南京简介(图文)
南京夫子庙导游词简介
![南京夫子庙导游词简介](https://img.taocdn.com/s3/m/fa71c074a88271fe910ef12d2af90242a895abc9.png)
南京夫子庙导游词简介夫子庙建筑布局中有许多中国之最。
如象征南京母亲河—秦淮河的长达110米的高大照壁,是全国最大的;泮池是以天然河道秦淮河的一段改作的,是所有孔庙中独一无二的。
由此可知,秦淮河在夫子庙的历史演变过程中的影响是非常重要的。
接下来是小编为大家整理的关于南京夫子庙导游词,方便大家阅读与鉴赏!南京夫子庙导游词1游完学宫,向东过贡院西街走数十米,就是江南贡院。
利用这一段时间,我给大家介绍一下夫子庙的其他情况。
夫子庙地区除了夫子庙自身建筑之外,还有更为引人注目的民风民俗、特色市场和风味小吃。
其一,南京人向有过灯节的习俗,六朝时期佛兴灯旺,作为帝王之都的南京,每至元宵节,灯火满市井,为全国之冠。
明朝时放灯时间延长,正月初八为上灯节。
十八日为落灯节,是我国历史上为时最长的灯节,那时南京人几乎“家家走桥,人人看灯”,由此,延至清代以及近代,南京灯节都极为隆重,以夫子庙地区为最盛。
建国以后,夫子庙灯会在政府的支持和组织下,每年的正月,夫子庙的大街小巷、店堂铺面、河房屋顶都挂满了各式各样的彩灯,前来观赏的人群络绎不绝,熙熙攘攘,煞是壮观,其规模之大、延续时间之长、灯彩式样之多,在全国同类灯会中均名列前茅。
其二,夫子庙除了它的文化特色外,其商业文化也比较发达,首先是夫子庙建筑群两侧的东、西二市就以其丰富的工艺美术晶、古玩、字画及其他文化用品交易而显示出文化的商业性价值,其次在夫子庙还有小商品市场、花鸟虫鱼市场和古玩、珍藏品交易市场,体现了南京人的一种闲适心态和文化品位。
夫子庙已成为现代商品云集的商业中心区之一。
其三,夫子庙还是南京四时茶食的发源地,随着各种节令的更替和食俗的形成,夫子庙秦淮小吃因时更新,各种茶食店铺,摊贩小吃,应有尽有,成为我国东南地区历史最久、最独具特色的饮食文化旅游区。
从泮池文德桥至文源桥方圆百米左右的市面,风味饮食店就有数十家之多。
可谓咸甜荤素风味迥异;东西南北各有千秋。
最著名的店面有百年老店永和园、六凤居、老正兴、奇芳阁、蒋有记等,风味名点和小吃有数百种,极大地强化了夫子庙的区域性特征。
【最新】南京印象南京介绍PPT模板4模板(获奖作品)图文
![【最新】南京印象南京介绍PPT模板4模板(获奖作品)图文](https://img.taocdn.com/s3/m/86d6ea339a6648d7c1c708a1284ac850ad02040c.png)
城在江上,江在城中
干净整洁的道路随处可见的法国梧桐家家户户门口的花
高速发展的南京
在举办青奥会后,更加提速向前
未来南京将迎来新的历史
机遇
挺拔雄伟
南京市树——雪松
品格刚毅
遥知非雪
为有暗香
南京市树——梅花
南京印象
南京有三怪
周末下雨特别快
老头怕老太
鸭子卖的比鸡快
智慧方便逛南京一张智汇金陵通
百年树人史
蓝史,国际都市。
初阳撒地,晨访
明孝陵
霜叶红如火
饱览金陵十月秋
畅游书海
文艺南京最先锋
江南女儿争采莲,
莲花落尽红不妍。
夜渡秦淮河
酒家岸边落
微风桥上过
江河很气魄
贡院育英才
孔庙旁边坐
辛亥革命史
大府这边落
犹若民国史
一眼望穿各
日寇犯中华,
于此铸大错。
罪行列不尽,
暴行数太多。
三民画宏图
国父眠于这
南京江北新区(NJJBa)控制性详细规划-精选课件.ppt
![南京江北新区(NJJBa)控制性详细规划-精选课件.ppt](https://img.taocdn.com/s3/m/7ebe5d6fa8114431b80dd82d.png)
规划结构图 土地利用规划图
公共服务设施规划 规划公共管理与公共服务
设 施 用 地 面 积 为 162.93 公 顷 , 占城市建设用地的比例为8.89%。 商 业 服 务 业 设 施 用 地 294.53 公 顷,占城市建设用地的比例为 16.07%。
公共服务设施规划图
绿地系统规划 规划以滁河、八百河滨河
本规划的重点是落实并完善上位规划所确立的发展目标,整合本地区 相关规划成果,落实上位规划相关要求,为城市规划实施提供管理依据, 并为编制下层次规划提供技术依据。
该成果于2017年3月16日正式获得市政府批复实施。
地 址:南京市鼓楼区华侨路高家酒馆15号 邮 编:210029 网 址: 咨询电话:86495514
占总用地比例的86.48%。其中,规划居住用地占规划城市建设用地的 26.51%,公共管理与公共服务设施用地占8.89%,商业服务业设施用地 占16.07%,工业用地占1.32%,物流仓储用地占0.44%,绿地与广场用地 占25.67%,其他为道路与交通设施和公用设施用地;规划非建设用地面积 约为122.12公顷,为水域。
廊。该绿色回廊串联起各大功能片区。 五大功能区域:分别是雄州东路和新篁河以北的“冶浦居住社区”,
位于滁河东侧、雍庭园大道以北的“中心区”和以南的“创新产业社区”, 位于金江公路东侧、雍庭园大道以北的“科教社区”和以南的“灵岩山国 际文化社区”。
土地利用规划 规划范围内总用地面积1954.60公顷;城市建设用地面积1832.48公顷,
精品
南京市规划局 二O一八年一月
说明 1、本材料是为方便公众了解城市规划而制作的参考性文件,不作为法律 文件使用。 2、本规划是城市发展的控制与引导性文件,不代表具体的项目实施计划 和实施方案。一旦有建设行为,应依据规划实施。 3、城市规划是个不断优化更新的过程,规划内容以南京市规划局存档备 查的最新版本为准,同一地区同一内容深度规划若有更新,南京市规划局将尽 量及时在规划局网站上公布,本材料自动作废。 4、本材料版权归南京市规划局所有,未取得版权人的书面授权,谢绝改 变、分发、发布或使用本材料图文资料。 5、本材料最终解释权属南京市规划局。
江苏南京中国人民解放军国际关系学院简介
![江苏南京中国人民解放军国际关系学院简介](https://img.taocdn.com/s3/m/121aa66131126edb6f1a1060.png)
江苏南京中国人民解放军国际关系学院简介中国人民解放军国际关系学院是全国重点高等院校之一,隶属于中国人民解放军总参谋部,正军级,始建于1951年6月。
是一所指挥与技术合一,以外语为基础,多专业、多层次、多规格的综合性军事外交学院,是军队培养国际关系、国防外事、军事外交、国际战略研究、外语师资、部队侦察、技术侦察、航天侦察、特种作战指挥等各类专业人才的重要基地,同时也为我军高等院校培养外语师资,是中*事外交和外语专业人才的培训基地,被称为“中*事外交官的摇篮”。
是军队培养各类外语人才的重要基地。
办学条件学院以本科教育为主,设有23个专业,开设9种外国语课程,除招收本科生外,还面向全国、全军招收国际关系、外国语言学及应用语言学、英语语言文学、俄语语言文学、日语语言文学、亚非语言文学、军事思想等8个专业的硕士研究生,有的专业还招收博士研究生。
学院设有3个系,设有英、俄、日、法等多个语种。
解放军国际关系学院是经国务院学位委员会批准的硕士学位授予单位,现有国际关系、外交学、英语语言文学、俄语语言文学、日语语言文学、亚非语言文学、外国语言学及应用语言学、军事思想、军事战略学、兵种战术学、作战指挥学、军事情报学等12个硕士点,国际关系、英语语言文学、军事情报学等3个博士点,并与上海外语学院联合培养俄语语言文学专业的博士研究生。
学院已经跻身全军“211工程”重点建设院校,拥有1个重点建设学科,1个全国非通用语种本科人才培养基地,3个军队“211工程”重点建设学科。
学院已拥有军事外交等11个学历教育专业,13个急需的任职教育专业。
拥有1个博士后科研流动站、3个博士学位授权点、12个硕士学位授权点,5个学士学位授权点。
国际战略与军事战略学等3个学科专业被列为全军“2110工程”重点建设学科。
学校师资中国人民解放军国际关系学院历经几十年的发展,具备雄厚的师资力量和教学科研队伍、先进的教学科研设备、完备的图书文献资料、良好的工作秩序、幽静的学习环境、完善的生活服务设施。
南京的地理知识点
![南京的地理知识点](https://img.taocdn.com/s3/m/cbf0d5ad9a89680203d8ce2f0066f5335a8167e2.png)
南京的地理知识点
南京的地理知识点主要包括以下几个方面:
1. 地理位置:南京位于长江下游中部地区,江苏省西南部,是江苏省的省会城市,也是国家区域中心城市(华东),长三角辐射带动中西部地区发展的国家重要门户城市。
2. 地貌:南京山水城林融为一体,江河湖泉相得益彰。
长江穿城而过,沿江岸线总长近200公里。
紫金山风景绝佳,幕府山气势雄伟,秦淮河、金川
河萦绕其间,玄武湖、莫愁湖、百家湖点缀其中。
较大的湖泊有石臼湖、固城湖、金牛湖等湖泊,水域面积占总面积的11%以上,林木覆盖率%,建成区绿化覆盖率45%,人均公共绿地面积平方米,位居中国前三甲,是中国
四大园林城市,联合国人居署特别荣誉奖获得城市。
3. 气候:南京属亚热带季风气候,雨量充沛,年降水1200毫米,四季分明。
年平均温度℃,年极端气温最高℃,最低-℃,年平均降水量1106毫米。
春季风和日丽;梅雨时节,又阴雨绵绵;夏季炎热,秋天干燥凉爽;冬季寒冷、干燥。
南京春秋短、冬夏长,冬夏温差显著,四季各有特色,皆宜旅游。
4. 资源:南京地处北亚热带,属于中国现代植物资源最丰富、植物种类最繁多的地区。
又以山丘、河湖兼备,气候温和,而野生动物资源丰富繁多,其动物种类,足以代表长江下游地区。
以上是关于南京地理知识点的一些信息,如果想了解更多南京地理方面知识,建议查阅地理相关书籍获取。
南京工业大学级培养计划-图文(精)资料
![南京工业大学级培养计划-图文(精)资料](https://img.taocdn.com/s3/m/ab3f01bd941ea76e59fa040e.png)
目录本科 2011 级专业培养计划负责人信息表…………………………………………I 1、化学化工学院化学工程与工艺专业 2011 级培养计划………………………………………………1 化学专业 2011 级培养计划……………………………………………………………5 2、材料科学与工程学院无机非金属材料工程专业 2011 级培养计划................................................8 高分子材料与工程专业 2011 级培养计划...................................................12 金属材料工程专业 2011 级培养计划.........................................................15 复合材料与工程专业 2011 级培养计划......................................................18 冶金工程专业 2011 级培养计划............................................................21 材料科学与工程专业 2011 级培养计划......................................................24 材料学院试验班 2011 级培养计划 (27)3、生物与制药工程学院制药工程专业 2011 级培养计划...............................................................29 生物工程类专业 2011 级培养计划 (32)4、药学院药学类专业 2011 级培养计划………………………………………………………36 5、食品与轻工学院食品科学与工程类专业 2011 级培养计划……………………………………………40 轻化工程专业 2011 级培养计划 (44)6、机械与动力工程学院过程装备与控制工程专业 2011 级培养计划.............................................47 机械工程及自动化专业 2011 级培养计划...................................................51 车辆工程专业 2011 级培养计划......................................................55 风能与动力工程专业 2011 级培养计划 (59)7、电子与信息工程学院计算机科学与技术专业 2011 级培养计划……………………………………………63 电子信息工程专业 2011 级培养计划…………………………………………………67 通信工程专业 2011 级培养计划……………………………………………………71 计算机科学与技术 (软件班专业 2011 级培养计划………………………………75 8、自动化与电气工程学院自动化专业 2011 级培养计划………………………………………………………79 电气工程及其自动化专业 2011 级培养计划………………………………………83 测控技术与仪器专业 2011 级培养计划……………………………………………87 建筑电气与智能化专业 2011 级培养计划……………………………………………90 9、建筑学院建筑学专业2011 级培养计划..................................................................93 城市规划专业 2011 级培养计划...............................................................97 艺术设计 (环境艺术设计专业 2011级培养计划 (102)10、工业与艺术设计学院工业设计专业 2011 级培养计划............................................................106 艺术设计 (装潢艺术设计专业 2011 级培养计划.......................................109 艺术设计 (展示设计专业 2011 级培养计划.............................................112 艺术设计 (景观设计专业 2011 级培养计划 (116)11、土木工程学院土木工程专业 2011 级培养计划............................................................120 工程管理专业 2011 级培养计划............................................................125 建筑节能技术与工程专业 2011级培养计划 (130)12、交通学院勘查技术与工程专业 2011级培养计划......................................................134 交通工程专业 2011级培养计划...............................................................138 交通工程(轨道交通方向专业 2011 级培养计划..............................142 城市地下空间工程专业 2011级培养计划 (146)13、测绘学院测绘工程专业 2011 级培养计划............................................................150 地理信息系统专业 2011级培养计划 (154)14、城市建设与安全工程学院建筑环境与设备工程专业 2011级培养计划…………………………………………158 安全工程专业 2011级培养计划...............................................................162 消防工程专业 2011级培养计划 (165)15、理学院应用化学专业 2011级培养计划...............................................................168 信息与计算科学专业 2011级培养计划......................................................172 信息与计算科学(嵌入式软件专业 2011 级培养计划..............................175 应用物理学专业 2011级培养计划............................................................179数学与应用数学专业 2011级培养计划......................................................182 光电子材料与器件专业 2011 级培养计划.............................................185 资源科学与工程专业 2011级培养计划 (188)16、经济与管理学院工商管理专业 2011级培养计划...............................................................192 市场营销专业 2011级培养计划...............................................................195 会计学专业 2011级培养计划 (198)国际经济与贸易专业 2011级培养计划………………………………………………201 人力资源管理专业2011级培养计划…………………………………………………204 金融学专业 2011级培养计划..................................................................207 工业工程专业 2011级培养计划 (210)电子商务专业 2011级培养计划 (214)17、法律与行政学社会工作专业 2011级培养计划...............................................................218 公共事业管理专业 2011 级培养计划......................................................222 行政管理专业 2011 级培养计划............................................................225 法学专业 2011 级培养计划 (228)18、外国语学院英语专业 2011 级培养计划..................................................................232 日语专业 2011 级培养计划..................................................................235 德语专业 2011 级培养计划 (238)19、环境学院环境工程类专业 2011级培养计划............................................................241 给排水科学与工程专业 2011级培养计划...................................................247 水质科学与技术专业 2011 级培养计划 (252)20、能源学院热能与动力工程专业 2011级培养计划………………………………………………257 附表一:通识课程..............................................................................260 附表二:公共基础课一览表..................................................................262 附表三:思政课开设情况一览表 (265)附表四:全校公选课开设一览表 (266)本科 2011级专业培养计划负责人信息表IIIIIIV化学工程与工艺专业 2011级培养计划一、培养目标培养掌握化工生产工艺过程和设备的基本规律和原理,能从事新产品开发、工艺与设备的过程设计、系统优化、生产管理、化工贸易和科学研究。
泰禾南京院子景观方案_图文
![泰禾南京院子景观方案_图文](https://img.taocdn.com/s3/m/74dfdc6d312b3169a451a439.png)
• 基地印象
秦淮河边的院子生活
基地印象
• 处于“十里秦淮”的西五华里 • 周边文化节点众多,有深刻的金陵烙印 • 交通便利,地理位置优越 • 基地内有保护文物,古井等文化元素 • 地处繁华,人们的生活却显得安逸柔和 • 曾经手工业发达,是云锦织造地
皇册家园及船板巷
牛市64号-颜料坊49号 古树
基地内现遗存--- 古井
现在这里依然不乏许多与云锦织造相关的遗迹旧址,为城市的人们保留了近乎 完整的云锦记忆。——《寻城记·南京》
• 设计主题
秦淮河边的院子生活
设计主题
锦绣胜景逸水岸,阡陌坊巷归深宅——云锦天章
缓缓流淌的秦淮河诉说着千年古今 纵横的街、坊、巷仿若丝线
经了秦淮的水漂染着色,
在水岸边编织出 巧夺天工、高雅多彩的华彩云锦 绚丽繁华的外围商业 尊荣静谥的宅院空间 新的秦淮符号
尊贵感,序列感 入口廊道
放松、优雅 滨河会客区
开合变化、安静 示范区展示廊道
精致、私密 样板房
围合感、生态感 沿街绿化带
秦淮河边的院子生活
由于云锦作为供品的特殊属性,其图案多与“龙”、“凤”有关。如 “龙凤呈祥”、“凤戏牡丹”等。既显示出宫廷装饰的豪华气派,又渲 染了专制制度不可亵渎的威严气氛,与民间织造相比,云锦有着雄浑大 气、壮丽富贵、金碧辉煌的艺术风格。
云锦集中国传统吉祥图案之大成,演绎了中国吉祥文化的核心主题。
泱泱中华向为丝绸之国,“锦绣中华”之“锦”,即为代表最高技 术水平的丝织品,《释名》曰:“锦,金也,作之用功重,其价如金, 故字从金、帛。”集历代织锦工艺艺术之大成、居中国古代三大名锦之 首的,则是被誉为人类丝织品文化“金字塔尖”的古称“寸锦寸金”的 南京云锦。 “中华锦缎甲天下,南京云锦甲中华”。
南京5个美景(诗联图)
![南京5个美景(诗联图)](https://img.taocdn.com/s3/m/64eb6a25ddccda38366baf08.png)
南京5个美景(诗联图)
福建霞浦一中林承强
1.中华门(联)
横槊长江,九州聚宝,开创和谐新境
界
藏兵小洞,四季堆金,喜迎锦绣大中
华
2.秦淮河(七绝)
六朝金粉夜流银,十里秦淮广丽人。
水色天光因客落,浆声灯影尽无尘。
3.太平天国历史博物馆(联)虎啸山头,收残奸宄,圣宝生祥瑞龙腾海内,擒尽天邪,黎元期太平
4.秦淮河(联)
扶醉桥头,轻烟绕户,岁月峥嵘今貌
美
逐花河岸,碧水流诗,人文荟萃古风
淳
5.南京夫子庙(七律)
秦淮灯火泮池湾,庙阁文枢通玉关。
照壁学宫云缭绕,聚星贡院月悠闲。
道冠今古增新色,德配地天添笑颜。
历代大臣须下马,先贤至圣泽人间。
南京夫子庙(四)学宫
![南京夫子庙(四)学宫](https://img.taocdn.com/s3/m/d7b63ff0534de518964bcf84b9d528ea81c72f2f.png)
南京夫⼦庙(四)学宫明德堂学宫位于⼤成殿后街北,原有“东南第⼀学”门坊,包括明德堂、尊经阁、青云楼、崇圣祠等古建筑。
明德堂是学宫的主体建筑,科举时代秀才每⽉逢朔望都到这⾥听训导宣讲。
中国的学宫都称“明伦堂”,⽽夫⼦庙的学宫独称“明德堂”,据说是宋代⽂天祥题写的“明德堂”匾额之故。
1986年明德堂维修时⼜修复了两旁的“志道”、 “据德”、“依仁”、“游艺”四斋。
学宫是封建时代培养⼈才的场所,有不同层次,如县学、府学(路学、州学等)和国学,都与孔庙毗邻,以⽰儒学⽴国,修⾝的正统地位。
学宫包括明德堂、尊经阁、敬⼀亭、崇圣祠和青云楼等单体建筑。
从⼤成殿后门⾛出,即进⼊学宫区。
古时候,学宫⼀直是教育圣地,是江苏省最⾼的学府,是学⼦登科出⼈头地必须跳跃的龙门,也是地⽅教育、⽂化、⼈才的发源地。
明代之前,学宫是为科举输送考⽣的途径之⼀。
明代之后,进学宫学习成为科举的必由之路。
许多学⼦们本着“万般皆下品,惟有读书⾼”和“圣贤之地、读圣贤书、成圣贤之⼠”的愿望,来到学宫进⾏学习和⽣活。
“地处庙内深幽处,悠悠传来读书声”,指的就是学宫内学⼦们学习和⽣活的场景。
⼤成殿后⾯的复原的宋代开凿的⽟兔泉古井和筹措朝考盘费碑。
⽟兔井,据《⾄今⾦陵新志》记载,秦桧曾在夫⼦庙学宫学习时,⼀天晚上见⽩兔⼊地,便叫⼈在此挖掘,挖到⼀丈处,有泉眼,泉⽔清澈。
待秦桧考上状元,派⼈开凿造井,并亲⾃题写井名“⽟兔泉”。
明代开国功⾂刘伯温曾专门撰写《⽟兔泉》,为泉⽔辩冤。
“桧死为蛆,泉洁⾃如;我作铭诗,众惑斯祛。
呜呼泉乎,终古弗谕。
”意思是说:秦桧是奸⾂,但并不能诽谤冤枉⽟兔泉。
《筹措朝考盘费碑》,记录了两江总督李鸿章、左宗棠捐助考⽣进京会试费⽤的⼀段历史。
⼀百多年前李鸿章、左宗棠⾃掏腰包分别捐出五千两⽩银设⽴“助学基⾦”,帮助家境贫寒,出不起钱赴京赶考的学⼦。
但这⼀万两⽩银只是杯⽔车薪,不够⽤的。
怎么办?于是他们想出⼀个办法,多筹集些⽩银投资于瓷器茶叶丝绸等⾏业,⽤滚出来的利息扩⼤捐助范围,碑⽂上说,⼀共筹集了“⼀万四千多⾦”。
南京汤山紫清湖野生动物世界简介
![南京汤山紫清湖野生动物世界简介](https://img.taocdn.com/s3/m/ea214043b42acfc789eb172ded630b1c58ee9b7b.png)
南京汤山紫清湖野生动物世界简介南京汤山紫清湖野生动物世界是位于中国江苏省南京市汤山国家森林公园内的一座大型野生动物园。
它是一个集动物观赏、科普教育和生态保育为一体的综合性旅游景区。
深受游客喜爱,同时也是保护珍稀野生动物和推动自然保护工作的重要平台。
它拥有广袤的自然环境和丰富的动植物资源,为游客提供了一个近距离接触野生动物的机会。
南京汤山紫清湖野生动物世界占地面积达1000多亩,其中包括森林覆盖区、湖泊、草原、山地等多种自然景观。
这里拥有数百种野生动物品种,包括麋鹿、羚牛、斑马、袋鼠等。
同时,这里还有一些珍稀濒危物种,如白鹇、东北虎、黑熊等,它们是中国珍贵的动物资源,也是南京汤山紫清湖野生动物世界最大的亮点。
当游客进入南京汤山紫清湖野生动物世界的大门时,他们会被一片绿意盎然的景象所吸引。
在动物园的入口处,游客可以看到一个精心设计的、仿照野生动物栖息地的大门,它展示了野生动物自由活动的场景。
通过这个大门,游客进入了一个被自然环境所包围的世界。
在南京汤山紫清湖野生动物世界,游客可以选择步行、乘坐观光车或骑行来观赏动物。
同时,动物园还提供了一些专门的观光活动,如动物喂食、表演和互动体验等。
这些活动不仅可以带给游客更多的娱乐,也可以增强他们对野生动物和生态环境的了解。
动物园内的动物展示区被合理地划分为几个区域,每个区域都展示了不同种类的动物。
这些展区由专业的园林设计师设计,并参考了动物在野外的生活习性。
这种设计旨在提供一个接近自然的环境,让动物能够自由地活动和繁衍。
在南京汤山紫清湖野生动物世界,游客可以近距离观察到许多野生动物的真实面貌。
他们可以看到大象在水池中玩耍,犀牛在草原上悠闲地吃着草,猴子在树上跳跃,老虎在草丛中悄悄行动。
这些动物行为的观察不仅令人兴奋,还能够增加对野生动物生活习性的理解和尊重。
此外,南京汤山紫清湖野生动物世界还致力于推动科学教育和生态保育。
它设置了一些专门的教育展区,向游客介绍了动物的分类、生态特征和保护意义。
南京旅游景点介绍PPT模板(图文)
![南京旅游景点介绍PPT模板(图文)](https://img.taocdn.com/s3/m/35179da510661ed9ad51f3c8.png)
至金,京
水 今 陵 又 著
已”叫名 有别桂的
鸭 两 称 花 特
千,鸭产 五故,, 百也是属 多称中金 年“国陵 历金地菜 史陵理, 。盐标是
水志金 鸭产陵 ”品菜 ,。
汤包
汤包是一种传统特色小吃,早在北宋市 场上就已有售卖,当时称灌浆馒头或灌 汤包子。吃灌汤包,汤鲜是第一位。肉 馅与鲜汤同居一室,吃之,便就将喝汤、 吃面、吃肉三者合而为一,具有独特的 味觉体验。
南京旅游景点介绍PPT模板
本模板有完整的逻辑框架,内容详实,稍作修改可直接使用
汇报人:XXX
时间:201X年X月
1
目录
第
第
第
第
四
三
二
一
章
章
章
章
南
南
南
南
京
京
京
京
人
美
景
简
文
食
点
介
南 京 简 介
南京,简称“宁”,古称金陵、建康,是江苏省会、副省级市、特大城市、南京都市圈核心 城市,国务院批复确定的中国东部地区重要的中心城市、全国重要的科研教育基地和综合交 通枢纽 。截至2019年,全市下辖11个区,总面积6587平方千米,建成区面积817平方千米 。 2019年,常住人口850.0万人,城镇人口707.2万人,城镇化率83.2%。
南京中国近代史遗址博物馆(总统府景区)
南京绿地超高层(英文)
![南京绿地超高层(英文)](https://img.taocdn.com/s3/m/61307fc7a1c7aa00b52acb52.png)
PERFORMANCE-BASED EVALUATION FOR THE 450m NANJING GREENLANDFINANCIAL CENTER MAIN TOWERCharles M. Besjak, SE. PE. Director, Skidmore, Owings and Merrill, LLP.Brian J. McElhatten, SE, PE. Associate Director, Skidmore, Owings and Merrill, LLP.Preetam Biswas, PE. Associate, Skidmore, Owings and Merrill, LLP.I NTRODUCTIONIn order to obtain seismic review approval for the Nanjing State-Owned Assets & Greenland Financial Center's Main Tower, one of tallest structures in the world to date, enhanced design measures and performance-based evaluations were utilized. The critical parts of the lateral system were designed for earthquake forces between two and six times that typically required by Chinese code. In addition a full 3-Dimensional Non-Linear Elasto-Plastic analysis for a 2500-year earthquake was completed to determine the structures response and serviceability. A multi-stage axial shortening, creep and shrinkage analysis was also performed to evaluate the long-term load sharing between the central core and the perimeter of the Tower via the outrigger truss system.O VERVIEWThe Nanjing State-Owned Assets & Greenland Financial Center Project (A1 Site) is a mixed-use development consisting of a 450-meter tall (1476'), 70-story office and hotel Main Tower; a 100-meter tall (328'), 22-story Accessory Office Tower; and a 7-story podium building linking the two towers and containing retail space, cinemas and hotel conference center. The total area above grade is approximately 197,000 square meters (2.1 million square feet). The 450-meter tower contains approximately 65,000 square meters of office space on levels 11 through 34 and 60,000 square meters of hotel, club, and restaurant space on levels 36 through 65. The project has 4 below-gradelevels under the entire site with a partial mezzanine between the first basement floor and the ground floor. Total(A) Architectural Rendering(B) Construction PhotographFigure 1: Nanjing Greenland Financial Center Main TowerD o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .below-grade area is approximately 64,000 square meters. These floors contain retail, mechanical systems, hotel support, loading docks, car parking, and bike parking.Across the street from the A1 Site is the Nanjing Greenland International Commercial Center Project (A2 Site), which is a thirteen-story multi-use building containing office, retail, dining and parking facilities. Surface parking is contained at basement Level B2. Retail, dining and atrium spaces occur from Level B1 to Level 3. Following are nine floors of office space with a partial mechanical floor and atrium at the top. Typical floor-to-floor heights are 6.3m at the retail floors and 4.2m at the office floors. The overall height of the building is 66.2m (217') above grade with a total area of 46,000 square meters (495,000 square feet).Structural topping-out of the Main Tower was completed in September 2008. Cladding installation has been completed and interior fit-out is currently underway. When finished the Main Tower will be the 5th tallest building in the world according to the CTBUH criteria.The overall project was a competition that was awarded to the Chicago office of Skidmore, Owings and Merrill (SOM) in 2004. The schematic design and design development phases along with the seismic review process for the A1 Site were completed by SOM by the middle part of 2005 and then turned over to the Local Design Institute (LDI), East China Architectural Design and Research Institute (ECADI), for completion of the construction documents and construction administration phases. Schematic design for the A2 Site was completed by SOM in January 2005, and then turned over to ECADI to complete the remainder of the design phases. ECADI is the engineer of record for both the A1 and A2 sites.Given the height of the Main Tower and the requirements for super-tall buildings which are well beyond the limits of the Chinese code, an extensive performance-based evaluation approach was employed. Particular emphasis and effort was put into the seismic design, analysis and review process including an elasto-plastic analysis on one of the tallest buildings in the world to date. The steps taken for the seismic design and approval of the Main Tower will be the primary focus of this paper.S TRUCTURAL S YSTEM FOR THE M AIN T OWERThe Main Tower consists of a composite system utilizing both structural steel and reinforced concrete elements to resist both gravity and lateral loads. Typical floor-to-floor heights are 6m to 7m in the podium zone, 4.2m in the office zone and 3.8m in the hotel zone. Mechanical floors are generally double-height spaces at 8.4m tall. The lateral-load resisting structural system provides resistance to both seismic and wind loading. Refer to Figure 2 for graphic of overall lateral system. The primary lateral system is comprised of an interior reinforced concrete “super-core” shear wall system and exterior composite columns. Shear wall thicknesses range from 300mm to 1500mm over the height of the building with reinforced concrete link beams joining adjacent sections of shear wall around door openings and major mechanical penetrations. The closed form of the "super-core’s" perimeter provides a large amount of the overall torsional stiffness of the building. The core wall thicknesses were optimized in order to better balance the triangular-shaped core for both bending stiffness and torsional rigidity. This resulted in thicker walls near the "tip" of theFigure 2: Main Tower Lateral SystemSteel Braced Frame and Shear WallOutrigger andBelt Truss System Perimeter Moment Frame “Super-Core” to Primary RoofOutrigger and Belt Truss System Perimeter Moment FrameOutrigger andBelt Truss SystemD o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .core for the trapezoid-shaped closed form and slightly thinner walls for the rest of the core. Figure 2 shows a photo of the core construction. The exterior composite columns are linked to the "super-core" by structural steel outrigger trusses at the 8.4 meter tall mechanical floors at Levels 10, 35, and 60. Outrigger trusses typically align with theweb walls in the core and extend from the perimeter column through the core to the other perimeter column on the opposite side of the building. Figure 4 shows a typical outrigger and belt truss configuration at a major mechanical floor. Figure 4 is typical elevation of one of the outrigger trusses showing the proposed detailing. Note that the outrigger truss was carried through the core walls as an added layer of redundancy at the request of the seismic review panel. Embedded steel columns near the edges of the core walls were extended for a minimum of three floors above and below the outrigger trusses to aid in transferring the force couples developed under lateral loading. Figure 5 shows a photo of one of the outrigger trusses being erected. The exterior composite columns at these levels are linked together by a structural steel belt truss system at the perimeter to provide a more uniform load distribution in the columns. A portion of the belt truss system can be seen in the photo of Figure 6. Composite column sizes range from 900mmdiameter to 1750mm diameter over the height of theFigure 3: Photograph of Core Wall ConstructionFigure 4: Outrigger and Belt Truss Configuration D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S C E . F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .building. From Level 63 to 67 a portion of the reinforced concrete core continues up in combination with a braced steel frame to form the lateral system. Above Level 67 to the Roof at 381m, the lateral system consists of small reinforced concrete core and a perimeter moment frame structure. A structural steel spire continues to 450m. The secondary lateral system for the Main Tower consists of a moment-resisting frame at the perimeter of the building. The perimeter moment frame system provides additional torsional stiffness, structural integrity, and redundancy for the overall building.Figure 5: Typical Outrigger Truss ElevationFigure 6: Photograph of Outrigger Truss ConstructionD o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .The gravity load-resisting structural system consists of structural steel floor framing supporting a 155mm thick composite metal deck floor slab. Typical floor framing is spaced at 3 meters on and welded, headed shear studs are used to provide composite behavior between the slab and supporting beams (see Figure 8). Floor framing inside the "super-core" consists of reinforced concrete beams supporting a reinforced concrete one-way slab. The central reinforced concrete "super core" and the exterior composite columns then transmit the floor framing loads to the foundations. Refer to Figures 8 and 9 for typical floor framing plans in the office and hotel portions of the building, respectively.The below grade levels where constructed of reinforced concrete using a temporary, internally-braced slurry wall retention system. A permanent reinforced concrete foundationwall was then constructed insideFigure 7:Photograph of Belt Truss ConstructionFigure 8: Photograph of Typical Floor ConstructionD o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .of the slurry wall system. Figure 10 shows the basement level excavation with temporary cross-lot bracing. The foundation system for the Main Tower consists of a 3500mm thick, cast-in-place reinforced concrete mat under the entire footprint of the building supported by cast-in-place reinforced concrete belled caissons in the underlying rock.L ATERAL L OADINGR EQUIREMENT AND E VALUATIONBoth wind and seismic loading were evaluated in the analysis and design of the Main Tower.Figure 9 (B): Typical Hotel FloorFigure 9 (A): Typical Office Floor Figure 10: Photograph of Basement Excavation and Temporary Internal BracingD o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .A 100-year return period wind was required for this project due to the height of the building. Wind tunnel testing was performed by RWDI Laboratories in Ontario, Canada to determine more accurately the actual wind pressures applied to the building as well the translational and torsional accelerations experienced at different levels. In general, the loads determined by the wind tunnel were substantially lower than those required by the Chinese code and were used for both serviceability checks. Per Chinese Code requirements, the interstory drift ratio under the 100-year wind load could not exceed 1/500. Strength design was done using forces calculated from the code. Seismic requirements in the Chinese Code are somewhat different that that encountered in many other building codes around the world. There are three separate levels of earthquake that are considered depending on the type, height and complexity of the structure:1. Frequent Earthquake - 63% chance of being exceeded in 50 years (50-year return period)2. Moderate Earthquake - 10% chance of being exceeded in 50 years (~ 500-year return period)3. Major Earthquake - 2% chance of being exceeded in 50 years (~ 2500-year return period)For small to medium buildings without irregularities, only the Frequent earthquake is generally used for all strength and serviceability checks.Nanjing is defined as Seismic Intensity VII which is roughly equivalent to a Zone 2A per the UBC Code. A site-specific seismic evaluation study was done on the site, and it was found that a fault line ran through it. This led to an increase in the parameters provided for use in creating Response Spectrum and Time History curves. As an example, the peak value on the site-specific response spectrum curve for the Frequent earthquake was 50% higher than that required by the basic code values for Nanjing. From a serviceability standpoint, interstory drift ratios under the Frequent earthquake were also not to exceed 1/500 per code.Comparing the wind tunnel loads with the site-specific response spectrum for the Frequent earthquake, it was found that wind load controlled in the weak direction of the Tower (narrow direction of the core) while seismic controlled for the strong direction.S EISMIC D ESIGN AND R EVIEW P ROCESSThe Main Tower at 450m in height is substantially over the code limit of 190m for a concrete core-steel frame structure. In addition there were vertical and horizontal irregularities created by transfer elements at the major mechanical floors, diaphragm cutouts at various floors over the height of the building and torsional movements near the base of the Main Tower where it supported the majority of the lateral loads on the Podium structure. As a result of the height and the irregularities, the Main Tower was defined as an Over-Limit and Complex structure per the Chinese Code. This resulted in additional measures required for analysis and design and for the seismic review process. A performance-based evaluation approach would be required to satisfy the seismic experts and building authorities that the Tower would be safe and behave appropriately.One of the primary structural requirements for the Tower was the implementation of "Super Grade I" design and detailing for major components of the lateral system. This involved amplification factors on the seismic loads for the core walls and the perimeter moment frame system as well as large increases in the size and reinforcing details for boundary elements within the core wall system.Beginning with the Jin Mao Tower in Shanghai in the mid-1990's, SOM has completed numerous projects in China which were super-tall and beyond the limits of the Chinese code. Additional design and analysis measures are always required on these projects to prove their behavior and gain approval from seismic review panels and building authorities.The seismic review process for the Main Tower first began in the April 2005 in the early part of design development. Due to the size and nature of the Tower, a national panel of experts from universities and design institutes from various parts of China was assembled. SOM presented the structural system and behavior with theD o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .assistance of ECADI, who was required by Chinese Code to develop their own separate, concurrent structural model for comparison with SOM's ETABS model. Knowing that the structure was beyond the code limits and that additional measures would surely be required, SOM suggested in this initial meeting that all structural members of the lateral system should be designed to remain elastic under the site-specific response spectrum for a Moderate earthquake rather than the code-prescribed Frequent earthquake. The seismic experts agreed this was an appropriate approach but suggested the use of the Code-prescribed response spectrum for the Moderate earthquake in lieu of the site-specific values. Discussions during this meeting led to several additional measures:1. An elasto-plastic time history analysis for the Major earthquake would be performed to verify overallstructural behavior and determine any weak points in the structure.2. The core walls would be designed for the shear forces resulting from the Major earthquake.3. The outrigger trusses and belt trusses would be designed to remain elastic under the Major earthquake. SOM developed the following table to summarize the performance-based evaluation approach that would be utilized including the purpose of and requirements for the Frequent, Moderate, and Major earthquakes as well as the Elasto-Plastic analysis. This served as a useful tool for guiding the process as well as summarizing the approach for review by the seismic experts at subsequent meetings.Reviewing Table 1 Parts A and B, it is seen that all members of the lateral system were designed for the larger of:1. The Frequent earthquake using the site-specific Frequent response spectrum, factored load combinations,reduced material design values, and all "Super Grade I" amplification factors;2. The Moderate earthquake using the code-specified Moderate response spectrum, factored loadcombinations, reduced material design values, but no "Super Grade I" amplification factors. In addition to the seismic forces, all members were checked against the 100-year Code-prescribed wind loads for strength. The overall structure was then checked for serviceability interstory drift ratios for both 100-year wind tunnel loads and the site-specific response spectrum for the Frequent earthquake.In Part C, the additional measures taken for the shear walls and outrigger/belt truss systems are documented. Because of the importance of the outrigger and belt trusses in transferring load between the interior and exterior systems and in controlling the drifts of the building under seismic loads, the forces in the trusses were designed for the Major earthquake using the code-specified Major response spectrum with service-level load combinations, unreduced material design values and no "Super Grade I" amplification factors. Similarly, since the majority of the shear forces on the structure are taken by the core walls and an alternate load path to carry these shear forces does not exist, the shear forces in the walls were designed for the Major earthquake using the code-specified Major response spectrum with service-level load combinations, unreduced material design values and no "Super Grade I" amplification factors.Lastly in Part D, an elasto-plastic analysis was performed to further confirm the structure's behavior assuming that hinges could form in some members of the lateral system and that the forces in the outrigger and belt trusses and the shear in the core walls did not exceed the elastic design values accounted for in the response spectrum analysis for the Major earthquake. The interstory drift ratios were also checked to verify that acceptable movements were occurring. Three separate time-history curves were used that had been scaled up by six times that provided by the local geotechnical engineer for the Frequent earthquake to simulate the Major earthquake event. Two of the time history curves were scaled versions of actual earthquake records while the third was a simulated earthquake record. The methodology and results of the elasto-plastic analyses will be described in greater detail below.The next seismic review meeting was held in early July 2005 a few weeks before the end of the design development phase to present the progress of the design approaches noted above incorporating the expert's requirements from the first meeting. For the most part everything was satisfactory to them with a few additional requests related to clarifying certain design procedures used and some additional information on particular detailing elements.D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .SOM's design continued until the end of the design development phase at the end of July 2005 at which time a formal seismic review calculation report was assembled and presented at the third seismic review meeting. This report was several hundred pages and documented the overall design of the structure as well as addressing all of the expert's recommendations and requirements from the previous meetings. Concurrently, SOM performed a Staged Construction and Creep-Shrinkage Analysis to determine long-term load transfer between core wall and the perimeter column via the outrigger truss system. At the conclusion of this meeting, seismic design approval was granted for the project. A handful of comments were made related to additional design considerations to be incorporated by ECADI during the construction document phase. Given the size and complexity of the project, the seismic review process went very smoothly with a limited number of review meetings. The performance-based evaluation approach taken by SOM including the enhanced design measures, creep and shrinkage analysis, and elasto-plastic analysis resulted in a very efficient and successful structure.Table 1: Summary of Analysis and Design Approach for Seismic and Wind LoadingD o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .N ONLINEAR E LASTO -P LASTIC T RANSIENT D YNAMIC A NALYSIS USING T IME H ISTORY C URVESA three dimensional Transient Dynamic Analysis with material nonlinearity was performed to determine the rare earthquake (2% in 50 year probability) demand on the building’s structural system. The Nonlinear Time History Analysis was carried out in order to evaluate the maximum drifts and verify that they were less than the allowable code maximum elasto-plastic drift ratio limit as per Chinese code. Work done by outriggers and belt-truss members were analyzed and compared to member capacity designed by elastic analysis so as confirm that they remain elastic during the Major earthquake event.Nonlinear Static Pushover Analysis versus Nonlinear Elasto-Plastic Time History AnalysisIn the case of nonlinear static pushover analysis, usually the response spectrum curve representing the occurrence of a Major earthquake is applied to the elastic model and the generated story shears are used for loading purposes. A static load equal to the above mentioned story shears are applied in increments to the model to generate hinge formations and corresponding stress redistribution in the lateral system. After the entire load has been applied, the building interstory drift is plotted and compared to the allowable limit as per code. Another method is incremental loading of the structure until target deflection is exceeded; resulting in forces generated in the members appropriate to a major earthquake and; observe hinge formation and corresponding stress redistribution in the lateral system. This method is an approximation of the seismic response since it’s a static load and not actual forces generated by accelerations from a time history curve.One the other hand a more exact method for seismic response is nonlinear elasto-plastic analysis, where accelerations from at least three time-history curves are applied to the model to generate hinge formations and corresponding stress redistribution in the lateral system. The structure is analyzed for each of the 3 time-histories in very small time step increments (50steps/second) for a total duration of 3-4 times the primary building period. With up to 10 iterations at every step in order to achieve equilibrium, this is a very intense analysis and requires significant computational time. At the conclusion of the required duration of the time history, building interstory drift for each time step is recorded and the maximum at any given time is plotted and compared to the allowable limit as per code.For the performance based evaluation of Nanjing Greenland Financial Center Main Tower the more accurate ‘Nonlinear Elasto-Plastic Time History Analysis’ was employed.Three Dimensional Nonlinear ModelingOnly the elements that were part of the lateral system of the structure i.e. reinforced concrete shear wall supercore, perimeter moment resisting frames comprising of steel beams and composite columns; and built-up structural steel outriggers and belt-truss connecting the supercore to the perimeter moment frame were modeled with nonlinear properties. The nonlinear model was built in SAP2000 V8 Non-Linear product of CSI (Computer and Structures, Inc.).Mass and Rigid DiaphragmsNodes at every level were linked with rigid diaphragms. A rigid diaphragm slaved the lateral displacement and the in-plane rotation of the nodes connectedto it. The seismic mass was calculated from the self weight of the structure and applied superimposed loads.Figure 11: Simplified Frame Modelin SAP2000D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .Gravity LoadsFor an elasto-plastic time history analysis the effect of the dead load on the modeled elements was important. The dead load was used to “pre-load” the structure before applying the earthquake time history, resulting in initial stressing of the members. Loads in the model were applied as area loads on shell elements (slabs) and line loads on horizontal linear elements (beams).Software, Model, Material Properties, Elements Description and HingesSoftwareThe software used for modeling was SAP2000 V8 Nonlinear, a finite element software product of Computer and Structures Inc. In order to run a non-linear analysis the software requires the elastic elements to be defined with nonlinear hinges; and since nonlinear hinges can only be applied to frame elements, all shear wall elements were modeled as vertical frame elements and connected together using rigid links. At each time step of the elasto-plastic analysis, the software solves equations for the entire structure, locating the formation of nonlinear hinges and redistributing the force level accordingly before proceeding to the next time step.Simplified Frame ModelFor the purpose of elasto-plastic analysis, a simplified frame model of comparable structural properties was built and compared to the ETABS elastic model in which the shear walls were modeled as shell elements. The two models were found to be comparable to each other in terms of their net reactions at base, building modes, modal mass participation ratios etc.Concreterelationship is related to the reinforcement and theconfinement of the section. To represent the different concrete material possibilities, six different concrete models were set up: they were with properties for confined and unconfined C50, C60 and C70 respectively. The stress-strain curves are based on Mander’s model for concrete behavior with confining stresses computed from the detail properties. As an example C60 material property and corresponding inputs into XTRACT are shown in Figures 12Typical Material Properties assigned in the analysis program – XTRACT are based on the following assumptions. Asan example material properties of C60 arelisted below:Figure 12: C60 Concrete Model Stress-Strain Curve Figure 13: XTRACT Input for Concrete (a) Confined Concrete (b) Unconfined Concrete D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y B e i j i n g U n i v e r s i t y O f T e c h o n 11/07/12. C o p y r i g h t A S C E . F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .。
南京7个美景(诗联图)
![南京7个美景(诗联图)](https://img.taocdn.com/s3/m/d92ed18790c69ec3d4bb7510.png)
南京7个美景(诗联图)
福建霞浦一中林承强
1.迎湖桃源(七绝)
垂柳有情应识我,流波无意莫回头。
桃花园里观新蝶,春水桥边忆旧游。
2.阅江楼(七绝)
长江奔海万千里,洪武呼楼六百年。
多少苍茫落霞梦,人歌盛世喜盈天。
3.洋妞南京过春节(联)锦绣南京,海外洋妞同祝愿繁荣盛世,神州赤子共团圆
4.南京的早晨(联)
曙光启瑞,紫气飘飘,南京别开蓬莱
界
胜纪呈祥,车轮滚滚,大厦妙在水云
间
5.南京大学(联)
播三春锦,放眼乾坤,雄心攀登九重
云路
破万卷书,胸怀祖国,热血描绘七彩
蓝图
6.宝船厂遗址公园(联)
船载波光,广搜异说,动地华章酬壮
志
海连天色,七下西洋,凌云伟业振国
威
7.固城遗址(联)
荡舟湖上,慨叹古人已往,过客千秋
凭吊
煮酒岸边,唏嘘逝者如斯,书生一墨
留题。
南京是哪个省市
![南京是哪个省市](https://img.taocdn.com/s3/m/0d3a4f9fb8f3f90f76c66137ee06eff9aef849d4.png)
南京是哪个省市南京是江苏省的省会城市,也是中国东部地区的重要城市之一。
南京位于中国江苏省的中部,长江下游,与上海相邻。
作为历史悠久的城市,南京拥有丰富的文化底蕴和历史遗迹。
本文将介绍南京的地理位置、人口和经济发展等方面的信息。
南京位于江苏省南部,地处长江下游平原和浙江江苏盆地之间,东临长江,西连洪泽湖,南北宽约100公里,东西长约300多公里。
南京地势平坦,气候温和,四季分明。
该城市经纬度为31°14′以北、118°51′以东,东经东经118°47′~118°57′,北纬31°11′~32°37′之间。
截至2020年,南京的常住人口约为900万人,是中国人口众多的城市之一。
南京作为一座繁华的大城市,人口密度相对较高。
南京的人口来源主要是本地居民和外来人口。
南京是中国东部地区的重要中心城市,吸引了大量的人才和移民,形成了多元化的人口结构。
南京是中国的四大古都之一,历史悠久,文化底蕴深厚。
南京曾经是中国的首都,在明朝和民国时期都是重要的政治中心。
南京有着丰富的历史遗迹,其中最著名的是明代的明孝陵和明城墙。
明孝陵是明朝第一位皇帝朱元璋的陵墓,被誉为中国最大的石刻陵墓。
明城墙是全国现存最长的古城墙之一,为明朝修建,至今已有600多年的历史。
在经济方面,南京是中国东部地区的重要经济中心之一。
南京的经济实力在中国名列前茅,是中国重要的科技、教育、文化和创新中心。
南京拥有众多的国家级高新技术企业和科研机构,吸引了大量的高新技术人才和投资。
南京还拥有发达的制造业和服务业,特别是汽车、电子、航天、软件和金融等领域。
南京的高等教育水平也非常高。
该市有多所著名大学,包括南京大学、东南大学、南京航空航天大学等。
这些大学在中国乃至全球有着很高的声誉,对培养人才和推动科技创新起着重要的作用。
南京的教育资源丰富,吸引了大量的高中学生和家长前来就读。
此外,南京也是一个充满活力和魅力的城市。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京南站将建有15个候车厅,3个站场,15个站台。
候车大厅
南京奥体中心
• 南京奥体中心位于南京河西新城 区中心区域,其西南部为南京地 铁一号线终点站,正在建设中的 地铁二号线在其东面。奥体中心 占地面积89.6公顷,总建筑面积 约40.1万平方米,总投资约40亿 元,于2002年8月18日正式开工 ,2004年底建成,2005年5月1日 交付运行。
南京简介
南京,简称“宁”,原中华民国法定首都,现为中华人民共和国江 苏省省会、副省级城市。南京是“中国四大古都”之一,有“六朝 古都”之称。南京位于长江下游沿岸,是长江下游地区重要的产业 城市和经济中心,中国重要的文化教育中心之一,也是华东地区重 要的交通枢纽。
吴诗金 09058042
2012.03.26
新街口
新街口
谢谢欣赏
世 神 界 道 遗 景 产 色 明 孝 陵
——
玄 武 湖
夜景玄武湖
玄武湖夜景
雨 花 台
中 山 陵
夫 子 庙
南京南站---亚洲第一世界第三
南京南站项目部给出的精确数据是:南京南站南北长417米,候车大厅东 西宽156米,整体东西宽度450米,总高59.96米(二层平台在12.4米高空 ,三层平台在22.4米高空)。总建筑面积45.8万平方米
奥体中心夜景
2005年9月,南京地铁1号线正式投入商业运营,南京成为内地 第6个、世界上第136个拥有地铁的城市 。
新街口商业街
• 新街口属于南京白下区,南京新街口 荣膺首届十大“中国著名商业街”, 成为仅次于北京王府井、上海南京路 的中国第三大商业街。其商业密集度 为十大商业街之首;有新街口商圈、 新街口中央商务区等称谓。是南京的 中央商务区(CBD),这一地区分布的 金融机构、咨询公司、法律事务所、 会计事务所和大公司总部、办公室数 量居南京之首,其中世界500强企业机 构近百家。