part5索洛增长模型培训资料

合集下载

索洛增长模型

索洛增长模型

稳态分析的图形
y
yA
syA
A
0
kA
(n+g+δ)k
f(k) sf(k)
k
图中,sf(k)为人均储蓄曲线,它与 人均生产函数有相同形状但是位于生 产函数的下方。另外一条直线表示资 本的广化。
根据稳态分析,sy= (n+g+δ)k, 此时(n+g+δ)k线和sy曲线相交, 交点A所对应的人均资本为kA,人均 产量为yA,这时人均储蓄恰好等于资 本广化的需要,即
当经济处于资本深化阶段时,产出的增长 会快于人口的增长,人均产出水平会不断 提高。因此对于资本贫乏的国家,其产出 增长率会高于资本充裕的国家,但是随着 资本深化的提高,他将日益接近于稳定增 长的人均资本水平,经济增长率最终会慢 下来。因此当经济偏离稳定状态时,无论 人均资本过多还是过少,都存在着某种力 量使其恢复到长期增长的均衡状态。这是 新古典经济增长理论对哈罗的模型的改进。
y
人均产出和增长率随时间变化的轨迹
y0
0
t0
t1
t
g
0
t
上图的上半部分显示了人均产出水平 的时间路径。储蓄率的提高增加了人 均资本占有量从而人均产量提高,直 到达到新的稳定状态。
下半部分则显示了人均产量增长率的 时间路径。储蓄率的增加会导致资本 积累,实现人均产量水平的暂时性较 高增长,但是随着资本积累,人均产 量的增长率最终会回落到人口增长率 水平。
Байду номын сангаас
储蓄率变动对消费的影响
若将家庭引入模型,其福利将取决于消费而非产量, 因此在许多情况下,我们可能只关心消费变动而非产 量变动。
率为n,知识增长率为g。

索罗增长模型

索罗增长模型

第一章索洛经济增长模型The Solow Growth Model基本内容1 索洛模型的基本假定2 离散时间的索洛模型3离散时间索洛模型的过渡过程4连续时间的索洛模型5连续时间索洛模型的过渡过程6持久增长7带技术进步的索洛模型8比较动态分析1 索洛模型的基本假定● 一个分析经济增长和各国收入差异的基本框架.● 其核心假定是新古典总的生产函数.家庭与生产 I● 封闭经济,唯一的最终产品.● 离散时间,t = 0, 1, 2, ....● 该经济里有众多的家庭,暂时假定家庭没有优化行为.● 这也是索罗模型与新古典增长模型的主要区别.● 为了简化,假定各个家庭相同,可以用代表性家庭来表示.家庭与生产II● 假定家庭的储蓄率外生● 所有厂商具有相同的生产函数,可以用代表性厂商表示.● 对该经济中的唯一最终产品,生产函数为(1)Y T F K t L t A t()[(),(),()]●假定资本与最终产品相同(比如玉米),用于生产更多的产品.●()A t可以理解为技术.●主要假定: 技术是免费的; 具有非竞争性与非排他性.关键假设1Assumption 1 (连续性, 可微性, 边际产出为正且递减, 规模报酬不变) 生产函数3:F R R ++→ 关于 K 与 L 二阶连续可微, 且满足2222()()(,,)0 (,,)0()()(,,)0 (,,)0K L KK LL F F F K L A F K L A K L F F F K L A F K L A K L ∂⋅∂⋅≡>≡>∂∂∂⋅∂⋅≡<≡<∂∂ 同时, F 关于K 与 L 规模报酬不变.● 假定 F 关于K 与 L 规模报酬不变,即关于这两个变量线性齐次.复习定义 假定K 为整数,如果对任意的R λ+∈与K z R ∈,有(,,)(,,)m g x y z g x y z λλλ=,那么函数2:K g R R ++→为x R ∈与y R ∈的m 次齐次函数.定理 (欧拉定理Euler 's Theorem ) 假定函数2:K g R R ++→为x R ∈与y R ∈的m 次齐次函数,偏导数分别是x g 与y g ,那么对任意的x R ∈,y R ∈以及K z R ∈,有()()(),, ,,,,x y mg x y z g x y z x g x y z y =+同时,,(),x g x y z 与,(),y g x y z 是关于x 与y 的1m -次齐次式.市场结构与市场出清 I●假定市场是竞争的, 因此也可认为是竞争一般均衡模型. ●家庭拥有劳动, 供给无弹性.●经济中的劳动(力),)L t , 无论在什么价格下,劳动的供给量均为()L t .●劳动力市场出清条件:())L t L t =上式对所有的t 均成立 , ()L t 劳动需求 (也可视为就业水平). ●一般来说, 互补松弛条件的表述更为准确.●记 t 时期的工资率为 w (t), 于是劳动力市场出清条件可表示为()()),0(L t L t w t ≤≥ and (()()) (0)L t L t w t =-市场结构与市场出清II●假设 1 与竞争的劳动力市场意味着工资率必须严格为正. ●家庭拥有资本,并将其出租给厂商.●记t 期的资本租赁价格()R t .●资本市场出清条件:()()s d K t K t =LHS-家庭的行为决定;RHS-厂商的行为决定●假定家庭拥有的初始资本存量为()0K●()P t 为t 时期最终产品的价格, 将其标准化为1.●利率r(t)●折旧率δ●家庭得到的实际回报()() r t R t δ=-.厂商优化厂商优化 I●考虑代表性厂商的最大化问题:0)0,()([()()()],()()()(),.L t K t max F K t L t A t w t L t R t K t ≥≥--●注意:●上述最大化问题中的变量是总量.●在F 前面没有系数, 这是因为最终产品的价格已正规化为1.●假定要素市场完全竞争: 在厂商看来,()w t 与()R t 是给定的.●凹的问题,因为F 是凹的.厂商优化 II●由于 F 可微, 一阶条件(FOC )为:()[()()()],,,L w t F K t L t A t = (2)()[()()()] ,.,K R t F K t L t A t = (3)●在(2) 与(3)中, ()K t 与()L t 分别表示厂商对资本和劳动的需求量.●实际上,可以通过(2)与(3)求解()K t 与 ()L t ,它们是资本租赁价格()R t 和工资率()w t 的函数.厂商优化 III命题 假定假设1成立,那么均衡时厂商的利润为0,()()( )()() .Y t w t L t R t K t =+●证明: 可直接从欧拉定理得到(注意到1m =,即规模报酬不变).关键假设2假设2 (Inada conditions) F 满足 Inada 条件0 0 0 ()() K K K K lim F and lim F for all L all A →→∞⋅=∞⋅=> 00 0 ()() L L L L lim F and lim F for all L all A →→∞⋅=∞⋅=> ●保证内点解.生产函数Figure: Production functions and the marginal product of capital. The example in Panel A satisfies the Inada conditions in Assumption 2, while the example in Panel B does not.2 离散时间Solow 模型Solow模型的动态过程描述 I●K的折旧率为 , 于是1 1()((() ),)K t K t I t δ+=-+ (4) 其中, ()I t 是t 阶段的投资.●对于封闭经济, 产出等于消费与储蓄(投资)之和 ,()()()Y t C t I t =+ (5) ●注意,该模型没有家庭效用的最大化问题,因此此处难以讨论社会福利等方面的话题.Solow 模型的动态过程描述II●由于经济是封闭的 (同时不考虑政府支出),于是.()()()()S t I t Y t C t ==-●假定家庭的储蓄率是常数,则()(),S t sY t =(6) 1()()()C t s Y t =-(7) ●于是资本供给(家庭的行为决定储蓄率s )可表示为()()( 1 1 )()()()().s K t K t S t K t sY t δδ=-+=-+Solow 模型的动态过程描述 III●资本的供求相等 ()().s K t K t =●同时也有劳动力市场供求相等 ()().L t L t =●结合 (1) 与 (4), 可得 Solow 增长模型的动态方程: ()[()()1 ,, 1.()]()()K t sF K t L t A t K t δ+=+- (8) ●非线性差分方程.●Solow 增长模型的均衡由该方程以及 ()(())()L t or L t and A t 来刻画.定义均衡 I●没有家庭优化, 但仍然有厂商最大化行为以及要素市场的出清.定义 在Solow 模型中,对于给定的序列 {}0()(),t L t A t ∞= 以及初始资本存量()0K , {}0,,,()()()(,)()t K t Y t C t w t R t ∞=是资本、产出、消费、工资率、租赁价格的均衡路径,其中()K t 满足 (8), ()Y t 由(1)给出, ()C t 由 (7)给出, ()w t 与 ()R t 分别由 (2) 与 (3)给出.●注意,均衡是沿着时间的整条路径,而不是静态的点.不考虑人口增长与技术进步时的均衡不考虑人口增长与技术进步时的均衡I●进一步假定(稍后放松假定):●没有人口增长;假定总人口为常数 L > 0, 即() L t L =. ●假定没有技术进步,即() A t A =.●定义资本-劳动比率(人均资本)为 ((,))K t k t L ≡(9)●利用规模报酬不变, 人均产出) ()(/y t Y t L ≡可表示为,1, ()()(() ).K t y t F A L f k t ⎡⎤=⎢⎥⎣⎦≡ (10)不考虑人口增长与技术进步时的均衡 II ●注意()f k 依赖于A, 本可以将生产函数写成,()f k A ;但由于A 是常数,因此可以假定 A = 1.●由欧拉定理0 ()(())()(())()(())0.R t f k t w t f k t k t f k t -'=>'=> (11) ●由假设1可知(11)中的要素价格均为正.例子: Cobb-Douglas 生产函数 I●一类特殊的生产函数,但应用很广泛:1()[()()()]()( ,,,01)Y t F K t L t A t AK t L t ααα-==<<●满足假设1和 2.●两边同时除以()L t ,()() y t Ak t α=●由 (11)可得(1)()()()()Ak t R t Ak t k t ααα--∂==∂ ●由欧拉定理,()()() 1.()()()w t y t R t k t Ak t αα==--例子: Cobb ‐Douglas 生产函数II●或者直接从 Cobb-Douglas 生产函数有,()111()()() () ,R t AK t L t Ak t ααααα----==()()()()()()1 1 ,w t AK t L t A t k ααααα-=-=-直接可验证满足欧拉定理.不考虑人口增长与技术进步时的均衡 不考虑人口增长与技术进步时的均衡I●将 (8)的两端同时除以 L 可得人均量的表达式:()(()1 1).)(()k t sf k t k t δ+=+- (12) 定义 稳态均衡(steady-state equilibrium )* ()k t k =.该经济将趋于该稳态均衡(但在有限时间不能到达).稳态人均资本不考虑人口增长与技术进步时的均衡 II●上图实线代表 (12),虚线是45 线.●它们的(正的)交点*k 表示稳态人均资本 **.()f k k s δ=(13)●注意到还有另一交点0k =,因为已经假定0(0)f =.●忽略该稳态值:●如果资本不是必不可少的(essential ), ()0f 可能大于0 0k =可能变为稳态均衡点●本交点,即使存在,也不稳定。

索洛增长模型

索洛增长模型

在A点的左边,sy曲线比(n+g+δ)k
线高,这表明储蓄高于资本广化的需 要,会导致人均资本k的提高,从而使 产出增加,k会不断向kA靠近,直到最 终用于资本广化的储蓄等于全部储蓄, 而人均占有的资本数量保持不变,经 济增长达到稳定状态。 在A点的右边,情况完全相反。
当经济处于资本深化阶段时,产出的增长
y
人均产出和增长率随时间变化的轨迹
y00 gFra bibliotekt0t1
t
0
t
上图的上半部分显示了人均产出水平
的时间路径。储蓄率的提高增加了人 均资本占有量从而人均产量提高,直 到达到新的稳定状态。 下半部分则显示了人均产量增长率的 时间路径。储蓄率的增加会导致资本 积累,实现人均产量水平的暂时性较 高增长,但是随着资本积累,人均产 量的增长率最终会回落到人口增长率 水平。




由于K / AL k , L/ L n, A/ A g , K sY (t ) K (t ),则, sY (t ) K (t ) Y (t ) k (t ) k (t )n k (t ) g s k (t ) nk(t ) gk(t ) A(t ) L(t ) A(t ) L(t ) 应用Y / AL f (k ), 有 k (t ) sf (k (t )) (n g )k (t )
索罗模型的定量含义
前面我们对储蓄率变动 对增长产生的水平影响 的解释如果成立,取决 于经济体系从前一个均 衡增长向后一个均衡增 长路径收敛的速度,如 果 需要上百年的时间才能 最终收敛,那么这种水 平 效应的认识就毫无意义 。下面我们将对这一过 程 作定量化分析。
储蓄率上升对产量的影 响

索洛-斯旺增长模型

索洛-斯旺增长模型
索洛-斯旺模型可以用来预测一个国家或地区的经济增长率,通过 分析各种生产要素的贡献程度,评估经济增长的潜力。
比较不同国家或地区的发展水平
通过比较不同国家或地区之间索洛-斯旺模型的参数,可以评估各 国或地区的发展水平和发展阶段。
制定经济发展战略
根据索洛-斯旺模型的结论,政府可以制定针对性的经济发展战略, 优化资源配置,促进经济的持续增长。
引入动态分析,考虑技术进步和资本积累的相互作用;引入制度因素, 分析其对经济增长的影响;考虑非线性生产函数的可能性。
模型的发展方向与未来研究展望
发展方向
将模型与其他经济理论相结合,如内 生增长理论、人力资本理论等,以更 全面地解释经济增长现象。
未来研究展望
探索模型在发展中国家和发达国家的应用, 比较不同国家经济增长的异同;研究全球化 、技术创新等对经济增长的影响;进一步深 化对经济增长机制和动力的理解。
模型的基本假设
假设经济中只存在两种生产要 素:资本和劳动,且资本和劳
动之间可以相互替代。
假设生产函数是规模收益不变 的,即增加投入并不能带来更
大的产出。
假设经济中不存在技术进步和 资本折旧,即经济增长只取决 于资本和劳动的投入。
假设经济中的储蓄率、人口增 长率和技术进步率是外生给定 的,即不受经济系统内部因素 的影响。
06 结论
对索洛-斯旺增长模型的综合评价
01
贡献
索洛-斯旺增长模型为经济增长研究提供了重要的理论基础,它揭示了
资本、劳动和技术进步对经济增长的贡献,并解释了经济增长的源泉。
02
局限性
然而,该模型也存在一些局限性,例如假设条件过于严格,忽略了许多
现实世界中的复杂因素,如经济政策、市场失灵、资源限制等。

《索洛模型详解》课件

《索洛模型详解》课件
详细描述
企业可以利用索洛模型分析其战略对资本、劳动力和技术进步的影响,了解其经济增长 的源泉和潜力。这有助于企业制定更加科学和有效的战略,提高其竞争力和盈利能力。 同时,企业还可以通过索洛模型评估竞争对手的战略对经济增长的影响,从而调整自身
的竞争策略。
05
结论与展望
索洛模型的意义与价值
索洛模型是经济增长理论的重要基石,为理解经济 增长提供了重要的理论框架。
《索洛模型详解》ppt课件

CONTENCT

• 索洛模型简介 • 索洛模型的主要内容 • 索洛模型的扩展与改进 • 索洛模型的应用 • 结论与展望
01
索洛模型简介
索洛模型的背景
02
01
03
经济增长是各国政府和学术界关注的重点问题
索洛模型是研究经济增长的重要理论工具之一
索洛模型通过对经济增长的内在机制进行解释,为政 策制定提供理论支持
人口增长对资源环境的影响
人口增长会导致资源消耗增加,环境压力增大,从 而对经济增长产生负面影响。
人口增长对经济发展的影 响
在某些情况下,人口增长可以促进经济增长 ,例如通过增加劳动力供给和提高消费需求 等方式。
04
索洛模型的应用
索洛模型在经济增长预测中的应用
总结词
通过索洛模型,可以预测一个国家或地区的经济增长趋势,分析 经济增长的源泉和潜在动力。
技术进步的来源
技术进步可以来源于企业自主研发、外部技术引进、教育培训和市场竞 争等。
03
技术进步对经济增长的影响
技术进步可以促进经济增长,提高生产效率和产品质量,推动产业升级
和转型。
索洛模型与教育投资
教育投资
01
教育投资是促进人力资本积累和提升的重要途径,对经济增长

索洛增长模型及稳定详解

索洛增长模型及稳定详解

模型假设模型假设:1、该模型假设储蓄全部转化为投资,即储蓄-投资转化率假设为1;2、该模型假设投资的边际收益率递减,即投资的规模收益是常数;3、该模型修正了哈罗德-多马模型的生产技术假设,采用了资本和劳动可替代的新古典科布-道格拉斯生产函数,从而解决了哈罗德-多马模型中经济增长率与人口增长率不能自发相等的问题。

该模型假设储蓄全部转化为投资,即储蓄-投资转化率假设为1; 该模型假设投资的边际收益率递减,即投资的规模收益是常数; 该模型修正了哈罗德-多马模型的生产技术假设,采用了资本和劳动可替代的新古典科布-道格拉斯生产函数,从而解决了哈罗德-多马模型中经济增长率与人口增长率不能自发相等的问题。

因为在科布-道格拉斯生产函数中,劳动数量既定,随资本存量的增加,资本的边际收益递减规律确保经济增长稳定在一个特定值上。

该模型没有投资的预期,因此回避了有保证的经济增长率与实际经济增长率之间的不稳定,就此可得出结论:经济稳定增长。

编辑本段模型变量外生变量:储蓄率、人口增长率、技术进步率内生变量:投资模型的数学表达其中,K--资本;L--劳动;A--技术发展水平;I--毛投资;S--储蓄;k--有效劳动投入之上的资本密度;s--边际储蓄率;n--人口增长率;g--技术进步率;δ--资本折旧率;y--有效劳动投入之上的人均国内生产总值。

索洛增长模型的假设{①生产和供给方面:Y=F(K,L),劳动和资本可以平滑替代,规模报酬不变,稻田条件(公式),在生产函数两边同除以L--y=F(k,1)=f(k),所有符号均代表人均产量;需求方面:y=c+i,c=(1-s)y,y=(1-s)y+i,i=sy=s f(k)},资本存量的变化{△k=i-δk= s f(k)-δk},投资、折旧和资本存量的"稳态"(图,储蓄率对稳态的影响,资本积累能提高产出水平,但是无法实现经济持续增长,"黄金律水平"{c*=f(k*)-δk*,条件:MPK=δ},一个经济肯定会自动收敛于一个稳定状态,但并不会自动收敛到一个"黄金律水平"的稳定状态编辑本段模型结论经济增长的路径是稳定的编辑本段模型评价在索罗模型中,较高的储蓄导致较快的经济增长,但是,这只是暂时的。

索洛增长模型及稳定详解

索洛增长模型及稳定详解

模型假设模型假设:1、该模型假设储蓄全部转化为投资,即储蓄-投资转化率假设为1;2、该模型假设投资的边际收益率递减,即投资的规模收益是常数;3、该模型修正了哈罗德-多马模型的生产技术假设,采用了资本和劳动可替代的新古典科布-道格拉斯生产函数,从而解决了哈罗德-多马模型中经济增长率与人口增长率不能自发相等的问题。

该模型假设储蓄全部转化为投资,即储蓄-投资转化率假设为1; 该模型假设投资的边际收益率递减,即投资的规模收益是常数; 该模型修正了哈罗德-多马模型的生产技术假设,采用了资本和劳动可替代的新古典科布-道格拉斯生产函数,从而解决了哈罗德-多马模型中经济增长率与人口增长率不能自发相等的问题。

因为在科布-道格拉斯生产函数中,劳动数量既定,随资本存量的增加,资本的边际收益递减规律确保经济增长稳定在一个特定值上。

该模型没有投资的预期,因此回避了有保证的经济增长率与实际经济增长率之间的不稳定,就此可得出结论:经济稳定增长。

编辑本段模型变量外生变量:储蓄率、人口增长率、技术进步率内生变量:投资模型的数学表达其中,K--资本;L--劳动;A--技术发展水平;I--毛投资;S--储蓄;k--有效劳动投入之上的资本密度;s--边际储蓄率;n--人口增长率;g--技术进步率;δ--资本折旧率;y--有效劳动投入之上的人均国内生产总值。

索洛增长模型的假设{①生产和供给方面:Y=F(K,L),劳动和资本可以平滑替代,规模报酬不变,稻田条件(公式),在生产函数两边同除以L--y=F(k,1)=f(k),所有符号均代表人均产量;需求方面:y=c+i,c=(1-s)y,y=(1-s)y+i,i=sy=s f(k)},资本存量的变化{△k=i-δk= s f(k)-δk},投资、折旧和资本存量的"稳态"(图,储蓄率对稳态的影响,资本积累能提高产出水平,但是无法实现经济持续增长,"黄金律水平"{c*=f(k*)-δk*,条件:MPK=δ},一个经济肯定会自动收敛于一个稳定状态,但并不会自动收敛到一个"黄金律水平"的稳定状态编辑本段模型结论经济增长的路径是稳定的编辑本段模型评价在索罗模型中,较高的储蓄导致较快的经济增长,但是,这只是暂时的。

索罗增长模型

索罗增长模型

第一章索洛经济增长模型The Solow Growth Model基本内容1 索洛模型的基本假定2 离散时间的索洛模型3离散时间索洛模型的过渡过程4连续时间的索洛模型5连续时间索洛模型的过渡过程6持久增长7带技术进步的索洛模型8比较动态分析1 索洛模型的基本假定● 一个分析经济增长和各国收入差异的基本框架.● 其核心假定是新古典总的生产函数.家庭与生产 I● 封闭经济,唯一的最终产品.● 离散时间,t = 0, 1, 2, ....● 该经济里有众多的家庭,暂时假定家庭没有优化行为.● 这也是索罗模型与新古典增长模型的主要区别.● 为了简化,假定各个家庭相同,可以用代表性家庭来表示.家庭与生产II● 假定家庭的储蓄率外生● 所有厂商具有相同的生产函数,可以用代表性厂商表示.● 对该经济中的唯一最终产品,生产函数为(1)Y T F K t L t A t()[(),(),()]●假定资本与最终产品相同(比如玉米),用于生产更多的产品.●()A t可以理解为技术.●主要假定: 技术是免费的; 具有非竞争性与非排他性.关键假设1Assumption 1 (连续性, 可微性, 边际产出为正且递减, 规模报酬不变) 生产函数3:F R R ++→ 关于 K 与 L 二阶连续可微, 且满足2222()()(,,)0 (,,)0()()(,,)0 (,,)0K L KK LL F F F K L A F K L A K L F F F K L A F K L A K L ∂⋅∂⋅≡>≡>∂∂∂⋅∂⋅≡<≡<∂∂ 同时, F 关于K 与 L 规模报酬不变.● 假定 F 关于K 与 L 规模报酬不变,即关于这两个变量线性齐次.复习定义 假定K 为整数,如果对任意的R λ+∈与K z R ∈,有(,,)(,,)m g x y z g x y z λλλ=,那么函数2:K g R R ++→为x R ∈与y R ∈的m 次齐次函数.定理 (欧拉定理Euler 's Theorem ) 假定函数2:K g R R ++→为x R ∈与y R ∈的m 次齐次函数,偏导数分别是x g 与y g ,那么对任意的x R ∈,y R ∈以及K z R ∈,有()()(),, ,,,,x y mg x y z g x y z x g x y z y =+同时,,(),x g x y z 与,(),y g x y z 是关于x 与y 的1m -次齐次式.市场结构与市场出清 I●假定市场是竞争的, 因此也可认为是竞争一般均衡模型. ●家庭拥有劳动, 供给无弹性.●经济中的劳动(力),)L t , 无论在什么价格下,劳动的供给量均为()L t .●劳动力市场出清条件:())L t L t =上式对所有的t 均成立 , ()L t 劳动需求 (也可视为就业水平). ●一般来说, 互补松弛条件的表述更为准确.●记 t 时期的工资率为 w (t), 于是劳动力市场出清条件可表示为()()),0(L t L t w t ≤≥ and (()()) (0)L t L t w t =-市场结构与市场出清II●假设 1 与竞争的劳动力市场意味着工资率必须严格为正. ●家庭拥有资本,并将其出租给厂商.●记t 期的资本租赁价格()R t .●资本市场出清条件:()()s d K t K t =LHS-家庭的行为决定;RHS-厂商的行为决定●假定家庭拥有的初始资本存量为()0K●()P t 为t 时期最终产品的价格, 将其标准化为1.●利率r(t)●折旧率δ●家庭得到的实际回报()() r t R t δ=-.厂商优化厂商优化 I●考虑代表性厂商的最大化问题:0)0,()([()()()],()()()(),.L t K t max F K t L t A t w t L t R t K t ≥≥--●注意:●上述最大化问题中的变量是总量.●在F 前面没有系数, 这是因为最终产品的价格已正规化为1.●假定要素市场完全竞争: 在厂商看来,()w t 与()R t 是给定的.●凹的问题,因为F 是凹的.厂商优化 II●由于 F 可微, 一阶条件(FOC )为:()[()()()],,,L w t F K t L t A t = (2)()[()()()] ,.,K R t F K t L t A t = (3)●在(2) 与(3)中, ()K t 与()L t 分别表示厂商对资本和劳动的需求量.●实际上,可以通过(2)与(3)求解()K t 与 ()L t ,它们是资本租赁价格()R t 和工资率()w t 的函数.厂商优化 III命题 假定假设1成立,那么均衡时厂商的利润为0,()()( )()() .Y t w t L t R t K t =+●证明: 可直接从欧拉定理得到(注意到1m =,即规模报酬不变).关键假设2假设2 (Inada conditions) F 满足 Inada 条件0 0 0 ()() K K K K lim F and lim F for all L all A →→∞⋅=∞⋅=> 00 0 ()() L L L L lim F and lim F for all L all A →→∞⋅=∞⋅=> ●保证内点解.生产函数Figure: Production functions and the marginal product of capital. The example in Panel A satisfies the Inada conditions in Assumption 2, while the example in Panel B does not.2 离散时间Solow 模型Solow模型的动态过程描述 I●K的折旧率为 , 于是1 1()((() ),)K t K t I t δ+=-+ (4) 其中, ()I t 是t 阶段的投资.●对于封闭经济, 产出等于消费与储蓄(投资)之和 ,()()()Y t C t I t =+ (5) ●注意,该模型没有家庭效用的最大化问题,因此此处难以讨论社会福利等方面的话题.Solow 模型的动态过程描述II●由于经济是封闭的 (同时不考虑政府支出),于是.()()()()S t I t Y t C t ==-●假定家庭的储蓄率是常数,则()(),S t sY t =(6) 1()()()C t s Y t =-(7) ●于是资本供给(家庭的行为决定储蓄率s )可表示为()()( 1 1 )()()()().s K t K t S t K t sY t δδ=-+=-+Solow 模型的动态过程描述 III●资本的供求相等 ()().s K t K t =●同时也有劳动力市场供求相等 ()().L t L t =●结合 (1) 与 (4), 可得 Solow 增长模型的动态方程: ()[()()1 ,, 1.()]()()K t sF K t L t A t K t δ+=+- (8) ●非线性差分方程.●Solow 增长模型的均衡由该方程以及 ()(())()L t or L t and A t 来刻画.定义均衡 I●没有家庭优化, 但仍然有厂商最大化行为以及要素市场的出清.定义 在Solow 模型中,对于给定的序列 {}0()(),t L t A t ∞= 以及初始资本存量()0K , {}0,,,()()()(,)()t K t Y t C t w t R t ∞=是资本、产出、消费、工资率、租赁价格的均衡路径,其中()K t 满足 (8), ()Y t 由(1)给出, ()C t 由 (7)给出, ()w t 与 ()R t 分别由 (2) 与 (3)给出.●注意,均衡是沿着时间的整条路径,而不是静态的点.不考虑人口增长与技术进步时的均衡不考虑人口增长与技术进步时的均衡I●进一步假定(稍后放松假定):●没有人口增长;假定总人口为常数 L > 0, 即() L t L =. ●假定没有技术进步,即() A t A =.●定义资本-劳动比率(人均资本)为 ((,))K t k t L ≡(9)●利用规模报酬不变, 人均产出) ()(/y t Y t L ≡可表示为,1, ()()(() ).K t y t F A L f k t ⎡⎤=⎢⎥⎣⎦≡ (10)不考虑人口增长与技术进步时的均衡 II ●注意()f k 依赖于A, 本可以将生产函数写成,()f k A ;但由于A 是常数,因此可以假定 A = 1.●由欧拉定理0 ()(())()(())()(())0.R t f k t w t f k t k t f k t -'=>'=> (11) ●由假设1可知(11)中的要素价格均为正.例子: Cobb-Douglas 生产函数 I●一类特殊的生产函数,但应用很广泛:1()[()()()]()( ,,,01)Y t F K t L t A t AK t L t ααα-==<<●满足假设1和 2.●两边同时除以()L t ,()() y t Ak t α=●由 (11)可得(1)()()()()Ak t R t Ak t k t ααα--∂==∂ ●由欧拉定理,()()() 1.()()()w t y t R t k t Ak t αα==--例子: Cobb ‐Douglas 生产函数II●或者直接从 Cobb-Douglas 生产函数有,()111()()() () ,R t AK t L t Ak t ααααα----==()()()()()()1 1 ,w t AK t L t A t k ααααα-=-=-直接可验证满足欧拉定理.不考虑人口增长与技术进步时的均衡 不考虑人口增长与技术进步时的均衡I●将 (8)的两端同时除以 L 可得人均量的表达式:()(()1 1).)(()k t sf k t k t δ+=+- (12) 定义 稳态均衡(steady-state equilibrium )* ()k t k =.该经济将趋于该稳态均衡(但在有限时间不能到达).稳态人均资本不考虑人口增长与技术进步时的均衡 II●上图实线代表 (12),虚线是45 线.●它们的(正的)交点*k 表示稳态人均资本 **.()f k k s δ=(13)●注意到还有另一交点0k =,因为已经假定0(0)f =.●忽略该稳态值:●如果资本不是必不可少的(essential ), ()0f 可能大于0 0k =可能变为稳态均衡点●本交点,即使存在,也不稳定。

索洛增长模型

索洛增长模型

0
大道定理
在索洛经济中,存在惟一的一条稳态增长道路。不 论经济从哪种初始资本水平启动,经济总是朝着这 条稳态增长道路不断靠近。一旦在某个时刻登上这 条道路,那么从这个时刻开始,经济中的有效人均 资本水平、有效人均产出水平和资本的边际收益都 将永远保持不变,总产出、总资本和有效劳动将以 同样的增长率保持稳定增长,人均产出将与技术进 步(知识)以同样的增长率保持稳定增长。
他们把H-D模型提出的经济增长途径称为“刃锋”。 Solow模型就是要通过改变资本-产量比来解决这一
“刃锋”,并且考虑技术进步对经济增长的作用。
索洛模型
(一)模型的基本假定 (二)模型的动态学 (三)参数变化的影响 (四)收敛问题 (五)模型的主要结论
(一)模型的基本假定
1.关于生产函数的假定
则可得到:
Lt L0ent At A0e gt
指数增长
假设时间t是连续的(非离散的)

(1)劳动力的增长:

L(t)
/
L(t
)

[dL(t
)
/
dt]
/
L(t
)

n
(2)知识的增长:

A(t) / A(t) [dA(t) / dt] / A(t) g
其中n为人口增长率,g为技术进步率,均为 外生参数,表示不变增长速度
(二)模型的动态学
索洛模型的核心公式:
kt sf kt n g kt
单位有效劳动的资本存量的变化等于两项之 差:
sf k :单位有效劳动的平均投资
n g kt :持平投资,使k保持现有水平所
必需的投资
经济解释

part5 索洛增长模型知识讲解

part5 索洛增长模型知识讲解

①f(0)=0,f’(k)>0,f’’(k)<0
资本的边际产出: M K P F ( K K ,A ) L A (K K L /A f) L f(k )
由规模报酬 F ( K ,A ) A L F ( K L /A , 1 ) L A f( K L /A )
不变可得到
② f(k)满足稻田条件
曲线的斜率即为资本的 边际产出。递减的斜率 反映了递减的资本边际 报酬。
0
k
新古典生产函数
柯布-道格拉斯生产函数是规模报酬不变的,
F(K ,A L)K (A L)1 其密集形式为: f (k) k ,满足f(k)的所有假定。
2020/8/13
7
3、生产投入的变化
资本、劳动和知识的存量随时间的变化而变化。
久性地影响;储蓄率的显著变化对平衡增长路径上的产
出变化只有较小的影响,且作用缓慢。
2020/8/13
25
八、对索洛模型的评论
索洛模型的若干例证
世界及主要发达国家和发展中国家的投资率 一些经济体资本对经济增长的贡献
若干国家科技进步对经济增长的贡献度 世界主要国家(地区)经济增长方式
2020/8/13
长期经济增长中的“70”规则(见WORD文件)
2020/8/13
21
假设 n g 6% ,K =1/3,则 4%(表示 k 和 y 向 k*和
y*每年移动剩余距离的 4%),因此走完平衡增长路径距离的一半约需 18 年时间。
因此,当储蓄率增加 10%时,人均产出长期内仅变化 5%。第 1 年增长 0.04(5%)=0.2%,18 年后增长 0.5(5%)=2.5%。
别消失。
条件收敛:一个经济离其自身的稳态值越远,增 长越快。

索洛模型

索洛模型
5
(一)模型的基本假定
规模报酬不变
FcK,cL cFK, L c 0
这意味着:
a 经济规模足够大(专业化收益已被穷尽); b 其他因素,如自然资源等不重要。
6
(一)模型的基本假定
根据规模报酬不变假设,可以将生产函数写成密集
形式: F K ,1 1 FK, AL
AL AL
y f k

Y FK K FAL AL
其中 FK 是资本的边际生产力,FAL 是有效劳动的边 际生产力。由于资本与有效劳动以同样的增长率n g
在增长,所以:
K(t) (n g)K(t)

(AL)(t) (n g)A(t)L(t)
26
Y的增长率
从以上可推导:
总产出的增长率也是 n g
27
23
(二)模型的动态学
k=k*时各变量比例的变动: Y / K:不变; Y / L:以速率g增长; K / L:以速率g增长。
24
证明
k的增长率:
k(t) K(t) L(t) A(t) K(t)
(n g)
k(t) K (t) L(t) A(t) K (t)
25
Y的增长率
规模报酬不变之假设。这一假设说明了总产出是按 照资本和有效劳动的边际生产力来分配的:
k k k*
n
g
k *
f k *
f
k *
n
g
K k * 1n g
51
收敛速度:定量分析
k
kk
k
k
k*
k
k
*
K k * 1n g k k *
1 K k * n g k k *
定义xt kt k *

经济增长——索洛模型

经济增长——索洛模型

消费的最大化表现为一阶导数为0。
dc / dk = df / dk–(n+δ)= 0 于是有:MPk= n+δ
因此,资本的边际产出等于人口增长率加上折 旧率就是消费最大化的基本条件。
2014-12-13 中国矿业大学管理学院 徐建博 15
资本积累的黄金律水平
y (n+δ)k
f(k)
Cg*
0
2014-12-13
2014-12-13 中国矿业大学管理学院 徐建博 22
全部课程结束,预祝大家考试顺利, 2014-12-13 中国矿业大学管理学院 徐建博 暑假愉快!
23
sf(k’)
0
2014-12-13
k’*
中国矿业大学管理学院 徐建博
k
21
(三) 技术进步对经济增长的影响

引入技术进步后,虽然在稳定状态有效
劳动的平均资本和平均产出都不变,但人
均产出 Y/L=y’×A 和总产出 Y=y’×A×L
却分别以g和n+g的速度增长。

索罗模型表明技术进步是一个经济长
期持续增长的源泉。
由于规模报酬不变,即λY= F(λK,λL)
令λ=1/L,得Y/L= F(K/L,1)
用y=Y/L代表人均产出,k=K/L代表人均资本存 量,得:y=F(k,1)= f(k)
即人均产出只与人均资本有关。
2014-12-13 中国矿业大学管理学院 徐建博 3
y
f(k)0Βιβλιοθήκη k人均生产函数示意图
2014-12-13 中国矿业大学管理学院 徐建博 4
kg*
中国矿业大学管理学院 徐建博
k
16
通过储蓄率选择黄金律稳态
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外生且既定,资本折旧率为δ。 资本变化=投资-折旧。
2020/8/2
8
三、模型的动态学
1、k的动态学
单位有效劳动资本存量的变化:
在k=K/AL 两端分别对t求导,再利用f(k) =Y/AL,可得:
k (t) s(k f (t) ( )n g )k (t)索洛模型的关键方程
每单位有效劳 动的实际投资
11
3、稳态时的增长:平衡增长
在稳态,k收敛于k*,单位有效劳动的产出也不变: y*f(k*)
根据单位有效 y*Y/A LYy*AL
工人产出的定 义可以计算出
lY n ly n * lA n lL n
总速资产 度本出 :增的长增率长k* K Y Y/A L LL K A A k * nA gL KK n g
消费C=(1-s)Y,因此,消费和产出具有相同
的增长率,等于n+g。
同理可以计算出人均产出Y/L、人均资本K/L和人 均消费C/L具有相同的增长率:g。 型意味着,无 论起点在何处, 经济总会收敛
于一个平衡增 长路径:模型
中的每个变量 都以一个不变 的速率增长。 人均产出增长 率仅决定于技 术进步率。
索洛增长模型
一、索洛模型简评 二、索洛模型的假设 三、模型的动态学 四、储蓄率变化的影响 五、收敛速度 六、绝对收敛与条件收敛 七、增长因素分析法 八、对索洛模型的评论
2020/8/2
1
一、索洛模型简评
索洛模型是对所有有关增长的分析的起点。 索洛模型的主要结论:
长期人均产出惟一来源于技术进步; 实物资本的积累既不能解释不同时间上人均产出的 巨大增长,也无法解释地域上不同人均产出的巨大 差距。 主要缺陷: 模型把收入差异的其他潜在来源或者当作外生,因 而无法用模型解释(如技术进步);或者当作不存 在(如资本产生正的外部性)。
f(k)
k0
在A点,实际投资与
(n+g+δ)k
持平投资相等,资本
存量不变,经济达到
f(k)
稳态:单位有效劳动
sf(k)
的资本、产出、消费 (k*,y*,c*)固定不变。
A
c*=f(k*)-sf(k*)
=f(k*)-(n+g+δ)k*
k*
k
索洛模型
2020/8/2
10
索洛模型中k的相图
2020/8/2
lim f '( k )
k0
lim f '( k ) 0
k
满足(1)(2)条件的生产函数被称为新古典生产函数。 因此,索洛增长模型又被称为新古典增长模型。
2020/8/2
6
稻田条件意味着,在资本存量
f(k)
充分小时资本的边际产出十分
大,当资本存量很大时,其会
变得很小。其作用在于确保经
济的路径不发散。
持平投资:为 保持k在现有水 平所必须进行 的投资。
k(t)0 k增加 k(t)0 k下降 k(t) 0 k不变
2020/8/2 两变量之积的增长率等于两变量增长率之和;
9
两变量之比的增长率等于两变量增长率之差。
2、稳态
单位有效劳动资
本存量的变化:
k ( t) s( k f ( t) ( ) n g ) k ( t)
瞬时增长率的定义:
劳动增长 率为n:
L (t ) n L (t )
gxdx/xd t x xdd lnxt
t时劳动力: L(t)L(0)ent
技术进步 A (t ) g t时技术存量: A(t)A(0)egt
率为g: A(t )
产出在消费和投资之间分割,
那么储蓄等于投资。储蓄率s为 K (t) s(Y t)K (t)
①f(0)=0,f’(k)>0,f’’(k)<0
资本的边际产出: M K P F ( K K ,A ) L A (K K L /A f) L f(k )
由规模报酬 F ( K ,A ) A L F ( K L /A , 1 ) L A f( K L /A )
不变可得到
② f(k)满足稻田条件
s2f(k) 储蓄率的变化只会暂时而不会永久
s1f(k) 地影响增长率。或者说,储蓄率的
变化只有水平效应,而无增长效应。
只有技术进步率的变化有增长效应。
k1* k2*
k
储蓄率上升意味着更多资 源用于投资,实际投资线 上移。导致实际投资大于 持平投资,因此,k持续上 升到新的稳态值(不是立
政策含义:投入驱动的增长不会持 续。 2、对消费的影响 c=f(k)(1-s),储蓄率上升 ,使消费 先降后升。
相 y(Y/AL) 有效劳动的人均产出
0
y=f(k)=Y/AL
对 Y/L 人均产出
g
量 c(Y/AL) 有效劳动的人均消费
0
c=(1-s)f(k)
C/L 人均消费
g
K/Y 资本产出比
0
2020/8/2
13
四、储蓄率变化的影响
(一)短期影响
f(k)
y2* y1*
1、对产出的影响
f(k)
(n+g+δ)k 由y=Y/AL=f(k)得:Y/L=Af(k)
2020/8/2
2
以后所介绍的增长模型都有相同的一般均衡 结构:
家庭拥有经济中的所有投入和资产,家庭自 主决策。 企业雇佣投入品进行生产。
家庭出售投入品,企业出售产品,形成市场。
2020/8/2
3
2、关于生产函数的假设
(1)关键假设:规模报酬不变
F(nK,nAL)=nF(K,AL)
隐含两个假定:①经济足够大,从专业化中可 得的收益已被穷尽;②资本、劳动和知识以外 的投入品相对不重要。
由规模报酬不变假设可得到生产函数的密集形 式:
y=f(k) y=Y/AL,单位有效劳动的产出 k=K/AL ,单位有效劳动的资本
令n=1/AL,F(K/AL,1)=(1/AL)F(K,AL)
即F(k,1)=Y/AL=y,定义f(k)= F(k,1)
2020/8/2
5
(2)关于密集形式生产函数的假定
12
当 k=k*时,模型中的各个变量将如何变动?
变量
含义
平衡增长速度
备注证明
K 资本存量
n+g
k=K/AL

L 劳动力
n

A 知识或技术
g

AL 有效劳动
n+g
Y 总产出
n+g
F(cK,cAL)=cF(K,AL)
C 总消费
n+g
C=(1-s)Y
k(Y/AL) 有效劳动的平均资本
0
K/L 人均资本
g
曲线的斜率即为资本的 边际产出。递减的斜率 反映了递减的资本边际 报酬。
0
k
新古典生产函数
柯布-道格拉斯生产函数是规模报酬不变的,
F(K ,A L)K (A L)1 其密集形式为: f (k) k ,满足f(k)的所有假定。
2020/8/2
7
3、生产投入的变化
资本、劳动和知识的存量随时间的变化而变化。
相关文档
最新文档