计量经济学案例分析一元回归模型实例分析报告

合集下载

计量经济学实验一 一元回归模型

计量经济学实验一 一元回归模型

实验二一元回归模型【实验目的】掌握一元线性、非线性回归模型的建模方法【实验内容】建立我国税收预测模型【实验步骤】【例1】建立我国税收预测模型。

表1列出了我国1985-1998年间税收收入Y和国内生产总值(GDP)x的时间序列数据,请利用统计软件Eviews建立一元线性回归模型。

一、建立工作文件⒈菜单方式在录入和分析数据之前,应先创建一个工作文件(Workfile)。

启动Eviews软件之后,在主菜单上依次点击File\New\Workfile(菜单选择方式如图1所示),将弹出一个对话框(如图2所示)。

用户可以选择数据的时间频率(Frequency)、起始期和终止期。

图1 Eviews菜单方式创建工作文件示意图图2 工作文件定义对话框本例中选择时间频率为Annual(年度数据),在起始栏和终止栏分别输入相应的日期85和98。

然后点击OK,在Eviews软件的主显示窗口将显示相应的工作文件窗口(如图3所示)。

图3 Eviews工作文件窗口一个新建的工作文件窗口内只有2个对象(Object),分别为c(系数向量)和resid(残差)。

它们当前的取值分别是0和NA(空值)。

可以通过鼠标左键双击对象名打开该对象查看其数据,也可以用相同的方法查看工作文件窗口中其它对象的数值。

⒉命令方式还可以用输入命令的方式建立工作文件。

在Eviews软件的命令窗口中直接键入CREATE命令,其格式为:CREATE 时间频率类型起始期终止期本例应为:CREATE A 85 98二、输入数据在Eviews软件的命令窗口中键入数据输入/编辑命令:DA TA Y X此时将显示一个数组窗口(如图4所示),即可以输入每个变量的数值图4 Eviews数组窗口三、图形分析借助图形分析可以直观地观察经济变量的变动规律和相关关系,以便合理地确定模型的数学形式。

⒈趋势图分析命令格式:PLOT 变量1 变量2 ……变量K作用:⑴分析经济变量的发展变化趋势⑵观察是否存在异常值本例为:PLOT Y X⒉相关图分析命令格式:SCAT 变量1 变量2作用:⑴观察变量之间的相关程度⑵观察变量之间的相关类型,即为线性相关还是曲线相关,曲线相关时大致是哪种类型的曲线说明:⑴SCAT命令中,第一个变量为横轴变量,一般取为解释变量;第二个变量为纵轴变量,一般取为被解释变量⑵SCAT命令每次只能显示两个变量之间的相关图,若模型中含有多个解释变量,可以逐个进行分析⑶通过改变图形的类型,可以将趋势图转变为相关图本例为:SCA T Y X图5 税收与GDP趋势图图5、图6分别是我国税收与GDP时间序列趋势图和相关图分析结果。

最新计量经济学案例分析一元回归模型实例分析

最新计量经济学案例分析一元回归模型实例分析

案例分析1— 一元回归模型实例分析依据1996-2005年《中国统计年鉴》提供的资料,经过整理,获得以下农村居民人均消费支出和人均纯收入的数据如表2-5:表2-5 农村居民1995-2004人均消费支出和人均纯收入数据资料 单位:元 年度 1995199619971998199920002001200220032004人均纯收入1577.7 1926.1 2090.1 2161.1 2210.3 2253.4 2366.4 2475.6 2622.2 2936.4人均消费支出1310.4 1572.1 1617.2 1590.3 1577.4 1670.1 1741.1 1834.3 1943.3 2184.7一、建立模型以农村居民人均纯收入为解释变量X ,农村居民人均消费支出为被解释变量Y ,分析Y 随X 的变化而变化的因果关系。

考察样本数据的分布并结合有关经济理论,建立一元线性回归模型如下:Y i =β0+β1X i +μi根据表2-5编制计算各参数的基础数据计算表。

求得:082.1704035.2262==Y X∑∑∑∑====3752432495.1986.788859011.516634423.1264471222ii i i iX y x y x 根据以上基础数据求得:623865.0423.126447986.788859ˆ21===∑∑iii xyx β8775.292035.2262623865.0082.1704ˆˆ10=⨯-=-=X Y ββ 样本回归函数为:ii X Y 623865.08775.292ˆ+= 上式表明,中国农村居民家庭人均可支配收入若是增加100元,居民们将会拿出其中的62.39元用于消费。

二、模型检验1.拟合优度检验952594.0011.516634423.1264471986.788859))(()(22222=⨯==∑∑∑iii i yx y x r2.t 检验525164.3061 210423.12644710.623865011.166345 2ˆˆ222122=-⨯-=--=∑∑n x y iiβσ049206.0423.1264471525164.3061ˆ)ˆ()ˆ(2211====∑ie xVar S σββ6717.112525164.3061423.126447110137.52432495ˆ)ˆ()ˆ(22200=⨯===∑∑σββii e xn X Var S 在显著性水平α=0.05,n-2=8时,查t 分布表,得到:306.2)2(2=-n t α提出假设,原假设H 0:β1=0,备择假设H 1:β1≠067864.12049206.0623865.0)ˆ(ˆ)ˆ(111==-=ββββe S t)2(67864.12)ˆ(21->=n t t αβ,差异显著,拒绝β1=0的假设。

一元线性回归模型案例分析

一元线性回归模型案例分析

一元线性回归模型案例分析一元线性回归是最基本的回归分析方法,它的主要目的是寻找一个函数能够描述因变量对于自变量的依赖关系。

在一元线性回归中,我们假定存在满足线性关系的自变量与因变量之间的函数关系,即因变量y与单个自变量x之间存在着线性关系,可表达为:y=β0+ β1x (1)其中,β0和β1分别为常量,也称为回归系数,它们是要由样本数据来拟合出来的。

因此,一元线性回归的主要任务就是求出最优回归系数和平方和最小平方根函数,从而评价模型的合理性。

下面我们来介绍如何使用一元线性回归模型进行案例分析。

数据收集:首先,研究者需要收集自变量和因变量之间关系的相关数据。

这些数据应该有足够多的样本观测值,以使统计分析结果具有足够的统计力量,表示研究者所研究的关系的强度。

此外,这些数据的收集方法也需要正确严格,以避免因相关数据缺乏准确性而影响到结果的准确性。

模型构建:其次,研究者需要利用所收集的数据来构建一元线性回归模型。

即建立公式(1),求出最优回归系数β0和β1,即最小二乘法拟合出模型方程式。

模型验证:接下来,研究者需要对所构建的一元线性回归模型进行验证,以确定模型精度及其包含的统计意义。

可以使用F检验和t检验,以检验回归系数β0和β1是否具有统计显著性。

另外,研究者还可以利用R2等有效的拟合检验统计指标来衡量模型精度,从而对模型的拟合水平进行评价,从而使研究者能够准确无误地判断其研究的相关系数的统计显著性及包含的统计意义。

另外,研究者还可以利用偏回归方差分析(PRF),这是一种多元线性回归分析技术,用于计算每一个自变量对相应因变量的贡献率,使研究者能够对拟合模型中每一个自变量的影响程度进行详细的分析。

模型应用:最后,研究者可以利用一元线性回归模型进行应用,以实现实际问题的求解以及数据挖掘等功能。

例如我们可以使用这一模型来预测某一物品价格及销量、研究公司收益及投资、检测影响某一地区经济发展的因素等。

综上所述,一元线性回归是一种利用单变量因变量之间存在着线性关系来拟合出回归系数的回归分析方法,它可以应用于许多不同的问题,是一种非常实用的有效的统计分析方法。

一元线性回归模型案例分析

一元线性回归模型案例分析

一元线性回归模型案例分析一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。

居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。

改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。

但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。

例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。

为了研究全国居民消费水平及其变动的原因,需要作具体的分析。

影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。

为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。

二、模型设定我们研究的对象是各地区居民消费的差异。

居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。

而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。

所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。

因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。

因此建立的是2002年截面数据模型。

影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。

计量经济学 第二章 一元线性回归模型范文

计量经济学  第二章  一元线性回归模型范文

第二章 一元线性回归模型2.1 一元线性回归模型的基本假定2.1.1一元线性回归模型有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。

其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。

上模型可以分为两部分。

(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。

图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。

以收入与支出的关系为例。

假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。

但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。

所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。

“线性”一词在这里有两重含义。

它一方面指被解释变量Y 与解释变量X 之间为线性关系,即1tty x β∂=∂220tt y x β∂=∂另一方面也指被解释变量与参数0β、1β之间的线性关系,即。

1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。

所以在经济问题上“控制其他因素不变”是不可能的。

随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。

回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略, (2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。

计量经济学实验报告一元线性回归模型实验

计量经济学实验报告一元线性回归模型实验

2013-2014第1学期计量经济学实验报告实验(一):一元线性回归模型实验学号姓名:专业:国际经济与贸易选课班级:实验日期:2013年12月2日实验地点:K306实验名称:一元线性回归模型实验【教学目标】《计量经济学》是实践性很强的学科,各种模型的估计通过借助计算机能很方便地实现,上机实习操作是《计量经济学》教学过程重要环节。

目的是使学生们能够很好地将书本中的理论应用到实践中,提高学生动手能力,掌握专业计量经济学软件EViews的基本操作与应用。

利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。

【实验目的】使学生掌握1.Eviews基本操作:(1)数据的输入、编辑与序列生成;(2)散点图分析与描述统计分析;(3)数据文件的存贮、调用与转换。

2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测【实验内容】1.Eviews基本操作:(1)数据的输入、编辑与序列生成;(2)散点图分析与描述统计分析;(3)数据文件的存贮、调用与转换;2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。

实验内容以下面1、2题为例进行操作。

1、为了研究深圳地方预算中财政收入与国内生产总值关系,运用以下数据:(1)建立深圳的预算内财政收入对GDP的回归;(2)估计模型的参数,解释斜率系数的意义;(3)对回归结果进行检验;(4)若2002年的国内生产总值为3600亿元,试确定2002年财政收入的预测值和预α=)。

测区间(0.052、在《华尔街日报1999年年鉴》(The Wall Street Journal Almanac 1999)上,公布有美国各航空公司业绩的统计数据。

航班正点准时到达的正点率和此公司每10万名乘客中投诉1(1)做出上表数据的散点图(2)依据散点图,说明二变量之间存在什么关系?(3)描述投诉率是如何根据航班正点率变化,并求回归方程。

计量经济学一元回归实验报告

计量经济学一元回归实验报告

年份国民总收入X 最终消费Y 年份国民总收入X 最终消费Y1978 3645.217 2239.1 1993 35260.02 21899.91979 4062.579 2633.7 1994 48108.46 29242.21980 4545.624 3007.9 1995 59810.53 36748.21981 4889.461 3361.5 1996 70142.49 43919.51982 5330.451 3714.8 1997 78060.83 48140.61983 5985.552 4126.4 1998 83024.28 51588.21984 7243.752 4846.3 1999 88479.15 55636.91985 9040.737 5986.3 2000 98000.45 615161986 10247.38 6821.8 2001 108068.2 66878.31987 12050.62 7804.6 2002 119095.7 71691.21988 15036.82 9839.5 2003 135174 77449.51989 17000.92 11164.2 2004 159586.7 87032.91990 18718.32 12090.5 2005 184088.6 97822.71991 21826.2 14091.9 2006 213131.7 110595.31992 26937.28 17203.3 2007 251483.2 128444.61以分析国民总收入对消费的推动作用为目的建立线性回归方程,并估计参数2.计算回归估计的标准误差和可决系数3.对回归系数进行显著水平为5%的显著性检验4.如果2008年全国国民总收入为300670亿元,比上年增长9.0%,预测可能达到的最终消费水平。

实验步骤:(1)建立回归模型,应用EViews文件,由深圳市地方预算内财政收入(Y)和GDP的数据表,得散点图(如图1-1)。

计量经济学实验二-一元线性回归模型的估计、检验和预测

计量经济学实验二-一元线性回归模型的估计、检验和预测

目录一、加载工作文件 (7)二、选择方程 (7)1.作散点图 (7)2.进行因果关系检验 (9)三、一元线性回归 (10)四、经济检验 (12)五、统计检验 (13)六、回归结果的报告 (15)七、得到解释变量的值 (15)八、预测应变量的值 (17)实验二一元线形回归模型的估计、检验和预测实验目的:掌握一元线性回归模型的估计、检验和预测方法。

实验要求:选择方程进行一元线性回归,进行经济、拟合优度、参数显著性和方程显著性等检验,预测解释变量和应变量。

实验原理:普通最小二乘法,拟合优度的判定系数R2检验和参数显著性t检验等,计量经济学预测原理。

实验步骤:已知广东省宏观经济部分数据如表2-1所示,要根据这些数据研究和分析广东省宏观经济,建立宏观计量经济模型,从而进行经济预测、经济分析和政策评价。

实验二~实验十二主要都是用这些数据来完成一系列工作。

表2-1 广东省宏观经济数据续上表续上表一、加载工作文件广东省宏观经济数据已经制成工作文件存在盘中,命名为GD01.WF1,进入EViews后选择File/Open打开GD01.WF1。

二、选择方程根据广东数据(GD01.WF1)选择收入法国国内生产总值(GDPS)、财政收入(CS)、财政支出(CZ)和社会消费品零售额(SLC),分别把①CS作为应变量,GDPS作为解释变量;②CZ作为应变量,CS作为解释变量;③SLC作为应变量,GDPS作为解释变量进行一元线性回归分析。

1.作散点图从三个散点图(图2-1~图2~3)可以看出,三对变量都呈现线性关系。

图2-1 图2-2图2-3 2.进行因果关系检验从三个因果关系检验可以看出,GDPS是CS的因;CS不是CZ 的因;GDPS不是SLC的因。

但根据理论CS是CZ的因,GDPS是SLC的因,可能是由于指标设置问题。

所以还是把CS作为应变量,GDPS作为解释变量;CZ作为应变量,CS作为解释变量;SLC作为应变量,GDPD作为解释变量进行一元线性回归分析。

计量经济学实验一

计量经济学实验一

2017—2018第二学期计量经济学实验报告实验(一):一元回归模型实验学号:姓名:专业:经济学类选课班级: A01 实验日期:2018/05/07 实验地点: 05021、家庭消费支出(Y )、可支配收入(2X )、个人个财富(2X )设定模型如下:i i i i X X Y μβββ+++=22110 回归分析结果为:LS // Dependent Variable is Y Date: 18/4/02 Time: 15:18 Sample: 1 10Included observations: 10Variable Coefficient Std. Error T-Statistic Prob. C 24.40706.9973 ___3.4881_____ 0.01012X - 0.3401 0.4785 ___-_0.7108____ 0.5002 2X 0.0823 0.0458 1.7969 0.1152 R-squared ___0.9615_____ Mean dependent var111.1256Adjusted R-squared0.9504S.D. dependent var 31.4289S.E. of regression ___6.5436____ Akaike info criterion4.1338Sum squared resid 342.5486 Schwartz criterion 4.2246 Log likelihood- 31.8585 F-statistic 87.3339Durbin-Watson stat2.4382Prob(F-statistic)0.0001补齐表中划线部分的数据(保留四位小数);并写出回归分析报告。

2、根据有关资料完成下列问题: LS // Dependent Variable is Y Date: 11/12/02 Time: 10:18 Sample: 1978 1997 Included observations: 20Variable Coefficient Std. Error T-Statistic Prob. C 858.310867.12015 _____12.7877___0.0000X 0.100031 _____0.0022___ 46.04788 0.0000R-squared __0.9916__ Mean dependent var 3081.157Adjusted R-squared0.991115 S.D. dependent var 2212.591S.E. of regression __202.9982_ Akaike info criterion10.77510Sum squared resid 782956.8 Schwartz criterion 10.87467 Log likelihood- 134.1298F-statistic ___21230.46934_____Durbin-Watson stat 0.859457 Prob(F-statistic) 0.000000(其中:X —国民生产总值;Y —财政收入)(1) 补齐表中的数据(保留四位小数),并写出回归分析报告;(2)解释模型中回归系数估计值的经济含义;答:C=858.3108表示当国民生产总值等于0时,财政收入等于858.3108。

一元线性回归模型(计量经济学)

一元线性回归模型(计量经济学)

回归分析是一种统计方法,用于研究变量之间的关系。它基于最小二乘法,寻找最合适的直线来描述变 量间的线性关系。通过回归分析,我们可以理解变量之间的因果关系和预测未知数据。
一元线性回归模型的假设
1 线性关系
2 独立误差
一元线性回归模型假设自变量和因变量之 间存在线性关系。
模型的残差项是独立的,不受其他因素的 影响。
3 常数方差
4 正态分布
模型的残差项具有恒定的方差,即方差齐 性。
模型的残差项服从正态分布。
一元线性回归模型的估计和推断
1
模型估计
使用最小二乘法估计模型的回归系数。
2
参数推断
进行参数估计的显著性检验和置信区间估计。
3
模型拟合程度
使用残差分析和R平方评估模型的拟合程度。
模型评估和解释结果
通过残差分析和R平方等指标评估模型的拟合程度,并解释模型中回归系数的 含义。了解如何正确使用模型的结果,并识别异常值和离群点对模型的影响。
一元线性回归模型(计量 经济学)
在本节中,我们将介绍一元线性回归模型,探讨回归分析的基本概念和原理, 了解一元线性回归模型所做的假设,并学习模型的估计和推断方法。我们还 将探讨模型评估和解释结果的技巧,并通过实例应用和案例分析进一步加深 对该模型的理解。最后,我们将总结和得出结论。
回归分析的基本概念和原理
实例应用和案例分析
汽车价格预测Байду номын сангаас
使用一元线性回归模型预 测汽车价格,考虑车龄、 里程等因素。
销售趋势分析
通过一元线性回归模型分 析产品销售的趋势,并预 测未来销售。
学术成绩预测
应用一元线性回归模型预 测学生的学术成绩,考虑 学习时间、背景等因素。

计量经济学一元线性回归模型总结

计量经济学一元线性回归模型总结

第一节 两变量线性回归模型一.模型的建立1.数理模型的基本形式y x αβ=+ (2.1)这里y 称为被解释变量(dependent variable),x 称为解释变量(independent variable)注意:(1)x 、y 选择的方法:主要是从所研究的问题的经济关系出发,根据已有的经济理论进行合理选择。

(2)变量之间是否是线性关系可先通过散点图来观察。

2.例如果在研究上海消费规律时,已经得到上海城市居民1981-1998年期间的人均可支配收入和人均消费性支出数据(见表1),能否用两变量线性函数进行分析?表1.上海居民收入消费情况年份 可支配收入 消费性支出 年份 可支配收入 消费性支出 1981 636.82 585 1990 2181.65 1936 1982 659.25 576 1991 2485.46 2167 1983 685.92 615 1992 3008.97 2509 1984 834.15 726 1993 4277.38 3530 1985 1075.26 992 1994 5868.48 4669 19861293.24117019957171.91586819871437.09128219968158.746763 19881723.44164819978438.896820 19891975.64181219988773.168662.一些非线性模型向线性模型的转化一些双变量之间虽然不存在线性关系,但通过变量代换可化为线性形式,这些双变量关系包括对数关系、双曲线关系等。

例3-2 如果认为一个国家或地区总产出具有规模报酬不变的特征,那么采用人均产出y与人均资本k的形式,该国家或者说地区的总产出规律可以表示为下列C-D生产函数形式y Akα=(2.2)也就是人均产出是人均资本的函数。

能不能用两变量线性回归模型分析这种总量生产规律?3.计量模型的设定 (1)基本形式:y x αβε=++ (2.3) 这里ε是一个随机变量,它的数学期望为0,即(2.3)中的变量y 、x 之间的关系已经是不确定的了。

一元线性回归分析报告

一元线性回归分析报告

实验报告金融系金融学专业________________ 级_____________ 班实验人:实验地点:____________________ 实验日期: ______________实验题目:进行相应的分析,揭示某地区住宅建筑面积与建造单位成本间的关系实验目的:掌握最小二乘法的基本方法,熟练运用Eviews软件的一元线性回归的操作,并能够对结果进行相应的分析实验内实验米用了建筑地编号为1号至12号的数据,通过模型设计、估计参数、检验统计量、回归预测四个步骤对数据进行相关分析。

实验步骤:、模型设定1.建立工作文件。

双击eviews,点击File/New/Workfile,在出现的对话框中选择数据频率,因为该例题中为截面数据,所以选择中设定变量个数,这里输入12。

unstructured/undated 在observations WorkfEle CreateV.'orkfite structure t/pe^j^nstructured f Undated 一刁Irregular Dated and Panelworkfies may be made fromUnstructured! workfiles bylater specifying date and/or other identifie r series.OK Cancel -Dmta range Observations:112Names [optionaf) WF: IPage:f2.输入数据。

在eviews命令框中输入data X 丫,回车出现group窗口数据编辑框,在对应的X,Y 下输入数据,这里我们可以直接将excel 中被蓝笔选中的部分用cirl+c复制,在窗口数据编辑框中1所对应的框中用cirl+v 粘贴数据。

3.作X 与丫的相关图形。

为了初步分析建筑面积(X )与建造单位成本(丫)的关系,可以作以X 为横坐标、以Y 为纵坐标的散点图。

一元线性回归模型的参数估计实验报告

一元线性回归模型的参数估计实验报告

山西大学实验报告实验报告题目:计量经济学实验报告学院:专业:课程名称:计量经济学学号:学生姓名:教师名称:崔海燕上课时间:一、实验目的:掌握一元线性回归模型的参数估计方法以及对模型的检验和预测的方法。

二、实验原理:1、运用普通最小二乘法进行参数估计;2、对模型进行拟合优度的检验;3、对变量进行显著性检验;4、通过模型对数据进行预测。

三、实验步骤:(一)建立模型1、新建工作文件并保存打开Eviews软件,在主菜单栏点击File\new\workfile,输入start date 1978和end date 2006并点击确认,点击save键,输入文件名进行保存。

2输入并编辑数据在主菜单栏点击Quick键,选择empty\group新建空数据栏,先输入被解释变量名称y,表示中国居民总量消费,后输入解释变量x,表示可支配收入,最后对应各年分别输入数据。

点击name键进行命名,选择默认名称Group01,保存文件。

得到中国居民总量消费支出与收入资料:年份X Y19786678.83806.719797551.64273.219807944.24605.5198184385063.919829235.25482.4198310074.65983.21984115656745.7198511601.77729.2198613036.58210.9198714627.788401988157949560.5198915035.59085.5199016525.99450.9199118939.610375.8199222056.511815.3199325897.313004.7199428783.413944.2199531175.415467.9199633853.717092.5199735956.218080.6199838140.919364.119994027720989.3200042964.622863.92001 46385.4 24370.1 2002 51274 26243.2 2003 57408.1 28035 2004 64623.1 30306.2 2005 74580.4 33214.4 2006 85623.1 36811.2注:y 表示中国居民总量消费 x 表示可支配收入3、 画散点图,判断被解释变量与解释变量之间是否为线性关系在主菜单栏点击Quick\graph 出现对话框,输入 “x y ”,点击确定。

计量经济学 一元线性回归

计量经济学 一元线性回归

随机变量; 研究的是非确定现象随机变量之间的关系,比如:农作物产量与气温、 降雨量及阳光等之间的关系。 ●(单向)因果关系:Y f (X ,u) ,其中 u 为随机变量。在计量经 济模型中,单一线性函数要求变量必须是单向因果关系。
在(单向)因果关系中,变量 Y 是不确定的,变量 X 是确定的 (或可控制的)。
E(Y | Xi ) f ( Xi )
这个函数称为回归函数。 回归函数分为:总体回归函数(population regression function,PRF)
样本回归函数(sample regression function,SRF)
二、总体回归函数(PRF)
例 2.1 一个假想的社区有 100 户家庭组成,要研究该社区每月家庭 消费支出 Y 与每月家庭可支配收入 X 的关系。 即如果知道了家庭的 月收入,能否预测该社区家庭的平均月消费支出水平。
关系,因此不线性相关并不意味着不相关;
③样本相关系数是总体相关系数的样本估计值,由于抽样波动,样本
相关系数是个随机变量,其统计显著性有待检验;
ቤተ መጻሕፍቲ ባይዱ
④相关系数只能反应线性相关程度,不能确定因果关系,即相关关系
并不意味着有因果关系,但有因果关系一定有相关关系。
统计依赖关系
正相关 线性相关 不相关 相关系数:
3000 亿美元? 旅游业的发展与这种决定性因素的数量关系究竟是什么? 怎样具体测定那个旅游业发展与这种决定性因素的数量关系? 应当考虑的问题:
(1)确定作为研究对象的经济变量 (如中国旅游业总收入)
(2)分析影响研究对象变动的主要因素 (如中国居民收入的增长)
(3)分析各种影响因素与所研究经济现象的相互关系 (决定相互联系的数学关系式)

计量经济学(内蒙古大学)第二章一元线性回归模型

计量经济学(内蒙古大学)第二章一元线性回归模型
经世致用 管人悟道
内蒙古大学经济管理学院
2、总体回归函数
由于变量间关系的随机性,回归分析关心的是根 据解释变量的已知或给定值,考察被解释变量的总体 均值,即当解释变量取每个确定值时(与自然科学中 控制实验条件相同),与之统计相关的被解释变量所 有可能出现的对应值的平均值。 在给定解释变量Xi的条件下被解释变量Yi的期望轨迹 称为总体回归线(Population regression line), (2.1.1) 相应的函数(方程) E(Y X i ) f ( X i )
圆面积= f ,r = r 2
经世致用 管人悟道
内蒙古大学经济管理学院
② 统计依赖或相关关系:研究的是非确定现象
例2.1:某一个社区有60户家庭组成,要研究该社区 每月家庭消费支出Y与每月家庭可支配收入X的关系。
某社区每月家庭收入与消费支出查统计表
每月家庭收入 X(元)
800
550 每月 家庭 消费 支出 Y(元) 600 650 700 750 . . 3250 650
注:总体回归函数的具体形式则是根据与 两个变量表明的经济现象之间关系的经济 理论来确定。
经世致用 管人悟道
内蒙古大学经济管理学院
3、随机扰动项
总体回归函数说明在给定的收入水平 X i 下,该社区 家庭平均的消费支出水平。 但对某一个别的家庭,其消费支出可能与该平均水 平有偏差。记:
i Yi E(Y X i ) Yi (0 1 X i ) (2.1.2)
2600
1500 1520 1750 1780 1800 1850 1910 12110 1730
共计 条件均值
经世致用 管人悟道
内蒙古大学经济管理学院分析: Nhomakorabea⑴ 由于不确定因素的影响,对同一收入水平X,不 同家庭的消费支出不完全相同; ⑵ 但由于调查的完备性,给定收入水平X的消费支 出Y的分布是确定的,即以X的给定值为条件的Y的 条件分布(Conditional distribution)是已知的。 因此,给定收入X的值xi,可得消费支出Y的条件 均值(Conditional mean)或条件期望(Conditional expectation):

一元线性回归模型案例分析

一元线性回归模型案例分析

一元线性回归模型案例分析——各地区城镇居民家庭平均每人全年可支配收入对平均每人全年消费性支出的影响一、研究目的和要求居民消费在社会经济的持续发展中具有重要的作用。

居民适度的消费可以促进经济的循环以及经济的增长。

随着改革开放以来,人们生活水平不断提高,消费水平也不断提升。

研究居民消费性支出的变动有哪些因素的影响,其中城镇居民家庭的人均全年可支配收入和人均全年消费性支出数据相对较稳定,人均全年可支配收入是指人均全年收入扣除人均全年储蓄后的剩余部分,在人们满足储蓄要需求后,剩余部分收入与人均消费性支出有怎样的关系?不同地区的人均收入与人均消费性支出又存在着差异,为了研究人均消费性支出的变动运用计量经济学建立相关模型,并进行分析。

二、模型设定为了分析各地区城镇居民家庭人均全年消费性支出与城镇居民家庭人均全年可支配收入的关系,选择“城镇居民家庭人均全年消费性支出”(单位:元)为被解释变量(用Y 表示);选择“城镇居民家庭人均全年可支配收入”(单位:元)为解释变量(用X表示)。

表一由国泰安数据库得到的各省2013年城镇居民家庭人均全年消费性支出和城镇居民家庭人均全年可支配收入数据。

代码 简称 统计年度 城镇居民家庭平均每人全年可支配收入(单位:元) 城镇居民家庭平均每人全年消费性支出(单位:元) 500000 重庆 2013 25216.1271 17813.8642 510000 四川 2013 22367.633 16343.4513 520000 贵州 2013 20667.0748 13702.8708 530000 云南 2013 23235.5268 15156.1494 540000 西藏 2013 20023.35 12231.86 610000 陕西 2013 22858.3719 16679.6872 620000 甘肃 2013 18964.7783 14020.7206 630000 青海 2013 19498.54 13539.5 640000 宁夏 2013 21833.33 15321.1 650000新疆201319873.7715206.16为分析城镇居民家庭人均全年消费性支出(Y )与城镇居民家庭人均全年可支配收入(X )的关系,此案例用EViews 软件做计量分析。

计量经济模型案例

计量经济模型案例

计量经济模型案例【篇一:计量经济模型案例】计量经济学案例分析案例分析1 一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。

居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。

改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也… 城镇居民可支配收入与人均消费性支出的关系的研究一、研究的目的本案例分析根据1980年~2009 年城镇居民人均可支配收入和人均消费性支出的基本数据,应用一元线性回归分析的方法研究了城镇居民人均可支配收入和人均消费性支出之间数量关系的基本规律,并在… 研究城镇居民可支配收入与人均消费性支出的关系班级:国际经济与贸易一班姓名:李文泳学号:2008524119一、研究的目的本案例分析根据1980年~2009 年城镇居民人均可支配收入和人均消费性支出的基本数据,应用一元线性回归分析的方法研究了城镇… 计量经济学案例分析姓名:学号:学院:管理学院专业: 10级工程管理计量经济学案例分析案例:研究从1989-2009年,影响我国国债发行总量的主要因素。

当年的国债发行总量(y),国内生产总值(x1)、城乡居民储蓄存款(x2)、国家… 《计量经济学》案例分析统计学院统计学教研室2008年3月编写/2010年3月修订第 1 章特殊自变量的计量经济模型1 虚拟变量模型一、季节调整的虚拟变量方法1.案例摘自高铁梅《计量经济分析方法与建模》p79 2.案例内容研究季度国民生… 案例分析1一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。

居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。

改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断… 计量经济学案例分析1 一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。

居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。

一元回归分析实验报告

一元回归分析实验报告

实验报告实验目的:1. 构建一元及多元回归模型,并作出估计2. 熟练掌握假设检验3. 对构建的模型进行回归预测实验内容:对1970―― 1982年某国实际通货膨胀率、失业率和预期通货膨胀率进行分析, 根据下表(表一)提供的数据进行模型设定,假设检验及回归预测。

年份Y X2 X31970 5.92 4.90 4.781971 4.30 5.90 3.841972 3.30 5.60 3.311973 6.23 4.90 3.441974 10.97 5.60 6.841975 9.14 8.50 9.471976 5.77 7.70 6.511977 6.45 7.10 5.921978 7.60 6.10 6.081979 11.47 5.80 8.091980 13.46 7.10 10.011981 10.24 7.60 10.811982 5.99 9.70 8.00实验步骤:1.模型设定:为分析实际通货膨胀率(丫)分别和失业率(X2 )、预期通货膨胀率(X3)之间的关系,作出如下图所示的散点图。

141210Y 86424 5 6 7 8 9 10X2冬二141210丫 86423456789 10 11X3从上示散点图可以看出实际通货膨胀率(丫)分别和失业率(X2)不呈线性关系,与预期通货膨胀率(X3)大体呈现为线性关系,为分析实际通货膨胀率(丫)分别和失业率(X2 )、预期通货膨胀率(X3 )之间的数量关系,可以建立单线性回归模型和多元线性回归模型:丫= 3「2X 3 K丫二乙2X3 3X2 」22 •估计参数在Eviews命令框中输入“ Is y c x2”,按回车,对所给数据做简单的一元线性回归分析。

分析结果见表二。

表二Depe ndent Variable: 丫Method: Least SquaresDate: 10/09/11 Time: 17:23Sample: 1970 1982In eluded observati ons: 13Variable Coeffieie nt Std. Error t-Statistie Prob.C 1.323831 1.626284 0.814022 0.4329X3 0.960163 0.228633 4.199588 0.0015R-squared 0.615875 Mean depe ndent var 7.756923Adjusted R-squared 0.580955 S.D. dependent var 3.041892S.E. of regressi on 1.969129 Akaike info eriteri on 4.333698Sum squared resid 42.65216 Schwarz eriteri on 4.420613Log likelihood -26.16904 F-statistie 17.63654Durb in -Watson stat 1.282331 Prob(F-statistie)0.001487由回归分析结果可估计出参数-1「2A即丫二1.323831 0.960163 X3(1.626284)(0.228633)t = 0.8 1 4 0 2 2 4 .1995882R = 0.615875 F=17.63654 n=13剩余项、实际值、拟合值的图形多元回归分析结果Depe ndent Variable: YMethod: Least SquaresDate: 10/09/11 Time: 17:29Sample: 1970 1982In cluded observati ons: 13Variable Coefficie nt Std. Error t-Statistic Prob.C 7.105975 1.618555 4.390321 0.0014X2 -1.393115 0.310050 -4.493196 0.0012X3 1.480674 0.180185 8.217506 0.0000R-squared 0.872759 Mean depe ndent var 7.756923 Adjusted R-squared 0.847311 S.D. dependent var 3.041892 S.E. of regressi on 1.188632 Akaike info criteri on 3.382658Sum squared resid 14.12846 Schwarz criteri on 3.513031Log likelihood -18.98728 F-statistic 34.29559 Durb in -Watson stat 2.254851 Prob(F-statistic) 0.000033AAA由回归结果可以估计出 「,2,3A加 Y 二 7.105975 1.480674即t 二 4.390321 8.217506 -4.493196R 2二 0.872759R 2=0.847311剩余项、实际值、拟合值的图形拟合优度的度量:由表二和表三可知,一元回归分析的可绝系数为 0.615875,元回归分析的可绝系数为 0.872759,因为多元回归模型的可绝系数大于一元回归模型 的可绝系数,所以多元回归模型拟合的比一元回归模型要好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∑ x = 1264471.423 ∑ y =
516634.011 ∑ X = 52432495.137 ∑
ˆ ˆ ˆ ˆ 案例分析 1— 一元回归模型实例分析
依据 1996-2005 年《中国统计年鉴》提供的资料,经过整理,获得以下农村居民人均 消费支出和人均纯收入的数据如表 2-5:
表 2-5 农村居民 1995-2004 人均消费支出和人均纯收入数据资料
单位:元 年度
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 人均纯 收入 1577.7 1926.1 2090.1 2161.1 2210.3 2253.4 2366.4 2475.6 2622.2 2936.4 人均消
费支出
1310.4 1572.1 1617.2 1590.3 1577.4 1670.1 1741.1 1834.3 1943.3 2184.7
一、建立模型
以农村居民人均纯收入为解释变量 X ,农村居民人均消费支出为被解释变量 Y ,分析 Y 随 X 的变化而变化的因果关系。

考察样本数据的分布并结合有关经济理论,建立一元线 性回归模型如下:
Y i =β0+β1X i +μi
根据表 2-5 编制计算各参数的基础数据计算表。

求得: X = 2262.035
Y = 1704.082
2 i 2 i ∑ x i y i = 788859.986
2
i 根据以上基础数据求得: β1 = ∑ x i y 2 i i = 788859.986 126447.423 = 0.623865
β 0 = Y - β1 X = 1704.082 - 0.623865 ⨯ 2262.035 = 292.8775
样本回归函数为:
Y i = 292.8775 + 0.623865X i 上式表明,中国农村居民家庭人均可支配收入若是增加 100 元,居民们将会拿出其中 的 62.39 元用于消费。

∑x y) (
(∑x)(∑y i)
ˆ
ˆ
i
ˆˆˆ
ˆˆ
ˆ
ˆ
ˆ
ˆ
∑e3061.525164
ˆ
i
二、模型检验
1.拟合优度检验
r2=
2
i i i
2
2
=
788859.9862
1264471.423 ⨯ 51663
4.011
= 0.952594
2.t检验
σ2=∑
y 2
i
-β12∑x2 n- 2
=516634.011- 0.6238652⨯1264471.423
10 - 2
= 3061.525164
S e(β
1)=Var(β
1
)σ3061.5251
S e(β
0)=Var(β
)=2i
2
i
σ2=52432495.13
7
10 ⨯1264471.
423
3061.525164 = 112.671
7
在显著性水平α=0.05,n-2=8时,查 t分布表,得到:tα(n-2)=2.306
2
提出假设,原假设 H0:β1=0,备择假设 H1:β1≠0
t(β
1)=β1-β1
S e(β)
=
0.62386
5
0.04920
6
= 12.67864
t(β
1
)=12.67864>tα(n-2),差异显著,拒绝β1=0的假设。

2
3.F检验
提出原假设 H0:β1=0,备择假设 H1:β1≠0
在显著性水平α=0.05,n-2=8时,查 F分布表,得到:
F(1,8)=5.32。

F=β12∑x21
=
492141.8097
= 160.7505 2
i
n- 2
160.7505>5.32,即 F> F(1,8),差异显著,拒绝β1=0 的假设。

三、预测
当农村居民家庭人均纯收入增长到 3500 元时,对农村居民人均消费支出预测如下: Y0=292.8775+0.623865⨯3500=2476.405(元)
ˆ
=σ ˆ 2 1 + ⎪ ˆ = 3061.525164 ⨯ 1 + ⎪⎪ ˆ
ˆ S e (e 0 ) = σ 1 + 1 n + ( X 0 - X )2 ∑ x 2 ⎛ 1 n + ( X 0 - X )2 ∑ x 2
⎫ ⎪
⎛ ⎝ 1 10 + (3500 - 2262.035)2 1264471.423 ⎫ ⎭ = 84.13257219 在显著性水平 α=0.05,n -2=8 时, t 0.025 =2.306 从而
Y
0 - t α S e (e 0 ) =2476.405-2.306⨯84.13257219=2282.40(元) 2 Y 0 + t α S e (e 0 ) =2476.405+2.306⨯84.13257219=2670.41(元)
2
P [2282.40 ≤ Y 0 ≤ 2670.41]= 95%
当农村居民家庭人均纯收入增长到 3500 元时,,农村居民人均消费支出在 2282.40 元 至 2670.41 元之间的概率为 95%。

四、利用计算机进行分析的步骤
以上分析内容可以借助计算机完成,下面以 EViews3.0 软件为例,介绍其分析过程。

1.设定工作范围
打开 EViews ,按照以下步骤设定工作范围:
File →New →Workfile →Workfile Range →Annual →Start data(1995)→End data(2004)(图
2-5、图 2-6)→OK
图 2-5 Workfile Range 对话框
图2-6Workfile工作状态图
在 Workfile 工作状态下输入变量 X,Y
Objects→New Object→Type of Object(series)→Name for Object(X)(图 2-7、图 2-
8)→OK。

同理,可输入变量 Y。

图2-7输入变量X状态图

2-8Workfile工作状态图
3.输入样本数据
在 Workfile 工作状态下选中 X、Y,右击鼠标,Open→as Group→Edit,输入数据(见图 2-9)。

图2-9Edit工作状态图
在 Workfile 工作状态下,选中 Y、X,右击鼠标,Open→as Equation→Equation Specification→(Y C X)(图 2-10)→OK,输出回归分析结果(见图 2-11)。

图2-10输入Y C X工作状态图
图2-11回归分析表
输出结果的解释:
Variable解释变量
Coefficient解释变量的系数
Std.Error标准差
t-Statistic t-检验值
Prob.t-检验的相伴概率
R-squared 样本决定系数
Adjusted R-squared 调整后的样本决定系数
S.E.regression 回归标准差
Sum squared resid残差平方和
Log likelihood对数似然比
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ Durbin-Watson stat D-W 统计量
Mean dependent var 被解释变量的均值
S.D.dependent var 被解释变量的标准差
Akaike info criterion 赤池信息量
Schwarz criterion 施瓦兹信息量
F-statistic F 统计量
Prob(F-statistic) F 统计量的相伴概率
由图 2-11 可以获得以下信息:
β
0 = 292.8769 β
1 = 0.623865 r
2 = 0.952594
是 β0, β1 回归系数的估计量值,r 2 是在双变量情况下,样本的可决系数
S e (β
0 ) = 112.6704 S e (β
1 ) = 0.049205 t (β
0 ) = 2.599413 t (β
1 ) = 12.67889
S e (β 0 ), S e (β1 ) 是 β 0,β1 估计量的标准差, t (β 0 ), t (β1 ) 是 β0,β1 估计量的 t
统计量。

F =160.7542 是 F 检验统计量的值
样本回归函数为: Y
i = 292.8769 + 0.623865X i
样本回归函数(Sample Regression Function ,SRT ) 5.预测
(1)扩展工作范围
在 Workfile 工作状态下,Procs→Change Workfile Range→End data(2005)→OK 再选择 Sample(1995 2005)( 图 2-12) →OK
图 2-12 工作范围图
(2)输入解释变量值
在 Workfile 工作状态下,X→Edit →(3500)。

(3)预测
在图 2-11Equation 工作状态下,选择Forecast→OK(见图 2-13),得到预测结果(见图 2-14)
图2-13设定预测状态图
图2-14预测结果输出图
在 Workfile 工作状态下,显示YF,可得到点预测值(见图 2-15)
图2-15预测值输出图
根据模型预测结果,当中国农村居民家庭人均纯收入达到 3500 元时,每个人将会拿出2476.41 元用于消费。

相关文档
最新文档