﹣6π. 考点:1.扇形面积的计算;2.矩形的性质.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于 .【答案】3. 【解析】试题解析:平移CD 到C ′D ′交AB 于O ′,如图所示,则∠BO ′D ′=∠BOD , ∴tan ∠BOD=tan ∠BO ′D ′, 设每个小正方形的边长为a ,则O ′B=22(2)5a a a +=,O ′D ′=22(2a)(2)22a a +=,BD ′=3a , 作BE ⊥O ′D ′于点E , 则BE=3a 232222BD O F a aO D a''==''g , ∴O ′E=2222322(5)()22a a O B BE a '-=-=, ∴tanBO ′E=32a2322BE O E a==',∴tan ∠BOD=3.考点:解直角三角形.三、解答题(本大题共10小题,共84分) 19.计算:(1)|﹣6|+(﹣2)3+(7)0;(2)(a+b )(a ﹣b )﹣a (a ﹣b ) 【答案】(1)-1;(2)ab ﹣b 2考点:1.平方差公式;2.实数的运算;3.单项式乘多项式;4.零指数幂.20.(1)解不等式组:11x-2(+2)22x3①x②+>≤⎧⎪⎨⎪⎩(2)解方程:532x-12x=+【答案】(1)﹣1<x≤6;(2)x=13.(2)由题意可得:5(x+2)=3(2x﹣1),解得:x=13,检验:当x=13时,(x+2)≠0,2x﹣1≠0,故x=13是原方程的解.考点:1.解分式方程;3.解一元一次不等式组.21.已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB 的延长线于点F,求证:AB=BF.【答案】证明见解析.【解析】试题分析:根据线段中点的定义可得CE=BE ,根据平行四边形的对边平行且相等可得AB ∥CD ,AB=CD ,再根据两直线平行,内错角相等可得∠DCB=∠FBE ,然后利用“角边角”证明△CED 和△BEF 全等,根据全等三角形对应边相等可得CD=BF ,从而得证.学科网 试题解析:∵E 是BC 的中点, ∴CE=BE ,∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB=CD , ∴∠DCB=∠FBE , 在△CED 和△BEF 中,DCA=FBE CE=BECED=BEF ⎧∠∠⎪⎨⎪∠∠⎩, ∴△CED ≌△BEF (ASA ), ∴CD=BF , ∴AB=BF .考点:1.平行四边形的性质;2.全等三角形的判定与性质.22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)【答案】1.3考点:列表法与树状图法.23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人)153 550 653 b 725累计总人数(人)3353 3903 a 5156 5881(1)表格中a=,b=;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.【答案】(1)4556;600;(2)补图见解析;(3)①(2)统计图如图所示,(3)①正确.3353﹣153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.考点:条形统计图.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.【答案】(1)作图见解析;(2)作图见解析.试题解析:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.考点:1.作图—复杂作图;2.等边三角形的性质;3.三角形的外接圆与外心.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T 变换后得到点N(6,﹣3),则点M的坐标为.(2)A是函数y=32x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.【答案】(1)Q(a+32b,12b);M(9,﹣23);(2)①y=37x;②34试题解析:(1)如图1,连接CQ,过Q作QD⊥PC于点D,由旋转的性质可得PC=PQ,且∠CPQ=60°,∴△PCQ为等边三角形,∵P(a,b),∴OC=a,PC=b,∴CD=12PC=12b,DQ=32PQ=32b,∴Q(a+32b,12b);(2)①∵A是函数y=32x图象上异于原点O的任意一点,∴可取A(2,3),∴2+32×3=72,12×3=32,∴B (72,2),设直线OB 的函数表达式为y=kx ,则72k=2,解得k=7,∴直线OB 的函数表达式为y=7x ;②设直线AB 解析式为y=k ′x+b ,把A 、B坐标代入可得2+722k b k b ⎧'⎪⎨'+=⎪⎩,解得3k b ⎧'=-⎪⎪⎨⎪=⎪⎩,∴直线AB 解析式为y=﹣3x+3,∴D (0,3),且A (2,B (72,2),∴,,∴OAB OAD S AB 3===S AD 4V V . 考点:一次函数综合题.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号 A 型 B 型 处理污水能力(吨/月)240180已知商家售出的2台A 型、3台B 型污水处理器的总价为44万元,售出的1台A 型、4台B 型污水处理器的总价为42万元. (1)求每台A 型、B 型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?【答案】(1) 设每台A 型污水处理器的价格是10万元,每台B 型污水处理器的价格是8万元;(2)(2)由于求至少要支付的钱数,可知购买6台A 型污水处理器、3台B 型污水处理器,费用最少,进而求解即可.试题解析:(1)可设每台A 型污水处理器的价格是x 万元,每台B 型污水处理器的价格是y 万元,依题意有2+3=44+4=42x y x y ⎧⎨⎩,解得=10=8x y ⎧⎨⎩.答:设每台A 型污水处理器的价格是10万元,每台B 型污水处理器的价格是8万元;考点:1.一元一次不等式的应用;2.二元一次方程组的应用.27.如图,以原点O 为圆心,3为半径的圆与x 轴分别交于A ,B 两点(点B 在点A 的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与⊙O 分别交于C ,D 两点(点C 在点D 的上方),直线AC ,DB 交于点E .若AC :CE=1:2. (1)求点P 的坐标;(2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式.【答案】(1) P (1,0).(2) y=28x 2﹣24x ﹣1528.【解析】试题分析:(1)如图,作EF ⊥y 轴于F ,DC 的延长线交EF 于H .设H (m ,n ),则P (m ,0),PA=m+3,PB=3﹣m .首先证明△ACP ∽△ECH ,推出12AC PC AP CE CH HE ===,推出CH=2n ,EH=2m=6,再证明△DPB ∽△DHE ,推出144PB DP n EH DH n ===,可得3-1264m m =+,求出m 即可解决问题;(2)由题意设抛物线的解析式为y=a (x+3)(x ﹣5),求出E 点坐标代入即可解决问题.∴12AC PC AP CE CH HE ===, ∴CH=2n ,EH=2m=6, ∵CD ⊥AB , ∴PC=PD=n , ∵PB ∥HE ,∴△DPB ∽△DHE , ∴144PB DP n EH DH n ===, ∴3-1264m m =+,∴m=1, ∴P (1,0).(2)由(1)可知,PA=4,HE=8,EF=9, 连接OP ,在Rt △OCP 中,PC=2222OC OP -=∴2,2∴E(9,62),∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,62)代入得到a=28,∴抛物线的解析式为y=28(x+3)(x﹣5),即y=28x2﹣24x﹣1528.考点:圆的综合题.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.【答案】(1) 83;(2) 477≤m<47.【解析】试题分析:(1)只要证明△ABD∽△DPC,可得AD ABCD PD,由此求出PD即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3试题解析:(1)如图1中,∵四边形ABCD是矩形,∴∠ADC=∠A=90°,∴∠DCP+∠CPD=90°,∵∠CPD+∠ADB=90°,∴∠ADB=∠PCD,(2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.作EQ ⊥BC 于Q ,EM ⊥DC 于M .则EQ=3,CE=DC=4易证四边形EMCQ 是矩形, ∴CM=EQ=3,∠M=90°, ∴EM=2222437EC CM -=-=,∵∠DAC=∠EDM ,∠ADC=∠M , ∴△ADC ∽△DME ,AD DGDM EM=, ∴77AD =,∴AD=47,由△DME ∽△CDA , ∴DM EM =CD AD, ∴71=4AD,∴AD=47,综上所述,在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻t ,使点E 到直线BC 的距离等于3,这样的m 的取值范围477≤m <47.考点:四边形综合题.2017年江苏省连云港市中考数学试题数学试题一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2的绝对值是( ) A.2-B.2C.12-D.122.计算2a a ×的结果是( ) A.aB.2aC.22aD.3a3.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A.方差B.平均数C.众数D.中位数4.如图,已知ABC DEF △∽△,:1:2AB DE =,则下列等式一定成立的是( )A.12BC DF=B.12A D =∠的度数∠的度数C.12ABC DEF =△的面积△的面积D.12ABC DEF =△的周长△的周长5.由6个大小相同的正方体塔成的几何体如图所示,比较它的正视图,左视图和俯视图的面积,则( )A.三个视图的面积一样大 C.主视图的面积最小 C.左视图的面积最小D.俯视图的面积最小6.8( )A.8826C.822=?D.837.已知抛物线()20y ax a =>过()12,A y -,()21,B y 两点,则下列关系式一定正确的是( ) A.120y y >>B.210y y >>C.120y y >>D.210y y >>8.如图所示,一动点从半径为2的O ⊙上的0A 点出发,沿着射线0A O 方向运动到O ⊙上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O ⊙上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O ⊙上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O ⊙上的点4A 处;…按此规律运动到点2017A 处,则点2017A 与点0A 间的距离是( )A.4B.23C.2D.0二、填空题(每题3分,满分24分,将答案填在答题纸上) 9.使分式11x -有意义的x 的取值范围是 . 10.计算()()22a a -+= .11.截至今年4月底,连云港市中哈物流合作基地累计完成货物进,出场量6800000吨,数据6 800 000用科学计数法可表示为 .12.已知关于x 的方程220x x m -+=有两个相等的实数根,则m 的值是 . 13.如图,在平行四边形ABCD 中,AE BC ^于点E ,AF CD ^于点F ,若60EAF =∠°,则B =∠ .14.如图,线段AB 与O ⊙相切于点B ,线段AO 与O ⊙相交于点C ,12AB =,8AC =,则O ⊙的半径长为 .15.设函数3y x=与26y x =--的图象的交点坐标为(),a b ,则12a b+的值是 .16.如图,已知等边三角形OAB 与反比例函数()0,0k y k x x=>>的图象交于A ,B 两点,将OAB △沿直线OB 翻折,得到OCB △,点A 的对应点为点C ,线段CB 交x 轴于点D ,则BDDC的值为 .(已知62sin154-=°)三、解答题 (本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.) 17.计算:()()0318 3.14p ---+-.18.化简:211a a a a-×-.19.解不等式组:()3143216x x x ì-+<ïí--?ïî.20.某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x 分(60100x#).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.根据以上信息解答下列问题: (1)统计表中c 的值为;样本成绩的中位数落在分数段中;(2)补全频数分布直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?21.为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.22.如图,已知等腰三角形ABC中,AB AC=,点D,E分别在边AB、AC上,且AD AE=,连接BE、CD,交于点F.(1)判断ABE∠的数量关系,并说明理由;∠与ACD(2)求证:过点A、F的直线垂直平分线段BC.23.如图,在平面直角坐标系xOy中,过点()A-的直线交y轴正半轴于点B,2,0将直线AB绕着点O顺时针旋转90°后,分别与x轴y轴交于点D、C.(1)若4OB=,求直线AB的函数关系式;(2)连接BD,若ABD△的面积是5,求点B的运动路径长.24.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.25.如图,湿地景区岸边有三个观景台A、B、C.已知1400AC=米,AB=米,1000B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求ABC△的面积;(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD.试求A、D间的距离.(结果精确到0.1米)(参考数据:sin53.20.80°≈,cos60.70.49°≈,°≈,sin66.10.91°≈,sin60.70.87°≈,cos53.20.60≈)cos66.10.41°≈,2 1.41426.如图,已知二次函数()230y axbx a =++?的图象经过点()3,0A ,()4,1B ,且与y 轴交于点C ,连接AB 、AC 、BC . (1)求此二次函数的关系式;(2)判断ABC △的形状;若ABC △的外接圆记为M ⊙,请直接写出圆心M 的坐标; (3)若将抛物线沿射线BA 方向平移,平移后点A 、B 、C 的对应点分别记为点1A 、1B 、1C ,111A B C △的外接圆记为1M ⊙,是否存在某个位置,使1M ⊙经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.27.如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE DG =. 求证:2ABCD EFGH S S =矩形四边形.(S 表示面积)实验探究:某数学实验小组发现:若图1中AH BF ¹,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点1A 、1B 、1C 、1D ,得到矩形1111A B C D .如图2,当AH BF >时,若将点G 向点C 靠近(DG AE >),经过探索,发现:11112ABCD A B C D EFGH S S S =+矩形矩形四边形.如图3,当AH BF >时,若将点G 向点D 靠近(DG AE <,请探索EFGH S 四边形、ABCD S 矩形与1111A B C D S 矩形之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题.(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH BF >,AE DG >,11EFGH S =四边形,29HF ,求EG 的长.(2)如图5,在矩形ABCD中,3AD=,点E、H分别在边AB、AD上,1AB=,5BE=,FG=,连接EF、HG,请DH=,点F、G分别是边BC、CD上的动点,且102直接写出四边形EFGH面积的最大值.一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 2的绝对值是( ) A.2-B.2C.12-D.12【答案】B 【解析】试题分析:根据绝对值的性质,一个正数的绝对值为本身,可知2的绝对值为2. 故选:B 考点:绝对值2. 计算2a a ×的结果是( ) A.aB.2aC.22aD.3a【答案】D考点:同底数幂相乘3. 小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A.方差B.平均数C.众数D.中位数。

2017年江苏省苏州市昆山市中考数学一模试卷

2017年江苏省苏州市昆山市中考数学一模试卷

2017年江苏省苏州市昆山市中考数学一模试卷D(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.23.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB 相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.24.(10分)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.25.(8分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A 型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格240026.(9分)已知点P(x0,y)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.27.(8分)如图,在等腰直角三角形ABC中,∠BAC=90°,AC=8cm,AD⊥BC 于点D,点P从点A出发,沿A→C方向以cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2)(1)当点M落在AB上时,x= ;(2)当点M落在AD上时,x= ;(3)求y关于x的函数解析式,并写出自变量x的取值范围.28.(10分)已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED 以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q 在整个运动过程中所用时间最少?2017年江苏省苏州市昆山市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案填在答题卡相应的位置上.)1.(2分)2017的相反数是()A.2017 B.﹣2017 C.D.﹣【解答】解:2017的相反数是﹣2017,故选:B.2.(2分)据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×109【解答】解:数字338 600 000用科学记数法可简洁表示为3.386×108.故选:A.3.(2分)下列计算正确的是()A.3a+4b=7ab B.(ab3)2=ab6C.(a+2)2=a2+4 D.x12÷x6=x6【解答】解:∵3a+4b≠7ab,∴选项A不正确;∵(ab3)2=a2b6,∴选项B不正确;∵(a+2)2=a2+4a+4,∴选项C不正确;∵x12÷x6=x6,∴选项D正确.故选:D.4.(2分)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元【解答】解:设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=80.∴该商品的进价为80元/件.故选C.5.(2分)如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是()A.B.C.D.【解答】解:根据球形容器形状可知,函数y的变化趋势呈现出,当0<x<R 时,y增量越来越大,当R<x<2R时,y增量越来越小,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故y关于x的函数图象是先凹后凸.故选A.6.(2分)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选C.7.(2分)直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是()A.x≤3 B.x≥3 C.x≥﹣3 D.x≤0【解答】解:∵y=kx+3经过点A(2,1),∴1=2k+3,解得:k=﹣1,∴一次函数解析式为:y=﹣x+3,﹣x+3≥0,解得:x≤3.故选A.8.(2分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对【解答】解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.9.(2分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.10.(2分)已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x﹣)2+4上,能使△ABP为等腰三角形的点P的个数有()A.3个B.4个C.5个D.6个【解答】解:以点B为圆心线段AB长为半径作圆,交抛物线于点C、M、N点,连接AC、BC,如图所示.令一次函数y=﹣x+3中x=0,则y=3,∴点A的坐标为(0,3);令一次函数y=﹣x+3中y=0,则﹣x+3=0,解得:x=,∴点B的坐标为(,0).∴AB=2.∵抛物线的对称轴为x=,∴点C的坐标为(2,3),∴AC=2=AB=BC,∴△ABC为等边三角形.令y=﹣(x﹣)2+4中y=0,则﹣(x﹣)2+4=0,解得:x=﹣,或x=3.∴点E的坐标为(﹣,0),点F的坐标为(3,0).△ABP为等腰三角形分三种情况:①当AB=BP时,以B点为圆心,AB长度为半径做圆,与抛物线交于C、M、N三点;②当AB=AP时,以A点为圆心,AB长度为半径做圆,与抛物线交于C、M两点,;③当AP=BP时,作线段AB的垂直平分线,交抛物线交于C、M两点;∴能使△ABP为等腰三角形的点P的个数有3个.故选A.二、填空题(本大题共8题,每小题3分,共24分,不需要写出解答过程,请把最后结果填在答题卷相应的位置上)11.(3分)在函数中,自变量x的取值范围是x≤1且x≠﹣2 .【解答】解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.故答案为:x≤1且x≠﹣2.12.(3分)分解因式:ax2﹣ay2= a(x+y)(x﹣y).【解答】解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).13.(3分)某校男子足球队的年龄分布如图的条形图,请求出这些队员年龄的平均数、中位数15,15 .【解答】解:这些队员年龄的平均数为:(13×2+14×6+15×8+16×3+17×2+18×1)÷22=15,队员年龄的中位数是15.故答案为15,15.14.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.15.(3分)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF 的周长为3a (用含a的式子表示).【解答】解:由折叠的性质得:B点和D点是对称关系,DE=BE,则BE=EF=a,∴BF=2a,∵∠B=30°,∴DF=BF=a,∴△DEF的周长=DE+EF+DF=BF+DF=2a+a=3a;故答案为:3a.16.(3分)关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是m>.【解答】解:设x1、x2为方程x2+2x﹣2m+1=0的两个实数根,由已知得:,即解得:m>.故答案为:m>.17.(3分)如图,已知直线l:y=﹣x,双曲线y=,在l上取一点A(a,﹣a)(a>0),过A作x轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A 重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为或.【解答】解:依照题意画出图形,如图所示.∵点A的坐标为(a,﹣a)(a>0),∴点B(a,)、点C(﹣,)、点D(﹣,﹣a),∴OA==a,OC==.又∵原点O分对角线AC为1:2的两条线段,∴OA=2OC或OC=2OA,即a=2×或=2a,解得:a1=,a2=﹣(舍去),a3=,a4=﹣(舍去).故答案为:或.18.(3分)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为﹣4≤b≤﹣2 .【解答】解:∵y=2x+b,∴当y<2时,2x+b<2,解得x<;∵函数y=2x+b沿x轴翻折后的解析式为﹣y=2x+b,即y=﹣2x﹣b,∴当y<2时,﹣2x﹣b<2,解得x>﹣;∴﹣<x<,∵x满足0<x<3,∴﹣=0,=3,∴b=﹣2,b=﹣4,∴b的取值范围为﹣4≤b≤﹣2.故答案为:﹣4≤b≤﹣2.三、解答题(本大题共10小题,共76.解答时应写出文字说明、证明过程或演算步骤.)19.(5分)计算:20160﹣|﹣|++2sin45°.【解答】解:原式=1﹣﹣3+2×=1﹣﹣3+=﹣2.20.(5分)先化简,再求值:(﹣x+1)÷,其中x=﹣2.【解答】解:原式=[﹣]•=•=,当x=﹣2时,原式===2.21.(5分)解不等式组:,并把解集在数轴上表示出来.【解答】解:由①得x≥4,由②得x<1,∴原不等式组无解,22.(8分)国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:获奖等次频数频率一等奖 10 0.05二等奖 20 0.10三等奖 30 b优胜奖 a 0.30鼓励奖 80 0.40请根据所给信息,解答下列问题:(1)a= 60 ,b= 0.15 ,且补全频数分布直方图;(2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.【解答】解:(1)样本总数为10÷0.05=200人,a=200﹣10﹣20﹣30﹣80=60人,b=30÷200=0.15,故答案为60,0.15;(2)优胜奖所在扇形的圆心角为0.30×360°=108°;(3)列表:甲乙丙丁分别用ABCD表示,A B C DA AB AC ADB BA BC BDC CA CB CDD DA DB DC∵共有12种等可能的结果,恰好选中A、B的有2种,画树状图如下:∴P(选中A、B)==.23.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB 相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.【解答】解:(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),∵点C为线段AO的中点,∴点C的坐标为(2,).∵点C、点D均在反比例函数y=的函数图象上,∴,解得:.∴反比例函数的解析式为y=.(2)∵m=1,∴点A的坐标为(4,4),∴OB=4,AB=4.在Rt△ABO中,OB=4,AB=4,∠ABO=90°,∴OA==4,cos∠OAB===.(3))∵m=1,∴点C的坐标为(2,2),点D的坐标为(4,1).设经过点C、D的一次函数的解析式为y=ax+b,则有,解得:.∴经过C、D两点的一次函数解析式为y=﹣x+3.24.(10分)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.【解答】解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.25.(8分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A 型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格2400【解答】解:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y 元,根据题意得50﹣m≤2m解之得m≥,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m 的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.26.(9分)已知点P(x0,y)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【解答】解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.27.(8分)如图,在等腰直角三角形ABC中,∠B AC=90°,AC=8cm,AD⊥BC 于点D,点P从点A出发,沿A→C方向以cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2)(1)当点M落在AB上时,x= 4 ;(2)当点M落在AD上时,x= ;(3)求y关于x的函数解析式,并写出自变量x的取值范围.【解答】解:(1)当点M落在AB上时,四边形AMQP是正方形,此时点D与点Q 重合,AP=CP=4,所以x==4.故答案为4.(2)如图1中,当点M落在AD上时,作PE⊥QC于E.∵△MQP,△PQE,△PEC都是等腰直角三角形,MQ=PQ=PC∴DQ=QE=EC,∵PE∥AD,∴==,∵AC=8,∴PA=,∴x=÷=.故答案为.(3)①当0<x≤4时,如图2中,设PM、PQ分别交AD于点E、F,则重叠部分为△PEF,∵AP=x,∴EF=PE=x,∴y=S=•PE•EF=x2.△PEF②当4<x≤时,如图3中,设PM、MQ分别交AD于E、G,则重叠部分为四边形PEGQ.∵PQ=PC=8﹣x,∴PM=16﹣2x,∴ME=PM﹣PE=16﹣3x,∴y=S△PMQ ﹣S△MEG=(8﹣x)2﹣(16﹣3x)2=﹣x2+32x﹣64.③当<x<8时,如图4中,则重合部分为△PMQ,∴y=S△PMQ=PQ2=(8﹣x)2=x2﹣16x+64.综上所述y=.28.(10分)已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED 以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?【解答】解:(1)∵y=a(x+3)(x﹣1),∴点A的坐标为(﹣3,0)、点B两的坐标为(1,0),∵直线y=﹣x+b经过点A,∴b=﹣3,∴y=﹣x﹣3,当x=2时,y=﹣5,则点D的坐标为(2,﹣5),∵点D在抛物线上,∴a(2+3)(2﹣1)=﹣5,解得,a=﹣,则抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)如图1中,作PH⊥x轴于H,设点 P坐标(m,n),当△BPA∽△ABC时,∠BAC=∠PBA,∴tan∠BAC=tan∠PBA,即=,∴=,即n=﹣a(m﹣1),∴解得m=﹣4或1(舍弃),当m=﹣4时,n=5a,∵△BPA∽△ABC,∴=,∴AB2=AC•PB,∴42=,解得a=﹣或(舍弃),则n=5a=﹣,∴点P坐标(﹣4,﹣).当△PBA∽△ABC时,∠CBA=∠PBA,∴tan∠CBA=tan∠PBA,即=,∴=,∴n=﹣3a(m﹣1),∴,解得m=﹣6或1(舍弃),当m=﹣6时,n=21a,∵△PBA∽△ABC,∴=,即AB2=BC•PB,∴42=•,解得a=﹣或(不合题意舍弃),则点P坐标(﹣6,﹣3),综上所述,符合条件的点P的坐标(﹣4,﹣)和(﹣6,﹣3).(3)如图2中,作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,则tan∠DAN===,∴∠DAN=60°,∴∠EDF=60°,∴DE==EF,∴Q的运动时间t=+=BE+EF,∴当BE和EF共线时,t最小,则BE⊥DM,此时点E坐标(1,﹣4).第31页(共31页)。

2017年江苏省各地市中考数学试题及答案汇总

2017年江苏省各地市中考数学试题及答案汇总

2017年江苏省各地市中考数学试题及答案汇总1、2017年南京市中考数学试题及答案---------22、2017年南通市中考数学试题及答案---------143、2017年常州市中考数学试题及答案---------304、2017年淮安市中考数学试题及答案---------455、2017年连云港市中考数学试题及答案---------616、2017年苏州市中考数学试题及答案---------797、2017年泰州市中考数学试题及答案---------948、2017年无锡市中考数学试题及答案---------1099、2017年徐州市中考数学试题及答案---------12210、2017年盐城市中考数学试题及答案---------13511、2017年扬州市中考数学试题及答案---------15312、2017年镇江市中考数学试题及答案---------17113、2017年宿迁市中考数学试题及答案---------1841.南京市2017年中考数学试题及答案第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算的结果是( )A . 7B . 8C . 21D .362.计算的结果是( )A .B .C .D .3.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙间学:它有8条棱.该模型的形状对应的立体图形可能是 ( )A .三棱柱B .四棱柱C . 三棱锥D .四棱锥4.,则下列结论中正确的是 ()A .B . C. D .5.若方程的两根为和,且,则下列结论中正确的是 ( ) ()()()1218632÷-÷---⨯()3624101010⨯÷310710410910a <<13a <<14a <<23a <<24a <<()2519x -=a b a b >A .是19的算术平方根 B .是19的平方根 C.是19的算术平方根 D .是19的平方根6.过三点(2,2),(6,2),(4,5)的圆的圆心坐标为( )A .(4,)B .(4,3) C.(5,) D .(5,3) 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)7.计算:; .8.2016年南京实现约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500是 .9.若式子在实数范围内有意义,则的取值范围是 . 10.的结果是 .11.方程的解是 . 12.已知关于的方程的两根为-3和-1,则 ; .13.下面是某市2013~2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是 年,私人汽车拥有量年增长率最大的是 年.a b 5a -5b +A B C 1761763-==GDP 21x -x 2102x x-=+x 20x px q ++=p =q =14.如图,是五边形的一个外角,若,则 .15.如图,四边形是菱形,⊙经过点,与相交于点,连接,若,则 .16.函数与的图像如图所示,下列关于函数的结论:①函数的图像关于原点中心对称;②当时,随的增大而减小;③当时,函数的图像最低点的坐标是(2,4),其中所有正确结论的序号是 .1∠ABCDE 165∠=︒A B C D ∠+∠+∠+∠=ABCD O ,,A C D BC E ,AC AE 78D ∠=︒EAC ∠=1y x =24y x=12y y y =+2x <0x >三、解答题 (本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17. 计算. 18. 解不等式组 请结合题意,完成本题的解答.(1)解不等式①,得 .(2)解不等式③,得 .(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集 .19. 如图,在中,点分别在上,且相交于点.求证.112a a a a ⎛⎫⎛⎫++÷- ⎪ ⎪⎝⎭⎝⎭()26,2,31 1.x x x x -≤>--<+⎧⎪⎨⎪⎩①②③ABCD ,E F ,AD BC ,,AE CF EF BD =O OE OF =20. 某公司共25名员工,下标是他们月收入的资料.(1)该公司员工月收入的中位数是 元,众数是 元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元.你认为用平均数,中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.21. 全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.22.“直角”在初中几何学习中无处不在.如图,已知,请仿照小丽的方式,再用两种不同的方法判断是否为直角(仅限用直尺和圆规).AOB ∠AOB ∠23.张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择.如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买个甲种文具时,需购买个乙种文具.(1)①当减少购买一个甲种文具时,▲,▲;②求与之间的函数表达式.(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元.甲,乙两种文具各购买了多少个?24.如图,是⊙的切线,为切点.连接并延长,交的延长线于点,连接,交⊙于点.(1)求证:平分.(2)连结,若,求证.x y x =y =y x ,PA PB O ,A B AO PB C PO O D PO APC ∠DB 30C ∠=︒//DB AC25.如图,港口位于港口的南偏东方向,灯塔恰好在的中点处,一艘海轮位于港口的正南方向,港口的正西方向的处,它沿正北方向航行5,到达处,测得灯塔在北偏东方向上.这时,处距离港口有多远?(参考数据:)26.已知函数(为常数)(1)该函数的图像与轴公共点的个数是( )A.0B.1C.2D.1或2(2)求证:不论为何值,该函数的图像的顶点都在函数的图像上.(3)当时,求该函数的图像的顶点纵坐标的取值范围.27. 折纸的思考. B A 37︒C AB A B D km E C 45︒E A sin370.60,cos370.80,tan370.75︒≈︒≈︒≈()21y x m x m =-+-+m x m ()21y x =+23m -≤≤【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片(图①),使与重合,得到折痕,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点落在上的处,并使折痕经过点,得到折痕,折出,得到.(1)说明是等边三角形.【数学思考】(2)如图④.小明画出了图③的矩形和等边三角形.他发现,在矩形中把经过图形变化,可以得到图⑤中的更大的等边三角形.请描述图形变化的过程.(3)已知矩形一边长为3,另一边长为.对于每一个确定的的值,在矩形中都能画出最大的等边三角形.请画出不同情形的示意图,并写出对应的的取值范围.()ABCD AB BC >AB DC EF C EF P B BG ,PB PC PBC ∆PBC∆ABCD PBC ABCD PBC ∆cm acm a a【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4和1的直角三角形铁片,所需正方形铁片的边长的最小值为 .答案:一、选择题一、填空题二、解答题cm cmcm2.南通市2017年中考数学试题及答案一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在0,2,1,2--这四个数中,最小的数为()A.0B.2C.1-D.2-2.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学计数法表示为()A.5⨯D.418100.1810⨯⨯C.6⨯B.41.8101.8103. 下列计算,正确的是()A.2a a aa a a=C.933÷=D.()236a a a-=B.236=a a4. 如图是由4的大小相同的正方形组合而成的几何体,其左视图是()5. 平面直角坐标系中,点(1,2)P-关于x轴的对称的点的坐标为()A.(1,2)B.(1,2)--D.(2,1)--C.(1,2)6. 如图,圆锥的底面半径为2,母线长为6,则侧面积为( )A .4πB .6πC .12πD .16π7. 一组数据:1,2,2,3,若添加一个数据2,在发生变化的统计量是( )A .平均数B .中位数C .众数D .方差8. 一个有进水管和出水管的容器,从某时刻开始4min 内只进水不出水,在随后的8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量()y L 与事件(min)x 之间的关系如图所示,则每分钟的出水量是( )A .5LB .3.75LC .2.5LD .1.25L9. 已知AOB ∠,作图步骤1:在OB 上任取一点M ,以点M 为圆心,MO 长为半径画半圆,分别交,OA OB 于点,P Q ; 步骤2:过点M 作PQ 的垂线交PQ 于点C ;步骤3:画射线OC .则下列判断:①PC CQ =;②//MC OA ;③OP PQ =;④OC 平分AOB ∠,其中正确的个数为( )A .1B .2C .3D .410. 如图,矩形ABCD 中,10,5AB BC ==,点,,,E F G H 分别在矩形ABCD 各边上,且,AE CG BF DH ==,则四边形EFGH 周长的最小值为( )A .B .C .D .二、填空题(每题8分,满分24分,将答案填在答题纸上)11.在实数范围内有意义,则x 的取值范围为 .12.如图,DE 是ABC ∆的中位线,若8BC =,则DE = .13.四边形ABCD 内接于圆,若110A ∠=,则C ∠= 度.14.若关于x 的方程260x x c -+=有两个相等的实数根,则c 的值为 .15.如图,AOB ∆将绕点O 按逆时针方向旋转045后得到COD ∆,若015AOB ∠=,则AOD ∠= 度.16.甲乙二人做某种机械零件,已知甲每小时比乙多做4个,甲做60个所用的时间与乙作40个所用的时间相等,则乙每小时所做零件的个数为 .17.已知x m =时,多项式222x x n ++的值为1-,则x m =-时,该多项式的值为 .18.如图,四边形OABC 是平行四边形,点C 在x 轴上,反比例函数(0)k y x x=>的图象经过点(5,12)A ,且与边BC 交于点D ,若AB BD =,则点D 的坐标为 .三、解答题 (本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤.)19. (1)计算2014(2)()2---; (2)解不等式组321213x x x x -≥⎧⎪+⎨>-⎪⎩ 20. 先化简,再求值:524(2)23m m m m -+-⋅--,其中12m =-. 21.某学校为了解学生的课外阅读情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t (单位:min ),然后所得数据绘制成如下不完整的统计图表:请根据图表中提供的信息回答下列问题:(1)a=;b=;(2)将频率分布直方图补充完整;(3)若全校有900名学生,估计该校有多少学生平均每天的课外阅读时间不小于50min?22. 不透明袋子中装有2个红球,1个白球和1个黑球,这些球除除颜色外无其他差别,随机摸出1个球不放回,再随机1个球,求两次均摸到红球的概率.21.热气球的探测器显示,从热气球A看一栋楼顶部B的仰角α为045,看这栋楼底部C的俯角β为060,热气球与楼的水平为100m,求这栋楼的高度(结果保留根号).24.如图,Rt ABC ∆中,090,3C BC ∠==,点O 在AB 上,2OB =,以OB 为半径的O 与AC 相切于点D ,交BC 于点E ,求弦BE 的长.25.某学习小组在研究函数的图象与性质时,已知表、描点并画出了图象的一部分.(1)请补全函数图象;(2)方程31226x x -=-实数根的个数为 (3)观察图象,写出该函数的两条性质.26.如图,在矩形ABCD 中,E 是AD 上一点,PQ 垂直平分BE ,分别交,,AD BE BC 于点,,P O Q ,连接,BP EQ .(1)求证:四边形BPEQ 是菱形;(2)若6,AB F =为AB 的中点,9OF OB +=,求PQ 的长.27.我们知道,三角形的内心是三条角平分线的焦点,过三角形内心的一条直线与两边相交,两焦点之间的线段把这个三角形分成两个图形,若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“内似线”. (1)等边三角形“内似线”的条数为(2)如图,ABC ∆中,AB AC =,点D 在AC 上,且BD BC AD ==,求证:BD 是ABC ∆的“内似线”;(3)在Rt ABC∆中,090,4,3,,∠===分别在边,C AC BC E FAC BC上,且EF是ABC∆的“内似线”,求EF的长.28.已知直线y kx b=+与抛物线2(0)=>相交于,A B两点(点A在点B的左侧),与y轴y ax a正半轴相交于点C,过点A作AD x⊥轴,垂足为D.(1)若060,//∠=轴,2AOB AB xAB=,求a的值;(2)若0AOB∠=,点A的横坐标为4,490-=,求点B的坐标;AC BC(3)延长,= .AD BO相交于点E,求证:DE CO参考答案:一、选择题一、填空题11.X≥2 12. 4 13. 70 14. 9 15. 30 16. 815)17. 3 18. (18 ,2三、解答题19.20.21.22题3.常州市2017年中考数学试题及答案一、选择题(每小题3分,共10小题,合计30分)1.-2的相反数是( ).A .-12B .12C .±2D .22.下列运算正确的是( ).A .m ·m=2mB .(mn)3=mn 3C .(m 2)3=m 6D .m 6÷a 3=a 33.右图是某个几何体的三视图,则该几何体是( ).A .圆锥B .三棱柱C .圆柱D .三棱锥4.计算:1x x -+1x 的结果是( ). A .2x x + B .2x C .12 D .15.若3x>-3y,则下列不等式中一定成立的是( ).A.x+y>0 B.x-y>0 C.x+y<0 D.x-y<06.如图,已知直线AB、CD被直线AE所截,AB∥CD, ∠1=60°,则∠2的度数是( ). A.100°B.110°C.120°D.130°7.如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴上,OD=2OA=6, AD:AB=3:1, 则点C的坐标是( ).A.(2,7) B.(3,7) C.(3,8) D.(4,8)8.如图,已知□ABCD的四个内角的平分线分别相交于点E、F、G、H,连接AC,若EF=2,FG=GC=5,则AC的长是( ).A.12 B.13 C.D.二、填空题:(本大题共10小题,每小题2分,共20分)9.计算:|-2|+(-2)0= .10.x的取值范围是 .11.肥皂泡的泡壁厚度大约是0.0007mm,则数据0.0007用科学计数法表示为 .12.分解因式:ax2-ay2= .13.已知x=1是关于x的方程ax2-2x+3=0的一个根,则a= .14.已知圆锥的底面圆半径是1,母线长是3,则圆锥的侧面积是 .15.如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则△ABD的周长是 .16.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点.若∠DAB=40°,则∠ABC=°.17.已知二次函数y= ax2+bx-3自变量x的部分取值和对应函数值y如下表:则在实数范围内能使得y-5>0成立的x的取值范围是 .x(x≥0)图像上一点,过点A作x轴的垂线l,B是l上18.如图,已知点A是一次函数y=12一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数ky(k)0)x的图像过点B、C,若△OAB的面积为6,则△ABC的面积是 .三、解答题:(本大题共6个小题,满分60分) 19.(6分)先化简,再求值:(x+2) (x-2)-x (x-1),其中x=-2.20.(8分)解方程和不等式组: (1)252x x --=332x x ---3 (2)26415x x -≤⎧⎨+<⎩21.(8分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”“打球”“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是 .(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.23.(8分)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.24.(8分)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种共50个,总费用不超过5500元,那么最多可购买多少个足球?(x<0) 25.(8分)如图,已知一次函数y=kx+b的图像与x轴交于点A,与反比例函数y=mx的图像交于点B(-2,n),过点B作BC⊥x轴于点C,点D(3-3n,1)是该反比例函数图像上一点.(1)求m的值;(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.26.(10分)如图1,在四边形ABCD中,如果对角线AC和BD相交并且相等,那么我们把这样的四边形称为等角线四边形.(1)①在“平行四边形、矩形、菱形”中,一定是等角线四边形(填写图形名称);②若M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD、DA的中点,当对角线AC、BD还需要满足时,四边形MNPQ是正方形;⑵如图2,已知△ABC中,∠ABC=90°,AB=4,BC=3,D为平面内一点.②若四边形ABCD是等角线四边形,且AD=BD,则四边形ABCD的面积是;②设点E是以C为圆心,1为半径的圆上的动点,若四边形ABED是等角线四边形,写出四边形ABED面积的最大值,并说明理由.27.(10分)如图,在平面直角坐标系xOy中,已知二次函数y=-1x2+bx的图像过点A(4,0),2顶点为B,连接AB、BO.(1)求二次函数的表达式;(2)若C是BO的中点,点Q在线段AB上,设点B关于直线CP的对称点为B′,当△OCB′为等边三角形时,求BQ的长度;(3)若点D在线段BO上,OD=2BD,点E、F在△OAB的边上,且满足△DOF与△DEF全等,求点E的坐标.x+4的图像是直线l,设直线l分别与y轴、x轴交于28.(10分)如图,已知一次函数y=-43点A、B.(1)求线段AB的长度;(2)设点M在射线AB上,将点M绕点A按逆时针方向旋转90°到点N,以点N为圆心,NA的长为半径作⊙N.①当⊙N与x轴相切时,求点M的坐标;②在①的条件下,设直线AN与x轴交于点C,与⊙N的另一个交点为D,连接MD交x轴于点E.直线m过点N分别与y轴、直线l交于点P、Q,当△APQ与△CDE相似时,求点P的坐标.参考答案:一、选择题二、填空题:9. 3 .10. x≥2 .11. 7×104 .12. a(x+y)(x-y .13. -1 .14. 3π .15.15 .16. 70 .17. x﹥4或x<-2 .18. 18 .三、解答题:19.(略)20.(略)21.解:(1)30÷30%=100;(2)其他100×10%=10人,打球100-30-20-10=40人;=800,所以估计该校课余兴趣爱好为“打球”的学生为数为800人.(3)2000×4010022.解:(1)从4个球中摸出一个球,摸出的球面数字为1的概率是1;4(2)用画树状图法求解,画树状图如下:从树状图分析两次摸球共出现12种可能情况,其中两次摸出的乒乓球球面上数字之和为偶数的概率为:412=13. 23.解:(1)证明:∵∠BCE=∠ACD=90°,∴∠ACB=∠DCE ,又∵∠BAC=∠D ,BC=CE ,∴△ABC ≌△DEC ,∴AC=CD.(2)∵∠ACD=90°,AC=CD ,∴∠EAC=45°,∵AE=AC ∴∠AEC=∠ACE=12×(180°-45°)=67.5°, ∴∠DEC=180°-67.5°=112.5°.24.解:(1)解设每个篮球售价x 元,每个足球售价y 元,根据题意得:232032540x y x y +=⎧⎨+=⎩,解得:100120x y =⎧⎨=⎩答:每个篮球售价100元,每个足球售价120元.(2)设学校最多可购买a 个足球,根据题意得100(50-a)+120a ≤5500,解得:a ≤25.答:学校最多可购买25个足球.5746537565341323142231数字之和第二个球第一个球44132425.解:(1)把B(-2,n),D(3-3n,1)代入反比例函数y=m x得, 332n mn m ⎧⎨-=-=⎩解得:36m n ⎧⎨==-⎩,所以m 的值为-6. (2)由(1)知B 、D 两点坐标分别为B(-2,3),D(-6,1),设BD 的解析式为y=px+q,所以6312p q p q -+=⎧⎨-+=⎩,解得412p q ==⎧⎪⎨⎪⎩ 所以一次函数的解析式为y=12x+4,与x 轴的交点为E(-8,0) 延长BD 交x 轴于E ,∵∠DBC=∠ABC ,BC ⊥AC ,∴BC 垂直平分AC ,∴CE=6, ∴点A(4,0),将A 、B 点坐标代入y=kx+b 得2340k b k b ⎧⎨+=-+=⎩,解得122k b ⎧⎪⎨⎪=-⎩=,所以一次函数的表达式为y=-12x+2.26.解:(1)①矩形;②AC ⊥BD ;⑵①∵∠ABC=90°,AB=4,BC=3,∴BD=AC=5, 作DF ⊥AB 于F ,∵AD=BD ,∴DF 垂直平分AB ,∴BF=2,由勾股定理得由题意知S ABED =S △ABD +S △BCD =12×AB ×DF+12×BC ×BF=12×412×3×+3;②如图四边形ABED面积的最大值时点E在直线AC上,点D是以AE为斜边的直角三角形的直角顶点,所以AE=6,DO=3,在△ABC中,由面积公式得点B到AC的距离为125,所以四边形ABED面积的最大值= S△AED+S△ABE=12×6×3+12×6×125=16.2.27.解:(1)将A(4,0)代入y=-12x2+bx得,-12×42+b×4=0,解得b=2,所以二次函数的表达式为y=-12x2+2x;(2)根据题意画出图形,二次函数y=-12x2+2x的顶点坐标为B(2,2),与两坐标轴的交点坐标为O(0,0)、A(4,0).此时,若△OCB′为等边三角形,则∠OCB′=∠QCB′=∠QCB=60°,因为∠B=90°,所以tan∠,所以;(3) ①当点F在OB上时,如图,当且仅当DE∥OA,即点E与点A重合时△DOF≌△FED,此时点E的坐标为E(4,0);②点F在OA时,如图DF⊥OA,当OF=EF时△DOF≌△DEF,由于OD=2BD,所以点D坐标为(43,43),点F坐标为(43,0),点E坐标为(83,0);点F在OA时,如图,点O关于DF的对称点落在AB上时,△DOF≌△DEF,此时OD=DE=2BD=43,BE=23,作BH ⊥OA 于H ,EG ⊥OA 于G ,由相似三角形的性质求得HG=23所以点E 坐标为(2+232-23).综上满足条件的点E 的坐标为(4,0)、(83,0)、(2+232-23.28.解:(1)函数y=-43x+4中,令x=0得y=4,令y=0得,x=3, 所以A(0,4),B(3,0).AB=(2)①由图1知,当⊙N 与x 轴相切于点E 时,作NH ⊥y 轴于H ,则四边形NHOE 为矩形,HO=EN=AM=AN ,∵∠HAN+∠OAB=90°,∠HNA+∠HAN=90°,∴∠OAB=∠HAN ,因为AM ⊥AN ,∴AH OB =HN AO =ANAB,设AH=3x ,则HN=4x,AN=NE=OH=5x, ∵OH=OA+AH,∴3x+4=5x, ∴x=2,∴AH=6,HN=8,AN=AM=10. ∵AM=AN ,∠OAB=∠HAN ,∴Rt △HAN ≌Rt △FMA, ∴FM=6,AF=8,OF=4, ∴M(6,-4).②当点P 位于y 轴负半轴上时,设直线AN 的解析式为y=kx+b ,将A(0,4),N(8,10)代入得1048k b b +==⎧⎨⎩,解得341k b ⎧=⎪⎨=⎪⎩,所以直线AN 的解析式为y=34x+4.所以点C 坐标为(-163,0),过D作x 轴的垂线可得点D(16,16).设点P 坐标为(0,-p),N(8,10)则直线NP 解析式为y=108p+x-p,作EF ⊥CD 于F ,CE=163+8=403,AC=320,CD=320+20=803,由相似三角形性质可得EF=8,△CDE ∽△APQ ,则48083p +=点Q 横坐标绝对值,解得点Q 的横坐标绝对值为3410p +(),将点Q 横坐标绝对值代入AB 及NP 解析式得108p +·3410p +()-p=3410p +()·(-43)+4,解得p 1=-4(舍去),p 2=6,所以P(0,-6).当点P 位于y 轴正半轴上时,设点P 坐标为(0,4+p),N(8,10),D(16,16)则直线NP 解析式为y=68p-x+4+p,△CDE ∽△AQP ,则40163p =点Q 横坐标绝对值,解得点Q 的横坐标绝对值为,将点Q 横坐标绝对值代入AB 及NP 解析式得68p -·(-65p )+4+p=(-65p )·(-43)+4,解得p=10,所以P(0,14).法二:把M (6,-4),D (16,16)代入y=kx+b 得161664k b k b +=⎧⎨+=-⎩,解得162k b ⎧⎨=-=⎩,∴直线MD的解析式为y=2x-16,当x=8时,y=0,点E (8,0)在直线DE 上。

2017年江苏省苏州市中考数学一模试卷

2017年江苏省苏州市中考数学一模试卷

2018.3Zjie2017 年江苏省苏州市中考数学一模试卷一、选择题本大题共10 小题,每小题 3 分,共 30 分. 1.( 3 分) 的倒数是( )A .B .﹣C .D .﹣2.( 3 分)某细胞截面可以近似看成圆,它的半径约为 0.000 000787m ,则 0.000 000787 用科学记数法表示为( )A .7.87× 107B . 7.87×10 ﹣ 7 ﹣ 7 ﹣6C . 0.787×10D .7.87× 103.( 3 分)下列运算正确的是( )A .a 2+a 3=a 5B . a 2?a 3=a 6C . a 8÷ a 4=a 2D .(﹣ 2a 2)3=﹣ 8a 64.( 3 分)学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40 名学生,其中,参加书法兴 趣小组的有8 人,文学兴趣小组的有 11 人,舞蹈兴趣小组的有 9 人,其余参加绘画兴趣小组.则参加绘画 兴趣小组的频率是( )A .0.1B . 0.15C . 0.25D . 0.35.( 3 分)小明记录了 3 月份某一周的最高气温如下表:日期12 日 13 日 14 日 15日 16 日 17 日 18 日 最高气温(℃)15 10 13 14 13 16 13 那么 7 天每天的最高气温的众数和中位数分别是( )A .13, 14B . 13, 15C . 13,13 D .10, 136.( 3 分)已知点 A (﹣ 1, y 1)、 B (2, y 2), C (3, y 3)都在反比例函数 y=﹣ 的图象上,则下列y 1、 y 2、y 3 的大小关系为( )A .y1<y2< y3B . y1> y3> y2C . y1>y2> y3D .y2> y3>y17.( 3 分)如图,△ ABC 中, AB=AC=15, AD 平分∠ BAC ,点 E 为 AC 的中点,连接 DE ,若△ CDE 的周长为21,则 BC 的长为( )A .16B . 14C . 12D . 68.( 3 分)抛物线y=ax2+bx+c( a≠ 0)的对称轴是直线x=1,且经过点(3,0),则 a﹣ b+c 的值为()第 1 页(共 13 页)2018.3 Zjie A.﹣ 1 B. 0 C. 1 D. 29.( 3 分)如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C 两点测得该塔顶端 F 的仰角分别为 45°和 60°,矩形建筑物宽度AD=20m,高度 DC=30m 则信号发射塔顶端到地面的高度(即FG 的长)为()A.( 35 +55) m B.( 25 +45) m C.(25 +75) m D.( 50+20 ) m10.( 3 分)在平面直角坐标系中,Rt△ AOB的两条直角边OA、 OB 分别在 x 轴和 y 轴上, OA=3, OB=4.把△ AOB 绕点 A 顺时针旋转120°,得到△ ADC.边 OB 上的一点M 旋转后的对应点为M′,当 AM′+DM 取得最小值时,点M 的坐标为()A.( 0,) B.( 0,)C.( 0,)D.(0, 3)二、选择题本大题共8 小题,每小题3 分,共 24分 .11.( 3分)因式分解: a2﹣1= .12.( 3分)若式子在实数范围内有意义,则x 的取值范围是.13.( 3分)如图, a∥ b, MN ⊥ a,垂足为 N.若∠1=56 °,则∠ M 度数等于.第 2 页(共 13 页)2018.3 Zjie 14.( 3 分)某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、 C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,其中 A 所在扇形的圆心角为30°,则在被调查的学生中选择跳绳的人数是.15.( 3 分)关于 x 的一元二次方程 x2﹣ 2x+m﹣ 1=0 有两个实数根,则m 的取值范围是.16.( 3 分)如图,矩形 ABCD中, AB=4,将矩形ABCD绕点 C 顺时针旋转90°,点 B、 D 分别落在点B′, D′处,且点 A, B′, D′在同一直线上,则 tan ∠ DAD′.17.( 3 分)如图,⊙ O 的半径是2,弦 AB 和弦 CD 相交于点E,∠AEC=60°,则扇形AOC 和扇形 BOD 的面积(图中阴影部分)之和为.18.( 3 分)如图,在等腰Rt△ ABC 中,∠ ABC=90°, AB=BC=4.点 P 是△ ABC 内的一点,连接PC,以 PC 为直角边在PC 的右上方作等腰直角三角形 PCD.连接 AD,若 AD∥ BC,且四边形ABCD 的面积为12,则 BP的长为.三、解答题本大题共10 小题,共76 分第 3 页(共 13 页)2018.3 Zjie 19.( 5 分)计算:+| ﹣| ﹣﹣tan30 °.20.( 5 分)解不等式组:.21.( 6 分)先化简,再求值:(1﹣)÷,其中 x= +1.22.( 6 分)某班为奖励在校运动会上取得较好成绩的运动员,花了 396 元钱购买甲、乙两种奖品共30件.其中甲种奖品每件 15 元,乙种奖品每件 12 元,求甲、乙两种奖品各买多少件?23.( 8 分)九年级(1)班和( 2)班分别有一男一女共4 名学生报名参加学校文艺汇演主持人的选拔.( 1)若从报名的 4 名学生中随机选 1 名,则所选的这名学生是女生的概率是.( 2)若从报名的 4 名学生中随机选 2 名,用树状图或表格列出所有可能的情况,并求出这 2 名学生来自同一个班级的概率.24.( 8 分)如图,已知Rt△ ABD 中,∠ A=90°,将斜边BD 绕点 B 顺时针方向旋转至BC,使 BC∥ AD,过点C 作 CE⊥BD 于点 E.(1)求证:△ ABD≌△ ECB;(2)若∠ ABD=30°, BE=3,求弧 CD的长.第 4 页(共 13 页)2018.3 Zjie 25.( 8 分)如图,在平面直角坐标系中,函数y= ( x> 0, k 是常数)的图象经过A( 2, 6),B( m, n),其中 m> 2.过点 A 作 x 轴垂线,垂足为C,过点 B 作 y 轴垂线,垂足为D, AC 与 BD 交于点 E,连结 AD,DC,CB.( 1)若△ ABD 的面积为3,求 k 的值和直线AB 的解析式;( 2)求证:= ;( 3)若 AD∥ BC,求点 B 的坐标.26.( 10 分)如图,在△ ABC 中, AB=AC,以 AB 为直径的⊙ O 交 BC 边于点 D,交 AC 边于点 E.过点 D 作⊙ O 的切线,交 AC 于点 F,交 AB 的延长线于点 G,连接 DE.(1)求证: BD=CD;(2)若∠ G=40°,求∠ AED的度数.(3)若 BG=6, CF=2,求⊙ O 的半径.第 5 页(共 13 页)2018.3 Zjie27.( 10 分)如图,正方形 OABC 的顶点 O 在坐标原点,顶点 A 的坐标为( 4, 3) ( 1)顶点 C 的坐标为( , ),顶点 B 的坐标为( , );( 2)现有动点 P 、Q 分别从 C 、A 同时出发,点 P 沿线段 CB 向终点 B 运动,速度为每秒 1 个单位,点 Q 沿 折线 A →O →C 向终点 C 运动,速度为每秒 k 个单位,当运动时间为 2 秒时,以 P 、 Q 、 C 为顶点的三角形是 等腰三角形,求此时 k的值.( 3)若正方形 OABC 以每秒 个单位的速度沿射线 AO 下滑,直至顶点 C 落到 x 轴上时停止下滑. 设正方形OABC 在 x 轴下方部分的面积为 S ,求 S 关于滑行时间 t 的函数关系式,并写出相应自变量 t 的取值范围.28.( 10 分)如图,在平面直角坐标系中,抛物线y=ax 2﹣ 2ax ﹣3a ( a > 0)与 x 轴交于 A 、 B 两点(点 A 在 点 B 左侧),经过点 A 的直线 l : y=kx+b 与 y 轴交于点 C ,与抛物线的另一个交点为 D ,且 CD=4AC .( 1)直接写出点 A 的坐标,并用含a 的式子表示直线 l 的函数表达式(其中 k 、 b 用含 a 的式子表示) .( 2)点 E 为直线 l 下方抛物线上一点,当△ ADE 的面积的最大值为 时,求抛物线的函数表达式;( 3)设点 P 是抛物线对称轴上的一点,点 Q 在抛物线上,以点 A 、D 、P 、 Q 为顶点的四边形能否为矩形?若能,求出点 P 的坐标;若不能,请说明理由.第 6 页(共 13 页)2018.3Zjie参考答案与试题解析一、选择题1. C . 2. B . 3. D . 4. D .5. C . 6. B .7.【解答】 解:∵ AB=AC , AD 平分∠ BAC ,∴ A D ⊥ BC , ∴∠ADC=90°,∵点 E 为 AC 的中点,∴ D E=CE= AC= .∵△ CDE 的周长为 21,∴ C D=6,∴ B C=2CD=12.故选 C .8.【解答】解:∵抛物线 y=ax 2 +bx+c 的对称轴为 x=1,∴根据二次函数的对称性得:点( 3, 0)的对称点为(﹣ 1,0),∵当 x=﹣1 时, y=a ﹣ b+c=0,∴ a ﹣ b+c 的值等于 0.故选 B .9.【解答】 解:设 CG=xm ,由图可知: EF=( x+20) ?tan45 °, FG=x?tan60°,则( x+20)tan45 °+30=xtan60 °,解得 x= =25( +1),则 FG=x?tan60°=25( +1)× =( 75+25 )m .故选 C .10. 【解答】 解:∵把△ AOB 绕点 A 顺时针旋转120 °,得到△ ADC ,点 M 是 BC 边上的一点, ∴ A M=AM ′ ,∴ A M ′+DM 的最小值 =AM+DM 的最小值,作点 D 关于直线 OB 的对称点 D ′,连接 AD ′交 OB 于M,则A D′=AM′+DM的最小值,过 D 作DE⊥x 轴于 E,∵∠OAD=120°,∴∠DAE=60°,∵ AD=AO=3,∴ DE= ×3= ,AE= ,∴ D(,),∴ D′(﹣,),设直线 AD′的解析式为y=kx+b,∴,∴,∴直线 AD′的解析式为y=﹣x+,当 x=0 时, y= ,∴M( 0,),故选 A.二、填空题11.( a+1)( a﹣ 1). 12. x>﹣ 2 .第 7 页(共 13 页)2018.3 Zj ie13.【解答】解:∵ a∥ b,∠1=56 °,∴ 扇形AOC 与扇形DOB 面积的和∴∠ 2=∠ 1=56°,= = ,∴∠ 3=∠ 2=56°,故答案为:.∵ MN ⊥ a,∴∠ M=180°﹣∠ 3﹣ 90°=180°﹣ 56°﹣ 90°=34°.故答案为: 34°.14.【解答】解:由题意可得,被调查的学生有:20÷=240(人),则选择跳绳的有:240﹣ 20﹣ 80﹣40=100(人),故答案为: 100 人.15.【解答】解:由题意知,△=4﹣ 4( m﹣1)≥ 0,∴m≤ 2,故答案为: m≤2 .16.【解答】解:由题意可得:AD∥CD′,故△ ADE∽△ D′CB,′则= ,设A D=x,则 B′C=x, DB′=4﹣ x,AB=CD′=4,故= ,解得: x1=﹣ 2﹣2(不合题意舍去),x2=﹣ 2+2 ,则D B′=6﹣2 ,则 tan∠ DAD′== = .故答案为:.17.【解答】解:连接 BC,如图所示:∵∠ CBE+∠ BCE=∠ AEC=60°,∴∠ AOC+∠ BOD=120°,18.【解答】解:如图,作PF⊥ BC 于点 F,延长FP交A D 于点 E,∵AD∥BC,∴∠ PFC=∠ DEP=90°,∴∠ CPF+∠ PCF=90°,∵∠ DPC=90°,∴∠ CPF+∠ DPE=90°,∴∠ PCF=∠ DPE,在△ PCF和△ DPE中,∵,∴△ PCF≌△ DPE( AAS),∴PF=DE、PE=CF,设P F=DE=x,则 PE=CF=4﹣x,∵S 四边形 ABCD= ( AD+BC)?AB=12,∴ ×( AD+4)× 4=12,解得 AD=2,∴ AE=BF=2﹣ x,第 8 页(共 13 页)2018.3∴F C=BC﹣ BF=4﹣( 2﹣x) =2+x,可得 2+x=4﹣x,解得 x=1,∴ BP= = ,故答案为:.三、解答题19 .【解答】解:+| ﹣|﹣﹣tan30 °=3+ ﹣ 1﹣=20.【解答】解:由①得,x>﹣ 1,由②得, x≤ 4,∴不等式组的解集为﹣1< x≤ 4.21.【解答】解:( 1﹣)÷===,当 x= +1 时,原式= = .22.【解答】解:设甲种奖品买了x 件,乙种奖品买了 y 件.根据题意得:,解得:.答:甲种奖品买了12 件,乙种奖品买了18 件.Zjie 23.【解答】解:( 1)所选的学生性别为女生的概率== ,故答案为:;( 2)画树形图得:所以共有12 种等可能的结果,满足要求的有 4 种.∴这 2 名学生来自同一个班级的概率为 =.24.【解答】(1)证明:∵∠A=90°,CE⊥ BD,∴∠ A=∠BEC=90°.∵BC∥AD,∴∠ ADB=∠EBC.∵将斜边 BD 绕点 B 顺时针方向旋转至BC,∴ BD=BC.在△ ABD 和△ ECB中,∴△ ABD≌△ ECB;(2)∵△ABD≌△ ECB,∴AD=BE=3.∵∠ A=90°,∠BAD=30°,∴BD=2AD=6,∵ BC∥ AD,∴∠ A+∠ABC=180°,∴∠ ABC=90°,∴∠ DBC=60°,∴弧 CD的长为=2π.第 9 页(共 13 页)2018.325.【解答】解:( 1)∵函数 y=( x> 0,k 是常数)的图象经过A( 2, 6),∴k=2× 6=12,∵ B( m, n),其中 m>2.过点 A 作x 轴垂线,垂足为 C,过点 B 作 y 轴垂线,垂足为D,∴m n=12 ①, BD=m, AE=6﹣ n,∵△ ABD 的面积为 3,∴BD?AE=3,∴m( 6﹣ n) =3②,联立①②得, m=3, n=4,∴ B(3, 4);设直线 AB 的解析式为y=kx+b( k≠0),则,∴,∴直线 AB 的解析式为y=﹣ 2x+10 ( 2)∵ A(2 ,6), B(m,n ),∴B E=m﹣ 2,CE=n, DE=2,AE=6﹣n,∴D E?AE=2( 6﹣ n) =12﹣ 2n,BE?CE=n(m﹣2)=mn﹣2n=12﹣2n,∴D E?AE=BE?CE,∴Zjie ∵AD∥BC,∴四边形ADCB是平行四边形.又∵ AC⊥ BD,∴四边形ADCB是菱形,∴DE=BE, CE=AE.∴B(4, 3).26.【解答】(1)证明:连接AD ,∵AB 为直径,∴∠ACB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;( 3)由( 2)知,,( 2)解:连接OD,∵∠ AEB=∠DEC=90°,∵ GF 是切线, OD 是半径,∴△ DEC∽△BEA,∴ OD⊥ GF,∴∠ CDE=∠ABE∴∠ ODG=90°,∴ AB∥ CD,∵∠ G=40°,第 10 页(共 13 页)2018.3∴∠ GOD=50°,∵O B=OD,∴∠OBD=65°,∵点 A、 B、 D、 E 都在⊙ O 上,∴∠ ABD+∠ AED=180°,∴∠ AED=115°;(3)解:∵AB=AC,∴∠ABC=∠ C,∵ OB=OD,∴∠ ABC=∠ ODB,∴∠ ODB=∠ C,∴O D∥ AC,∴△ GOD∽△ GAF,∴= ,∴设⊙ O 的半径是r,则 AB=AC=2r,∴A F=2r﹣ 2,∴= ,∴r=3,即⊙ O 的半径是3.27.【解答】解:(1)如图 1 中,作CM⊥ x 轴于,AN⊥x 轴于 N.连接 AC、 BO 交于点 K.易证△ AON≌△ COM,可得 CM=ON=4,OM=AN=3,∴C(﹣3,4),∵CK=AK,OK=BK,Zjie∴K(,),B(1,7),故答案为﹣ 3,4,1, 7.(2)由题意得,AO=CO=BC=AB=5,当 t=2时, CP=2.①当点 Q 在 OA 上时,∵ PQ≥AB> PC,∴只存在一点 Q,使QC=QP.作 QD⊥ PC于点 D(如图 2 中),则CD=PD=1,∴QA=2k=5﹣ 1=4,∴k=2.②当点 Q 在 OC上时,由于∠ C=90°所以只存在一点Q,使 CP=CQ=2,∴2k=10﹣ 2=8,∴ k=4.综上所述, k 的值为 2 或 4.( 3)①当点 A 运动到点O 时, t=3.当0< t ≤3 时,设 O’C交’ x 轴于点E,作A’F⊥x 轴于点F(如图3 中).则△ A’OF∽△ EOO’,第 11 页(共 13 页)2018.3 Zjie ∴== ,OO′= t ,∴E O′= t,∴S= t 2.②当点 C 运动到 x 轴上时, t=4当 3< t≤ 4 时(如图4 中),设 A’B 交’x 轴于点 F,则A’O=A′O=t ﹣ 5,∴ A′F=.∴ S= ( + t )× 5= .综上所述, S= .28.【解答】解:( 1)令 y=0,则 ax2﹣ 2ax﹣ 3a=0,解得 x1=﹣ 1,x2=3∵点 A 在点 B 的左侧,∴ A(﹣ 1,0 ),如图 1,作 DF⊥ x 轴于 F,∴DF∥ OC,∴= ,∵CD=4AC,∴= =4,∵OA=1,∴OF=4,∴ D 点的横坐标为 4,代入 y=ax2﹣ 2ax﹣ 3a 得, y=5a,∴D(4, 5a),把 A、 D 坐标代入y=kx+b 得,解得,∴直线 l 的函数表达式为y=ax+a.( 2)如图 2,过点 E 作 EH∥ y 轴,交直线l 于点H,设E(x, ax2﹣ 2ax﹣ 3a),则 H(x,ax+a).∴HE=( ax+a)﹣( ax2﹣ 2ax﹣ 3a)=﹣ ax2+3ax+4a,第 12 页(共 13 页)2018.3由 得 x=﹣1 或 x=4,即点 D 的横坐标为 4,∴ S △ ADE=S △ AEH+S △ DEH= (﹣ ax 2 +3ax+4a ) =﹣ a ( x﹣ ) 2+ a .∴△ ADE 的面积的最大值为 a ,∴ a= ,解得: a= .∴抛物线的函数表达式为 y= x 2﹣ x ﹣ .( 3)已知 A (﹣ 1, 0),D ( 4, 5a ).∵ y =ax 2﹣2ax ﹣3a ,∴抛物线的对称轴为 x=1,设 P ( 1, m ),①若 AD 为矩形的边,且点 Q 在对称轴左侧时,则AD ∥ PQ ,且 AD=PQ , 则 Q (﹣ 4, 21a ),m=21a+5a=26a ,则 P (1, 26a ),∵四边形 ADPQ 为矩形,∴∠ ADP=90°,2 2 2 , ∴ AD +PD=AP∴ 52 +( 5a )2 +( 1﹣ 4) 2+( 26a ﹣ 5a ) 2=(﹣ 1﹣ 1) 2 +( 26a ) 2,即 a 2= ,∵ a >0 ,Zjie∴ a= ,∴ P 1( 1, ),②若 AD 为矩形的边,且点 Q 在对称轴右侧时,则AD ∥ PQ ,且 AD=PQ , 则 Q ( 4, 5a ),此时点 Q 与点 D 重合,不符合题意,舍去;③若 AD 是矩形的一条对角线,则 AD 与 PQ 互相平分且相等.∴ x D +x A =x P +x Q ,y D +y A =y P +y Q ,∴ xQ=2,∴ Q ( 2,﹣ 3a ).∴ yP=8a∴ P ( 1,8a ).∵四边形 APDQ 为矩形,∴∠ APD=90°∴ AP 2+PD 2=AD 2∴(﹣ 1﹣ 1)2+( 8a )2 +(1﹣ 4) 2+( 8a ﹣5a )2=52+( 5a ) 2 即 a 2 = ,∵ a > 0,∴ a=∴ P 2( 1, 4)综上所述,以点 A 、 D 、 P 、 Q 为顶点的四边形能成为矩形,点 P 的坐标为( 1, )或( 1,4).第 13 页(共 13 页)。

2017年江苏省苏州市中学考试数学一模试卷

2017年江苏省苏州市中学考试数学一模试卷

实用文档2017年江苏省苏州市中考数学一模试卷一、选择题本大题共10小题,每小题3分,共30分.分)的倒数是(3 )1.(.﹣D..B .﹣A C2.(3分)某细胞截面可以近似看成圆,它的半径约为0.000 000787m,则0.000 000787用科学记数法表示为()7﹣7﹣7﹣610.7.87×7.87×10 C.0.787×10 DA.7.87×10 B.)分)下列运算正确的是(3.(36238423252368aa?a=a ﹣)= D.(﹣2aC.a÷a=a A.a+a=aB.名学生,其中,参加书法兴分)学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了404.(3人,其余参加绘画兴趣小组.则参加绘画人,舞蹈兴趣小组的有9趣小组的有8人,文学兴趣小组的有11)兴趣小组的频率是(0.3..0.15 C.0.25 DA.0.1 B月份某一周的最高气温如下表:(.3分)小明记录了35那么7天每天的最高气温的众数和中位数分别是()A.13,14 B.13,15 C.13,13 D.10,136.(3分)已知点A(﹣1,y)、B(2,y),C(3,y)都在反比例函数y=﹣的图象上,则下列y、y、21312y的大小关系为()3A.y<y<y B.y>y>y C.y>y>y D.y>y>y1223223 111337.(3分)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为()A.16 B.14 C.12 D.62)b+ca),,且经过点()的对称轴是直线≠(y=ax3.8(分)抛物线+bx+ca0x=130,则﹣的值为(实用文档A.﹣1 B.0 C.1 D.29.(3分)如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点测得该塔顶端F的仰角分别为45°和60°,矩形建筑物宽度AD=20m,高度DC=30m则信号发射塔顶端到地面的高度(即FG的长)为()50+20)(m.25+75))+55m B.(m D25+45)m C.A.((3510.(3分)在平面直角坐标系中,Rt△AOB的两条直角边OA、OB分别在x轴和y轴上,OA=3,OB=4.把△AOB绕点A顺时针旋转120°,得到△ADC.边OB上的一点M旋转后的对应点为M′,当AM′+DM取得最小值时,点M的坐标为(),)D.(0,3).,)B(0(,)C.0.A(0二、选择题本大题共8小题,每小题3分,共24分.2.1= 3分)因式分解:a﹣.11(.x的取值范围是12.(3分)若式子在实数范围内有意义,则13.(3分)如图,a∥b,MN⊥a,垂足为N.若∠1=56°,则∠M度数等于.14.(3分)某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、实用文档D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,其中A所在扇形的圆心角为30°,则在被调查的学生中选择跳绳的人数是.2.的取值范围是2x+m﹣1=0有两个实数根,则m(15.3分)关于x的一元二次方程x﹣′′,D、D分别落在点B°,点AB=4,将矩形ABCD绕点C顺时针旋转90B中,16.(3分)如图,矩形ABCD.∠DAD′tan处,且点A,B′,D′在同一直线上,则17.(3分)如图,⊙O的半径是2,弦AB和弦CD相交于点E,∠AEC=60°,则扇形AOC和扇形BOD的面积(图中阴影部分)之和为.18.(3分)如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4.点P是△ABC内的一点,连接PC,以PC为直角边在PC的右上方作等腰直角三角形PCD.连接AD,若AD∥BC,且四边形ABCD的面积为12,则BP的长为.三、解答题本大题共10小题,共76分°.tan30﹣5.19(分)计算:﹣|﹣+|实用文档分)解不等式组:.5.(20x=+1,其中(1.﹣)÷21.(6分)先化简,再求值:22.(6分)某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?23.(8分)九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔.(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是.(2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生来自同一个班级的概率.24.(8分)如图,已知Rt△ABD中,∠A=90°,将斜边BD绕点B顺时针方向旋转至BC,使BC∥AD,过点C作CE⊥BD于点E.(1)求证:△ABD≌△ECB;(2)若∠ABD=30°,BE=3,求弧CD的长.y=(x>0,k是常数)的图象经过A(2,分)如图,在平面直角坐标系中,函数25.(86),B (m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,AC与BD交于点E,连结AD,DC,实用文档CB.(1)若△ABD的面积为3,求k的值和直线AB的解析式;=;)求证:(2(3)若AD∥BC,求点B的坐标.26.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,交AC边于点E.过点D作⊙O的切线,交AC于点F,交AB的延长线于点G,连接DE.(1)求证:BD=CD;(2)若∠G=40°,求∠AED的度数.(3)若BG=6,CF=2,求⊙O的半径.27.(10分)如图,正方形OABC的顶点O在坐标原点,顶点A的坐标为(4,3)(1)顶点C的坐标为(,),顶点B的坐标为(,);(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点Q沿实用文档折线A→O→C向终点C运动,速度为每秒k个单位,当运动时间为2秒时,以P、Q、C为顶点的三角形是等腰三角形,求此时k的值.以每秒个单位的速度沿射线AO下滑,直至顶点C落到x(3)若正方形OABC轴上时停止下滑.设正方形OABC在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围.2在AB两点(点轴交于0)与xA、﹣28.(10分)如图,在平面直角坐标系中,抛物线y=ax﹣2ax3a(a>.,且CD=4AC轴交于点C,与抛物线的另一个交点为D与B点左侧),经过点A的直线l:y=kx+by.的式子表示)b用含a的式子表示直线的坐标,并用含al的函数表达式(其中k、)直接写出点(1A时,求抛物线的函数表达式;的面积的最大值为lE为直线下方抛物线上一点,当△ADE2()点(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.实用文档OB′交′,连接AD关于直线OB的对称点D作点D参考答案与试题解析,M于一、选择题的最小值,′+DM则AD′=AM.B..5.C.6..2.B.3 D.4.D.1 C,轴于E 作DE⊥x过D,平分∠BAC.【解答】解:∵AB=AC,AD7°,∵∠OAD=120,AD⊥BC∴°,∴∠DAE=60°,∴∠ADC=90,∵AD=AO=3的中点,E为AC∵点,3=,∴DE=×AE=.DE=CE=∴AC=,()∴D,,∵△CDE21的周长为,CD=6∴,)∴D,′(﹣.∴BC=2CD=12,y=kx+bAD′的解析式为设直线.故选C,∴2,x=1解:8.【解答】∵抛物线y=ax+bx+c的对称轴为)的对称点∴根据二次函数的对称性得:点(03,,,为(﹣10),∴,∵当x=﹣﹣b+c=0y=a1时,.0b+ca∴﹣的值等于,y=x+﹣∴直线AD′的解析式为.B故选,x=0时,y=当,.9【解答】CG=xm解:设,,)∴M(0°,由图可知:EF=?tan60FG=x°,tan45)(x+20?.+30=xtan60°°,故选Atan45x+20则(),=25x=解得(+1))FG=x则?75+25(=+1=25tan60°()×.m.故选C°,.10绕点∵把△解:解答】【AOB120顺时针旋转A 边上的一点,ADC得到△,点是MBC′,∴AM=AM二、填空题的最小值,′AM∴的最小值+DM=AM+DM .2>﹣x.12.)1﹣a()a+1(.11实用文档AOCBOD=12°AODO和°,∠2=56∴∠3===,,⊥a∵MN故答案为:.°°﹣90°M=180°﹣∠3﹣90=180°﹣56∴∠°.=34°.故答案为:3418.【解答】解:如图,作PF⊥BC于点F,延长FP交AD于点E,解:由题意可得,【解答】14.,被调查的学生有:20÷(人)=240,40=100(人)﹣240﹣2080﹣则选择跳绳的有:人.故答案为:100∵AD,﹣﹣15.【解答】解:由题意知,△=44(m1)≥0∥BC,°,DEP=902∴m≤,∴∠PFC=∠°,PCF=90∴∠m故答案为:≤2.CPF+∠°,′,解:由题意可得:.【解答】AD∥CDDPC=90∵∠16°,′,′∽△故△ADEDCBDPE=90CPF+∠∴∠,∠PCF=DPE∴∠,则=中,和△DPE在△PCF,=4′,﹣′,,则设AD=xB′C=xDB=4xAB=CD,故=,∵,2+2=x(不合题意舍去)﹣﹣=解得:x22,﹣21,(AAS)DPE∴△PCF≌△,则=6﹣2′DB,PF=DE、PE=CF∴.则==′∠tanDAD=,x﹣设PF=DE=x,则PE=CF=4,)?AB=12=∵S(AD+BC.故答案为:ABCD四边形,如图所示:17解:连接.【解答】BC,4=12)×,解得AD=2AD+4∴×(°,AEC=60∠∠CBE+∵∠BCE=,AE=BF=2∴﹣x实用文档解)所选的学生性别为女生的概率,,解得x=1可得2+x=4﹣x==,,=∴BP=故答案为:;.故答案为:(2)画树形图得:三、解答题﹣﹣﹣|19.【解答】解:+|所以共有12种等可能的结果,满足要求的有4种.°tan30∴这2名学生来自同一个班级的概率为=.﹣=3+﹣1=24.【解答】(1)证明:∵∠A=90°,CE⊥BD,∴∠A=∠BEC=90°.,1x【解答】20.解:由①得,>﹣∵BC∥AD,,x由②得,≤4∴∠ADB=∠EBC..<4x≤∴不等式组的解集为﹣1∵将斜边BD绕点B顺时针方向旋转至BC,∴BD=BC.在△ABD和△ECB中,)÷.21【解答】﹣1解:(=∴△ABD≌△ECB;=,=(2)∵△ABD≌△ECB,.+1x=当==时,原式∴AD=BE=3.∵∠A=90°,∠BAD=30°,∴x解:设甲种奖品买了.22【解答】BD=2AD=6,件,乙种奖品买∵y了BC∥AD,件.∴∠A+∠ABC=180°,,根据题意得:∴∠ABC=90°,.解得:∴∠DBC=60°,件.12答:甲种奖品买了件,乙种奖品买了18∴弧CD的长为=2π.实用文档B是平行四边形.∴四边形ADCB是常数)0,k)∵函数y=(x>25.【解答】解:(1,⊥BD又∵AC,6)的图象经过A(2,是菱形,∴四边形ADCB,×6=12k=2∴.,CE=AE∴DE=BE轴垂线,垂足n),其中m>2x.过点A作m∵B(,∴B(4,3).,DB 作y轴垂线,垂足为C为,过点,nAE=6﹣∴mn=12①,BD=m,26.,3ABD的面积为∵△【解答】(1)证明:连接AD,,?AE=3∴BD②,=3n)m∴(6﹣,,n=4联立①②得,m=3;4B∴(3,),0)y=kx+b(k≠设直线AB的解析式为,则∵AB为直径,,∴∴∠ACB=90°,2x+10﹣∴直线AB的解析式为y=∴AD⊥BC,∵AB=AC,,)(6A2()∵(2,),Bm,n∴BD=CD;,﹣nAE=6DE=2CE=nBE=m∴﹣2,,,,∴=12n6(﹣)﹣2nAE=2DE?,﹣(CE=nm22n﹣﹣)=mn2n=12?BE,?AE=BECE?∴DE∴,2)由()知,3((2)解:连接OD,∵GF是切线,OD是半径,°,∠AEB=∵∠DEC=90∴OD⊥GF,,∽△∴△DECBEA∴∠ODG=90°,ABE∠CDE=∴∠∵∠G=40°,,∴CD∥AB实用文档,∵OB=OD故答案为﹣3,4,1,7.°,OBD=65∴∠上,都在⊙OA∵点、B、D、E(2)由题意得,AO=CO=BC=AB=5,°,∴∠ABD+∠AED=180当t=2时,CP=2.°;∴∠AED=115①当点Q在OA上时,∵PQ≥AB>PC,∴只存在一点Q,使QC=QP.,)解:∵(3AB=AC作QD⊥PC于点D(如图2中),则CD=PD=1,,∴∠ABC=∠C,OB=OD∵,ODB∠∴∠ABC=,∴∠ODB=∠C,AC∥∴OD,GAFGOD∽△∴△∴QA=2k=5﹣1=4,,∴=∴k=2.,的半径是∴设⊙Or,则AB=AC=2r②当点Q在OC上时,由于∠C=90°所以只存在一点,﹣∴AF=2r2Q,使CP=CQ=2,,=∴∴2k=10﹣2=8,∴k=4.综上所述,k,∴r=3的值为2或4..3的半径是即⊙O(3)①当点A运动到点O时,t=3.当0<轴于,⊥CM中,作)如图(【解答】.27解:11xANt≤3时,设O'C'交x轴于点E,作A'F ⊥x交于点BO、.连接N轴于⊥xACK轴于点F(如图3.中).,CM=ON=4COM≌△AON易证△,可得,OM=AN=3则△A'OF∽△EOO',,3(﹣C∴CK=AK,∵)4,,OK=BK 实用文档O,∴=,=t∴EO′,CD=4AC∵2.∴S=t,∴==4t=4x轴上时,C②当点运动到,OA=1∵,轴于点F,当3<t≤4时(如图4中)设A'B'交x∴OF=4,∴D点的横坐标为4,2﹣2ax﹣3a代入y=ax得,y=5a,∴D(4,5a),把A、D坐标代入y=kx+b得,解得,,O=A则A'′O=t5﹣∴直线l的函数表达式为y=ax+a..F=A′∴(2)如图2,过点E作EH∥y轴,交直线l于点H,.(∴S=+t)×5=.综上所述,S=2,.28【解答】﹣2ax﹣3a=0axy=0解:(1)令,则=3=x解得﹣,x121的左侧,在点B∵点A2.ax+a),则H(x,(设Ex,ax3a﹣2ax﹣),0),(﹣∴A122,=﹣axaxax+a)﹣(+3ax+4a﹣2ax﹣3a)HE=∴(,F轴于xDF1如图,作⊥,或x=4﹣由得x=1,4的横坐标为即点D2)x=)﹣a(﹣+3ax+4a(﹣=+Sax=S∴S DEH△△ADE△AEH2.+a,∴△ADE的面积的最大值为a实用文档A为矩形的边,且在对称轴右侧时,则AD∥PQ,且AD=PQ,.解得:a=则Q(4,5a),2.﹣x﹣x∴抛物线的函数表达式为y=此时点Q与点D重合,不符合题意,舍去;③若AD是矩形的一条对角线,则AD与PQ互相平分且相等.)已知(3A(﹣1,0),.,5a)D(42∴x+x=x+x,y﹣2ax﹣3a,+y=y+y,∵y=ax QPADQADP∴x=1,x=2,∴抛物线的对称轴为Q∴Q(2,﹣3a),1设P(,m).∴为矩形的边,且点ADQ在对称轴左侧时,则y=8a①若P∴P(1,8a).,∥ADPQ,且AD=PQ ∵四边形),21a,APDQ为矩形,(﹣则Q4∴∠APD=90),(126a,°,则m=21a+5a=26aP222=ADAP+PD∵四边形ADPQ为矩形,∴22222+=58a﹣5a1+(﹣4))+)1∴(﹣﹣1)+(ADP=90∴∠°,8a(2222)∴(,5aAD+PD=AP2222)﹣11)5a﹣(4﹣1)(+∴55a+()+26a=(﹣2=,即a22,)(+26a∵a>0,2,=即a∴a=,a∵>0∴P(1,4)2,∴a=综上所述,以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1,,),1()或(P∴1,4).1。

2017年江苏苏州张家港市初三一模数学试卷

2017年江苏苏州张家港市初三一模数学试卷

2017年江苏苏州张家港市初三一模数学试卷一、选择题(共10小题;共50分)1. 相反数等于的数是A. B. C. D.2. 某市月上旬前天的最高气温如下(单位:):,,,,.对这组数据,下列说法正确的是A. 平均数为B. 众数为C. 中位数为D. 极差为3. 人体中红细胞的直径约为,将数用科学记数法表示为A. B. C. D.4. 如果在实数范围内有意义,则的取值范围是A. B. C. D.5. 反比例函数的图象与一次函数的图象交于点,则的值是A. B. C. D.6. 不透明的袋子中装有形状、大小、质地完全相同的个球,其中个黑球、个白球,从袋子中一次摸出个球,下列事件是不可能事件的是A. 摸出的是个白球B. 摸出的是个黑球C. 摸出的是个白球、个黑球D. 摸出的是个黑球、个白球7. 如图,在中,,以为直径画半圆交于,交于,的度数为,则的度数是A. B. C. D.8. 已知关于的方程的两根为:,,则二次函数的对称轴是A. 直线B. 直线C. 直线D. 轴9. 如图,在一个米高的楼顶上有一信号塔,某同学为了测量信号塔的高度,在地面的处测得信号塔下端的仰角为,然后他正对塔的方向前进了米到达地面的处,又测得信号塔顶端的仰角为,于点,,,在一条直线上.信号塔的高度为米.A. B. C. D.10. 如图,点,点从点出发,沿射线方向以个单位/秒匀速运动,运动的过程中以为对称中心,为一个顶点作正方形,当正方形面积为时,点坐标是A. B. C. D.二、填空题(共8小题;共40分)11. 计算:.12. 分解因式:.13. 如图,直线,被直线所截,且.若,则.14. 若一个圆锥的侧面展开图是半径为,圆心角为的扇形,则这个圆锥的底面半径长是.15. 如图,在中,是直径,弦,垂足为,若,,则半径为.16. 小明统计了他家今年月份打电话的次数及通话时间,并列出了频数分布表:通话时间频数通话次数则通话时间不超过的频率为.17. 如图,在平面直角坐标系中有一正方形,反比例函数的图象经过正方形对角线的交点,半径为的圆内切于,则的值为.18. 如图,在中,,是上的一点(不与点,重合),,交于点,则的最大值为.三、解答题(共10小题;共130分)19. 计算:.20. 解不等式组21. 请你先化简,再从,,中选择一个合适的数代入求值.22. 解分式方程.23. 在一个不透明的盒子中放有三张分别写有数字,,的红色卡片和三张分别写有数字,,的蓝色卡片,卡片除颜色和数字外完全相同.(1)从中任意抽取一张卡片,该卡片上写有数字的概率是;(2)将张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为,蓝色卡片上的数字作为,将作为点的坐标,请用列举法(画树状图或列表)求二次函数的图象经过点的概率.24. 如图,是平行四边形的边的中点,延长交的延长线于点.(1)求证:.(2)若,,,求的长.25. 在平面直角坐标系中,反比例函数的图象与一次函数的图象交于点和.(1)求反比例函数和一次函数的表达式;(2)点是坐标平面内一点,轴,交直线于点,连接.若,求点的坐标.26. 如图,的直径与弦相交于点,点是延长线上的一点,.(1)求证:是的切线;(2)已知点是的中点,求证:以,,为顶点的三角形与相似;(3)已知,.在()条件下,求的长.27. 已知:在直角坐标系中,点,,点是线段的中点,交于点,的斜边在射线上,顶点在射线的左侧,.点从点出发,以每秒个单位的速度向点运动,到点停止.,运动时间为(秒).(1)在中,,;(用含有的代数式表示);(2)当点与点重合时,求的值;(3)设与重叠部分图形的面积为,求与的关系式;(4)求在整个运动过程中扫过的面积.28. 如图,已知点的坐标为,直线与轴,轴分别交于点和点,连接,顶点为的抛物线过,,三点.(1)请直接写出,两点的坐标,抛物线的解析式及顶点的坐标;(2)设抛物线的对称轴交线段于点,是第一象限内抛物线上一点,过点作轴的垂线,交线段于点,若四边形为平行四边形,求点的坐标;(3)设点是线段上的一动点,过点作,交于点,点从点出发,以每秒个单位长度的速度沿线段向点运动,运动时间为(秒),当(秒)为何值时,存在为等腰直角三角形?答案第一部分1. B2. B3. C4. B5. A6. A7. A8. C9. C 10. D第二部分11.12.13.14.15.16.17.18.第三部分19.20. 由得:由得:所以这个不等式组的解集为:.21.为使分式有意义,不能取;当时,原式22. 去分母,得解得经检验,是原方程的解.23. (1)【解析】有三张红色卡片和三张蓝色卡片,共张,其中写有数字的有张,该卡片上写有数字的概率是.(2)根据题意画树状图如下:图象经过的点为:,,,则二次函数的图象经过点的概率是.24. (1),即,,,,.(2),.,,在平行四边形中,,,.25. (1)反比例函数的图象与一次函数的图象交于点和,点在反比例函数的图象上,,反比例函数的表达式为.点在反比例函数的图象上,.点和点在一次函数的图象上,解得:一次函数的表达式为.(2)依照题意画出图形,如图所示.轴,点的纵坐标为,于点,.点的坐标为,点的坐标为,,在中,,且,,解得:.点的坐标为,点的坐标为.故点的坐标为或.26. (1)如图,连接,是的直径,,,,,,,是的切线.(2)如图,连接,是的直径,,,是的中点,在中,,,.(3),,,.,,,解得..27. (1);;;(2)如图中,当点与点重合时,,,,时,点与点重合.(3)当点与点重合时,,,,当点与点重合时,,当点与点重合时,,①如图中,与交于点,当时,,,,.②如图中,时,,③如图中,当时,,,,.综上所述:.(4)如图中,在整个运动过程中扫过的面积.28. (1)令代入,,.令代入,..设抛物线的解析式为:,把代入,,抛物线的解析式为: .顶点的坐标为 .(2)当时,此时四边形是平行四边形,设直线的解析式为 .直线的解析式为:,.,把代入,,直线的解析式为,由题意,得解得:或(舍去).把代入,得 .的坐标为 .(3)由题意可知:,设直线的解析式为:,把和代入,得解得直线的解析式为: .由题意知: .如图1.当时, .把代入中,得 ..轴,的纵坐标为 .把代入中,得 ...当时,..此时,符合题意,如图2,当时,,点的坐标为把代入中,得 ..轴,点的纵坐标为 .把代入中,得 ...当时,,,此时,符合题意.如图3,当时.过点作于点 .设 .把代入中,得 ..把代入中,得 ..,当时,为等腰直角三角形.即,., ....,此情况符合题意.综上所述,当或或时,为等腰直角三角形.。

张家港一模初三数学试卷

张家港一模初三数学试卷

考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. -3/4D. 0.1010010001…2. 若 |a| = 3,那么 a 的值为()A. ±3B. ±1C. ±2D. ±53. 在下列函数中,自变量 x 的取值范围是全体实数的是()A. y = √(x - 1)B. y = √(x^2 + 1)C. y = √(-x)D. y = √(x - 3)4. 若 a + b = 0,且 a > 0,那么 b 的符号为()A. 正B. 负C. 零D. 不确定5. 下列图形中,对称轴为直线 y = -x 的是()A.B.C.D.6. 已知一次函数 y = kx + b 的图象经过点 A(2, 3) 和 B(4, 1),则该函数的解析式为()A. y = 2x - 1B. y = -2x + 1C. y = 2x + 1D. y = -2x - 17. 在△ABC中,∠A = 60°,∠B = 45°,则∠C 的度数为()A. 60°B. 75°C. 120°D. 45°8. 若等腰三角形底边长为 8,腰长为 6,则该三角形的面积为()A. 24B. 30C. 36D. 489. 在平面直角坐标系中,点 P(2, 3) 关于直线 y = x 的对称点为()A. (2, 3)B. (3, 2)C. (3, -2)D. (-2, 3)10. 若 a、b、c 成等差数列,且 a + b + c = 12,则 b 的值为()A. 4B. 6C. 8D. 10二、填空题(每题5分,共30分)11. 若 |a| = 5,且 a < 0,则 a = _______。

12. 若 a^2 = 9,则 a 的值为 _______。

13. 若 x^2 - 5x + 6 = 0,则 x 的值为 _______。

江苏省苏州市2017届中考数学一模试卷(含解析)

江苏省苏州市2017届中考数学一模试卷(含解析)

江苏省苏州市2017届中考数学一模试卷一、选择题本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上.1.的倒数是()A. B.﹣C. D.﹣2.某细胞截面可以近似看成圆,它的半径约为0.000 000787m,则0.000 000787用科学记数法表示为()A.7.87×107B.7.87×10﹣7C.0.787×10﹣7D.7.87×10﹣63.下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.a8÷a4=a2D.(﹣2a2)3=﹣8a64.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,其中,参加书法兴趣小组的有8人,文学兴趣小组的有11人,舞蹈兴趣小组的有9人,其余参加绘画兴趣小组.则参加绘画兴趣小组的频率是()A.0.1 B.0.15 C.0.25 D.0.35.小明记录了3月份某一周的最高气温如下表:日期12日13日14日15日16日17日18日最高气温(℃)15 10 13 14 13 16 13那么15天每天的最高气温的众数和中位数分别是()A.13,14 B.13,15 C.13,13 D.10,136.已知点A(﹣1,y1)、B(2,y2),C(3,y3)都在反比例函数y=﹣的图象上,则下列y1、y2、y3的大小关系为()A.y1<y2<y3B.y1>y3>y2C.y1>y2>y3D.y2>y3>y17.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为()A.16 B.14 C.12 D.68.抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,且经过点(3,0),则a﹣b+c的值为()A.﹣1 B.0 C.1 D.29.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点测得该塔顶端F的仰角分别为45°和60°,矩形建筑物宽度AD=20m,高度DC=30m则信号发射塔顶端到地面的高度(即FG的长)为()A.(35+55)m B.(25+45)m C.(25+75)m D.(50+20)m10.在平面直角坐标系中,Rt△AOB的两条直角边OA、OB分别在x轴和y轴上,OA=3,OB=4.把△AOB绕点A顺时针旋转120°,得到△ADC.边OB上的一点M旋转后的对应点为M′,当AM′+DM取得最小值时,点M的坐标为()A.(0,)B.(0,)C.(0,)D.(0,3)二、选择题本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上. 11.因式分解:a2﹣1= .12.若式子在实数范围内有意义,则x的取值范围是.13.如图,a∥b,MN⊥a,垂足为N.若∠1=56°,则∠M度数等于.14.某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,其中A所在扇形的圆心角为30°,则在被调查的学生中选择跳绳的人数是.15.关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根,则m的取值范围是.16.如图,矩形ABCD中,AB=4,将矩形ABCD绕点C顺时针旋转90°,点B、D分别落在点B′,D′处,且点A,B′,D′在同一直线上,则tan∠DAD′.17.如图,⊙O的半径是2,弦AB和弦CD相交于点E,∠AEC=60°,则扇形AOC和扇形BOD 的面积(图中阴影部分)之和为.18.如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4.点P是△ABC内的一点,连接PC,以PC为直角边在PC的右上方作等腰直角三角形PCD.连接AD,若AD∥BC,且四边形ABCD的面积为12,则BP的长为.三、解答题本大题共10小题,共76分把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.(5分)计算: +|﹣|﹣﹣tan30°.20.(5分)解不等式组:.21.(6分)先化简,再求值:(1﹣)÷,其中x=+1.22.(6分)某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?23.(8分)九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔.(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是.(2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生来自同一个班级的概率.24.(8分)如图,已知Rt△ABD中,∠A=90°,将斜边BD绕点B顺时针方向旋转至BC,使BC∥AD,过点C作CE⊥BD于点E.(1)求证:△ABD≌△ECB;(2)若∠ABD=30°,BE=3,求弧CD的长.25.(8分)如图,在平面直角坐标系中,函数y=(x>0,k是常数)的图象经过A(2,6),B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,AC 与BD交于点E,连结AD,DC,CB.(1)若△ABD的面积为3,求k的值和直线AB的解析式;(2)求证: =;(3)若AD∥BC,求点B的坐标.26.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,交AC边于点E.过点D作⊙O的切线,交AC于点F,交AB的延长线于点G,连接DE.(1)求证:BD=CD;(2)若∠G=40°,求∠AED的度数.(3)若BG=6,CF=2,求⊙O的半径.27.(10分)如图,正方形OABC的顶点O在坐标原点,顶点A的坐标为(4,3)(1)顶点C的坐标为(,),顶点B的坐标为(,);(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点Q沿折线A→O→C向终点C运动,速度为每秒k个单位,当运动时间为2秒时,以P、Q、C为顶点的三角形是等腰三角形,求此时k的值.(3)若正方形OABC以每秒个单位的速度沿射线AO下滑,直至顶点C落到x轴上时停止下滑.设正方形OABC在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围.28.(10分)如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a 的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为时,求抛物线的函数表达式;(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.2017年江苏省苏州市中考数学一模试卷参考答案与试题解析一、选择题本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上.1.的倒数是()A. B.﹣C. D.﹣【考点】17:倒数.【分析】根据倒数的定义求解即可.【解答】解:得到数是,故选:C.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.某细胞截面可以近似看成圆,它的半径约为0.000 000787m,则0.000 000787用科学记数法表示为()A.7.87×107B.7.87×10﹣7C.0.787×10﹣7D.7.87×10﹣6【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000787=7.87×10﹣7,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.a8÷a4=a2D.(﹣2a2)3=﹣8a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;积的乘方以及幂的乘方的性质对各选项分析判断即可得解.【解答】解:A、a2+a3不能进行运算,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、a8÷a4=a8﹣4=a4,故本选项错误;D、(﹣2a2)3=(﹣2)3(a2)3=﹣8a6,故本选项正确.故选D.【点评】本题考查了同底数幂的乘法、幂的乘方与积的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,其中,参加书法兴趣小组的有8人,文学兴趣小组的有11人,舞蹈兴趣小组的有9人,其余参加绘画兴趣小组.则参加绘画兴趣小组的频率是()A.0.1 B.0.15 C.0.25 D.0.3【考点】V6:频数与频率.【分析】根据各小组频数之和等于数据总和.频率=,可得答案.【解答】解:绘画小组的频数是40﹣8﹣11﹣9=12,频率是12÷40=0.3,故选:D.【点评】本题是对频率、频数灵活运用的综合考查.注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.频率=.5.小明记录了3月份某一周的最高气温如下表:日期12日13日14日15日16日17日18日最高气温(℃)15 10 13 14 13 16 13那么15天每天的最高气温的众数和中位数分别是()A.13,14 B.13,15 C.13,13 D.10,13【考点】W5:众数;W4:中位数.【分析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数据,据此判断即可.【解答】解:∵这组数据中13出现的次数最多,是3次,∴每天的最高气温的众数是13;把3月份某一周的气温由高到低排列是:16℃、15℃、14℃、13℃、13℃、13℃、10℃,∴每天的最高气温的中位数是13;∴每天的最高气温的众数和中位数分别是13、13.故选:C.【点评】此题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.6.已知点A(﹣1,y1)、B(2,y2),C(3,y3)都在反比例函数y=﹣的图象上,则下列y1、y2、y3的大小关系为()A.y1<y2<y3B.y1>y3>y2C.y1>y2>y3D.y2>y3>y1【考点】G6:反比例函数图象上点的坐标特征.【分析】把点A、B、C的坐标分别代入函数解析式,求得y1、y2、y3的值,然后比较它们的大小.【解答】解:∵反比例函数y=﹣图象上三个点的坐标分别是A(﹣2,y1)、B(1,y2)、C (2,y3),∴y1=﹣=1,y2=﹣1,y3=﹣.∵﹣﹣1<﹣<1,∴y2<y3<y1故选B.【点评】本题考查了反比例函数图象上点的坐标特征.函数图象上点坐标都满足该函数解析式.7.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为()A.16 B.14 C.12 D.6【考点】KH:等腰三角形的性质.【分析】根据等腰三角形的性质可得AD⊥BC,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=CE=AC=.∵△CDE的周长为21,∴CD=6,∴BC=2CD=12.故选C.【点评】此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.8.抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,且经过点(3,0),则a﹣b+c的值为()A.﹣1 B.0 C.1 D.2【考点】H3:二次函数的性质.【分析】根据二次函数对称性可求出点(3,0)关于对称轴直线x=1的对称点为(﹣1,0),然后把(﹣1,0)代入y=ax2+bx+c即可求出答案.【解答】解:∵抛物线y=ax2+bx+c的对称轴为x=1,∴根据二次函数的对称性得:点(3,0)的对称点为(﹣1,0),∵当x=﹣1时,y=a﹣b+c=0,∴a﹣b+c的值等于0.故选B.【点评】本题主要考查了二次函数的性质,解答本题的关键是求出点P关于对称轴的对称点,此题难度不大.9.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点测得该塔顶端F的仰角分别为45°和60°,矩形建筑物宽度AD=20m,高度DC=30m则信号发射塔顶端到地面的高度(即FG的长)为()A.(35+55)m B.(25+45)m C.(25+75)m D.(50+20)m【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】将题目中所涉及到的仰角转换为直角三角形的内角,利用解直角三角形的知识表示出线段CG的长,根据三角函数值求得CG的长,代入FG=x•tanβ即可求得.【解答】解:设CG=xm,由图可知:EF=(x+20)•tan45°,FG=x•tan60°,则(x+20)tan45°+30=xtan60°,解得x==25(+1),则FG=x•tan60°=25(+1)×=(75+25)m.故选C.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,解决此类问题的关键是正确的将仰角转化为直角三角形的内角并选择正确的边角关系解直角三角形.10.在平面直角坐标系中,Rt△AOB的两条直角边OA、OB分别在x轴和y轴上,OA=3,OB=4.把△AOB绕点A顺时针旋转120°,得到△ADC.边OB上的一点M旋转后的对应点为M′,当AM′+DM取得最小值时,点M的坐标为()A.(0,)B.(0,)C.(0,)D.(0,3)【考点】R7:坐标与图形变化﹣旋转;PA:轴对称﹣最短路线问题.【分析】根据旋转的性质得到AM=AM′,得出AM′+DM的最小值=AM+DM的最小值,作点D 关于直线OB的对称点D′,连接AD′交OB于M,则AD′=AM′+DM的最小值,过D作DE⊥x 轴于E,解直角三角形得到DE=×3=,AE=,求出D(,),根据轴对称的性质得到D′(﹣,),求出直线AD′的解析式为y=﹣x+,于是得到结论.【解答】解:∵把△AOB绕点A顺时针旋转120°,得到△ADC,点M是BC边上的一点,∴AM=AM′,∴AM′+DM的最小值=AM+DM的最小值,作点D关于直线OB的对称点D′,连接AD′交OB于M,则AD′=AM′+DM的最小值,过D作DE⊥x轴于E,∵∠OAD=120°,∴∠DAE=60°,∵AD=AO=3,∴DE=×3=,AE=,∴D(,),∴D′(﹣,),设直线AD′的解析式为y=kx+b,∴,∴,∴直线AD′的解析式为y=﹣x+,当x=0时,y=,∴M(0,),故选A.【点评】本题考查了坐标与图形的变换﹣旋转,待定系数法求函数的解析式,轴对称的性质,正确的作出辅助线是解题的关键.二、选择题本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上. 11.因式分解:a2﹣1= (a+1)(a﹣1).【考点】54:因式分解﹣运用公式法.【分析】考查了对平方差公式的理解,本题属于基础题.本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:a2﹣1=a2﹣12=(a+1)(a﹣1).【点评】本题考查了公式法分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.12.若式子在实数范围内有意义,则x的取值范围是x>﹣2 .【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2>0,解得,x>﹣2,故答案为:x>﹣2.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.13.如图,a∥b,MN⊥a,垂足为N.若∠1=56°,则∠M度数等于34°.【考点】JA:平行线的性质;J3:垂线.【分析】先根据平行线的性质以及对顶角的性质,得到∠3的度数,再根据三角形内角和定理即可得到结论【解答】解:∵a∥b,∠1=56°,∴∠2=∠1=56°,∴∠3=∠2=56°,∵MN⊥a,∴∠M=180°﹣∠3﹣90°=180°﹣56°﹣90°=34°.故答案为:34°.【点评】此题考查了平行线的性质,三角形内角和定理,垂直的定义,以及对顶角相等的知识.解题的关键是注意掌握两直线平行,同位角相等.14.某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,其中A所在扇形的圆心角为30°,则在被调查的学生中选择跳绳的人数是100人.【考点】VC:条形统计图;VB:扇形统计图.【分析】根据统计图中的信息可以求得本次调查的学生人数,从而可以求得被调查的学生中选择跳绳的人数.【解答】解:由题意可得,被调查的学生有:20÷=240(人),则选择跳绳的有:240﹣20﹣80﹣40=100(人),故答案为:100人.【点评】本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.15.关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根,则m的取值范围是m≤2 .【考点】AA:根的判别式.【分析】根据一元二次方程有实数根,得出△≥0,建立关于m的不等式,求出m的取值范围即可.【解答】解:由题意知,△=4﹣4(m﹣1)≥0,∴m≤2,故答案为:m≤2.【点评】此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0,方程有两个不相等的实数根;△=0,方程有两个相等的实数根;△<0,方程没有实数根是本题的关键.16.如图,矩形ABCD中,AB=4,将矩形ABCD绕点C顺时针旋转90°,点B、D分别落在点B′,D′处,且点A,B′,D′在同一直线上,则tan∠DAD′= .【考点】R2:旋转的性质;LB:矩形的性质;T7:解直角三角形.【分析】直接利用旋转的性质结合相似三角形的判定与性质得出DB′的长进而得出答案.【解答】解:由题意可得:AD∥CD′,故△ADE∽△D′CB′,则=,设AD=x,则B′C=x,DB′=4﹣x,AB=CD′=4,故=,解得:x1=﹣2﹣2(不合题意舍去),x2=﹣2+2,则DB′=6﹣2,则tan∠DAD′===.故答案为:.【点评】此题主要考查了旋转的性质以及相似三角形的判定与性质,正确得出DB′的长是解题关键.17.如图,⊙O的半径是2,弦AB和弦CD相交于点E,∠AEC=60°,则扇形AOC和扇形BOD 的面积(图中阴影部分)之和为.【考点】MO:扇形面积的计算.【分析】根据三角形的外角的性质、圆周角定理得到∠AOC+∠BOD=120°,利用扇形面积公式计算即可.【解答】解:连接BC,如图所示:∵∠CBE+∠BCE=∠AEC=60°,∴∠AOC+∠BOD=120°,∴扇形AOC与扇形DOB面积的和==,故答案为:.【点评】本题考查的是扇形面积的计算、圆周角定理、三角形的外角的性质,掌握扇形面积公式是解题的关键.18.如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4.点P是△ABC内的一点,连接PC,以PC为直角边在PC的右上方作等腰直角三角形PCD.连接AD,若AD∥BC,且四边形ABCD 的面积为12,则BP的长为.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】作PF⊥BC于点F,延长FP交AD于点E,证△PCF≌△DPE得PF=DE、PE=CF,从而得PE=CF=4﹣x,根据四边形ABCD的面积求得AD的长,据此知AE=BF=2﹣x、FC=BC﹣BF=4﹣(2﹣x)=2+x,从而得2+x=4﹣x,求得x的值,由勾股定理得出答案.【解答】解:如图,作PF⊥BC于点F,延长FP交AD于点E,∵AD∥BC,∴∠PFC=∠DEP=90°,∴∠CPF+∠PCF=90°,∵∠DPC=90°,∴∠CPF+∠DPE=90°,∴∠PCF=∠DPE,在△PCF和△DPE中,∵,∴△PCF≌△DPE(AAS),∴PF=DE、PE=CF,设PF=DE=x,则PE=CF=4﹣x,∵S四边形ABCD=(AD+BC)•AB=12,∴×(AD+4)×4=12,解得AD=2,∴AE=BF=2﹣x,∴FC=BC﹣BF=4﹣(2﹣x)=2+x,可得2+x=4﹣x,解得x=1,∴BP==,故答案为:.【点评】本题主要考查全等三角形的判定与性质、矩形的性质、四边形的面积及勾股定理,熟练掌握全等三角形的判定与性质是解题的关键.三、解答题本大题共10小题,共76分把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.计算: +|﹣|﹣﹣tan30°.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方,然后从左向右依次计算,求出算式+|﹣|﹣﹣tan30°的值是多少即可.【解答】解: +|﹣|﹣﹣tan30°=3+﹣1﹣=【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.解不等式组:.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:由①得,x>﹣1,由②得,x≤4,∴不等式组的解集为﹣1<x≤4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.先化简,再求值:(1﹣)÷,其中x=+1.【考点】6D:分式的化简求值.【分析】先化简题目中的式子,再将x的值代入化简后的式子即可解答本题.【解答】解:(1﹣)÷===,当x=+1时,原式==.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.某班为奖励在校运动会上取得较好成绩的运动员,花了396元钱购买甲、乙两种奖品共30件.其中甲种奖品每件15元,乙种奖品每件12元,求甲、乙两种奖品各买多少件?【考点】9A:二元一次方程组的应用.【分析】设甲种奖品买了x件,乙种奖品买了y件.根据两种奖品共30件以及共花了396元,即可得出关于x、y的二元一次方程,解之即可得出结论.【解答】解:设甲种奖品买了x件,乙种奖品买了y件.根据题意得:,解得:.答:甲种奖品买了12件,乙种奖品买了18件.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.23.九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔.(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是.(2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生来自同一个班级的概率.【考点】X6:列表法与树状图法.【分析】(1)根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:(1)所选的学生性别为女生的概率==,故答案为:;(2)画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴这2名学生来自同一个班级的概率为=.【点评】本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.24.如图,已知Rt△ABD中,∠A=90°,将斜边BD绕点B顺时针方向旋转至BC,使BC∥AD,过点C作CE⊥BD于点E.(1)求证:△ABD≌△ECB;(2)若∠ABD=30°,BE=3,求弧CD的长.【考点】MN:弧长的计算;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)因为这两个三角形是直角三角形,根据旋转的性质得出BC=BD,由AD∥BC推出∠ADB=∠EBC,从而能证明△ABD≌△ECB;(2)由全等三角形的性质得出AD=BE=3.根据30°角所对的直角边等于斜边的一半得出BD=2AD=6,根据平行线的性质求出∠DBC=60°,再代入弧长计算公式求解即可.【解答】(1)证明:∵∠A=90°,CE⊥BD,∴∠A=∠BEC=90°.∵BC∥AD,∴∠ADB=∠EBC.∵将斜边BD绕点B顺时针方向旋转至BC,∴BD=BC.在△ABD和△ECB中,∴△ABD≌△ECB;(2)∵△ABD≌△ECB,∴AD=BE=3.∵∠A=90°,∠BAD=30°,∴BD=2AD=6,∵BC∥AD,∴∠A+∠ABC=180°,∴∠ABC=90°,∴∠DBC=60°,∴弧CD的长为=2π.【点评】本题考查了全等三角形的判定和性质,平行线的性质,旋转的性质,弧长的计算,证明出△ABD≌△ECB是解题的关键.25.如图,在平面直角坐标系中,函数y=(x>0,k是常数)的图象经过A(2,6),B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,AC与BD 交于点E,连结AD,DC,CB.(1)若△ABD的面积为3,求k的值和直线AB的解析式;(2)求证: =;(3)若AD∥BC,求点B的坐标.【考点】GB:反比例函数综合题.【分析】(1)先求出k的值,进而得出mn=12,然后利用三角形的面积公式建立方程,联立方程组求解即可;(2)先表示出BE,CE,DE,AE,进而求出BE•CE和DE•CE即可得出结论;(3)利用(2)的结论得出△DEC∽△BEA,进而得出AB∥CD,即可得出四边形ADCB是菱形即可得出点B的坐标.【解答】解:(1)∵函数y=(x>0,k是常数)的图象经过A(2,6),∴k=2×6=12,∵B(m,n),其中m>2.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,∴mn=12①,BD=m,AE=6﹣n,∵△ABD的面积为3,∴BD•AE=3,∴m(6﹣n)=3②,联立①②得,m=3,n=4,∴B(3,4);设直线AB的解析式为y=kx+b(k≠0),则,∴,∴直线AB的解析式为y=﹣2x+10(2)∵A(2,6),B(m,n),∴BE=m﹣2,CE=n,DE=2,AE=6﹣n,∴DE•AE=2(6﹣n)=12﹣2n,BE•CE=n(m﹣2)=mn﹣2n=12﹣2n,∴DE•AE=BE•CE,∴(3)由(2)知,,∵∠AEB=∠DEC=90°,∴△DEC∽△BEA,∴∠CDE=∠ABE∴AB∥CD,∵AD∥BC,∴四边形ADCB是平行四边形.又∵AC⊥BD,∴四边形ADCB是菱形,∴DE=BE,CE=AE.∴B(4,3).【点评】此题是反比例函数综合题,主要考查了待定系数法,相似三角形的判定和性质,平行四边形的判定和性质,菱形的判定和性质,解(1)的关键是确定出k的值,解(2)的关键是表示出DE•A E,BE•CE,解(3)的关键是判断出四边形ADCB是菱形.26.(10分)(2017•苏州一模)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,交AC边于点E.过点D作⊙O的切线,交AC于点F,交AB的延长线于点G,连接DE.(1)求证:BD=CD;(2)若∠G=40°,求∠AED的度数.(3)若BG=6,CF=2,求⊙O的半径.【考点】MC:切线的性质;KH:等腰三角形的性质;S9:相似三角形的判定与性质.【分析】(1)连接AD,根据圆周角定理得出AD⊥BC,根据等腰三角形的性质得出即可;(2)连接OD,根据切线的性质求出∠ODG=90°,求出∠BOD、∠ABC,根据圆内接四边形求出即可;(3)求出△ODG∽△AFG,得出比例式,即可求出圆的半径.【解答】(1)证明:连接AD,∵AB为直径,∴∠ACB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)解:连接OD,∵GF是切线,OD是半径,∴OD⊥GF,∴∠ODG=90°,∵∠G=40°,∴∠GOD=50°,∵OB=OD,∴∠OBD=65°,∵点A、B、D、E都在⊙O上,∴∠ABD+∠AED=180°,∴∠AED=115°;(3)解:∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴△GOD∽△GAF,∴=,∴设⊙O的半径是r,则AB=AC=2r,∴AF=2r﹣2,∴=,∴r=3,即⊙O的半径是3.【点评】本题考查了切线的性质,圆内接四边形,相似三角形的性质和判定,圆周角定理,等腰三角形的性质等知识点,能综合运用知识点进行推理是解此题的关键.27.(10分)(2017•苏州一模)如图,正方形OABC的顶点O在坐标原点,顶点A的坐标为(4,3)(1)顶点C的坐标为(﹣3 , 4 ),顶点B的坐标为( 1 ,7 );(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点Q沿折线A→O→C向终点C运动,速度为每秒k个单位,当运动时间为2秒时,以P、Q、C为顶点的三角形是等腰三角形,求此时k的值.(3)若正方形OABC以每秒个单位的速度沿射线AO下滑,直至顶点C落到x轴上时停止下滑.设正方形OABC在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围.【考点】LO:四边形综合题.【分析】(1)如图1中,作CM⊥x轴于,AN⊥x轴于N.连接AC、BO交于点K.易证△AON ≌△COM,可得CM=ON=4,OM=AN=3,推出C(﹣3,4),由CK=AK,OK=BK,可得K(,),B (1,7).(2)分两种情形①当点Q在OA上时.②当点Q在OC上时.分别计算即可.(3)分两种情形①当点A运动到点O时,t=3,当0<t≤3时,设O’C’交x轴于点E,作A’F⊥x轴于点F(如图3中).②当点C运动到x轴上时,t=4当3<t≤4时(如图4中),设A’B’交x轴于点F.分别求解即可.【解答】解:(1)如图1中,作CM⊥x轴于,AN⊥x轴于N.连接AC、BO交于点K.易证△AON≌△COM,可得CM=ON=4,OM=AN=3,∴C(﹣3,4),∵CK=AK,OK=BK,∴K(,),B(1,7),故答案为﹣3,4,1,7.(2)由题意得,AO=CO=BC=AB=5,当t=2时,CP=2.①当点Q在OA上时,∵PQ≥AB>PC,∴只存在一点Q,使QC=QP.作QD⊥PC于点D(如图2中),则CD=PD=1,∴QA=2k=5﹣1=4,∴k=2.②当点Q在OC上时,由于∠C=90°所以只存在一点Q,使CP=CQ=2,∴2k=10﹣2=8,∴k=4.综上所述,k的值为2或4.(3)①当点A运动到点O时,t=3.当0<t≤3时,设O’C’交x轴于点E,作A’F⊥x轴于点F(如图3中).则△A’OF∽△EOO’,∴==,OO′=t,∴EO′=t,∴S=t2.②当点C运动到x轴上时,t=4当3<t≤4时(如图4中),设A’B’交x轴于点F,则A’O=A′O=t﹣5,∴A′F=.∴S=(+t)×5=.综上所述,S=.【点评】本题考查四边形综合题、正方形的性质、坐标与图形的性质、等腰三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.28.(10分)(2017•苏州一模)如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a >0)与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.。

江苏省苏州市2017年中考数学模拟试卷(一)(含答案)

江苏省苏州市2017年中考数学模拟试卷(一)(含答案)

2017年江苏省苏州市中考数学模拟试卷(一)一、选择题(共10小题,每小题3分,满分30分)1.(3分)与﹣2的乘积为1的数是()A .2B .﹣2C .D .﹣2.(3分)下列运算中,正确的是()A .x 3+x 3=x 6B .x 3•x 9=x 27C .(x 2)3=x 5D .x ÷x 2=x ﹣13.(3分)据市统计局调查数据显示,我市目前常住人口约为4470000人,数据“4470000”用科学记数法可表示为()A .4.47×106B .4.47×107C .0.447×107D .447×1044.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A .三角形B .四边形C .五边形D .六边形5.(3分)如图,已知直线a 、b 被直线c 所截.若a ∥b ,∠1=120°,则∠2的度数为()A .50°B .60°C .120°D .130°6.(3分)姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A .y=3xB .C .D .y=x 27.(3分)初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(个)人数(人)112134425371这12名同学进球数的众数是()A .3.75 B .3C .3.5D .78.(3分)如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于()A .8()mB .8()mC .16()mD .16()m9.(3分)平面直角坐标系xOy 中,已知A (﹣1,0)、B (3,0)、C (0,﹣1)三点,D (1,m )是一个动点,当△ACD 的周长最小时,△ABD 的面积为()A .B .C .D .10.(3分)如图,Rt △ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是()A .B .2C .3D .2二、填空题(共8小题,每小题3分,满分24分)11.(3分)分解因式:x 2﹣9=.12.(3分)当a=2016时,分式的值是.13.(3分)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是(填“甲”或“乙”)14.(3分)某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是度.15.(3分)以方程组的解为坐标的点(x,y)在第象限.16.(3分)如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD,若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为(结果保留π)17.(3分)如图,正方形ABCD的边长为2,点E,F分别在边AD,CD上,若∠EBF=45°,则△EDF的周长等于.18.(3分)如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y﹣4)2的值为.三、解答题(共10小题,满分76分)19.(5分)计算: +|﹣5|﹣(2﹣)0.20.(5分)解不等式组21.(6分)先化简,再求值:(1﹣,并写出该不等式组的最大整数解.)÷,其中x=﹣1.22.(6分)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?23.(8分)一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.24.(8分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.25.(8分)如图,点A(m,4),B(﹣4,n)在反比例函数y=(k>0)的图象上,经过点A、B的直线与x轴相交于点C,与y轴相交于点D.(1)若m=2,求n的值;(2)求m+n的值;(3)连接OA、OB,若tan∠AOD+tan∠BOC=1,求直线AB的函数关系式.26.(10分)如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥AC.(1)试判断△ABC 的形状,并说明理由;(2)如图2,若线段AB 、DE 的延长线交于点F ,∠C=75°,CD=2﹣的长.27.(10分)如图,在矩形ABCD 中,AB=6cm ,AD=8cm .点P 从点B 出发,沿对角线BD 向点D 匀速运动,速度为4cm/s ,过点P 作PQ ⊥BD 交BC 于点Q ,以PQ 为一边作正方形PQMN ,使得点N 落在射线PD 上,点O 从点D 出发,沿DC 向点C 匀速运动,速度为3cm/s ,以O 为圆心,0.8cm 为半径作圆O ,点P 与点O 同时出发,设它们的运动时间为t (单位:s )(0<t <)(1)如图1,连接DQ ,当DQ 平分∠BDC 时,t 的值为(2)如图2,连接CM ,若△CMQ 是以CQ 为底的等腰三角形,求t 的值;(3)请你继续连行探究,并解答下列问题:①证明:在运动过程中,点O 始终在QM 所在直线的左侧;②如图3,在运动过程中,当QM 与圆O 相切时,求t 的值;并判断此时PM 与圆O 是否也相切?说明理由.,求⊙O 的半径和BF28.(10分)已知抛物线y=x 2﹣2mx +m 2+m ﹣1(m 是常数)的顶点为P ,直线l :y=x ﹣1.(1)求证:点P 在直线l 上;(2)当m=﹣3时,抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,与直线l 的另一个交点为Q ,M 是x 轴下方抛物线上的一点,∠ACM=∠PAQ (如图),求点M 的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.2017年江苏省苏州市中考数学模拟试卷(一)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)与﹣2的乘积为1的数是()A.2B.﹣2C.D.﹣【解答】解:1÷(﹣2)=﹣.故选D.2.(3分)下列运算中,正确的是()A.x3+x3=x6B.x3•x9=x27C.(x2)3=x5D.x÷x2=x﹣1【解答】解:A、应为x3+x3=2x3,故本选项错误;B、应为x3•x9=x12,故本选项错误;C、应为(x2)3=x6,故本选项错误;D、x÷x2=x1﹣2=x﹣1,正确.故选D.3.(3分)据市统计局调查数据显示,我市目前常住人口约为4470000人,数据“4470000”用科学记数法可表示为()A.4.47×106B.4.47×107C.0.447×107D.447×104【解答】解:数据“4470000”用科学记数法可表示为4.47×106.故选:A.4.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选B.5.(3分)如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为()A.50°B.60°C.120° D.130°【解答】解:如图,∠3=180°﹣∠1=180°﹣120°=60°,∵a∥b,∴∠2=∠3=60°.故选:B.6.(3分)姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y 值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A.y=3xB.C.D.y=x2【解答】解:y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;的图象在二、四象限,故选项C错误;y=x2的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;故选B.7.(3分)初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(个)123457人数(人)114231这12名同学进球数的众数是()A .3.75B .3C .3.5D .7【解答】解:观察统计表发现:1出现1次,2出现1次,3出现4次,4出现2次,5出现3次,7出现1次,故这12名同学进球数的众数是3.故选B .8.(3分)如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于()A .8()mB .8()mC .16()mD .16()m【解答】解:设MN=xm ,在Rt △BMN 中,∵∠MBN=45°,∴BN=MN=x ,在Rt △AMN 中,tan ∠MAN=∴tan30°=解得:x=8(=,,+1),+1)m ;则建筑物MN 的高度等于8(故选A .9.(3分)平面直角坐标系xOy 中,已知A (﹣1,0)、B (3,0)、C (0,﹣1)三点,D (1,m )是一个动点,当△ACD 的周长最小时,△ABD 的面积为()A .B .C .D .【解答】解:由题可得,点C 关于直线x=1的对称点E 的坐标为(2,﹣1),设直线AE 的解析式为y=kx +b ,则,解得,∴y=﹣x ﹣,将D (1,m )代入,得m=﹣﹣=﹣,即点D 的坐标为(1,﹣),∴当△ACD 的周长最小时,△ABD 的面积=×AB ×|﹣|=×4×=.故选(C )10.(3分)如图,Rt △ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是()A .B .2C .3D .2【解答】解:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,BC=2∵CA=CA 1,∴△ACA 1是等边三角形,AA 1=AC=BA 1=2,∴∠BCB 1=∠ACA 1=60°,∵CB=CB 1,∴△BCB 1是等边三角形,∴BB 1=2∴BD=DB 1=∴A 1D=故选A .,BA 1=2,∠A 1BB 1=90°,,=.,二、填空题(共8小题,每小题3分,满分24分)11.(3分)分解因式:x 2﹣9=(x +3)(x ﹣3).【解答】解:x 2﹣9=(x +3)(x ﹣3).故答案为:(x +3)(x ﹣3).12.(3分)当a=2016时,分式【解答】解:=的值是2018.=a +2,把a=2016代入得:原式=2016+2=2018.故答案为:2018.13.(3分)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是甲(填“甲”或“乙”)【解答】解:由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,则S 甲2<S 乙2,即两人的成绩更加稳定的是甲.故答案为:甲.14.(3分)某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是72度.【解答】解:根据条形图得出文学类人数为90,利用扇形图得出文学类所占百分比为:30%,则本次调查中,一共调查了:90÷30%=300(人),则艺术类读物所在扇形的圆心角是的圆心角是360°×故答案为:72.15.(3分)以方程组【解答】解:,的解为坐标的点(x,y)在第二象限.=72°;∵①﹣②得,3x+1=0,解得x=﹣,把x的值代入②得,y=+1=,∴点(x,y)的坐标为:(﹣,∴此点在第二象限.故答案为:二.16.(3分)如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD,若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为保留π)π﹣(结果),【解答】解:如图,过O作OE⊥CD于点E,∵AB为⊙O的切线,∴∠DBA=90°,∵∠A=30°,∴∠BOC=60°,∴∠COD=120°,∵OC=OD=2,∴∠ODE=30°,∴OE=1,CD=2DE=2∴S阴影=S扇形COD﹣S△COD=故答案为:π﹣.﹣×1×2=π﹣,17.(3分)如图,正方形ABCD的边长为2,点E,F分别在边AD,CD上,若∠EBF=45°,则△EDF的周长等于4.【解答】解:∵四边形ABCD为正方形,∴AB=BC,∠BAE=∠C=90°,∴把△ABE绕点B顺时针旋转90°可得到△BCG,如图,∴BG=AB,CG=AE,∠GBE=90°,∠BAE=∠C=90°,∴点G在DC的延长线上,∵∠EBF=45°,∴∠FBG=∠EBG﹣∠EBF=45°,∴∠FBG=∠FBE,在△FBG和△EBF中,,∴△FBG≌△FBE(SAS),∴FG=EF,而FG=FC+CG=CF+AE,∴EF=CF+AE,∴△DE F的周长=DF+DE+CF+AE=CD+AD=2+2=4故答案为:4.18.(3分)如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y﹣4)2的值为16.【解答】解:∵四边形ABCD是矩形,AB=x,AD=y,∴CD=AB=x,BC=AD=y,∠BCD=90°.又∵BD⊥DE,点F是BE的中点,D F=4,∴BF=DF=EF=4.∴CF=4﹣BC=4﹣y.∴在直角△DCF中,DC2+CF2=DF2,即x2+(4﹣y)2=42=16,∴x2+(y﹣4)2=x2+(4﹣y)2=16.故答案是:16.三、解答题(共10小题,满分76分)19.(5分)计算: +|﹣5|﹣(2﹣)0.【解答】解:原式=3+5﹣1=7.20.(5分)解不等式组,并写出该不等式组的最大整数解.【解答】解:解不等式①得,x ≥﹣2,解不等式②得,x <1,∴不等式组的解集为﹣2≤x <1.∴不等式组的最大整数解为:﹣2,﹣1,0,21.(6分)先化简,再求值:(1﹣【解答】解:原式==当x=22.(6分)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?【解答】解:设原计划每小时检修管道x 米.由题意,得﹣=2.,﹣1时,原式==.)÷,其中x=﹣1.解得x=50.经检验,x=50是原方程的解.且符合题意.答:原计划每小时检修管道50米.23.(8分)一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.【解答】解:(1)摸到红球的概率=;(2)画树状图为:共有9种等可能的结果数,其中两次都摸到红球的结果数为1,所以两次都摸到红球的概率=.24.(8分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【解答】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=AD,在RT△ABC中,∵M是AC中点,∴BM=AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC +∠NMC=90°,∴BN 2=BM 2+MN 2,由(1)可知MN=BM=AC=1,∴BN=25.(8分)如图,点A (m ,4),B (﹣4,n )在反比例函数y=(k >0)的图象上,经过点A 、B 的直线与x 轴相交于点C ,与y 轴相交于点D .(1)若m=2,求n 的值;(2)求m +n 的值;(3)连接OA 、OB ,若tan ∠AOD +tan ∠BOC=1,求直线AB 的函数关系式.【解答】解:(1)当m=2,则A (2,4),把A (2,4)代入y=得k=2×4=8,所以反比例函数解析式为y=,把B (﹣4,n )代入y=得﹣4n=8,解得n=﹣2;(2)因为点A (m ,4),B (﹣4,n )在反比例函数y=(k >0)的图象上,所以4m=k ,﹣4n=k ,所以4m +4n=0,即m +n=0;(3)作AE ⊥y 轴于E ,BF ⊥x 轴于F ,如图,在Rt △AOE 中,tan ∠AOE=在Rt △BOF 中,tan ∠BOF=而tan ∠AOD +tan ∠BOC=1,=,=,所以+=1,而m +n=0,解得m=2,n=﹣2,则A (2,4),B (﹣4,﹣2),设直线AB 的解析式为y=px +q ,把A (2,4),B (﹣4,﹣2)代入得所以直线AB 的解析式为y=x +2.,解得,26.(10分)如图1,以△ABC 的边AB 为直径的⊙O 交边BC 于点E ,过点E 作⊙O 的切线交AC 于点D ,且ED ⊥AC .(1)试判断△ABC 的形状,并说明理由;(2)如图2,若线段AB 、DE 的延长线交于点F ,∠C=75°,CD=2﹣的长.【解答】解:(1)△ABC 是等腰三角形,理由是:如图1,连接OE ,∵DE 是⊙O 的切线,∴OE ⊥DE ,∵ED ⊥AC ,∴AC ∥OE ,∴∠1=∠C ,,求⊙O 的半径和BF∵OB=OE,∴∠1=∠B,∴∠B=∠C,∴△ABC是等腰三角形;(2)如图2,过点O作OG⊥AC,垂足为G,则得四边形OGDE是矩形,∵△ABC是等腰三角形,∴∠B=∠C=75°,∴∠A=180°﹣75°﹣75°=30°,设OG=x,则OA=OB=OE=2x,AG=∴DG=OE=2x,根据AC=AB得:4x=x=1,∴OE=OB=2,在直角△OEF中,∠EOF=∠A=30°,cos30=∴BF=,OF==2÷=,x+2x+2﹣,x,﹣2,⊙O的半径为2.27.(10分)如图,在矩形ABCD中,AB=6cm,AD=8cm.点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N 落在射线PD 上,点O 从点D 出发,沿DC 向点C 匀速运动,速度为3cm/s ,以O 为圆心,0.8cm 为半径作圆O ,点P 与点O 同时出发,设它们的运动时间为t (单位:s )(0<t <)(1)如图1,连接DQ ,当DQ 平分∠BDC 时,t 的值为1(2)如图2,连接CM ,若△CMQ 是以CQ 为底的等腰三角形,求t 的值;(3)请你继续连行探究,并解答下列问题:①证明:在运动过程中,点O 始终在QM 所在直线的左侧;②如图3,在运动过程中,当QM 与圆O 相切时,求t 的值;并判断此时PM 与圆O 是否也相切?说明理由.【解答】(1)解:如图1中,∵四边形ABCD 是矩形,∴∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8,∴BD=,∵PQ ⊥BD ,∴∠BPQ=90°=∠C ,∵∠PBQ=∠DBC ,∴△PBQ ∽△CBD ,∴∴,,∴PQ=3t ,BQ=5t ,∵DQ 平分∠BDC ,QP ⊥DB ,QC ⊥DC ,∴QP=QC ,∴3t=8﹣5t ,∴t=1,故答案为1.(2)解:如图2中,作MT ⊥BC 于T .∵MC=MQ ,MT ⊥CQ ,∴TC=TQ ,由(1)可知TQ=(8﹣5t ),QM=3t ,∵MQ ∥BD ,∴∠MQT=∠DBC ,∵∠MTQ=∠BCD=90°,∴△QTM ∽△BCD ,∴∴∴t=∴t=(s ),s 时,△CMQ 是以CQ 为底的等腰三角形.,,(3)①证明:如图2中,由此QM 交CD 于E ,∵EQ ∥BD ,∴,t ,∴EC=(8﹣5t ),ED=DC ﹣EC=6﹣(8﹣5t )=∵DO=3t ,∴DE ﹣DO=t ﹣3t=t >0,∴点O 在直线QM 左侧.②解:如图3中,由①可知⊙O 只有在左侧与直线QM 相切于点H ,QM 与CD 交于点E .∵EC=(8﹣5t ),DO=3t ,∴OE=6﹣3t ﹣(8﹣5t )=t ,∵OH ⊥MQ ,∴∠OHE=90°,∵∠HEO=∠CEQ ,∴∠HOE=∠CQE=∠CBD,∵∠OHE=∠C=90°,∴△OHE∽△BCD,∴∴t=.∴t=s时,⊙O与直线QM相切.连接PM,假设PM与⊙O相切,则∠OMH=PMQ=22.5°,在MH上取一点F,使得MF=FO,则∠FMO=∠FOM=22.5°,∴∠OFH=∠FOH=45°,∴OH=FH=0.8,FO=FM=0.8∴MH=0.8(由由+1),,,得到HE=,得到EQ=,∴MH=MQ﹣HE﹣EQ=4﹣﹣=∴0.8(+1)≠,矛盾,,∴假设不成立.∴直线MQ与⊙O不相切.28.(10分)已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1.(1)求证:点P在直线l上;(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.【解答】(1)证明:∵y=x2﹣2mx+m2+m﹣1=(x﹣m)2+m﹣1,∴点P的坐标为(m,m﹣1),∵当x=m时,y=x﹣1=m﹣1,∴点P在直线l上;(2)解:当m=﹣3时,抛物线解析式为y=x2+6x+5,当y=0时,x2+6x+5=0,解得x1=﹣1,x2=﹣5,则A(﹣5,0),当x=0时,y=x2+6x+5=5,则C(0,5),可得解方程组,解得或,则P(﹣3,﹣4),Q(﹣2,﹣3),作ME⊥y轴于E,PF⊥x轴于F,QG⊥x轴于G,如图,∵OA=OC=5,∴△OAC为等腰直角三角形,∴∠ACO=45°,∴∠MCE=45°﹣∠ACM,∵QG=3,OG=2,∴AG=OA﹣OG=3=QG,∴△AQG为等腰直角三角形,∴∠QAG=45°,∵∠APF=90°﹣∠PAF=90°﹣(∠PAQ+45°)=45°﹣∠PAQ,∵∠ACM=∠PAQ,∴∠APF=∠MCE,∴Rt△CME∽Rt△PAF,∴=,设M(x,x2+6x+5),∴ME=﹣x,CE=5﹣(x2+6x+5)=﹣x2﹣6x,∴=,整理得x2+4x=0,解得x1=0(舍去),x2=﹣4,∴点M的坐标为(﹣4,﹣3);(3)解:解方程组得或,则P(m,m﹣1),Q(m+1,m),∴PQ2=(m+1﹣m)2+(m﹣m+1)2=2,OQ2=(m+1)2+m2=2m2+2m+1,OP2=m2+(m﹣1)2=2m2﹣2m+1,当PQ=OQ时,2m2+2m+1=2,解得m1=当PQ=OP时,2m2﹣2m+1=2,解得m1=,m2=,m2=;;当OP=OQ时,2m2+2m+1=2m2﹣2m+1,解得m=0,综上所述,m的值为,,,,0.。

2017年江苏省苏州市昆山市中考数学一模试卷含答案解析

2017年江苏省苏州市昆山市中考数学一模试卷含答案解析

2017年江苏省苏州市昆山市中考数学一模试卷一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案填在答题卡相应的位置上.)1.2017的相反数是()A.2017 B.﹣2017 C.D.﹣2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109 C.33.86×107D.3.386×1093.下列计算正确的是()A.3a+4b=7ab B.(ab3)2=ab6C.(a+2)2=a2+4 D.x12÷x6=x64.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元5.如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是()A. B.C.D.6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.27.直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是()A.x≤3 B.x≥3 C.x≥﹣3 D.x≤08.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对9.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>510.已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x﹣)2+4上,能使△ABP为等腰三角形的点P的个数有()A.3个 B.4个 C.5个 D.6个二、填空题(本大题共8题,每小题3分,共24分,不需要写出解答过程,请把最后结果填在答题卷相应的位置上)11.在函数中,自变量x的取值范围是.12.分解因式:ax2﹣ay2=.13.某校男子足球队的年龄分布如图的条形图,请求出这些队员年龄的平均数、中位数.14.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.15.在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为(用含a的式子表示).16.关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是.17.如图,已知直线l:y=﹣x,双曲线y=,在l上取一点A(a,﹣a)(a>0),过A作x轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为.18.将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为.三、解答题(本大题共10小题,共76.解答时应写出文字说明、证明过程或演算步骤.)19.计算:20160﹣|﹣|++2sin45°.20.先化简,再求值:(﹣x+1)÷,其中x=﹣2.21.解不等式组:,并把解集在数轴上表示出来.22.国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)a=,b=,且补全频数分布直方图;(2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.23.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.24.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.25.“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:26.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.27.如图,在等腰直角三角形ABC中,∠BAC=90°,AC=8cm,AD⊥BC于点D,点P从点A出发,沿A→C方向以cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2)(1)当点M落在AB上时,x=;(2)当点M落在AD上时,x=;(3)求y关于x的函数解析式,并写出自变量x的取值范围.28.已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q 在整个运动过程中所用时间最少?2017年江苏省苏州市昆山市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案填在答题卡相应的位置上.)1.2017的相反数是()A.2017 B.﹣2017 C.D.﹣【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:2017的相反数是﹣2017,故选:B.2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109 C.33.86×107D.3.386×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:数字338 600 000用科学记数法可简洁表示为3.386×108.故选:A.3.下列计算正确的是()A.3a+4b=7ab B.(ab3)2=ab6C.(a+2)2=a2+4 D.x12÷x6=x6【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】A:根据合并同类项的方法判断即可.B:根据积的乘方的运算方法判断即可.C:根据完全平方公式判断即可.D:根据同底数幂的除法法则判断即可.【解答】解:∵3a+4b≠7ab,∴选项A不正确;∵(ab3)2=a2b6,∴选项B不正确;∵(a+2)2=a2+4a+4,∴选项C不正确;∵x12÷x6=x6,∴选项D正确.故选:D.4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元【考点】一元一次方程的应用.【分析】设该商品的进价为x元/件,根据“标价=(进价+利润)÷折扣”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=80.∴该商品的进价为80元/件.故选C.5.如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是()A. B.C.D.【考点】函数的图象.【分析】水深h越大,水的体积v就越大,故容器内水的体积y与容器内水深x 间的函数是增函数,根据球的特征进行判断分析即可.【解答】解:根据球形容器形状可知,函数y的变化趋势呈现出,当0<x<R时,y增量越来越大,当R<x<2R时,y增量越来越小,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故y关于x的函数图象是先凹后凸.故选A.6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2【考点】角平分线的性质.【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选C.7.直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是()A.x≤3 B.x≥3 C.x≥﹣3 D.x≤0【考点】一次函数与一元一次不等式.【分析】首先把点A(2,1)代入y=kx+3中,可得k的值,再解不等式kx+3≥0即可.【解答】解:∵y=kx+3经过点A(2,1),∴1=2k+3,解得:k=﹣1,∴一次函数解析式为:y=﹣x+3,﹣x+3≥0,解得:x≤3.故选A.8.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对【考点】等腰三角形的性质;非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系.【分析】根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.【解答】解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.9.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5【考点】根的判别式;一元二次方程的定义.【分析】根据方程为一元二次方程且有两个不相等的实数根,结合一元二次方程的定义以及根的判别式即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.10.已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x﹣)2+4上,能使△ABP为等腰三角形的点P的个数有()A.3个 B.4个 C.5个 D.6个【考点】二次函数图象上点的坐标特征;一次函数图象上点的坐标特征;等腰三角形的判定.【分析】以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,由直线y=﹣x+3可求出点A、B的坐标,结合抛物线的解析式可得出△ABC等边三角形,再令抛物线解析式中y=0求出抛物线与x轴的两交点的坐标,发现该两点与M、N重合,结合图形分三种情况研究△ABP为等腰三角形,由此即可得出结论.【解答】解:以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,如图所示.令一次函数y=﹣x+3中x=0,则y=3,∴点A的坐标为(0,3);令一次函数y=﹣x+3中y=0,则﹣x+3=0,解得:x=,∴点B的坐标为(,0).∴AB=2.∵抛物线的对称轴为x=,∴点C的坐标为(2,3),∴AC=2=AB=BC,∴△ABC为等边三角形.令y=﹣(x﹣)2+4中y=0,则﹣(x﹣)2+4=0,解得:x=﹣,或x=3.∴点E的坐标为(﹣,0),点F的坐标为(3,0).△ABP为等腰三角形分三种情况:①当AB=BP时,以B点为圆心,AB长度为半径做圆,与抛物线交于C、M、N 三点;②当AB=AP时,以A点为圆心,AB长度为半径做圆,与抛物线交于C、M两点,;③当AP=BP时,作线段AB的垂直平分线,交抛物线交于C、M两点;∴能使△ABP为等腰三角形的点P的个数有3个.故选A.二、填空题(本大题共8题,每小题3分,共24分,不需要写出解答过程,请把最后结果填在答题卷相应的位置上)11.在函数中,自变量x的取值范围是x≤1且x≠﹣2.【考点】函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.故答案为:x≤1且x≠﹣2.12.分解因式:ax2﹣ay2=a(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】应先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).13.某校男子足球队的年龄分布如图的条形图,请求出这些队员年龄的平均数、中位数15,15.【考点】条形统计图;加权平均数;中位数.【分析】根据平均数的公式进行计算即可,先把这组数据按大小顺序排列,中间两个数的平均数是中位数.【解答】解:这些队员年龄的平均数为:(13×2+14×6+15×8+16×3+17×2+18×1)÷22=15,队员年龄的中位数是15.故答案为15,15.14.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【考点】利用轴对称设计图案;概率公式.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.15.在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为3a(用含a的式子表示).【考点】翻折变换(折叠问题).【分析】由折叠的性质得出BE=EF=a,DE=BE,则BF=2a,由含30°角的直角三角形的性质得出DF=BF=a,即可得出△DEF的周长.【解答】解:由折叠的性质得:B点和D点是对称关系,DE=BE,则BE=EF=a,∴BF=2a,∵∠B=30°,∴DF=BF=a,∴△DEF的周长=DE+EF+DF=BF+DF=2a+a=3a;故答案为:3a.16.关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是m>.【考点】根与系数的关系;根的判别式;解一元一次不等式.【分析】设x1、x2为方程x2+2x﹣2m+1=0的两个实数根.由方程有实数根以及两根之积为负可得出关于m的一元一次不等式组,解不等式组即可得出结论.【解答】解:设x1、x2为方程x2+2x﹣2m+1=0的两个实数根,由已知得:,即解得:m>.故答案为:m>.17.如图,已知直线l:y=﹣x,双曲线y=,在l上取一点A(a,﹣a)(a>0),过A作x轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为或.【考点】反比例函数与一次函数的交点问题;正方形的性质.【分析】根据点的选取方法找出点B、C、D的坐标,由两点间的距离公式表示出线段OA、OC的长,再根据两线段的关系可得出关于a的一元二次方程,解方程即可得出结论.【解答】解:依照题意画出图形,如图所示.∵点A的坐标为(a,﹣a)(a>0),∴点B(a,)、点C(﹣,)、点D(﹣,﹣a),∴OA==a,OC==.又∵原点O分对角线AC为1:2的两条线段,∴OA=2OC或OC=2OA,即a=2×或=2a,解得:a1=,a2=﹣(舍去),a3=,a4=﹣(舍去).故答案为:或.18.将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为﹣4≤b≤﹣2.【考点】一次函数图象与几何变换.【分析】先解不等式2x+b<2时,得x<;再求出函数y=2x+b沿x轴翻折后的解析式为y=﹣2x﹣b,解不等式﹣2x﹣b<2,得x>﹣;根据x满足0<x<3,得出﹣=0,=3,进而求出b的取值范围.【解答】解:∵y=2x+b,∴当y<2时,2x+b<2,解得x<;∵函数y=2x+b沿x轴翻折后的解析式为﹣y=2x+b,即y=﹣2x﹣b,∴当y<2时,﹣2x﹣b<2,解得x>﹣;∴﹣<x<,∵x满足0<x<3,∴﹣=0,=3,∴b=﹣2,b=﹣4,∴b的取值范围为﹣4≤b≤﹣2.故答案为﹣4≤b≤﹣2.三、解答题(本大题共10小题,共76.解答时应写出文字说明、证明过程或演算步骤.)19.计算:20160﹣|﹣|++2sin45°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】利用零指数幂、负整数指数幂和特殊角的三角形函数值计算.【解答】解:原式=1﹣﹣3+2×=1﹣﹣3+=﹣2.20.先化简,再求值:(﹣x+1)÷,其中x=﹣2.【考点】分式的化简求值.【分析】首先将括号里面的通分相减,然后将除法转化为乘法,化简后代入x的值即可求解.【解答】解:原式=[﹣]•=•=,当x=﹣2时,原式===2.21.解不等式组:,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.【解答】解:由①得x≥4,由②得x<1,∴原不等式组无解,22.国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)a=60,b=0.15,且补全频数分布直方图;(2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.【考点】列表法与树状图法;频数(率)分布表;频数(率)分布直方图;扇形统计图.【分析】(1)根据公式频率=频数÷样本总数,求得样本总数,再根据公式得出a,b的值即可;(2)根据公式优胜奖对应的扇形圆心角的度数=优胜奖的频率×360°计算即可;(3)画树状图或列表将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:(1)样本总数为10÷0.05=200人,a=200﹣10﹣20﹣30﹣80=60人,b=30÷200=0.15,故答案为200,0.15;(2)优胜奖所在扇形的圆心角为0.30×360°=108°;(3)列表:甲乙丙丁分别用ABCD表示,∵共有12种等可能的结果,恰好选中A、B的有2种,画树状图如下:∴P(选中A、B)==.23.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.【考点】反比例函数与一次函数的交点问题;反比例函数图象上点的坐标特征.【分析】(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),由点A的坐标表示出点C的坐标,根据C、D点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k、m的二元一次方程,解方程即可得出结论;(2)由m的值,可找出点A的坐标,由此即可得出线段OB、AB的长度,通过解直角三角形即可得出结论;(3)由m的值,可找出点C、D的坐标,设出过点C、D的一次函数的解析式为y=ax+b,由点C、D的坐标利用待定系数法即可得出结论.【解答】解:(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),∵点C为线段AO的中点,∴点C的坐标为(2,).∵点C、点D均在反比例函数y=的函数图象上,∴,解得:.∴反比例函数的解析式为y=.(2)∵m=1,∴点A的坐标为(4,4),∴OB=4,AB=4.在Rt△ABO中,OB=4,AB=4,∠ABO=90°,∴OA==4,cos∠OAB===.(3))∵m=1,∴点C的坐标为(2,2),点D的坐标为(4,1).设经过点C、D的一次函数的解析式为y=ax+b,则有,解得:.∴经过C、D两点的一次函数解析式为y=﹣x+3.24.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.【考点】旋转的性质;全等三角形的判定与性质;菱形的性质.【分析】(1)由旋转的性质得到三角形ABC与三角形ADE全等,以及AB=AC,利用全等三角形对应边相等,对应角相等得到两对边相等,一对角相等,利用SAS得到三角形AEC与三角形ADB全等即可;(2)根据∠BAC=45°,四边形ADFC是菱形,得到∠DBA=∠BAC=45°,再由AB=AD,得到三角形ABD为等腰直角三角形,求出BD的长,由BD﹣DF求出BF的长即可.【解答】解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.25.“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:【考点】一次函数的应用;分式方程的应用.【分析】(1)设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y 元,先求出m的范围,构建一次函数,利用函数性质解决问题.【解答】解:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y 元,根据题意得50﹣m≤2m解之得m≥,∵y=m+(50﹣m)=﹣100m+50000,∴y随m 的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.26.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【考点】一次函数综合题.【分析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.【解答】解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.27.如图,在等腰直角三角形ABC中,∠BAC=90°,AC=8cm,AD⊥BC于点D,点P从点A出发,沿A→C方向以cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2)(1)当点M落在AB上时,x=4;(2)当点M落在AD上时,x=;(3)求y关于x的函数解析式,并写出自变量x的取值范围.【考点】三角形综合题.【分析】(1)当点M落在AB上时,四边形AMQP是正方形,此时点D与点Q 重合,由此即可解决问题.(2)如图1中,当点M落在AD上时,作PE⊥QC于E,先证明DQ=QE=EC,由PE∥AD,得==,由此即可解决问题.(3)分三种情形①当0<x≤4时,如图2中,设PM、PQ分别交AD于点E、F,则重叠部分为△PEF,②当4<x≤时,如图3中,设PM、MQ分别交AD于E、G,则重叠部分为四边形PEGQ.③当<x<8时,如图4中,则重合部分为△PMQ,分别计算即可解决问题.【解答】解:(1)当点M落在AB上时,四边形AMQP是正方形,此时点D与点Q重合,AP=CP=4,所以x==4.故答案为4.(2)如图1中,当点M落在AD上时,作PE⊥QC于E.∵△MQP,△PQE,△PEC都是等腰直角三角形,MQ=PQ=PC∴DQ=QE=EC,∵PE ∥AD ,∴==,∵AC=8,∴PA=,∴x=÷=.故答案为.(3)①当0<x ≤4时,如图2中,设PM 、PQ 分别交AD 于点E 、F ,则重叠部分为△PEF ,∵AP=x ,∴EF=PE=x ,∴y=S △PEF =•PE•EF=x 2.②当4<x ≤时,如图3中,设PM 、MQ 分别交AD 于E 、G ,则重叠部分为四边形PEGQ .∵PQ=PC=8﹣x ,∴PM=16﹣2x ,∴ME=PM ﹣PE=16﹣3x ,∴y=S △PMQ ﹣S △MEG =(8﹣x )2﹣(16﹣3x )2=﹣x 2+32x ﹣64.③当<x<8时,如图4中,则重合部分为△PMQ,=PQ2=(8﹣x)2=x2﹣16x+64.∴y=S△PMQ综上所述y=.28.已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q 在整个运动过程中所用时间最少?【考点】二次函数综合题.。

2017年江苏省苏州市张家港市中考一模数学试卷(解析版)

2017年江苏省苏州市张家港市中考一模数学试卷(解析版)

第 2 页(共 29 页)
14. (3 分)若一个圆锥的侧面展开图是半径为 18cm,圆心角为 240°的扇形, 则这个圆锥的底面半径长是 cm.
15. (3 分若∠C=15°, AB=6cm,则⊙O 半径为 cm.
16. (3 分)小明统计了他家今年 5 月份打电话的次数及通话时间,并列出了频 数分布表: 通话时间 x/min 频数 (通话次 数) 则通话时间不超过 10min 的频率为 . 经过 0<x≤5 20 5<x≤10 16 10<x≤15 9 15<x≤20 5
2017 年江苏省苏州市张家港市中考数学一模试卷
一.选择题(共 10 小题,每小题 3 分,共 30 分) 1. (3 分)相反数等于 2 的数是( A.2 B.﹣2 ) C.±2 D.
2. (3 分)某市 6 月上旬前 5 天的最高气温如下(单位:℃) :28,29,31,29, 32.对这组数据,下列说法正确的是( A.平均数为 30 B.众数为 29 ) C.中位数为 31 D.极差为 5
25. (8 分)在平面直角坐标系 xOy 中,反比例函数 y1= 的图象与一次函数 y2 =ax+b 的图象交于点 A(1,3)和 B(﹣3,m) .
第 4 页(共 29 页)
(1)求反比例函数 y1= 和一次函数 y2=ax+b 的表达式; (2)点 C 是坐标平面内一点,BC∥x 轴,AD⊥BC 交直线 BC 于点 D,连接 AC.若 AC= CD,求点 C 的坐标.
26. (8 分)如图,⊙O 的直径 AC 与弦 BD 相交于点 F,点 E 是 DB 延长线上的 一点,∠EAB=∠ADB. (1)求证:EA 是⊙O 的切线; (2) 已知点 B 是 EF 的中点, 求证: 以 A、 B、 C 为顶点的三角形与△AEF 相似; (3)已知 AF=4,CF=2.在(2)条件下,求 AE 的长.

2017中考数学一模测试卷(含答案)

2017中考数学一模测试卷(含答案)

2017中考数学一模测试卷(含答案)中考数学是历年“拉分”科目,很多学生与自己心仪的高中失之交臂,主要原因就是数学“失手”。

下文为大家准备了中考数学一模测试卷的内容。

A级基础题1.在数0,2,-3,-1.2中,属于负整数的是( )A.0B.2C.-3D.-1.22.下列四个实数中,绝对值最小的数是( )A.-5B.-2C.1D.43.-2是2的( )A.相反数B.倒数C.绝对值D.算术平方根4.-3的倒数是( )A.3B.-3C.13D.-135.下列各式,运算结果为负数的是( )A.-(-2)-(-3)B.(-2)×(-3)C.(-2)2D.(-3)-36.计算:12-7×(-4)+8÷(-2)的结果是( )A.-24B.-20C.6D.367.如果+30m表示向东走30m,那么向西走40m表示为______________.8.计算:-(-3)=______,|-3|=______,(-3)-1=______,(-3)2=______.9.若a=1.9×105,b=9.1×104,则a______b(填“”).10.计算:|-5|-(2-3)0+6×13-12+(-1)2.B级中等题11.实数a,b在数轴上的位置如图1-1-4所示,以下说法正确的是( )图1-1-4A.a+b=0B.b0D.|b| 12.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.0000016秒.这里的0.0000016秒用科学记数法表示__________秒.13.观察下列顺序排列的等式:a1=1-13,a2=12-14,a3=13-15,a4=14-16……试猜想第n个等式(n为正整数):an=__________.14.计算:|1-3|+-12-3-2cos30°+(π-3)0.C级拔尖题15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=2013,且AO=2BO,则a+b的值为________.16.观察下列等式:第1个等式:a1=11×3=12×1-13;第2个等式:a2=13×5=12×13-15;第3个等式:a3=15×7=12×15-17;第4个等式:a4=17×9=12×17-19;……请解答下列问题:(1)按以上规律列出第5个等式:a5=__________________=__________________;(2)用含有n的代数式表示第n个等式:an=__________________=__________________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.1.C2.C3.A4.D5.D6.D7.-40m 8.3 3 -13 9 9.>10.解:原式=5-1+(2-3)+1=4.11.D 12.1.6×10-6 13.1n-1n+214.解:原式=3-1-8-2×32+1=-8.15.-67116.解:(1)19×1112×19-111(2)12n-1×2n+112×12n-1-12n+1(3)a1+a2+a3+a4+...+a100=12×1-13+12×13-15+12×15-17+...+12×1199-1201=12×1-13+13-15+15-17+ (1199)1201=12×1-1201=12×200201=100201.精心整理,仅供学习参考。

江苏省苏州市昆山市中考数学一模试卷

江苏省苏州市昆山市中考数学一模试卷

2017 年江苏省苏州市昆山市中考数学一模试卷一、选择题(本大题共10 小题,每题 2 分,共 20 分,在每题给出的四个选项中,只有一个是吻合题目要求的,把正确答案填在答题卡相应的地址上.)1.(2 分) 2017 的相反数是()A.2017 B.﹣ 2017 C.D.﹣2.(2 分)据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒 338 600 000 亿次,数字 338 600 000 用科学记数法可简洁表示为()A.× 108 B.× 109 C.× 107 D.× 1093.(2 分)以下计算正确的选项是()A.3a+4b=7ab B.(ab3)2=ab6 C.(a+2)2=a2+4 D.x12÷x6=x64.(2 分)互联网“微商”经营已成为大众创业新路子,某微信平台上一件商品标价为 200 元,按标价的五折销售,仍可盈利 20 元,则这件商品的进价为()A.120 元B.100 元C.80 元D.60 元5.(2 分)以下列图,向一个半径为R、容积为 V 的球形容器内注水,则能够反映容器内水的体积y 与容器内水深 x 间的函数关系的图象可能是()A.B.C.D.6.(2 分)如图, AB∥CD,BP 和 CP分别均分∠ ABC和∠ DCB,AD 过点 P,且与AB 垂直.若 AD=8,则点 P 到 BC的距离是()A.8 B.6 C.4 D.27.(2 分)直线 y=kx+3 经过点A(2,1),则不等式kx+3≥0 的解集是()A.x≤3B.x≥3 C. x≥﹣ 3 D. x≤ 08.( 2 分)已知实数x,y 满足,则以x,y 的值为两边长的等腰三角形的周长是()A.20 或16 B.20C.16D.以上答案均不对9.( 2 分)若关于 x 的一元二次方程( k﹣ 1)x2+4x+1=0 有两个不相等的实数根,则 k 的取值范围是()A.k<5B.k<5,且 k≠ 1 C. k≤ 5,且 k≠1 D.k>5y= 10.( 2 分)已知直线y=﹣x+3 与坐标轴分别交于点A,B,点 P 在抛物线﹣(x﹣)2+4上,能使△ ABP为等腰三角形的点P 的个数有()A.3 个B.4 个C.5 个D.6 个二、填空题(本大题共8 题,每题 3 分,共 24 分,不需要写出解答过程,请把最后结果填在答题卷相应的地址上)11.( 3 分)在函数中,自变量 x 的取值范围是.12.( 3 分)分解因式: ax2﹣ ay2= .13.( 3 分)某校男子足球队的年龄分布如图的条形图,央求出这些队员年龄的平均数、中位数.14.(3 分)如图,在 4× 4 正方形网格中,黑色部分的图形组成一个轴对称图形,现在任采用一个白色的小正方形并涂黑,使图中黑色部分的图形依旧组成一个轴对称图形的概率是.15.( 3 分)在三角形纸片 ABC 中,∠ C=90°,∠ B=30°,点 D (不与 B ,C 重合)是 BC 上任意一点,将此三角形纸片按以下方式折叠, 若 EF 的长度为 a ,则△ DEF的周长为(用含 a 的式子表示).16.( 3分)关于 x 的一元二次方程 x 2+2x ﹣2m+1=0 的两实数根之积为负,则实 数 m 的取值范围是.17.( 3 分)如图,已知直线 l : y=﹣x ,双曲线 y= ,在 l 上取一点 A (a ,﹣ a )( a > 0),过 A 作 x 轴的垂线交双曲线于点 B ,过 B 作 y 轴的垂线交 l 于点 C ,过C 作 x 轴的垂线交双曲线于点D ,过 D 作 y 轴的垂线交 l 于点E ,此时 E 与 A 重合,并获得一个正方形 ABCD ,若原点 O 在正方形 ABCD 的对角线上且分这条对角线为 1: 2 的两条线段,则 a 的值为.18.(3 分)将函数 y=2x+b (b 为常数)的图象位于 x 轴下方的部分沿 x 轴翻折至其上方后,所得的折线是函数 y=| 2x+b| ( b 为常数)的图象.若该图象在直线 y=2 下方的点的横坐标 x 满足 0<x <3,则 b 的取值范围为 .三、解答题(本大题共10 小题,共 76.解答时应写出文字说明、证明过程或演算步骤 .)19 .( 5 分)计算:﹣| ﹣ |+ +2sin45 °.201620.( 5 分)先化简,再求值:(﹣x+1)÷,其中x=﹣2.21.( 5 分)解不等式组:,并把解集在数轴上表示出来.22.(8 分)国务院办公厅 2015 年 3 月 16 日宣布了《中国足球改革的整体方案》,这是中国足球历史上的重要改革.为了进一步普及足球知识,流传足球文化,我市举行了“足球进校园”知识竞赛活动,为认识足球知识的普及情况,随机抽取了部分获奖情况进行整理,获得以下不完满的统计图表:获奖等次频数频率一等奖10二等奖20三等奖30 b优胜奖 a激励奖80请依照所给信息,解答以下问题:( 1) a=,b=,且补全频数分布直方图;( 2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?(3)在此次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机采用两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.23.( 8 分)如图,在平面直角坐标系中,O 为坐标原点,△ ABO的边 AB 垂直与x 轴,垂足为点B,反比率函数y=(x>0)的图象经过AO 的中点 C,且与 AB 订交于点 D,OB=4,AD=3,(1)求反比率函数 y= 的剖析式;(2)求 cos∠OAB 的值;(3)求经过 C、D 两点的一次函数剖析式.24.( 10 分)如图,已知△ ABC中, AB=AC,把△ ABC绕 A 点沿顺时针方向旋转获得△ ADE,连接 BD, CE交于点 F.(1)求证:△ AEC≌△ ADB;(2)若 AB=2,∠ BAC=45°,当四边形 ADFC是菱形时,求 BF 的长.25.(8 分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越碰到人们的喜爱,各种品牌的山地自行车接踵投放市场.顺风车行经营的 A 型车昨年 6 月份销售总数为万元,今年经过改造升级后 A 型车每辆销售价比昨年增加 400 元,若今年 6 月份与昨年 6 月份卖出的 A 型车数量相同,则今年 6 月份 A 型车销售总数将比昨年 6 月份销售总数增加 25%.(1)求今年 6 月份 A 型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划 7 月份新进一批 A 型车和 B 型车共 50 辆,且 B 型车的进货数量不高出 A 型车数量的两倍,应如何进货才能使这批车盈利最多?A、B 两种型号车的进货和销售价格如表:A型车B型车进货价格(元 / 辆)1100 1400销售价格(元 / 辆)今年的销售价格240026.(9 分)已知点 P(x0,y0)和直线 y=kx+b,则点 P 到直线 y=kx+b 的距离证明可用公式 d=计算.比方:求点 P(﹣ 1,2)到直线 y=3x+7 的距离.解:因为直线 y=3x+7,其中 k=3, b=7.所以点 P(﹣ 1,2)到直线 y=3x+7 的距离为: d=== =.依照以上资料,解答以下问题:( 1)求点 P( 1,﹣ 1)到直线 y=x﹣1 的距离;( 2)已知⊙ Q 的圆心 Q 坐标为( 0,5),半径 r 为 2,判断⊙ Q 与直线 y=x+9 的地址关系并说明原由;( 3)已知直线 y=﹣ 2x+4 与 y=﹣2x﹣6 平行,求这两条直线之间的距离.27.( 8 分)如图,在等腰直角三角形ABC中,∠ BAC=90°,AC=8cm,AD⊥BC 于点 D,点 P 从点 A 出发,沿 A→C方向以 cm/s 的速度运动到点 C 停止,在运动过程中,过点 P 作 PQ∥ AB 交 BC 于点 Q,以线段 PQ 为边作等腰直角三角形PQM,且∠ PQM=90°(点 M,C 位于 PQ 异侧).设点 P 的运动时间为 x(s),△PQM 与△ ADC重叠部分的面积为y(cm2)( 1)当点 M 落在 AB 上时, x=;( 2)当点 M 落在 AD 上时, x=;( 3)求 y 关于 x 的函数剖析式,并写出自变量x 的取值范围.28.( 10 分)已知抛物线y=a(x+3)(x﹣1)( a≠ 0),与 x 轴从左至右依次订交于 A、B 两点,与 y 轴订交于点 C,经过点 A 的直线 y=﹣x+b 与抛物线的另一个交点为 D.(1)若点 D 的横坐标为 2,求抛物线的函数剖析式;(2)若在第三象限内的抛物线上有点 P,使得以 A、 B、 P 为极点的三角形与△ABC相似,求点 P 的坐标;(3)在( 1)的条件下,设点 E 是线段 AD 上的一点(不含端点),连接 BE.一动点 Q 从点 B 出发,沿线段 BE以每秒 1 个单位的速度运动到点 E,再沿线段 ED以每秒个单位的速度运动到点 D 后停止,问当点 E 的坐标是多少时,点Q 在整个运动过程中所用时间最少?2017 年江苏省苏州市昆山市中考数学一模试卷参照答案与试题剖析一、选择题(本大题共10 小题,每题 2 分,共 20 分,在每题给出的四个选项中,只有一个是吻合题目要求的,把正确答案填在答题卡相应的地址上.)1.(2 分) 2017 的相反数是()A.2017B.﹣ 2017 C.D.﹣【解答】解: 2017 的相反数是﹣ 2017,应选: B.2.(2 分)据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒 338 600 000 亿次,数字 338 600 000 用科学记数法可简洁表示为()A.× 108B.× 109C.× 107D.× 109【解答】解:数字 338 600 000 用科学记数法可简洁表示为×108.应选: A.3.(2 分)以下计算正确的选项是()A.3a+4b=7ab B.(ab3)2=ab6 C.(a+2)2=a2+4D.x12÷x6=x6【解答】解:∵ 3a+4b≠7ab,∴选项 A 不正确;∵( ab3)2=a2b6,∴选项 B 不正确;∵( a+2)2=a2+4a+4,∴选项 C 不正确;∵x12÷x6=x6,∴选项 D 正确.应选: D.4.(2 分)互联网“微商”经营已成为大众创业新路子,某微信平台上一件商品标价为 200 元,按标价的五折销售,仍可盈利 20 元,则这件商品的进价为()A.120 元B.100 元C.80 元D.60 元【解答】解:设该商品的进价为x 元/ 件,依题意得:( x+20)÷=200,解得: x=80.∴该商品的进价为80 元/ 件.应选 C.5.(2 分)以下列图,向一个半径为R、容积为 V 的球形容器内注水,则能够反映容器内水的体积y 与容器内水深 x 间的函数关系的图象可能是()A.B.C.D.【解答】解:依照球形容器形状可知,函数 y 的变化趋势表现出,当 0<x<R 时, y 增量越来越大,当 R<x<2R 时, y 增量越来越小,曲线上的点的切线斜当先是逐渐变大,后又逐渐变小,故 y 关于 x 的函数图象是先凹后凸.应选 A.6.(2 分)如图, AB∥CD,BP 和 CP分别均分∠ ABC和∠ DCB,AD 过点 P,且与AB 垂直.若 AD=8,则点 P 到 BC的距离是()A.8B.6C.4D.2【解答】解:过点 P 作 PE⊥BC于 E,∵AB∥CD,PA⊥AB,∴ PD⊥CD,∵BP和 CP分别均分∠ ABC和∠DCB,∴ PA=PE,PD=PE,∴ PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.应选 C.7.(2 分)直线 y=kx+3 经过点 A(2,1),则不等式 kx+3≥0 的解集是()A.x≤3B.x≥3 C. x≥﹣ 3D. x≤ 0【解答】解:∵ y=kx+3 经过点 A(2, 1),∴ 1=2k+3,解得: k=﹣ 1,∴一次函数剖析式为: y=﹣x+3,﹣ x+3≥ 0,解得: x≤3.应选 A.8.( 2 分)已知实数 x,y 满足,则以x,y的值为两边长的等腰三角形的周长是()A.20 或 16 B.20C.16D.以上答案均不对【解答】解:依照题意得,解得,(1)若 4 是腰长,则三角形的三边长为: 4、 4、 8,不能够组成三角形;(2)若 4 是底边长,则三角形的三边长为: 4、8、8,能组成三角形,周长为4+8+8=20.应选 B.9.( 2 分)若关于 x 的一元二次方程( k﹣ 1)x2+4x+1=0 有两个不相等的实数根,则 k 的取值范围是()A.k<5 B.k<5,且k≠ 1 C. k≤ 5,且k≠1 D.k>5【解答】解:∵关于 x 的一元二次方程( k﹣1)x2+4x+1=0 有两个不相等的实数根,∴,即,解得: k<5 且 k≠ 1.应选 B.10.( 2 分)已知直线y=﹣﹣(x﹣)2+4上,能使△x+3 与坐标轴分别交于点ABP为等腰三角形的点A,B,点 P 在抛物线P 的个数有()y=A.3 个 B.4 个 C.5 个 D.6 个【解答】解:以点 B 为圆心线段 AB长为半径作圆,交抛物线于点C、M 、N 点,连接 AC、BC,以下列图.令一次函数 y=﹣x+3 中 x=0,则 y=3,∴点 A 的坐标为( 0,3);令一次函数 y=﹣x+3 中 y=0,则﹣x+3=0,解得: x= ,∴点 B 的坐标为(,0).∴AB=2 .∵抛物线的对称轴为 x= ,∴点C 的坐标为( 2 ,3),∴AC=2 =AB=BC,∴△ ABC为等边三角形.令 y=﹣(x﹣)2+4中y=0,则﹣(x﹣)2+4=0,解得: x=﹣,或x=3.∴点 E 的坐标为(﹣,0),点 F 的坐标为( 3 ,0).△ ABP为等腰三角形分三种情况:①当 AB=BP时,以 B 点为圆心,AB 长度为半径做圆,与抛物线交于C、M、N 三点;②当 AB=AP时,以 A 点为圆心,AB 长度为半径做圆,与抛物线交于 C、M 两点,;③当 AP=BP时,作线段 AB 的垂直均分线,交抛物线交于 C、M 两点;∴能使△ ABP为等腰三角形的点 P 的个数有 3 个.应选 A.二、填空题(本大题共 8 题,每题 3 分,共 24 分,不需要写出解答过程,请把最后结果填在答题卷相应的地址上)11.( 3 分)在函数中,自变量x的取值范围是x≤ 1 且 x≠﹣ 2.【解答】解:依照二次根式有意义,分式有意义得:1﹣x≥0 且 x+2≠0,解得: x≤1 且 x≠﹣ 2.故答案为: x≤ 1 且 x≠﹣ 2.12.( 3 分)分解因式: ax2﹣ ay2= a(x+y)(x﹣y).【解答】解: ax2﹣ay2,=a(x2﹣y2),=a(x+y)( x﹣ y).故答案为: a( x+y)( x﹣y).13.( 3 分)某校男子足球队的年龄分布如图的条形图,央求出这些队员年龄的平均数、中位数15,15.【解答】解:这些队员年龄的平均数为:( 13×2+14×6+15×8+16×3+17×2+18 ×1)÷ 22=15,队员年龄的中位数是15.故答案为 15,15.14.(3 分)如图,在 4× 4 正方形网格中,黑色部分的图形组成一个轴对称图形,现在任采用一个白色的小正方形并涂黑,使图中黑色部分的图形依旧组成一个轴对称图形的概率是.【解答】解:如图,∵依照轴对称图形的看法,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有 13 个,而能组成一个轴对称图形的有 5 个情况,∴使图中黑色部诶的图形依旧组成一个轴对称图形的概率是:.故答案为:.15.( 3 分)在三角形纸片 ABC中,∠ C=90°,∠ B=30°,点 D(不与 B,C 重合)是BC上任意一点,将此三角形纸片按以下方式折叠,若EF的长度为a,则△DEF 的周长为 3a (用含 a 的式子表示).【解答】解:由折叠的性质得: B 点和 D 点是对称关系, DE=BE,则 BE=EF=a,∴ BF=2a,∵∠ B=30°,∴ DF= BF=a,∴△ DEF的周长 =DE+EF+DF=BF+DF=2a+a=3a;故答案为: 3a.16.( 3 分)关于 x 的一元二次方程x2+2x﹣2m+1=0 的两实数根之积为负,则实数 m 的取值范围是m>.【解答】解:设 x1、x2为方程 x2+2x﹣ 2m+1=0 的两个实数根,由已知得:,即解得: m>故答案为:.m>.17.( 3 分)如图,已知直线 l: y=﹣x,双曲线 y= ,在 l 上取一点 A(a,﹣ a)( a> 0),过 A 作 x 轴的垂线交双曲线于点 B,过 B 作 y 轴的垂线交 l 于点 C,过C 作 x 轴的垂线交双曲线于点 D,过 D 作 y 轴的垂线交 l 于点 E,此时 E 与 A 重合,并获得一个正方形 ABCD,若原点 O 在正方形 ABCD的对角线上且分这条对角线为 1: 2 的两条线段,则 a 的值为或.【解答】解:依照题意画出图形,以下列图.∵点A 的坐标为( a,﹣ a)( a> 0),∴点B(a,)、点C(﹣,)、点D(﹣,﹣ a),∴ OA= = a,OC= =.又∵原点 O 分对角线 AC为 1:2 的两条线段,∴OA=2OC或 OC=2OA,即a=2× 或 =2 a ,解得: a 1=,a 2=﹣ (舍去),a 3= ,a 4=﹣ (舍去).故答案为:或.18.(3 分)将函数 y=2x+b (b 为常数)的图象位于 x 轴下方的部分沿 x 轴翻折至其上方后,所得的折线是函数y=| 2x+b| ( b 为常数)的图象.若该图象在直线y=2 下方的点的横坐标 x 满足 0<x <3,则 b 的取值范围为 ﹣4≤b ≤﹣ 2 .【解答】 解:∵ y=2x+b ,∴当 y <2 时, 2x+b < 2,解得 x <;∵函数 y=2x+b 沿 x 轴翻折后的剖析式为﹣ y=2x+b ,即 y=﹣ 2x ﹣b ,∴当 y <2 时,﹣ 2x ﹣ b < 2,解得 x >﹣ ;∴﹣< x <,∵ x 满足 0<x <3, ∴﹣=0, =3,∴ b=﹣2,b=﹣4,∴ b 的取值范围为﹣ 4≤ b ≤﹣ 2.故答案为:﹣ 4≤b ≤﹣ 2.三、解答题(本大题共 10 小题,共 76.解答时应写出文字说明、证明过程或演算步骤 .).( 5 分)计算:﹣| ﹣ |+ +2sin45 °.19 2016【解答】 解:原式 =1﹣ ﹣3+2×=1﹣ ﹣3+=﹣2.20.( 5 分)先化简,再求值:( ﹣x+1)÷ ,其中 x= ﹣2.【解答】解:原式 =[﹣] ?=?=,当 x= ﹣2 时,原式===2.21.( 5 分)解不等式组:,并把解集在数轴上表示出来.【解答】解:由①得 x≥4,由②得 x<1,∴原不等式组无解,22.(8 分)国务院办公厅 2015 年 3 月 16 日宣布了《中国足球改革的整体方案》,这是中国足球历史上的重要改革.为了进一步普及足球知识,流传足球文化,我市举行了“足球进校园”知识竞赛活动,为认识足球知识的普及情况,随机抽取了部分获奖情况进行整理,获得以下不完满的统计图表:获奖等次频数频率一等奖10二等奖20三等奖30 b优胜奖 a激励奖80请依照所给信息,解答以下问题:(1) a= 60 ,b=,且补全频数分布直方图;(2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?(3)在此次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机采用两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.【解答】解:(1)样本总数为 10÷=200 人,a=200﹣10﹣ 20﹣30﹣ 80=60 人,b=30÷200=,故答案为 60,;(2)优胜奖所在扇形的圆心角为× 360°=108°;(3)列表:甲乙丙丁分别用 ABCD表示,A B C DA AB AC ADB BA BC BDC CA CB CDD DA DB DC∵共有 12 种等可能的结果,恰好选中A、B 的有 2 种,画树状图以下:∴P(选中 A、B)= =.23.( 8 分)如图,在平面直角坐标系中, O 为坐标原点,△ ABO的边 AB 垂直与x 轴,垂足为点 B,反比率函数 y= (x>0)的图象经过 AO 的中点 C,且与 AB订交于点 D,OB=4,AD=3,(1)求反比率函数 y= 的剖析式;(2)求 cos∠OAB 的值;(3)求经过 C、D 两点的一次函数剖析式.【解答】解:(1)设点 D 的坐标为(4,m)( m>0),则点 A 的坐标为( 4,3+m),∵点 C 为线段 AO的中点,∴点 C 的坐标为( 2,).∵点 C、点 D 均在反比率函数y=的函数图象上,∴,解得:.∴反比率函数的剖析式为y=.( 2)∵ m=1,∴点 A 的坐标为( 4,4),∴OB=4, AB=4.在 Rt△ABO中, OB=4,AB=4,∠ ABO=90°,∴ OA==4,cos∠OAB===.(3))∵ m=1,∴点 C 的坐标为( 2, 2),点 D 的坐标为( 4, 1).设经过点 C、D 的一次函数的剖析式为y=ax+b,则有,解得:.∴经过 C、 D 两点的一次函数剖析式为y=﹣x+3.24.( 10 分)如图,已知△ ABC中, AB=AC,把△ ABC绕 A 点沿顺时针方向旋转获得△ ADE,连接 BD, CE交于点 F.(1)求证:△ AEC≌△ ADB;(2)若 AB=2,∠ BAC=45°,当四边形 ADFC是菱形时,求 BF 的长.【解答】解:(1)由旋转的性质得:△ ABC≌△ ADE,且 AB=AC,∴AE=AD, AC=AB,∠ BAC=∠DAE,∴∠ BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△ AEC和△ ADB中,,∴△ AEC≌△ ADB( SAS);(2)∵四边形 ADFC是菱形,且∠BAC=45°,∴∠ DBA=∠BAC=45°,由( 1)得: AB=AD,∴∠ DBA=∠BDA=45°,∴△ ABD为直角边为 2 的等腰直角三角形,∴BD2 =2AB2,即 BD=2 ,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2 ﹣2.25.(8 分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越碰到人们的喜爱,各种品牌的山地自行车接踵投放市场.顺风车行经营的 A 型车昨年 6 月份销售总数为万元,今年经过改造升级后 A 型车每辆销售价比昨年增加 400 元,若今年 6 月份与昨年 6 月份卖出的 A 型车数量相同,则今年 6 月份 A 型车销售总数将比昨年 6 月份销售总数增加 25%.(1)求今年 6 月份 A 型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划 7 月份新进一批 A 型车和 B 型车共 50 辆,且 B 型车的进货数量不高出 A 型车数量的两倍,应如何进货才能使这批车盈利最多?A、B 两种型号车的进货和销售价格如表:A 型车B 型车进货价格(元 / 辆)1100 1400销售价格(元 / 辆)今年的销售价格2400【解答】解:(1)设昨年 A 型车每辆 x 元,那么今年每辆( x+400)元,依照题意得,解之得 x=1600,经检验, x=1600是方程的解.答:今年 A 型车每辆 2000 元.( 2)设今年 7 月份进 A 型车 m 辆,则 B 型车( 50﹣ m)辆,获得的总利润为 y 元,依照题意得 50﹣ m≤2m解之得 m≥,∵y=(2000﹣1100)m+(2400﹣1400)( 50﹣m) =﹣ 100m+50000,∴ y 随 m 的增大而减小,∴当 m=17 时,能够获得最大利润.答:进货方案是 A 型车 17 辆, B 型车 33 辆.26.(9 分)已知点 P(x0,y0)和直线 y=kx+b,则点 P 到直线 y=kx+b 的距离证明可用公式 d=计算.比方:求点 P(﹣ 1,2)到直线 y=3x+7 的距离.解:因为直线 y=3x+7,其中 k=3, b=7.所以点 P(﹣ 1,2)到直线 y=3x+7 的距离为: d=== =.依照以上资料,解答以下问题:( 1)求点 P( 1,﹣ 1)到直线 y=x﹣1 的距离;( 2)已知⊙ Q 的圆心 Q 坐标为( 0,5),半径 r 为 2,判断⊙ Q 与直线 y= x+9 的地址关系并说明原由;(3)已知直线 y=﹣ 2x+4 与 y=﹣2x﹣6 平行,求这两条直线之间的距离.【解答】解:(1)因为直线 y=x﹣1,其中 k=1, b=﹣1,所以点 P(1,﹣1)到直线 y=x﹣1 的距离为:d==== ;(2)⊙ Q 与直线 y= x+9 的地址关系为相切.原由以下:圆心 Q(0,5)到直线 y= x+9 的距离为: d== =2,而⊙ O 的半径 r 为 2,即 d=r,所以⊙ Q 与直线 y=x+9 相切;( 3)当 x=0 时, y=﹣ 2x+4=4,即点( 0, 4)在直线 y=﹣ 2x+4,因为点( 0, 4)到直线 y=﹣2x﹣6 的距离为: d== =2,因为直线 y=﹣2x+4 与 y=﹣2x﹣6 平行,所以这两条直线之间的距离为2.27.( 8 分)如图,在等腰直角三角形ABC中,∠ BAC=90°,AC=8cm,AD⊥BC 于点 D,点 P 从点 A 出发,沿 A→C方向以cm/s 的速度运动到点 C 停止,在运动过程中,过点P 作 PQ∥ AB 交 BC 于点 Q,以线段 PQ 为边作等腰直角三角形PQM,且∠ PQM=90°(点 M,C 位于 PQ 异侧).设点 P 的运动时间为 x(s),△PQM 与△ ADC重叠部分的面积为y(cm2)( 1)当点 M 落在 AB 上时, x= 4;( 2)当点 M 落在 AD 上时, x=;( 3)求 y 关于 x 的函数剖析式,并写出自变量x 的取值范围.【解答】解:(1)当点 M 落在 AB 上时,四边形 AMQP 是正方形,此时点 D 与点 Q 重合, AP=CP=4,所以x==4.故答案为 4.( 2)如图 1 中,当点 M 落在 AD 上时,作 PE⊥ QC于 E.∵△ MQP,△ PQE,△ PEC都是等腰直角三角形,MQ=PQ=PC∴DQ=QE=EC,∵PE∥AD,∴= = ,∵AC=8 ,∴PA=,∴x=÷ =.故答案为.(3)①当 0< x≤4 时,如图 2 中,设 PM、PQ 分别交 AD 于点 E、F,则重叠部分为△ PEF,∵AP= x,∴EF=PE=x,∴ y=S△PEF= ?PE?EF= x2.②当 4<x≤时,如图 3 中,设 PM、MQ 分别交 AD 于 E、G,则重叠部分为四边形 PEGQ.∵PQ=PC=8 ﹣ x,∴PM=16﹣ 2x,∴ ME=PM﹣PE=16﹣ 3x,∴y=S△PMQ﹣S△MEG= (8 ﹣ x)2﹣(16﹣3x)2=﹣ x2+32x﹣64.③当<x<8 时,如图 4 中,则重合部分为△ PMQ,∴y=S△PMQ= PQ2 = ( 8 ﹣ x)2=x2﹣16x+64.综上所述 y=.28.( 10 分)已知抛物线 y=a(x+3)(x﹣1)( a≠ 0),与 x 轴从左至右依次订交于 A、B 两点,与 y 轴订交于点 C,经过点 A 的直线 y=﹣ x+b 与抛物线的另一个交点为 D.(1)若点 D 的横坐标为 2,求抛物线的函数剖析式;(2)若在第三象限内的抛物线上有点 P,使得以 A、 B、 P 为极点的三角形与△ABC相似,求点 P 的坐标;(3)在( 1)的条件下,设点 E 是线段 AD 上的一点(不含端点),连接 BE.一动点 Q 从点 B 出发,沿线段 BE以每秒 1 个单位的速度运动到点 E,再沿线段 ED以每秒个单位的速度运动到点 D 后停止,问当点 E 的坐标是多少时,点Q 在整个运动过程中所用时间最少?【解答】解:(1)∵ y=a(x+3)(x﹣1),∴点 A 的坐标为(﹣ 3,0)、点 B 两的坐标为( 1,0),∵直线 y=﹣x+b 经过点 A,∴ b=﹣3,∴ y=﹣x﹣ 3,当 x=2 时, y=﹣5,则点 D 的坐标为( 2,﹣ 5),∵点 D 在抛物线上,∴a( 2+3)( 2﹣ 1)=﹣5 ,解得, a=﹣,则抛物线的剖析式为y=﹣(x+3)( x﹣ 1) =﹣x2﹣ 2 x+3 ;( 2)如图 1 中,作 PH⊥ x 轴于 H,设点P 坐标( m,n),当△ BPA∽△ ABC时,∠ BAC=∠PBA,∴tan∠ BAC=tan∠ PBA,即 = ,∴=,即n=﹣a(m﹣1),∴解得 m=﹣4 或 1(舍弃),当 m=﹣4 时, n=5a,∵△ BPA∽△ ABC,∴ = ,∴AB2=AC?PB,∴42=,解得 a=﹣或(舍弃),则 n=5a=﹣,∴点 P 坐标(﹣ 4,﹣).当△ PBA∽△ ABC时,∠ CBA=∠PBA,∴tan∠ CBA=tan∠ PBA,即 = ,∴=,∴n=﹣3a(m﹣1),∴,解得 m=﹣6 或 1(舍弃),当 m=﹣6 时, n=21a,∵△ PBA∽△ ABC,∴ = ,即 AB2=BC?PB,∴42= ? ,解得 a=﹣或(不合题意舍弃),则点 P 坐标(﹣ 6,﹣ 3 ),综上所述,吻合条件的点P 的坐标(﹣ 4,﹣)和(﹣ 6,﹣ 3 ).( 3)如图 2 中,作 DM∥x 轴交抛物线于 M ,作 DN⊥x 轴于 N,作 EF⊥DM 于 F,则 tan∠DAN= ==,∴∠ DAN=60°,∴∠ EDF=60°,∴ DE= = EF,∴ Q 的运动时间t= + =BE+EF,∴当 BE和 EF共线时, t 最小,则 BE⊥ DM,此时点 E 坐标( 1,﹣ 4 ).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年江苏省苏州市张家港市中考数学一模试卷一.选择题(共10小题,每小题3分,共30分)1.(3分)相反数等于2的数是()A.2 B.﹣2 C.±2 D.2.(3分)某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是()A.平均数为30 B.众数为29 C.中位数为31 D.极差为53.(3分)人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为()A.77×10﹣5B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣74.(3分)如果在实数范围内有意义,则x的取值范围是()A.x≠4 B.x≤4 C.x≥4 D.x<45.(3分)反比例函数y=的图象与一次函数y=x+2的图象交于点A(a,b),则a﹣b+ab的值是()A.1 B.﹣1 C.3 D.26.(3分)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球7.(3分)如图,在△ABC中,AB=AC,以BC为直径画半圆交AB于E,交AC于D,的度数为40°,则∠A的度数是()A.40°B.70°C.50°D.20°8.(3分)已知关于x的方程ax2+bx+c=0(a≠0)的两根为:x1=1,x2=﹣5,则二次函数y=ax2+bx+c的对称轴是()A.直线x=2 B.直线x=3 C.直线x=﹣2 D.y轴9.(3分)如图,在一个20米高的楼顶上有一信号塔DC,某同学为了测量信号塔的高度,在地面的A处测得信号塔下端D的仰角为30°,然后他正对塔的方向前进了8米到达地面的B处,又测得信号塔顶端C的仰角为45°,CD⊥AB于点E,E、B、A在一条直线上.信号塔CD的高度为()A.20B.20﹣8 C.20﹣28 D.20﹣2010.(3分)如图,点M(﹣3,4),点P从O点出发,沿射线OM方向1个单位/秒匀速运动,运动的过程中以P为对称中心,O为一个顶点作正方形OABC,当正方形面积为128时,点A坐标是()A.(,)B.(,11)C.(2,2) D.(,)二、填空题:(本大题共8小题,每小题3分,共24分,)11.(3分)计算:(﹣2x3)2=.12.(3分)分解因式:4x2﹣9y2=.13.(3分)如图,直线a、b被直线c所截,且a∥b.若∠1=35°,则∠2=°.14.(3分)若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是cm.15.(3分)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=15°,AB=6cm,则⊙O半径为cm.16.(3分)小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)201695则通话时间不超过10min的频率为.17.(3分)如图,在平面直角坐标系中有一正方形AOBC,反比例函数经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为.18.(3分)如图,在△ABC中,AB=4,D是AB上的一点(不与点A、B重合),DE∥BC,交AC于点E,则的最大值为.三、解答题:(本大题共10小题,共76分,解答时应写出必要的计算过程、推演步骤或文字说明.)19.(5分)计算:﹣+|﹣2|﹣()﹣1+2cos45°.20.(6分)解不等式组.21.(7分)请你先化简,再从﹣2,2,中选择一个合适的数代入求值.22.(6分)解分式方程:.23.(7分)在一个不透明的盒子中放有三张分别写有数字1,2,3的红色卡片和三张分别写有数字0,1,4的蓝色卡片,卡片除颜色和数字外完全相同.(1)从中任意抽取一张卡片,该卡片上写有数字1的概率是;(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为x,蓝色卡片上的数字作为y,将(x,y)作为点A的坐标,请用列举法(画树状图或列表)求二次函数y=(x ﹣1)2的图象经过点A的概率.24.(6分)如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.25.(8分)在平面直角坐标系xOy中,反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,3)和B(﹣3,m).(1)求反比例函数y1=和一次函数y2=ax+b的表达式;(2)点C 是坐标平面内一点,BC∥x 轴,AD⊥BC 交直线BC 于点D,连接AC.若AC=CD,求点C的坐标.26.(8分)如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:EA是⊙O的切线;(2)已知点B是EF的中点,求证:以A、B、C为顶点的三角形与△AEF相似;(3)已知AF=4,CF=2.在(2)条件下,求AE的长.27.(10分)已知:在直角坐标系中,点A(0,6),B(8,0),点C是线段AB 的中点,CD⊥OB交OB于点D,Rt△EFH的斜边EH在射线AB上,顶点F在射线AB的左侧,EF∥OA.点E从点A出发,以每秒1个单位的速度向点B运动,到点B停止.AE=EF,运动时间为t(秒).(1)在Rt△EFH中,EF=,EH=;F(,)(用含有t的代数式表示)(2)当点H与点C重合时,求t的值.(3)设△EFH与△CDB重叠部分图形的面积为S(S>0),求S与t的关系式;(4)求在整个运动过程中Rt△EFH扫过的面积.28.(13分)如图,已知点A的坐标为(﹣2,0),直线y=﹣x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点.(1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P 的坐标;(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC于点N,点Q 从点B出发,以每秒1个单位长度的速度沿线段BA向点A运动,运动时间为t (秒),当t(秒)为何值时,存在△QMN为等腰直角三角形?2017年江苏省苏州市张家港市中考数学一模试卷参考答案与试题解析一.选择题(共10小题,每小题3分,共30分)1.(3分)相反数等于2的数是()A.2 B.﹣2 C.±2 D.【解答】解:∵2+(﹣2)=0,∴相反数等于2的数是:﹣2.故选:B.2.(3分)某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是()A.平均数为30 B.众数为29 C.中位数为31 D.极差为5【解答】解:==29.8,∵数据29出现两次最多,∴众数为29,中位数为29,极差为:32﹣28=4.故B.3.(3分)人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为()A.77×10﹣5B.0.77×10﹣7C.7.7×10﹣6D.7.7×10﹣7【解答】解:0.0000077=7.7×10﹣6,故选:C.4.(3分)如果在实数范围内有意义,则x的取值范围是()A.x≠4 B.x≤4 C.x≥4 D.x<4【解答】解:根据题意得:4﹣x≥0,解得x≤4.故选B.5.(3分)反比例函数y=的图象与一次函数y=x+2的图象交于点A(a,b),则a﹣b+ab的值是()A.1 B.﹣1 C.3 D.2【解答】解:∵反比例函数y=的图象与一次函数y=x+2的图象交于点A(a,b),∴b=,b=a+2,∴ab=3,a﹣b=﹣2,∴a﹣b+ab=﹣2+3=1.故选A.6.(3分)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球【解答】解:A.摸出的是3个白球是不可能事件;B.摸出的是3个黑球是随机事件;C.摸出的是2个白球、1个黑球是随机事件;D.摸出的是2个黑球、1个白球是随机事件,故选:A.7.(3分)如图,在△ABC中,AB=AC,以BC为直径画半圆交AB于E,交AC于D,的度数为40°,则∠A的度数是()A.40°B.70°C.50°D.20°【解答】解:∵BC为圆的直径,∴∠BDC=90°,∵的度数为40°,∴∠DBC=20°,∴∠C=70°,∵AB=AC,∴∠ABC=∠C=70°,∴∠A=40°,故选A8.(3分)已知关于x的方程ax2+bx+c=0(a≠0)的两根为:x1=1,x2=﹣5,则二次函数y=ax2+bx+c的对称轴是()A.直线x=2 B.直线x=3 C.直线x=﹣2 D.y轴【解答】解:∵关于x的方程ax2+bx+c=0(a≠0)的两根为:x1=1,x2=﹣5,∴二次函数y=ax2+bx+c与x轴的两个交点的横坐标为分别为1和﹣5,∴对称轴为:x==﹣2故选(C)9.(3分)如图,在一个20米高的楼顶上有一信号塔DC,某同学为了测量信号塔的高度,在地面的A处测得信号塔下端D的仰角为30°,然后他正对塔的方向前进了8米到达地面的B处,又测得信号塔顶端C的仰角为45°,CD⊥AB于点E,E、B、A在一条直线上.信号塔CD的高度为()A.20B.20﹣8 C.20﹣28 D.20﹣20【解答】解:根据题意得:AB=8米,DE=20米,∠A=30°,∠EBC=45°,在Rt△ADE中,AE=DE=20米,∴BE=AE﹣AB=20﹣8(米),在Rt△BCE中,CE=BE•tan45°=(20﹣8)×1=20﹣8(米),∴CD=CE﹣DE=20﹣8﹣20=20﹣28(米);故选:C.10.(3分)如图,点M(﹣3,4),点P从O点出发,沿射线OM方向1个单位/秒匀速运动,运动的过程中以P为对称中心,O为一个顶点作正方形OABC,当正方形面积为128时,点A坐标是()A.(,)B.(,11)C.(2,2) D.(,)【解答】解:作AD⊥x轴于D,CE⊥x轴于E,设直线OM的解析式为y=kx,∵点M(﹣3,4),∴4=﹣3k,∴k=﹣,∵四边形ABCO是正方形,∴直线AC⊥直线OM,∴直线AC的斜率为,∵四边形ABCO是正方形,∴OA=OC,∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°∴∠COE=∠OAD,在△COE和△OAD中,∴△COE≌△OAD(AAS),∴CE=OD,OE=AD,设A(a,b),则C(﹣b,a),设直线AC的解析式为y=mx+n,∴解得m=,∴=,整理得,b=7a,∵正方形面积为128,∴OA2=128,在RT△AOD中,AD2+OD2=OA2,即(7a)2+a2=128,解得,a=,∴b=7a=7×=,∴A(,),故选D.二、填空题:(本大题共8小题,每小题3分,共24分,)11.(3分)计算:(﹣2x3)2=4x6.【解答】解:(﹣2x3)2=(﹣2)2(x3)2=4x6.12.(3分)分解因式:4x2﹣9y2=(2x+3y)(2x﹣3y).【解答】解:原式=(2x+3y)(2x﹣3y).故答案为:(2x+3y)(2x﹣3y).13.(3分)如图,直线a、b被直线c所截,且a∥b.若∠1=35°,则∠2=145°.【解答】解:∵a∥b,∴∠1=∠3,∵∠1=35°,∴∠3=35°,∴∠2=180°﹣∠3=145°,故答案为:145.14.(3分)若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是12cm.【解答】解:设这个圆锥的底面半径为rcm,根据题意得2πr=,解得r=12,所以这个圆锥的底面半径长为12cm.故答案为12.15.(3分)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=15°,AB=6cm,则⊙O半径为6cm.【解答】解:连接OA,如图所示则∠AOE=2∠C=30°,∵AB⊥CD,∴AE=BE=AB=3cm,∴OA=2OE=6cm,即⊙O半径为6cm;故答案为:6.16.(3分)小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)201695则通话时间不超过10min的频率为.【解答】解:通话时间不超过10min的频率为==.故答案是:.17.(3分)如图,在平面直角坐标系中有一正方形AOBC,反比例函数经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为4.【解答】解:设正方形对角线交点为D,过点D作DM⊥AO于点M,DN⊥BO于点N;设圆心为Q,切点为H、E,连接QH、QE.∵在正方形AOBC中,反比例函数经过正方形AOBC对角线的交点,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四边形HQEC是正方形,∵半径为(4﹣2)的圆内切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(4﹣2)2,∴QC2=48﹣32=(4﹣4)2,∴QC=4﹣4,∴CD=4﹣4+(4﹣2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=4,∴DN×NO=4,即:xy=k=4.故答案为:4.18.(3分)如图,在△ABC中,AB=4,D是AB上的一点(不与点A、B重合),DE∥BC,交AC于点E,则的最大值为.【解答】解:设AD=x,=y,∵AB=4,AD=x,∴=()2=()2,∴=x2①,∵DE∥BC,∴△ADE∽△ABC,∴=,∵AB=4,AD=x,∴=,∴=,∵△ADE的边AE上的高和△CED的边CE上的高相等,∴==②,①÷②得:∴y==﹣x2+x,∵AB=4,∴x的取值范围是0<x<4;∴y==﹣(x﹣2)2+≤,∴的最大值为.故答案为:.三、解答题:(本大题共10小题,共76分,解答时应写出必要的计算过程、推演步骤或文字说明.)19.(5分)计算:﹣+|﹣2|﹣()﹣1+2cos45°.【解答】解:﹣+|﹣2|﹣()﹣1+2cos45°.=﹣+2﹣﹣2+=﹣20.(6分)解不等式组.【解答】解:由①得:x≥2,由②得:x<4,所以这个不等式组的解集为:2≤x<4.21.(7分)请你先化简,再从﹣2,2,中选择一个合适的数代入求值.【解答】解:===;为使分式有意义,a不能取±2;当a=时,原式==.22.(6分)解分式方程:.【解答】解:去分母得:3x+x+2=4,解得:x=,经检验,x=是原方程的解.23.(7分)在一个不透明的盒子中放有三张分别写有数字1,2,3的红色卡片和三张分别写有数字0,1,4的蓝色卡片,卡片除颜色和数字外完全相同.(1)从中任意抽取一张卡片,该卡片上写有数字1的概率是;(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为x,蓝色卡片上的数字作为y,将(x,y)作为点A的坐标,请用列举法(画树状图或列表)求二次函数y=(x ﹣1)2的图象经过点A的概率.【解答】解:(1)∵有三张红色卡片和三张蓝色卡片,共6张,其中写有数字1的有2张,∴该卡片上写有数字1的概率是=;故答案为:;(2)根据题意画树状图如下图象经过的点为:(1,0)(2,1)(3,4),则二次函数y=(x﹣1)2的图象经过点A的概率是=.24.(6分)如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是▱ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)解:∵△ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE===4,∴CD=2DE=8.25.(8分)在平面直角坐标系xOy中,反比例函数y1=的图象与一次函数y2=ax+b 的图象交于点A(1,3)和B(﹣3,m).(1)求反比例函数y1=和一次函数y2=ax+b的表达式;(2)点C 是坐标平面内一点,BC∥x 轴,AD⊥BC 交直线BC 于点D,连接AC.若AC=CD,求点C的坐标.【解答】解:(1)∵反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A (1,3)和B(﹣3,m),∴点A(1,3)在反比例函数y1=的图象上,∴k=1×3=3,∴反比例函数的表达式为y1=.∵点B(﹣3,m)在反比例函数y1=的图象上,∴m==﹣1.∵点A(1,3)和点B(﹣3,﹣1)在一次函数y2=ax+b的图象上,∴,解得:.∴一次函数的表达式为y2=x+2.(2)依照题意画出图形,如图所示.∵BC∥x轴,∴点C的纵坐标为﹣1,∵AD⊥BC于点D,∴∠ADC=90°.∵点A的坐标为(1,3),∴点D的坐标为(1,﹣1),∴AD=4,∵在Rt△ADC中,AC2=AD2+CD2,且AC=CD,∴,解得:CD=2.∴点C1的坐标为(3,﹣1),点C2的坐标为(﹣1,﹣1).故点C的坐标为(﹣1,﹣1)或(3,﹣1).26.(8分)如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:EA是⊙O的切线;(2)已知点B是EF的中点,求证:以A、B、C为顶点的三角形与△AEF相似;(3)已知AF=4,CF=2.在(2)条件下,求AE的长.【解答】(1)证明:如图1,连接CD,∵AC是⊙O的直径,∴∠ADC=90°,∴∠ADB+∠EDC=90°,∵∠BAC=∠EDC,∠EAB=∠ADB,∴∠EAC=∠EAB+∠BAC=90°,∴EA是⊙O的切线.(2)证明:如图2,连接BC,∵AC是⊙O的直径,∴∠ABC=90°,∴∠CBA=∠ABC=90°∵B是EF的中点,∴在RT△EAF中,AB=BF,∴∠BAC=∠AFE,∴△EAF∽△CBA.(3)解:∵△EAF∽△CBA,∴=,∵AF=4,CF=2.∴AC=6,EF=2AB,∴=,解得AB=2.∴EF=4,∴AE===4,27.(10分)已知:在直角坐标系中,点A(0,6),B(8,0),点C是线段AB 的中点,CD⊥OB交OB于点D,Rt△EFH的斜边EH在射线AB上,顶点F在射线AB的左侧,EF∥OA.点E从点A出发,以每秒1个单位的速度向点B运动,到点B停止.AE=EF,运动时间为t(秒).(1)在Rt△EFH中,EF=t,EH=t;F(t,6﹣t)(用含有t的代数式表示)(2)当点H与点C重合时,求t的值.(3)设△EFH与△CDB重叠部分图形的面积为S(S>0),求S与t的关系式;(4)求在整个运动过程中Rt△EFH扫过的面积.【解答】解:(1)如图1中,作EM⊥OA垂足为M,∵AE=EF=t,AO=6,BO=8,∠AOB=90°,∴AB===10.∵∠AOB=∠EFH=90°,∠EHF=∠ABO,∴△EFH∽△AOB,∴=,即=,∴EH=t,∵EM∥OB,∴==,∴AM=t,EM=t,∴点F坐标(t,6﹣t).故答案分别为:t,t,t,6﹣t.(2)如图2中,当点H与点C重合时,AE+EH=AC,∴t+t=5,∴t=,∴t=时,点H与点C重合.(3)当点H与点B重合时,AE+EH=AB,∴t+t=10,∴t=,当点E与点C重合时,t=5,当点E与点B重合时,t=10,①如图2中,FH与CD交于点M,当≤t时,∵CH=EH﹣EC=EH﹣(AC﹣AE)=t﹣5+t=t﹣5.CM=CH=t﹣3,MH=CH=t ﹣4,∴S=•CM•MH=(t﹣3)(t﹣4)=t2﹣t+6.②如图3中,<t≤5时,S=S=6,△CDB③如图4中,当5<t≤10时,∵EB=AB﹣AE=10﹣t,EM=EB=6﹣t,BM=EB=8﹣t,∴S=•EM•MB=•(6﹣t)(8﹣t)=(10﹣t)2.综上所述:S=.AFH=•FH•(AO+BF)(3)如图5中,在整个运动过程中Rt△EFH扫过的面积=S△=••16=.28.(13分)如图,已知点A的坐标为(﹣2,0),直线y=﹣x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点.(1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P 的坐标;(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC于点N,点Q 从点B出发,以每秒1个单位长度的速度沿线段BA向点A运动,运动时间为t (秒),当t(秒)为何值时,存在△QMN为等腰直角三角形?【解答】解:(1)令x=0代入y=﹣x+3∴y=3,∴C(0,3),令y=0代入y=﹣x+3∴x=4,∴B(4,0),设抛物线的解析式为:y=a(x+2)(x﹣4),把C(0,3)代入y=a(x+2)(x﹣4),∴a=﹣,∴抛物线的解析式为:y=(x+2)(x﹣4)=﹣x2+x+3,∴顶点D的坐标为(1,);(2)当DP∥BC时,此时四边形DEFP是平行四边形,设直线DP的解析式为y=mx+n,∵直线BC的解析式为:y=﹣x+3,∴m=﹣,∴y=﹣x+n,把D(1,)代入y=﹣x+n,∴n=,∴直线DP的解析式为y=﹣x+,∴联立,解得:x=3或x=1(舍去),∴把x=3代入y=﹣x+,y=,∴P的坐标为(3,);(3)由题意可知:0≤t≤6,设直线AC的解析式为:y=m1x+n1,把A(﹣2,0)和C(0,3)代入y=m1x+n1,得:,∴解得,∴直线AC的解析式为:y=x+3,由题意知:QB=t,如图1,当∠NMQ=90°,∴OQ=4﹣t,令x=4﹣t代入y=﹣x+3,∴y=t,∴M(4﹣t,t),∵MN∥x轴,∴N的纵坐标为t,把y=t代入y=x+3,∴x=t﹣2,∴N(t﹣2,t),∴MN=(4﹣t)﹣(﹣2)=6﹣t,∵MQ∥OC,∴△BQM∽△BOC,∴,∴MQ=t,当MN=MQ时,∴6﹣t=t,∴t=,此时QB=,符合题意,如图2,当∠QNM=90°时,∵QB=t,∴点Q的坐标为(4﹣t,0)∴令x=4﹣t代入y=x+3,∴y=9﹣t,∴N(4﹣t,9﹣t),∵MN∥x轴,∴点M的纵坐标为9﹣t,∴令y=9﹣t代入y=﹣x+3,∴x=2t﹣8,∴M(2t﹣8,9﹣t),∴MN=(2t﹣8)﹣(4﹣t)=3t﹣12,∵NQ∥OC,∴△AQN∽△AOC,∴NQ=9﹣t,当NQ=MN时,∴9﹣t=3t﹣12,∴t=,∴此时QB=,符合题意如图3,当∠NQM=90°,过点Q作QE⊥MN于点E,过点M作MF⊥x轴于点F,设QE=a,令y=a代入y=﹣x+3,∴x=4﹣,∴M(4﹣a,a),令y=a代入y=x+3,∴x=﹣2,∴N(﹣2,a),∴MN=(4﹣a)﹣(a﹣2)=6﹣2a,当MN=2QE时,∴6﹣2a=2a,∴a=,∴MF=QE=,∵MF∥OC,∴△BMF∽△BCO,∴BF=2,∴QB=QF+BF=+2=,∴t=,此情况符合题意,综上所述,当△QMN为等腰直角三角形时,此时t=或或.。

相关文档
最新文档