考研数学必须熟记的函数图像
高数考研重点罗列
考研数学高等数学重难点第一章函数与极限(考研必考章节,其中求极限是本章最重要题型,要掌握求极限的几种经典方法)第一节映射与函数(一般章节)一集合(不用看)二映射(不用看)三函数(了解)第二节数列的极限(一般章节)(本节用极限定义证明极限的题目考纲不作要求,可不看)一数列极限的定义(了解)二收敛数列的性质(了解)第三节函数的极限(一般章节)一函数极限的定义(了解)二函数极限的性质(了解)第四节无穷小与无穷大(重要)一无穷小(重要)二无穷大(了解)第五节极限运算法则(注意运算法则的前提条件是极限存在)第六节极限存在准则(理解)两个重要极限(重要两个重要极限要会证明)第七节无穷小的比较(重要)第八节函数的连续性与间断点(重要基本必考小题)一函数的连续性二函数的间断点第九节连续函数的运算与初等函数的连续性(了解)一连续函数的和、差、积、商的连续性二反函数与复合函数的连续性三初等函数的连续性第十节闭区间上连续函数的性质(重要,不单独考大题,但考大题会用到)一有界性与最大值最小值定理(重要)二零点定理与介值定理(重要)三一致连续性。
(不用看)第二章导数与微分(小题的必考章节)第一节导数概念(重要)一引例(数三可只看切线问题举例)二导数的定义(重难点,考的频率很高)三导数的几何意义(理解)另外:数一数二要知道导数的物理意义,数三要知道导数的经济意义(边际与弹性)四函数可导性与连续性的关系(重要,要会证明)第二节函数的求导法则(考小题)一函数的和、差、积、商求导法则二反函数的求导法则三复合函数的求导法则四基本求导法则与求导公式(要非常熟)第三节高阶导数(重要,考的可能性大)第四节隐函数及由参数方程所确定的函数的导数(考小题)、相关变化率(不用看)一隐函数的导数二由参数方程所确定的函数的导数三相关变化率(不用看)第五节函数的微分(考小题)一微分的定义二微分的几何意义三基本初等函数的微分公式与微分运算法则四微分在近似计算中的应用(不用看,基本上只要有近似两个字,考纲俊不作要求)第三章微分中值定理与导数的应用(考大题、难题经典章节)第一节微分中值定理(最重要,与中值定理的应用有关的证明题)一罗尔定理(要会证)二拉格朗日中值定理(要会证)三柯西中值定理(要会证)另外要会证明费马定理第二节洛比达法则(重要,基本上必定要考)第三节泰勒公式(掌握其应用,可以不用证明公式本身)第四节函数的单调性与曲线的凹凸性(考小题)一函数单调性的判定法二曲线的凹凸性与拐点第五节函数的极值与最大值最小值(考小题为主)一函数的极值及其求法二最大值最小值问题第六节函数图形的描绘(重要)第七节曲率(了解,只有数一数二考,数三不用看)一弧微分(不用看)二曲率及其计算公式(了解)三曲率圆与曲率半径(了解)四曲率中心的计算公式渐屈线与渐伸线(不用看)第八节方程的近似解(只要有近似,考研不考,不用看)第四章不定积分(重要)相对于数一、数三,本章数二考大题的可能性更大第一节不定积分的概念与性质一原函数与不定积分的概念(理解)二基本积分表(全背且熟练准确)三不定积分的性质(理解)第二节换元积分法(重要,其中第二类换元积分法更加重要)一第一类换元法二第二类换元法第三节分部积分法(考研必考)第四节有理函数的积分(重要)一有理函数的积分二可化为有理函数积分的习题举例第五节积分表的使用(不用看)第五章定积分(重要,考研必考)第一节定积分的概念与性质(理解)一定积分问题举例(了解)其中“变速直线运动的路程”数三不用看二定积分定义(理解)三定积分的近似计算(不用看)四定积分的性质(理解)第二节微积分基本公式(重要)一变速直线运动中位置函数与速度函数之间的联系(了解)数三不用看二积分上限的函数及其导数(极其重要,要会证明)三牛顿-莱布尼茨公式(重要,要会证明)第三节定积分的换元积分法与分部积分法(重要,分部积分法更重要)一定积分的换元法二定积分的分部积分法第四节反常积分(考小题)一无穷限的反常积分二无界函数的反常积分第五节反常积分的审敛法T函数(不用看)第六章定积分的应用(考小题为主)第一节定积分的元素法(理解)第二节定积分在几何学上的应用(面积最重要)一平面图形的面积二体积(数三只看旋转体的体积)三平面曲线的弧长(数三不用看,数一数二记住公式即可)第三节定积分在物理学上的应用(数三不用看,数一数二了解)一变力引直线所作的功二水压力三引力第七章微分方程(必考章节,本章相对于数学二相对最重要)第一节微分方程的基本概念(了解)第二节可分离变量的微分方程(理解)第三节齐次方程(理解)一齐次方程二可化为齐次的方程(不用看)第四节一阶线性微分方程(重要,熟记公式)一线性方程二伯努利方程(只有数一考,记住公式即可)第五节可降阶的高阶微分方程(只有数一数二考,理解)一型的微分方程二型的微分方程三型的微分方程第六节高阶线性微分方程(理解)一二阶线性微分方程举例(不用看)二线性微分方程的解的结构(重要)三常数变易法(不用看)第七节常系数齐次线性微分方程(最重要,考大题的备选章节)第八节常系数非齐次线性微分方程(最重要,考大题的备选章节)一型二第九节欧拉方程(只有数一考,了解)第九节常系数线性微分方程的解法举例(不用看)第八章空间解析几何与向量代数(只有数一考,考小题,了解)第一节向量及其线性运算一向量概念二向量的线性运算三空间向量坐标系四利用坐标作向量的线性运算五向量的模、方向角、投影第二节数量积、向量积、混合积一两向量的数量积二两向量的向量积三向量的混合积第三节曲面及其方程一曲面方程的概念二旋转曲面三柱面四二次曲面第四节空间曲线及其方程一空间曲线的一般方程二空间曲线的参数方程三空间曲线在坐标面上的投影第五节平面及其方程一平面的点法式方程二平面的一般方程三两平面的夹角第六节空间直线及其方程一空间直线的一般方程二空间直线的对称式方程与参数方程三两直线的夹角四直线与平面的夹角第九章多元函数微分法及其应用(考大题经典章节,但难度不大)第一节多元函数的基本概念(了解)一平面点集 n维空间二多元函数概念三多元函数的极限四多元函数的连续性第二节偏导数(理解)一偏导数的定义及其计算法二高阶偏导数(重要)第三节全微分(理解)一全微分的定义二全微分在近似计算中的应用(不用看)第四节多元复合函数的求导法则第五节隐函数的求导公式(理解小题)一一个方程的情形二方程组的情形(不用看)第六节多元函数微分学的几何应用(只有数一考,考小题)一一元向量值函数及其导数(不用看)二空间曲线的切线与法平面三曲面的切平面与法线第七节方向导数与梯度(只有数一考,考小题)一方向导数二梯度第八节多元函数的极值及其求法(重要,大题的常考题型)一多元函数的极值及最大值最小值二条件极值、拉格朗日乘数法第九节二元函数的泰勒公式(只有数一考,了解)一二元函数的泰勒公式(了解)二极值充分条件的证明(不用看)第十节最小二乘法(不用看)第十章重积分(重要,数二数三相对于数一,本章更加重要.数二数三基本必考大题)第一节二重积分的概念与性质(了解)一二重积分的概念(了解)二二重积分的性质(了解)第二节二重积分的计算法(重要,数二数三极其重要)一利用直角坐标计算二重积分二利用极坐标计算二重积分三二重积分的换元法(不用看)第三节三重积分(只有数一考,理解)一三重积分的概念(了解)二三重积分的计算(重要)第四节重积分的应用(只有数一考,了解)一曲面的面积二质心三转动惯量四引力第五节含参变量的积分(不用看)第十一章曲线积分与曲面积分(只有数一考,数二数三均不考;数一考大题、考难题经典章节)第一节对弧长的曲线积分(重要)一对弧长的曲线积分的概念(理解)与性质(了解)二对弧长的曲线积分的计算法(重要)第二节对坐标的曲线积分(重要)一对坐标的曲线积分的概念(理解)与性质(了解)二对坐标的曲线积分的计算法(重要)第三节格林公式及其应用(重要)一格林公式(重要)二平面上曲线积分与路径无关的条件(重要)三二元函数的全微分求积(理解)四曲线积分的基本定理(不用看)第四节对面积的曲面积分(重要)一对坐标的曲面积分的概念与性质(了解)二对坐标的曲面积分的计算法(重要)三两类曲面积分之间的联系(了解)第五节对坐标的曲面积分(重要)一对坐标的曲面积分的概念与性质(了解)二对面积的曲面积分的计算法(重要)第六节高斯公式(重要)、通量(不用看)与散度(了解)一高斯公式(重要)二沿任意闭曲面的曲面积分为零的条件(不用看)三通量与散度(了解)第七节斯托克斯公式(重要)环流量与旋度(了解)一斯托克斯公式(重要)二空间曲面积分与路径无关的条件(不用看)三环流量与旋度第十二章无穷级数(数学二不考,不用看;数一数三考大题、考难题的经典章节)第一节常数项级数的概念与性质(一般考点)一常数项级数的概念(了解)二收敛级数的基本性质(考选择题章节)三柯西审敛原理(不用看)第二节常数项级数的审敛法(理解)一正项级数及其审敛法二交错级数及其审敛法三绝对收敛与条件收敛四绝对收敛级数的性质(不用看)第三节幂级数(重要)一函数项级数的概念(了解)二幂级数及其收敛性(最重要)三幂级数的运算(乘或除不用看)第四节函数展开为幂级数(数一相对数三本节更重要)第五节函数的幂级数展开式的应用(不用看)一近似计算二微分方程的幂级数解法三欧拉公式第六节函数项级数的一致收敛性及一致收敛级数的基本性质(不用看)一函数项级数的一致收敛性二一致收敛级数的基本性质第七节傅里叶级数(数三不用看,数一了解)一三角函数系的正交性二函数展开为傅里叶级数三正弦级数和余弦级数第八节一般周期函数的傅里叶级数(数三不用看,数一了解)一周期为2l的周期函数的傅里叶级数二傅里叶级数的复数形式(不用看)。
高考中所有的函数图像大汇总
专项二 高考用到的函数图像总结高考中用到的函数图像是指:一次函数图像、反比例函数图像、二次函数图像、幂函数图像(五种)、对勾(也称对号)函数图像、指数函数图像、对数函数图像、简单的三角函数图像、简单的三次函数图像一、一次函数图像(1)函数)0(≠+=k b kx y 叫做一次函数,它的定义域是R ,值域是R ; (2)一次函数的图象是直线,这条直线不能竖直,所以一次函数又叫线性函数;(3)一次函数)0(≠+=k b kx y 中,k 叫直线的斜率,b 叫直线在y 轴上的截距; 0>k 时,函数是增函数,0<k 时,函数是减函数;注意截距不是距离的意思,截距是一个可正可负可为零的常数 (4)0=b 时该函数是奇函数且为正比例函数,直线过原点;0≠b 时,它既不是奇函数,也不是偶函数; (5)作一次函数图像时,一般先找到在坐标轴上的两个点,然后连线即可 二、反比例函数图像 (一)反比例函数的概念1.()可以写成()的形式,注意自变量x 的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k 的形式,用它可以迅速地求出反比例函数解析式中的k ,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x 轴、y 轴无交点.(二)反比例函数及其图象的性质函数解析式:(),自变量的取值范围:越大,图象的弯曲度越小,曲线越平直.图像越远离坐标轴越小,图象的弯曲度越大.图像越靠近坐标轴 当时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.(3)对称性:图象关于原点对称,即若(a ,b )在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a ,b )在双曲线的一支上,则(,)和(,)在双曲线的另一支上. 4.k 的几何意义如图1,设点P (a ,b )是双曲线上任意一点,作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则矩形PBOA的面积是(三角形PAO 和三角形PBO 的面积都是).如图2,由双曲线的对称性可知,P 关于原点的对称点Q 也在双曲线上,作QC ⊥PA 的延长线于C ,则有三角形PQC 的面积为.图1 图2 三、二次函数图像(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞)(-∞,+∞)值域⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a单调性在x ∈⎝⎛⎦⎤-∞,-b2a 上单调递减; 在x ∈⎣⎡⎭⎫-b2a ,+∞上单调递增 在x ∈⎝⎛⎦⎤-∞,-b2a 上单调递增; 在x ∈⎣⎡⎭⎫-b2a ,+∞上单调递减 对称性函数的图象关于x =-b2a对称(2的交点位置、顶点所在位置,而不能随手一条曲线,就当做二次函数的图像了。
2023年新高考数学大一轮复习专题11 函数的图象(解析版)
专题11 函数的图象【考点预测】一、掌握基本初等函数的图像(1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数. 二、函数图像作法 1.直接画①确定定义域;②化简解析式;③考察性质:奇偶性(或其他对称性)、单调性、周期性、凹凸性;④特殊点、极值点、与横/纵坐标交点;⑤特殊线(对称轴、渐近线等).2.图像的变换 (1)平移变换①函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿x 轴向左平移a 个单位得到的; ②函数()(0)y f x a a =->的图像是把函数()y f x =的图像沿x 轴向右平移a 个单位得到的; ③函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向上平移a 个单位得到的; ④函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向下平移a 个单位得到的; (2)对称变换①函数()y f x =与函数()y f x =-的图像关于y 轴对称; 函数()y f x =与函数()y f x =-的图像关于x 轴对称;函数()y f x =与函数()y f x =--的图像关于坐标原点(0,0)对称; ②若函数()f x 的图像关于直线x a =对称,则对定义域内的任意x 都有()()f a x f a x -=+或()(2)f x f a x =-(实质上是图像上关于直线x a =对称的两点连线的中点横坐标为a ,即()()2a x a x a -++=为常数);若函数()f x 的图像关于点(,)a b 对称,则对定义域内的任意x 都有()2(2)()2()f x b f a x f a x b f a x =---=-+或③()y f x =的图像是将函数()f x 的图像保留x 轴上方的部分不变,将x 轴下方的部分关于x 轴对称翻折上来得到的(如图(a )和图(b ))所示④()y f x =的图像是将函数()f x 的图像只保留y 轴右边的部分不变,并将右边的图像关于y 轴对称得到函数()y f x =左边的图像即函数()y f x =是一个偶函数(如图(c )所示).注:()f x 的图像先保留()f x 原来在x 轴上方的图像,做出x 轴下方的图像关于x 轴对称图形,然后擦去x 轴下方的图像得到;而()f x 的图像是先保留()f x 在y 轴右方的图像,擦去y 轴左方的图像,然后做出y 轴右方的图像关于y 轴的对称图形得到.这两变换又叫翻折变换.⑤函数1()y fx -=与()y f x =的图像关于y x =对称.(3)伸缩变换①()(0)y Af x A =>的图像,可将()y f x =的图像上的每一点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍得到.②()(0)y f x ωω=>的图像,可将()y f x =的图像上的每一点的横坐标伸长(01)ω<<或缩短(1)ω>到原来的1ω倍得到. 【方法技巧与总结】(1)若)()(x m f x m f -=+恒成立,则)(x f y =的图像关于直线m x =对称.(2)设函数)(x f y =定义在实数集上,则函数)(m x f y -=与)(x m f y -=)0(>m 的图象关于直线m x =对称.(3)若)()(x b f x a f -=+,对任意∈x R 恒成立,则)(x f y =的图象关于直线2ba x +=对称.(4)函数)(x a f y +=与函数)(x b f y -=的图象关于直线2ba x +=对称. (5)函数)(x f y =与函数)2(x a f y -=的图象关于直线a x =对称. (6)函数)(x f y =与函数)2(2x a f b y --=的图象关于点)(b a ,中心对称. (7)函数平移遵循自变量“左加右减”,函数值“上加下减”.【题型归纳目录】题型一:由解析式选图(识图) 题型二:由图象选表达式 题型三:表达式含参数的图象问题 题型四:函数图象应用题 题型五:函数图像的综合应用【典例例题】题型一:由解析式选图(识图)例1.(2022·浙江·赫威斯育才高中模拟预测)函数2()sin 12xf x x =++的图象可能是( ) A . B .C .D .【答案】D 【解析】 【分析】通过判断()f x 不是奇函数,排除A ,B ,又因为302f π⎛⎫<⎪⎝⎭,排除C ,即可得出答案. 【详解】因为2()sin 12x f x x =++的定义域为R ,又因为()()222sin()sin 1221xx x f x x x f x -⋅-=-+=-+≠-++,所以()f x 不是奇函数,排除A ,B. 33223322sin()10221212f ππππ⎛⎫=+=-+< ⎪⎝⎭++,所以排除C.故选:D.例2.(2022·陕西·汉台中学模拟预测(理))函数2ln x y x=的图象大致是( )A .B .C .D .【答案】C 【解析】 【分析】根据函数的定义域与奇偶性,排除A 、B 选项;结合导数求得函数在(1,)+∞上的单调性,排除D 选项,即可求解. 【详解】由题意,函数()2ln x f x x =的定义域为(,1)(1,0)(0,1)(1,)-∞--+∞,关于原点对称,且满足()()22()ln ln x x f x f x x x--===-, 所以函数()f x 为偶函数,其图象关于y 轴对称,排除B 选项;当1x >时,可得()2ln x f x x =,则()()()222ln (2ln 1)ln ln x x x x x f x x x --'==,当x ∈时,()0f x '<,()f x 单调递减;排除A 选项当)x ∈+∞时,()0f x '>,()f x 单调递增, 所以排除D 选项,选项C 符合. 故选:C.例3.(2022·天津·二模)函数sin exx xy =的图象大致为( )A .B .C .D .【答案】D 【解析】 【分析】 分析函数sin exx xy =的奇偶性及其在()0,π上的函数值符号,结合排除法可得出合适的选项. 【详解】 令()sin e x x xf x =,该函数的定义域为R ,()()()sin sin e ex xx x x x f x f x ----===, 所以,函数sin exx xy =为偶函数,排除AB 选项, 当0πx <<时,sin 0x >,则sin 0exx xy =>,排除C 选项. 故选:D.例4.(2022·全国·模拟预测)已知函数())lnsin f x x x =⋅则函数()f x 的大致图象为( )A .B .C .D .【答案】A【分析】先利用函数的奇偶性排除部分选项,再根据()0,x π∈时,函数值的正负判断. 【详解】易知函数)lny x =为奇函数,sin y x =也是奇函数,则函数())ln sin f x x x =⋅为偶函数,故排除选项B ,C ;因为)lnln y x ⎛⎫==,当0x >1x >恒成立,所以ln 0⎛⎫<恒成立, 且当()0,x π∈时,sin 0x >,所以当()0,x π∈时,()0f x <,故选项A 正确,选项D 错误, 故选:A .例5.(2022·全国·模拟预测)函数()22e xx xf x -=的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】根据f (x )的零点和x →+∞时函数值变化情况即可判断求解. 【详解】由()0f x =得0x =或2,故排除选项A ;当x →+∞时,函数值无限靠近x 轴,但与x 轴不相交,只有选项B 满足.例6.(2022·河北·模拟预测)函数4cos3()cos (ππ)33xf x x x =---≤≤的部分图象大致为( ) A . B .C .D .【答案】A 【解析】 【分析】利用函数的奇偶性和代入特殊值即可求解. 【详解】由已知条件得函数()f x 的定义域关于原点对称, ∵()()cos 34()cos 33x f x x --=---()4cos3cos 33x x f x -=-=, ∴()f x 为偶函数,函数的图象关于y 轴对称,则排除选项B 、C , 又∵4cos3π(π)cos π33f =--4181333=++=, ∴排除选项D , 故选:A .【方法技巧与总结】利用函数的性质(如定义域、值域、奇偶性、单调性、周期性、特殊点等)排除错误选项,从而筛选出正确答案题型二:由图象选表达式例7.(2022·全国·模拟预测)已知y 关于x 的函数图象如图所示,则实数x ,y 满足的关系式可以为( )A .311log 0x y --=B .321xx y-=C .120x y --=D .ln 1x y =-【答案】A 【解析】 【分析】将311log 0x y --=化为11133x x y ---⎛⎫== ⎪⎝⎭,结合图像变换,可判断A;取特殊值验证,可判断B;作出函数12x y -=的图象,可判断C;根据函数ln 1y x =+的性质,可判断D.【详解】 由311log 0x y --=,得31log 1x y=-, 所以3log 1y x -=-,即3log 1y x =--, 化为指数式,得11133x x y ---⎛⎫== ⎪⎝⎭,其图象是将函数1,01333,0xxx x y x ⎧⎛⎫≥⎪⎛⎫⎪==⎨⎝⎭⎪⎝⎭⎪<⎩的图象向右平移1个单位长度得到的, 即为题中所给图象,所以选项A 正确;对于选项B ,取1x =-,则由()31121y---=,得21y =>,与已知图象不符,所以选项B 错误; 由120x y --=,得12x y -=,其图象是将函数2xy =的图象向右平移1个单位长度得到的,如图:与题中所给的图象不符,所以选项C 错误;由ln 1x y =-,得ln 1y x =+,该函数为偶函数,图象关于y 轴对称, 显然与题中图象不符,所以选项D 错误, 故选:A.例8.(2022·江西赣州·二模(理))已知函数()f x 的图象的一部分如下左图,则如下右图的函数图象所对应的函数解析式( )A .(21)y f x =-B .412x y f -⎛⎫= ⎪⎝⎭C .(12)y f x =-D .142x y f -⎛⎫= ⎪⎝⎭【答案】C 【解析】 【分析】分三步进行图像变换①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半 【详解】12()()(1)(12)x xx x x xy f x y f x y f x y f x →-→-→=→=-→=-→=-①②③①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半 故选:C.例9.(2022·浙江·模拟预测)已知函数()f x 的大致图象如图所示,则函数()y f x =的解析式可以是( )A .()()2211--=xxex y eB .()21sin -=xxex y eC .()()2211-+=xxex y eD .()21cos -=xxex y e【答案】B【解析】 【分析】根据函数图象,可知函数为偶函数,排除A ,D ,根据C 项函数没有零点,排除C 项,最终选出正确结果. 【详解】根据函数图象,可知函数为偶函数,排除A ,D ;对于C ,当0x >时,22110,2-+>≥x xe x e x ,函数显然不存在零点,排除C . 故选:B .例10.(2022·全国·模拟预测)已知函数()f x 的部分图象如图所示,则()f x 的解析式可能为( )A .()sin πf x x x =B .()()1πsin f x x x =-C .()()sin π1f x x x =+D .()()1cos πf x x x =-【答案】B 【解析】 【分析】根据已知图象的对称性,结合AC 的奇偶性可排除AC ,根据已知图象f (0)=0可排除D ,从而正确可得B 为正确选项. 【详解】对于A ,()()()sin πsin πf x x x x x f x -=--==,故()sin πf x x x =为偶函数,图象应该关于y 轴对称,与已知图象不符;对于C ,()()sin ππf x x x =+sin πx x =-也为偶函数,故排除AC ; 对于D ,()01f =-,与已知图象不符,故排除D .对于B ,()()()()()()221sin 2(1)sin π1sin ππf x x x x x x x f x -=---=--=-=,故f (x )关于x =1对称,f (0)=0,均与已知图象符合,故B 正确. 故选:B .例11.(2022·河北沧州·模拟预测)下列图象对应的函数解析式正确的是( )A .()cos f x x x =B .()sin f x x x =C .()sin cos f x x x x =+D .()cos sin f x x x x =+【答案】D 【解析】 【分析】由图可知,函数()f x 的图象关于原点中心对称,所以函数()f x 为奇函数,且()02f π>,对选项B 、C :由函数()f x 为偶函数即可判断,对选项A :函数()f x 为奇函数,但()cos 0222f πππ==即可判断;对选项D :函数()f x 为奇函数,且()cos sin 102222f ππππ=+=>即可判断.【详解】解:由图可知,函数()f x 的图象关于原点中心对称,所以函数()f x 为奇函数,且()02f π>,对A :因为()()()cos cos ()f x x x x x f x -=--=-=-,所以函数()f x 为奇函数,但()cos 0222f πππ==,故选项A 错误;对B :因为()()()sin sin ()f x x x x x f x -=--==,所以函数()f x 为偶函数,故选项B 错误;对C :因为()()()()sin cos sin cos ()f x x x x x x x f x -=--+-=+=,所以函数()f x 为偶函数,故选项C 错误; 对D :因为()()()()cos sin cos sin ()f x x x x x x x f x -=--+-=--=-,所以函数()f x 为奇函数,且()cos sin 102222f ππππ=+=>,符合题意,故选项D 正确. 故选:D.例12.(2022·浙江绍兴·模拟预测)已知函数()sin f x x =,()e e x x g x -=+,下图可能是下列哪个函数的图象( )A .()()2f x g x +-B .()()2f x g x -+C .()()⋅f x g xD .()()f xg x【答案】D 【解析】 【分析】根据图象体现的函数性质,结合每个选项中函数的性质,即可判断和选择. 【详解】由图可知,图象对应函数为奇函数,且()011f <<; 显然,A B 对应的函数都不是奇函数,故排除;对C :()()()sin e e x xy f x g x x -=⋅=⋅+,其为奇函数,且当1x =时,11sin1e e 1e 2⎛⎫⋅+>⨯> ⎪⎝⎭,故错误;对D :y =()()f xg x sin e e x xx-=+,其为奇函数,且当1x =时,sin110112e e<<<+,故正确. 故选:D .【方法技巧与总结】1.从定义域值域判断图像位置;2.从奇偶性判断对称性;3.从周期性判断循环往复;4.从单调性判断变化趋势;5.从特征点排除错误选项.题型三:表达式含参数的图象问题(多选题)例13.(2022·全国·高三专题练习)函数()()2,,R ax bf x a b c x c+=∈+的图象可能为( ) A . B .C .D .【答案】ABD 【解析】 【分析】讨论0,0,0a b c >=>、0,0,0a b c <=<、0,0,0a b c =><、0,0,0a b c =<<四种情况下,()f x 的奇偶性、单调性及函数值的正负性判断函数图象的可能性. 【详解】当0,0a b ≠=时,22()()()ax axf x f x x c x c--==-=--++;当0,0a c >>时,()f x 定义域为R 且为奇函数,在(0,)+∞上()0f x >,在上递增,在)+∞上递减,A 可能;当0,0a c <<时,()f x 定义域为{|x x ≠且为奇函数,在上()0f x >且递增,在)+∞上()0f x <且递增,B 可能;当0,0,0a b c =≠<时,22()()()b bf x f x x c x c-===-++且定义域为{|x x ≠,此时()f x 为偶函数,若0b >时,在(上()0f x <(注意(0)0f <),在(,)-∞+∞上()0f x >,则C 不可能;若0b <时,在(上()0f x >,在(,)-∞+∞上()0f x <,则D 可能; 故选:ABD(多选题)例14.(2022·福建·莆田二中高三开学考试)函数2||()x f x x a=+的大致图象可能是( )A .B .C .D .【答案】AC 【解析】 【分析】先判断函数的奇偶性,可排除D 选项,然后对a 的取值进行分类讨论,比如0a =,可判断A 可能,再对a 分大于零和小于零的情况讨论,结合求导数判断函数单调性,即可判断B,C 是否可能. 【详解】 因为2||()x f x x a=+为定义域上的偶函数, 图象关于y 轴对称,所以D 不可能.由于()f x 为定义域上的偶函数,只需考虑,()0x ∈+∞的情况即可. ①当0a =时,函数2||11()||x f x x x x===,所以A 可能; ②当0a >时,2()xf x x a =+,()222()a x f x x a '-=+,所以()f x 在单调递增,在)+∞单调递减,所以C 可能; ③当0a <时,2()x f x x a =+,()222()0a x f x x a -'=<+,所以()f x 在单调递减,在)+∞单调递减,所以B 不可能; 故选:AC.(多选题)例15.(2021·河北省唐县第一中学高一阶段练习)已知()2xf x x a=-的图像可能是( )A .B .C .D .【答案】ABC 【解析】 【分析】根据a 的取值分类讨论函数f (x )的单调性、奇偶性、值域,据此判断图像即可. 【详解】 若a =0,则f (x )=1x,图像为C ;若a >0,则f (x )定义域为{x |x ,f (0)=0,f (-x )=-f (x ),f (x )为奇函数,x ∈(-∞,时,f (x )<0,x ∈(0)时,f (x )>0,x ∈(0,f (x )<0,x ∈+∞)时,f (x )>0,又x ≠0时,f (x )=1a x x-,函数y =x -ax 在(-∞,0)和(0,+∞)均单调递增,∴f (x )在(-∞,(0),(0,∞)均单调递减,综上f (x )图像如A 选项所示; 若a <0,则f (x )定义域为R ,f (x )为奇函数,f (0)=0, 当x >0时,f (x )>0,当x <0时,f (x )<0,当x ≠0时,f (x )=1a x x-+,函数y =x +ax-时双勾函数,x ∈((),时,y 均单调递减,x ∈)(,,+∞-∞时,y 均单调递增,∴f (x )在((),单调递增,在)(,,+∞-∞单调递减,结合以上性质,可知B 图像符合.故选:ABC.(多选题)例16.(2022·湖北武汉·高一期末)设0a >,函数21axx y e ++=的图象可能是( )A .B .C .D .【答案】BD 【解析】令()21,0g x ax x a =++>,得到抛物线的开口向上,对称轴的方程为12x a=-,再根据0,0∆=∆<和0∆>三种情形分类讨论,结合复合函数的单调性,即可求解. 【详解】由题意,函数21axx y e ++=,令()21,0g x ax x a =++>,可得抛物线的开口向上,对称轴的方程为102x a=-<, 当140a ∆=-=时,即14a =时,可得()21104g x x x =++≥, 此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增,且(2)0g -= 可得21axx y e ++=在1(,]2a -∞-递减,在1[,)2a -+∞上递增,且(2)1g e -=; 当140a ∆=-<时,即14a >时,可得()0g x >, 此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增, 由复合函数的单调性,可得21ax x y e ++=在1(,]2a -∞-递减,在1[,)2a-+∞上递增,且1y >, 此时选项B 符合题意; 当当140a ∆=->时,即104a <<时,此时函数()21g x ax x =++有两个零点, 不妨设另个零点分别为12,x x 且1212x x a<-<,此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增, 可得()y g x =在121(,],[,]2x x a-∞-递减,在121[,],[,)2x x a -+∞上递增,且12()()0g x g x ==,则21axx y e ++=在121(,],[,]2x x a-∞-递减,在121[,],[,)2x x a -+∞上递增,且12()()1g x g x e e ==,此时选项D 符合题意.综上可得,函数的图象可能是选项BD. 故选:BD.(多选题)例17.(2022·广东东莞·高一期末)已知函数()af x x x=+()a R ∈,则其图像可能为( ) A . B .C .D .【答案】BC 【解析】 【分析】按照0a =,0a >,0a <讨论a 的取值范围,利用排除法解决. 【详解】 0a =,()(0)af x x x x x=+=≠,定义域需要挖去一个点,不是完整的直线,A 选项错误;0a <时,y x =在(,0),(0,)-∞+∞上递增,ay x=也在(,0),(0,)-∞+∞递增,两个增函数相加还是增函数,即()f x 在(,0),(0,)-∞+∞上递增,故D 选项错误,C 选项正确.;0a >时,由对勾函数的性质可知B 选项正确. 故选:BC.(多选题)例18.(2021·山西省长治市第二中学校高一阶段练习)在同一直角坐标系中,函数()()()10,1,x f x a a a g x a x =->≠=-且的图象可能是( )A .B .C .D .【答案】AC 【解析】 【分析】根据给定条件对a 值进行分类讨论函数()f x 的单调性及0一侧的函数值,再结合()g x a x =-图象与y 轴交点位置即可判断作答. 【详解】依题意,当1a >时,函数()g x a x =-图象与y 轴交点在点(0,1)上方,排除B ,C ,而()1,011,0x xxa x f x a a x ⎧-≥=-=⎨-<⎩,因此,()f x 在(,0)-∞上递减,且x <0时,0<f (x )<1,D 不满足,A 满足; 当01a <<时,函数()g x a x =-图象与y 轴交点在原点上方,点(0,1)下方,排除A ,D ,而()1,011,0x xxa x f x a a x ⎧-<=-=⎨-≥⎩,因此,f (x )在(0,)+∞上递增,且x >0时,0<f (x )<1,B 不满足,C 满足, 所以给定函数的图象可能是AC. 故选:AC(多选题)例19.(2021·河北·高三阶段练习)函数()211ax f x x +=+的大致图象可能是( ) A . B .C .D .【答案】ABD 【解析】 【分析】对a 的取值进行分类讨论,利用导数对函数的单调性进行分析即可判断函数的大致图象. 【详解】当0a =时,()01f =,令21y x =+,易知,其在(),0-∞上为减函数,()0,∞+上为增函数,所以()211f x x =+在(),0-∞上为增函数,在()0,∞+上为减函数,故D 正确; 当0a <时,()01f =,()()2'2221ax x afx x--+=+,令22y ax x a =--+,当0x <且0x →时,0y <,当0x >且0x →时,0y <,所以()'0f x <,故A 正确;当0a >时,()01f =,()()2'2221ax x afx x--+=+,令22y ax x a =--+,当0x <且0x →时,0y >,当0x >且0x →时,0y >,所以()'0f x >,故B 正确;综上,()f x 的图象不可能为C. 故选:ABD.(多选题)例20.(2022·全国·高三专题练习)已知()x x f x e ke -=+(k 为常数),那么函数()f x 的图象不可能是( )A .B .C .D .【答案】AD【解析】 【分析】根据选项,四个图象可知备选函数都具有奇偶性.当1k =时,()x x f x e e -=+为偶函数,当1k =-时,()x x f x e e -=-为奇函数,再根据单调性进行分析得出答案.【详解】由选项的四个图象可知,备选函数都具有奇偶性. 当1k =时,()x x f x e e -=+为偶函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=+在1) [,t ∈+∞上单调递增,故函数()x x f x e e -=+在0) [,x ∈+∞上单调递增,故选项C 正确,D 错误; 当1k =-时,()x x f x e e -=-为奇函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=-在1) [,t ∈+∞上单调递减,故函数()x x f x e e -=-在0) [,x ∈+∞上单调递减,故选项B 正确,A 错误. 故选:AD .【方法技巧与总结】根据函数的解析式识别函数的图象,其中解答中熟记指数幂的运算性质,二次函数的图象与性质,以及复合函数的单调性的判定方法是解答的关键,着重考查分析问题和解答问题的能力,以及分类讨论思想的应用.题型四:函数图象应用题例21.(2022·全国·高三专题练习)如图,正△ABC 的边长为2,点D 为边AB 的中点,点P 沿着边AC ,CB 运动到点B ,记∠ADP =x .函数f (x )=|PB |2﹣|P A |2,则y =f (x )的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】根据题意,结合图形,分析区间(0,2π)和(2π,π)上f (x )的符号,再分析f (x )的对称性,排除BCD ,即可得答案. 【详解】根据题意,f (x )=|PB |2﹣|P A |2,∠ADP =x . 在区间(0,2π)上,P 在边AC 上,|PB |>|P A |,则f (x )>0,排除C ; 在区间(2π,π)上,P 在边BC 上,|PB |<|P A |,则f (x )<0,排除B , 又由当x 1+x 2=π时,有f (x 1)=﹣f (x 2),f (x )的图象关于点(2π,0)对称,排除D , 故选:A例22.(2022·全国·高三专题练习)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A 【解析】 【分析】设出圆锥底面圆半径r ,高H ,利用圆锥与其轴垂直的截面性质,建立起盛水的高度h 与注水时间t 的函数关系式即可判断得解. 【详解】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,x h r H =,即r x h H =⋅,则注入水的体积为2223211()333r r V x h h h h H H πππ==⋅⋅=⋅,令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =,于是得22332233r H vt h vt h h H r ππ⋅=⇒=⇒=而,,r H v 是常数,所以盛水的高度h 与注水时间t 的函数关系式是h =203r H t v π≤≤,23103h t -'=>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓, A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同. 故选:A例23.(2022·四川泸州·模拟预测(文))如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为.T 若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】根据时间和h 的对应关系分别进行排除即可. 【详解】函数()h f t =是关于t 的减函数,故排除C ,D ,则一开始,h 随着时间的变化,而变化变慢,超过一半时,h 随着时间的变化,而变化变快,故对应的图象为B , 故选B . 【点睛】本题主要考查函数与图象的应用,结合函数的变化规律是解决本题的关键.例24.(2021·山东济南·高三阶段练习)如图,公园里有一处扇形花坛,小明同学从A 点出发,沿花坛外侧的小路顺时针方向匀速走了一圈(路线为AB BO OA →→),则小明到O 点的直线距离y 与他从A 点出发后运动的时间t 之间的函数图象大致是( )A .B .C.D.【答案】D【解析】根据距离随与时间的增长的变化增减情况即可判定.【详解】小明沿AB走时,与О点的直线距离保持不变,沿BO走时,随时间增加与点О的距离越来越小,沿OA走时,随时间增加与点О的距离越来越大.故选:D.例25.(2021·江苏·常州市西夏墅中学高三开学考试)如图,△AOD是一直角边长为1的等腰直角三角形,平面图形OBD是四分之一圆的扇形,点P在线段AB上,PQ⊥AB,且PQ交AD或交弧DB于点Q,设AP =x(0<x<2),图中阴影部分表示的平面图形APQ(或APQD)的面积为y,则函数y=f(x)的大致图像是A.B.C.D.【答案】A【解析】【分析】分两段,当P点在AO之间时,当P点在OB之间时,再由二次函数的性质及增长趋势可知.【详解】当P 点在AO 之间时,f (x )12=x 2(0<x ≤1),排除B,D 当P 点在OB 之间时,y 随x 的增大而增大且增加速度原来越慢,故只有A 正确 故选A . 【点睛】本题主要考查了函数图像的识别的性质,考查分类讨论思想及排除法应用,属于基础题.【方法技巧与总结】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.题型五:函数图像的综合应用例26.(2022·四川·宜宾市教科所三模(理))定义在R 上的偶函数()f x 满足()()2f x f x =-,且当[]0,1x ∈时,()e 1xf x =-,若关于x 的方程()()()10f x m x m =+>恰有5个解,则m 的取值范围为( )A .e 1e 1,65--⎛⎫⎪⎝⎭ B .e 1e 1,64--⎛⎫⎪⎝⎭ C .e 1e 1,86--⎛⎫⎪⎝⎭ D .()0,e 1-【答案】B 【解析】 【分析】由题可知函数()y f x =与直线()1y m x =+有5个交点,利用数形结合即得. 【详解】∵()()2f x f x =-,∴函数()f x 关于直线1x =对称,又()f x 为定义在R 上的偶函数, 故函数()f x 关于直线0x =对称,作出函数()y f x =与直线()1y m x =+的图象,要使关于x 的方程()()()10f x m x m =+>恰有5个解,则函数()y f x =与直线()1y m x =+有5个交点,∴6e 14e 1m m >-⎧⎨<-⎩,即e 1e 164m --<<. 故选:B.例27.(2022·北京丰台·一模)已知函数()32,,3,x x a f x x x x a -<⎧=⎨-≥⎩无最小值,则a 的取值范围是( )A .(,1]-∞-B .(,1)-∞-C .[1,)+∞D .(1,)+∞【答案】D 【解析】 【分析】利用导数研究函数的性质,作出函数函数33y x x =-与直线2y x =-的图象,利用数形结合即得. 【详解】对于函数33y x x =-,可得()()233311y x x x '=-=+-,由0y '>,得1x <-或1x >,由0y '<,得11x -<<,∴函数33y x x =-在(),1-∞-上单调递增,在()1,1-上单调递减,在()1,+∞上单调递增, ∴函数33y x x =-在1x =-时有极大值2,在1x =时有极小值2-, 作出函数33y x x =-与直线2y x =-的图象,由图可知,当1a ≤时,函数()f x 有最小值12f ,当1a >时,函数()f x 没有最小值.故选:D.例28.(2022·全国·高三专题练习)已知函数()2ln ,0,43,0x x f x x x x >⎧=⎨---≤⎩若函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,则m 的取值范围是( ) A .102,3⎛⎫- ⎪⎝⎭B .102,3⎛⎤- ⎥⎝⎦C .102,3⎛⎫⎪⎝⎭D .102,3⎛⎤ ⎥⎝⎦【答案】D 【解析】 【分析】利用数形结合可得210t mt ++=在[)3,1-上有两个不同的实数根,然后利用二次函数的性质即得. 【详解】设()t f x =,则()21y g t t mt ==++,作出函数()f x 的大致图象,如图所示,则函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点等价于()0g t =在[)3,1-上有两个不同的实数根, 则()()24039310,1110,31,2m g m g m m ⎧->⎪-=-+≥⎪⎪⎨=++>⎪⎪-<-<⎪⎩解得1023m <≤.故选:D. 【点睛】关键点点睛:本题的关键是利用数形结合,把问题转化为方程210t mt ++=在[)3,1-上有两个不同的实数根,即二次方程根的分布问题,利用二次函数的性质即解.例29.(2022·甘肃省武威第一中学模拟预测(文))已知函数()221xf x =--,则关于x 的方程()()20f x mf x n ++=有7个不同实数解,则实数,m n 满足( ) A .0m >且0n > B .0m <且0n > C .01m <<且0n = D .10m -<<且0n =【答案】C 【解析】 【分析】令()u f x =,利用换元法可得20u mu n ++=,由一元二次方程的定义知该方程至多有两个实根1u 、2u ,作出函数()f x 的图象,结合题意和图象可得10u =、2u m =-,进而得出结果. 【详解】令()u f x =,作出函数()u f x =的图象如下图所示:由于方程20u mu n ++=至多两个实根,设为1u u =和2u u =,由图象可知,直线1u u =与函数()u f x =图象的交点个数可能为0、2、3、4,由于关于x 的方程()()20f x mf x n ++=有7个不同实数解,则关于u 的二次方程20u mu n ++=的一根为10u =,则0n =,则方程20u mu +=的另一根为2u m =-,直线2u u =与函数()u f x =图象的交点个数必为4,则10m -<-<,解得01m <<. 所以01m <<且0n =. 故选:C.例30.(2022·天津市滨海新区塘沽第一中学模拟预测)已知函数21244,1(),1x x x x f x e x x -⎧-+>=⎨+≤⎩,若不等式1()||022mf x x --<的解集为∅,则实数m 的取值范围为( ) A .1,52ln 34⎡⎤-⎢⎥⎣⎦B .1,53ln 33⎡⎤-⎢⎥⎣⎦C .1,62ln 34⎡⎤-⎢⎥⎣⎦D .1,63ln 32⎡⎤-⎢⎥⎣⎦【答案】D 【解析】 【分析】由不等式1()||022mf x x --<的解集为∅,等价于()|2|f x x m ≥-在R 上恒成立.根据相切找临界位置,结合函数的单调性以及图像特征,即可求解. 【详解】 不等式1()||022mf x x --<的解集为∅,等价于()|2|f x x m ≥-在R 上恒成立. 当1x >时,2()=244,f x x x -+此时()f x 在1x >上单调递增,当11,()=,x x f x e x -≤+则1()=-1,x f x e -'+当<1x 时,0()<f x ',故()f x 在<1x 上单调递减.当2-y x m =与2()=244f x x x -+相切时,设切点为()00,x y ,所以00()4-4=2f x x '=,解得032x =,35()22f =,此时切线方程为35y=2x-+22⎛⎫ ⎪⎝⎭,该切线与x 轴的交点为1,04A ⎛⎫⎪⎝⎭,同理可得当-2+y x m =与1()=x f x e x -+相切时,切线与x 轴的交点为33-ln 3,02B ⎛⎫⎪⎝⎭,又因为=|2|y x m -与x 轴的交点为,02mC ⎛⎫⎪⎝⎭要使()|2|f x x m ≥-在R 上恒成立,则点C 在,A B 之间移动即可.故133-ln 3422m ≤≤,解得16-3ln 32m ≤≤故选:D例31.(2022·安徽·巢湖市第一中学高三期中(理))已知函数()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩,若函数()()()1g x f x k x =--有4个零点,则实数k 的取值范围为_______________. 【答案】1(0,)4【解析】 【分析】转化求()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩的图像与()1y k x =-图像交点,求出直线与1()11f x x =--相切时的k ,进而得到有4个交点时k 的范围即可 【详解】因为()()()1g x f x k x =--有4个零点, 所以方程()()1f x k x =-有4个实数根,画出()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩的图像,以及()1y k x =-,则两函数的图象有4个公共点.其中直线()1y k x =-经过定点(1,0),斜率为k当直线与()f x 相切时,联立111(1)y x y k x ⎧=-⎪-⎨⎪=-⎩,22(12)40k k ∆=--=,可求出14k =,由图可知,当104x <<时,方程()()1f x k x =-有4个交点,故k 的取值范围为1(0,)4故答案为1(0,)4.【点睛】方法点睛:根据函数零点个数求参数取值范围的注意点:(1)结合题意构造合适的函数,将函数零点问题转化成两函数图象公共点个数的问题处理; (2)在同一坐标系中正确画出两函数的图象,借助图象的直观性进行求解;(3)求解中要注意两函数图象的相对位置,同时也要注意图中的特殊点,如本题中直线(1)y k x =-经过定点(1,0)等.例32.(2022·贵州遵义·高三开学考试(文))已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.【答案】1ln 2,(0,1)3e 8⎛⎤--⎥⎝⎦【解析】 【分析】设函数()3112,21ln ,2x x g x x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩,根据题意转化为函数()g x 与直线y m =的图象有3个公共点,利用导数求得函数()g x 的极值,画出函数()g x 的图象,结合图象,即可求解. 【详解】设函数()3112,21ln ,2x x g x x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩,根据题意函数()f x 恰有3个零点,即为函数()g x 的图象与直线y m =有3个公共点,当12x ≥时,可得2()(3ln 1)g x x x '=+,令()0g x '=,得131e 2x -=>,当131[,e )2x -∈时,函数()g x 单调递减;当13(e ,)x -∈+∞时,函数()g x 单调递增,所以当13e x -=时,函数()g x 取得极小值,极小值为131e 3e g -⎛⎫=- ⎪⎝⎭,又由11()ln 2028g =-<,作出()g x 的图象,如图所示,由图可知,实数m 的取值范围是1ln 2,(0,1)3e 8⎛⎤-- ⎥⎝⎦. 故答案为:1ln 2,(0,1)3e 8⎛⎤-- ⎥⎝⎦.例33.(2022·全国·高三专题练习)已知函数f (x )=244,01,43,1x x x x x -<≤⎧⎨-+>⎩和函数g (x )=2log x ,则函数h (x )=f (x )-g (x )的零点个数是________. 【答案】3 【解析】 【分析】函数零点个数可转化为()y g x =与()y f x =图象交点的个数问题,作出图象,数形结合即可求解. 【详解】在同一直角坐标系中,作出()y g x =与()y f x =的图象如图,由()()()0h x f x g x =-=可得,()()f x g x =,即函数的零点为(),()y f x y g x ==图象交点的横坐标, 由图知()y f x =与()y g x =的图象有3个交点,即()h x 有3个零点. 故答案为:3例34.(2022·全国·高三专题练习(理))如图,在等边三角形ABC 中, AB =6.动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x ,点P 到此三角形中心O 距离的平方为f (x ),给出下列三个结论:①函数f (x )的最大值为12;②函数f (x )的图象的对称轴方程为x =9; ③关于x 的方程()3f x kx =+最多有5个实数根. 其中,所有正确结论的序号是____. 【答案】①② 【解析】写出P 分别在,,AB BC CA 上运动时的函数解析式2()f x OP =,利用分段函数图象可解. 【详解】P 分别在AB 上运动时的函数解析式22()3(3),(06)f x OP x x ==+-≤≤, P 分别在BC 上运动时的函数解析式22()3(9),(612)f x OP x x ==+-≤≤, P 分别在CA 上运动时的函数解析式22()3(15),(1218)f x OP x x ==+-≤≤,22223(3),(06)()||3(9),(612)3(15),(1218)x x f x OP x x x x ⎧+-≤≤⎪==+-≤≤⎨⎪+-≤≤⎩,由图象可得,方程()3f x kx =+最多有6个实数根 故正确的是①②. 故答案为:①② 【点睛】利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合思想求解.【方法技巧与总结】1.利用函数图像判断方程解的个数.由题设条件作出所研究对象的图像,利用图像的直观性得到方程解。
常见函数的图像和性质
常见函数的图像和性质函数是高中数学学习中不可避免的部分,常见函数有一些图像和性质。
本文将介绍常见函数的图像和性质,包括线性函数、二次函数、指数函数、对数函数和三角函数。
线性函数是最基本的函数之一,也是最容易理解的函数之一。
线性函数的一般式是y = kx + b,其中k和b是常数,x和y表示函数的自变量和因变量。
线性函数的图像是一条直线,斜率k和截距b决定了直线的位置和倾斜程度。
当k>0时,函数是单调递增的,当k<0时,函数是单调递减的。
斜率越大,直线越陡峭,斜率越小,直线越平缓。
截距决定直线和y轴的交点。
当b>0时,直线在y轴上方,当b<0时,直线在y轴下方,当b=0时,直线经过原点。
线性函数的性质是简单的,任何两个不同的点都能确定一条直线,而且任何一条直线都可以写成y = kx + b的形式。
二次函数是另一个基本函数,一般式是y = ax^2 + bx + c,其中a、b、c是常数。
二次函数的图像是一个开口向上或向下的抛物线,抛物线的开口方向由系数a的正负决定。
当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
二次函数图像的性质和线性函数有所不同,首先,二次函数不是单调函数,也就是说,它有一个最值点,最值点的坐标为(-b/2a,c-b^2/4a)。
第二,二次函数图像的对称轴是一个垂直于x轴的线,它的坐标是x = -b/2a。
第三,二次函数图像上任何一条水平线和抛物线只有一个交点,因此,二次函数也称为单峰函数。
指数函数是一种以底数为e的指数型函数,一般式是y = a^x,其中a是正常数。
指数函数的图像呈现出一种快速增长或快速衰减的趋势,指数函数的性质是独特的。
当a>1时,指数函数单调递增,当0<a<1时,指数函数单调递减,当a=1时,指数函数恒等于1。
指数函数图像的特点是固定的x值下y值呈指数型增长或衰减,在坐标系中的图像表现出“指数型曲线”。
(完整版)高等数学公式大全及常见函数图像
180°+α
-sinα
-cosα
tgα
ctgα
270°-α
-cosα
-sinα
ctgα
tgα
270°+α
-cosα
sinα
-ctgα
-tgα
360°-α
-sinα
cosα
-tgα
-ctgα
360°+α
sinα
cosα
tgα
ctgα
·和差角公式: ·和差化积公式:
·倍角公式:
·半角公式:
·正弦定理: ·余弦定理:
高等数学公式
导数公式:
基本积分表:
三角函数的有理式积分:
一些初等函数: 两个重要极限:
三角函数公式:
·诱导公式:
函数
角A
sin
cos
tg
ctg
-α
-sinα
cosα
-tgα-ctgα90°αcosαsinα
ctgα
tgα
90°+α
cosα
-sinα
-ctgα
-tgα
180°-α
sinα
-cosα
-tgα
斯托克斯公式——曲线积分与曲面积分的关系:
常数项级数:
级数审敛法:
绝对收敛与条件收敛:
幂级数:
函数展开成幂级数:
一些函数展开成幂级数:
欧拉公式:
三角级数:
傅立叶级数:
周期为 的周期函数的傅立叶级数:
微分方程的相关概念:
一阶线性微分方程:
全微分方程:
二阶微分方程:
二阶常系数齐次线性微分方程及其解法:
(*)式的通解
2.7 函数的图像
∴x - <a 在x∈(-1,1)恒成立,
2
2 1
x
高考第一轮复习用书· 数学(理科)
第二章 2.7 函数的图像
令g(x)=x - ,φ(x)=a ,
2
2 1
x
当x∈(-1,1)时,g(x)的图象在φ(x)的图象的下方.
高考第一轮复习用书· 数学(理科)
-1
第二章 2.7 函数的图像
当a>1时,结合图象可知a ≥ ,即1<a≤2;当0<a<1时,结合图
5.若定义在R上的函数f(x)关于点(a,c)成中心对称,关于直线x =b(b>a)成轴对称,则函数f(x)为周期函数,4b-4a是它的一个周 期.
高考第一轮复习用书· 数学(理科)
第二章 2.7 函数的图像
1.方程log2(x+4)=3 的实根的个数为 ( (A)0个. (B)1个. (C)2个.
x
) (D)3个.
【解析】借助图形,由图可知.
【答案】C
高考第一轮复习用书· 数学(理科)
第二章 2.7 函数的图像
2.函数f(x)=
ln | x | x
的图象大致是(
)
【解析】f(-x)= 排除A、B、C. 【答案】D
ln | x | ln | x | =- x x
=-f(x),故f(x)为奇函数;又f(1)=0,故
高考第一轮复习用书· 数学(理科)
第二章 2.7 函数的图像
变式训练3 已知f(x)是R上的单调函数,且对任意的实数a∈ R,有f(-a)+f(a)=0恒成立,若f(-3)=2. (1)试判断f(x)在R上的单调性,并说明理由; (2)解关于x的不等式:f(
正切函数的图像与性质
栏目导航
Thank you for watching !
栏目导航
栏目导航
1.角 α 的终边经过点 P(-b,4)且 cos α=-35,求 tan α 的值. [解] 由题意知 cos α= b-2+b 42=-35,∴b=±3.又 cos α=-35<0, ∴P 在第二象限,∴b=3. ∴tan α=-43.
栏目导航
正切函数的图像
【例 2】 作出函数 y=tan|x|的图像,判断函数的奇偶 性及周期性.
]
栏目导航
正切函数的性质 [探究问题] 1.如何判断函数的奇偶性. [提示] 判断函数的奇偶性要先求函数的定义域,判断其是否关 于原点对称.若不对称,则该函数无奇偶性,若对称,再判断 f(-x) 与 f(x)的关系. 2.函数 y=tan x 的周期是多少?y=|tan x|的周期呢? [提示] y=tan x 的周期是 π,y=|tan x|的周期也是 π.
C [y=tan x 的图像与 x 轴的交点以及 x 轴上使 y=tan x 无意义
的点都是对称中心.]
栏目导航
3.函数 y=tan 2x 的定义域为________.
xx≠k2π+π4,k∈Z
[由正切函数的定义知,若使 y=tan 2x 有
意义,则 2x≠kπ+2π(k∈Z).解得 x≠k2π+π4(k∈Z).]
①
②
③
④
栏目导航
(1)A (2)④ [(1)如图,函数 y=sin x 与 y=tan x 在区间-32π,32π 上的交点个数是 3.
栏目导航
(2)函数 y=tan x+sin x-|tan x-sin x|
=2tan 2sin
初中知识点归纳——函数图像篇
初中知识点归纳——函数图像篇函数图像是初中数学中的重要内容之一。
通过函数图像的形状、特点以及变化规律,可以深入理解函数的性质和作用。
本文将从函数图像的基本形状与分类、常见函数图像的特点及其变化规律等方面进行归纳与总结。
一、函数图像的基本形状与分类函数图像的形状可以分为线性函数、二次函数、指数函数和对数函数等几种常见类型。
1. 线性函数图像线性函数的特点是图像为一条直线。
直线的斜率表示了函数的增减趋势,当斜率为正时,函数图像呈上升趋势;当斜率为负时,函数图像呈下降趋势;斜率为0时,函数图像为水平直线。
2. 二次函数图像二次函数的图像通常为抛物线形状。
抛物线的开口方向由二次项的系数决定,当二次项的系数为正时,抛物线开口向上;当二次项的系数为负时,抛物线开口向下。
二次函数的图像还受到常数项的影响,常数项决定了抛物线的位置。
3. 指数函数图像指数函数的图像为指数曲线,呈现上升或下降的趋势。
指数函数的底数决定了曲线在坐标系中的位置和形状。
当底数大于1时,指数曲线呈现上升趋势;当底数小于1但大于0时,指数曲线呈现下降趋势。
4. 对数函数图像对数函数的图像为对数曲线,也呈现上升或下降的趋势。
对数函数的底数决定了曲线在坐标系中的位置和形状。
当底数大于1时,对数曲线呈现上升趋势;当底数小于1但大于0时,对数曲线呈现下降趋势。
二、常见函数图像的特点与变化规律1. 线性函数的特点与变化规律线性函数的图像为一条直线,具有以下特点和变化规律:(1)斜率决定了线性函数图像的倾斜程度和方向,斜率越大图像越陡峭,斜率为正表示函数图像上升,斜率为负表示函数图像下降。
(2)截距决定了线性函数图像与纵轴的交点位置,截距为正表示交点在纵轴上方,截距为负表示交点在纵轴下方。
2. 二次函数的特点与变化规律二次函数的图像为抛物线,具有以下特点和变化规律:(1)开口方向由二次项的系数决定,正系数表示抛物线开口向上,负系数表示抛物线开口向下。
(2)顶点是抛物线的最高点或最低点,在坐标系中的横坐标为顶点的x坐标,纵坐标为顶点的y坐标。
三角函数的图像及性质
2
(k z ) 解得 x 的区间即为函数的单调
2
x 2k
2
解法:反函数法、几何法
a sin x b cos x c 型 d sin x e cos x f
3 .热点探索 三角函数的图象和性质是高考命题的一个热点.高考中主要考查正弦、余弦、正切型函 数的图象和性质 ,以对称性、单调性、周期性和图象的变换等为重点,突出数形结合等数 学思想的考查.难度以容易题、中档题为主.
三角函数的图像及性质 一、 【精要知识点击】
1.函数 y A sin(x ) B 的图象 (1)熟练掌握五点法作图象 (2)根据图象确定解析式的方法 (3)熟练掌握图象变换规则 (4)图象的对称性 ①函数 y A sin(x ) B 与 y A cos(x ) B 的对称轴经过它们的最值点.
2 或 2 3
法二:
f ( x) 是偶函数 k
2
(k Z ) 0
2
f ( x) sin(x
2
) cos x
f ( x) 的图象关于点 M (
f ( x) 在区间 [0, ] 上是单调函数 用五点法作出 f ( x) cosx 的图象
2
] 上是单调函数,不进行讨论,故对 ≥
10 不能排除. 3
cos sin x cos sin x 对任意 x 都成立,且 0 ,所以得 cos 0
2 3 3 3 f ( x) 的图象关于点 M ( , 0) 对称 得取得 f ( x) f ( x) 得 x 0 得 4 4 4 3 3 3 f ( )= f ( ) ∴ f( )0 4 4 4 3 3 3 3 ) = cos ∵ f ( ) = sin( ∴ cos =0 4 4 4 4 2 3 2 k (k 0,1,2,3, ) (2k 1)( k 0,1,2,3, ) 又 0 ,得 4 2 3 2 2 f ( x) sin( x ) 在[0, ]上是减函数 当 k 0 时, 2 3 3 2
第二节三角函数的图像、性质及其变换
(4)等价转化,数形结合等数学思想方法.
上一页
下一页
返回目录
点
评
高考对三角函数的图象和性质一向是考查的重点,在 复习过程中要注意与三角函数的化简、求值等基础知识, 以及三角函数的恒等变形等结合起来,还要注意与代数、
几何、向量的综合联系.复习的重点是正、余弦函数的图 象变换及其应用,掌握它们的性质,其中单调性又是本节
上一页
下一页
返回目录
由“参”定“形”,由“形”定 “参”
题解 ①由于函数
y f ( x) 的周期为 ,故函数的两个
相邻的零点相距的半个周期,即使由 f ( x1 ) f ( x2 ) 0,
x x 得 1 2 是 的整数倍,故①为假命题。 2
上一页
下一页
返回目录
由“参”定“形”,由“形”定 “参”
一次函数或二次函数在闭区间 t [1,1] 上的最值问 题,或引入辅助角 ,或采用“不等式”法,或“数形 结合”等基本类型处理.
上一页
下一页
返回目录
点
评
4.对函数 y=Asin(ωx+)+k (A>0, ω>0, ≠0, k≠0),
其图象的基本变换是个难点,各种变换的实质要熟练
掌握,不能单从形式上简单判断.
5.“五点法”是三角函数作简图的有力武器,要熟练掌握.
最基本的三角函数图象的形状和位置特征,要准确掌 握,它是利用数形结合思想解决三角函数问题的关键.
上一页
下一页
返回目录
点
评
6.主要题型:求三角函数的定义域、值域、周期,判断
奇偶性,求单调区间,利用单调性比较大小,图象的
平移和伸缩,图象的对称轴和对称中心,利用图象解 题,根据图象求解析式.
数学函数图像知识点总结
数学函数图像知识点总结函数是数学中的一个重要概念,通过函数可以描述各种现象和规律。
函数图像是函数的图形表示,通过函数图像可以直观地理解函数的性质和行为。
在学习数学函数图像时,我们需要掌握一些重要的知识点,包括函数的定义、基本函数图像、函数的性质、函数图像的变换等内容。
本文将围绕这些知识点展开详细的介绍。
一、函数的定义1.1 函数的定义在数学中,函数是一种特殊的关系,它将一个集合中的每一个元素都对应到另一个集合中的唯一元素。
通俗的讲,函数就是一种映射关系,将自变量映射到因变量。
函数的定义可以用一个公式、图形或者文字描述。
函数通常用f(x)或者y来表示,其中x是自变量,y是因变量。
函数的一般表示形式为y=f(x),其中f表示函数名,x表示自变量,y表示因变量。
1.2 函数的性质函数有许多重要的性质,包括定义域、值域、奇偶性、周期性等。
在图像中,这些性质通常能够直观地表现出来。
- 定义域:函数的自变量的取值范围称为函数的定义域。
在函数图像上,定义域通常可以通过图形的横坐标范围来表示。
- 值域:函数的因变量的取值范围称为函数的值域。
在函数图像上,值域通常可以通过图形的纵坐标范围来表示。
- 奇偶性:函数的奇偶性是指函数图像关于y轴对称还是关于原点对称。
奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
- 周期性:具有周期性的函数在一定的距离内重复出现相似的图像。
周期函数的图像通常具有明显的重复性特征。
1.3 常见的基本函数在函数图像中,一些基本函数的图像具有重要的参考意义,这些函数包括线性函数、二次函数、指数函数、对数函数、三角函数等。
- 线性函数:线性函数的图像是一条直线,具有固定的斜率和截距。
- 二次函数:二次函数的图像是一个抛物线,具有一个顶点。
- 指数函数:指数函数的图像是以底数为底的指数幂函数,具有快速增长或者快速衰减的特点。
- 对数函数:对数函数的图像是以底数为底的对数函数,具有反映增长速度缓慢的特点。
考研数学必须熟记的函数图像
考研数学必须熟记的函数图像函数图形基本初等函数幂函数(1)幂函数(2)幂函数(3)指数函数(1)指数函数(2)指数函数(3)对数函数(1)对数函数(2)三角函数(1)三角函数(2)三角函数(3)三角函数(4)三角函数(5)反三角函数(1)反三角函数(2)反三角函数(3)反三角函数(4)反三角函数(5)反三角函数(6)反三角函数(7)反三角函数(8)双曲函数(1)双曲函数(2)双曲函数(3)双曲函数(4)双曲函数(5)双曲函数(6)双曲函数(7)反双曲函数(1)反双曲函数(2)反双曲函数(3)反双曲函数(4)反双曲函数(5)反双曲函数(6) y=sin(1/x) (1)y=sin(1/x) (2)y=sin(1/x) (3)y=sin(1/x) (4) y = [1/x](1)y = [1/x](2) y=21/xy=21/x (2)y=xsin(1/x)y=arctan(1/x)y=e1/xy=sinx (x—〉∞)绝对值函数 y = |x|符号函数 y = sgnx 取整函数 y= [x]极限的几何解释(1)极限的几何解释 (2)极限的几何解释 (3)极限的性质(1) (局部保号性)极限的性质 (2) (局部保号性)极限的性质(3) (不等式性质)极限的性质(4) (局部有界性)极限的性质(5) (局部有界性)两个重要极限y=sinx/x (1)y=sinx/x (2) limsinx/x的一般形式y=(1+1/x)^x (1)y=(1+1/x)^x (2)lim(1+1/x)^x 的一般形式(1) lim(1+1/x)^x 的一般形式(2)lim(1+1/x)^x 的一般形式(3) e的值(1)e的值(2)等价无穷小(x->0)sinx等价于x arcsinx等价于x tanx等价于xarctanx等价于x1-cosx等价于x^2/2 sinx等价于x数列的极限的几何解释海涅定理渐近线水平渐近线铅直渐近线y=(x+1)/(x-1)y=sinx/x (x—〉∞)夹逼定理(1)夹逼定理(2)数列的夹逼性(1)数列的夹逼性 (2)。
高考中所有的函数图像大汇总
高考中所有的函数图像大汇总 专项二 高考用到的函数图像总结高考中用到的函数图像是指:一次函数图像、反比例函数图像、二次函数图像、幂函数图像(五种)、对勾(也称对号)函数图像、指数函数图像、对数函数图像、简单的三角函数图像、简单的三次函数图像一、一次函数图像(1)函数)0(≠+=k b kx y 叫做一次函数,它的定义域是R ,值域是R ; (2)一次函数的图象是直线,这条直线不能竖直,所以一次函数又叫线性函数;(3)一次函数)0(≠+=k b kx y 中,k 叫直线的斜率,b 叫直线在y 轴上的截距; 0>k 时,函数是增函数,0<k 时,函数是减函数;注意截距不是距离的意思,截距是一个可正可负可为零的常数 (4)0=b 时该函数是奇函数且为正比例函数,直线过原点;0≠b 时,它既不是奇函数,也不是偶函数; (5)作一次函数图像时,一般先找到在坐标轴上的两个点,然后连线即可 二、反比例函数图像 (一)反比例函数的概念1.()可写成()的形式,注意自变量x 的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可写成xy=k 的形式,用它可迅速地求出反比例函数解析式中的k ,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x 轴、y 轴无交点.(二)反比例函数及其图象的性质函数解析式:(),自变量的取值范围:越大,图象的弯曲度越小,曲线越平直.图像越远离坐标轴越小,图象的弯曲度越大.图像越靠近坐标轴 当时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.(3)对称性:图象关于原点对称,即若(a ,b )在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a ,b )在双曲线的一支上,则(,)和(,)在双曲线的另一支上. 4.k 的几何意义如图1,设点P (a ,b )是双曲线上任意一点,作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则矩形PBOA的面积是(三角形PAO 和三角形PBO 的面积都是).如图2,由双曲线的对称性可知,P 关于原点的对称点Q 也在双曲线上,作QC ⊥PA 的延长线于C ,则有三角形PQC 的面积为.图1 图2 三、二次函数图像(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞)(-∞,+∞)值域⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a单调性在x ∈⎝⎛⎦⎤-∞,-b2a 上单调递减; 在x ∈⎣⎡⎭⎫-b2a ,+∞上单调递增 在x ∈⎝⎛⎦⎤-∞,-b2a 上单调递增; 在x ∈⎣⎡⎭⎫-b2a ,+∞上单调递减对称性函数的图象关于x=-b2a对称(2)我们在做题的时候,作比较详细的二次函数图像,需要作出开口方向、对称轴所在位置、与两个坐标轴的交点位置、顶点所在位置,而不能随手一条曲线,就当做二次函数的图像了。
二次函数的图像及性质(5)
y=ax2+bx+c(a>0)
b 4ac b 2 2a , 4a b 直线x 2a
y=ax2+bx+c(a<0)
由a,b和c的符号确定
向下
b 4ac b 时, 最大值为 2a 4a
在对称轴的左侧,y随着x的增大而减小. 在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小. 2
函数y=ax2+bx+c(a≠0)的应用
例:某服装公司试销一种成本为每件50元的T恤衫, 规定试销时的销售单价不低于成本价,又不高于每件 70元,试销中销售量y(件)与销售单价x(元)的关 系可以近似的看作一次函数(如图). (1)求y与x之间的函数关系式; (2)设公司获得的总利润(总利润=总销售额-总成 本)为P元,求P与x之间的函数关系式,并写出自变 量x的取值范围;根据题意判断:当x取何值时,P的 值最大?最大值是多少?
写出下列抛物线的开口方向、对称轴及顶点坐标, 当x为何值时y的值最大(小)?
(1)y=3x2+2x
(2)y=-x2-2x (3)y=-2x2+8x-8
1 2 4y x 4 x 3 2
请研究二次函数y=x2 -6x+5的 图象和性质,并尽可能多地说 出结论。
我们的结论:
向上 ① 图象的开口方向:_____ ② 对称轴:直线x =______ 3 (3,-4) ③ 顶点坐标:__________ 左 ④增减性: 在对称轴的___侧, y随x_________, 的增大而减小 右 的增大而增大 在对称轴的____侧,y随x__________ ⑤最值: 当x = ____时, y最小值 =_______ 3 -4
高中13种函数图像汇总
高中13种函数图像汇总函数图像是数学教学中的重要知识点,在高中阶段,学生要掌握常见的13种函数图像的概念、性质、特征,本文将对13种函数图像进行汇总,为学生深入学习提供参考。
一、直线函数图像直线函数的图像是一条直线,它的函数表达式为y=kx+b,其中k是斜率,b是y轴截距,如果k=0,则表示水平线;如果b=0,则表示垂直线。
二、平方函数图像平方函数的图像是一个U型函数曲线,它的函数表达式为y=x^2。
正定平方函数的图像会向上钝化,而负定平方函数的图像会向下钝化,当x=0时,y取得最大值。
三、立方函数图像立方函数的图像是一条U型函数曲线,它的函数表达式为y=x^3,正定立方函数的图像会向上钝化,而负定立方函数的图像会向下钝化,当x=0时,y取得最大值。
四、正弦函数图像正弦函数的图像是一条具有一定周期的曲线,它的函数表达式为y=A*sin(Bx+C),其中A表示振幅,B表示周期,C表示初相。
五、余弦函数图像余弦函数的图像与正弦函数的图像大致相同,它的函数表达式为y=A*cos(Bx+C),其中A表示振幅,B表示周期,C表示初相。
六、指数函数图像指数函数的图像是一条上升或下降的曲线,它的函数表达式为y=A*B^x,其中A是振幅,B是指数,当B>1时,图像会向上钝化;当B<1时,图像会向下钝化。
七、反指数函数图像反指数函数的图像是一条上升或下降的曲线,它的函数表达式为y=A*B^(-x),其中A是振幅,B是指数,当B>1时,图像会向上钝化;当B<1时,图像会向下钝化。
八、对数函数图像对数函数的图像是一条上升曲线,它的函数表达式为y=A*ln (x),A表示振幅,此时x的取值范围是大于0的正数。
九、反对数函数图像反对数函数的图像也是一条上升曲线,它的函数表达式为y=A*ln(1/x),A表示振幅,此时x的取值范围是大于0的正数。
十、双曲线函数图像双曲线的图像是一条上升或下降的曲线,它的函数表达式为y=A*sinh(Bx+C),其中A表示振幅,B表示周期,C表示初相。
考研数学二必背公式及知识点
考研数学二必背公式及知识点考研数学二对于很多考生来说是具有一定挑战性的科目,其中掌握必背的公式和知识点是取得好成绩的关键。
下面就为大家详细梳理一下考研数学二中那些必须牢记的公式和重要知识点。
一、函数、极限、连续1、函数的性质奇偶性:若 f(x) = f(x),则函数 f(x) 为偶函数;若 f(x) = f(x),则函数 f(x) 为奇函数。
周期性:若存在非零常数 T,使得对于任意 x,都有 f(x + T) =f(x),则函数 f(x) 为周期函数,T 为其周期。
2、极限的计算四则运算法则:若 lim f(x) = A,lim g(x) = B,则 lim f(x) ± g(x)= A ± B;lim f(x) × g(x) = A × B;lim f(x) / g(x) = A / B (B ≠ 0)。
两个重要极限:lim (1 + 1/x)^x = e (x → ∞);lim sin x / x= 1 (x → 0)。
3、连续的定义函数 f(x) 在点 x₀处连续,当且仅当 lim f(x) = f(x₀) (x → x₀)。
二、一元函数微分学1、导数的定义函数 y = f(x) 在点 x₀处的导数 f'(x₀) = lim f(x₀+Δx) f(x₀) /Δx (Δx → 0)。
2、基本导数公式(x^n)'= nx^(n 1)(sin x)'= cos x(cos x)'= sin x(e^x)'= e^x(ln x)'= 1 / x3、导数的四则运算f(x) ± g(x)'= f'(x) ± g'(x)f(x) × g(x)'= f'(x)g(x) + f(x)g'(x)f(x) / g(x)'= f'(x)g(x) f(x)g'(x) / g(x)²(g(x) ≠ 0)4、复合函数求导法则若 y = f(u),u = g(x),则 dy/dx = dy/du × du/dx5、微分的定义dy = f'(x)dx6、罗尔定理、拉格朗日中值定理、柯西中值定理罗尔定理:若函数 f(x) 满足在闭区间 a, b 上连续,在开区间(a, b) 内可导,且 f(a) = f(b),则在(a, b) 内至少存在一点ξ,使得 f'(ξ) =0。
高数函数图像大全总结
高数函数图像大全总结高数中的函数一直是学生们学习高数的拦路虎,今天我们为大家整理了高数中函数图像的相关内容,希望对你的学习有所帮助!一、函数与导数在本科教学内容中占有重要地位。
二、正弦函数的图像和性质; y=asin(n) (1)定义域: a>0;(2)图象和性质;①单调性:正弦函数在某区间内只有两个极值,最大值为极大值,最小值为极小值。
②周期性:正弦函数在一个周期内,其图像上的任一点处的切线方程都与正弦函数的对称轴方程相同,故图像关于原点对称,为过原点的一条直线。
③最大值和最小值:最大值和最小值分别是对应曲线的波峰和波谷(见图4)。
④图象经过点P:当以x轴为参照时,正弦函数在x=P处有最大值。
从定义可知, asin(n)是指有周期性的正弦函数,所以该函数的图象为过点P的一条直线。
( 3)图象特征:①斜率k:正弦函数在某一区间[-n,n]上的斜率k=ln(asin(n)),即k的取值范围是[-n,n];②最大值和最小值:曲线上的点p(x),若函数y=asin(n)在区间[-n,n]内满足关于x轴对称,即p(x)与y轴交于最大值和最小值,则曲线上此点(x)=极小值。
三、余弦函数的图像和性质; y=cos(nx) (1)定义域: a>0;(2)图象和性质;①单调性:在实数轴上有唯一的对称轴(虚轴),该对称轴的方程为y=mx+b; ②周期性:在复平面内无对称轴,因此该函数无周期; ③最大值和最小值:曲线上的点p(x),若函数y=cos(nx)在区间[-n,n]内满足关于x轴对称,即p(x)与y轴交于极大值和极小值,则曲线上此点(x)=极大值;从定义可知, cos(nx)是指有周期性的余弦函数,所以该函数的图象为过点p的一条直线。
四、幂函数y=exp(nx) (1)定义域: a>0;(2)图象和性质;①单调性:在实数轴上有唯一的对称轴,该对称轴的方程为y=mx+b; ②周期性:在复平面内无对称轴,因此该函数无周期;③最大值和最小值:曲线上的点p(x),若函数y=exp(nx)在区间[-n,n]内满足关于x轴对称,即p(x)与y轴交于最大值和最小值,则曲线上此点(x)=极大值;从定义可知, exp(nx)是指有周期性的幂函数,所以该函数的图象为过点p的一条直线。
三角函数总结大全附记忆口诀
三角函数总结大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,三角函数是数学中属于初等函数中的超越函数的函数。
它们的本质是任何角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的。
其定义域为整个实数域。
另一种定义是在直角三角形中,但并不完全。
现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。
而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
下面为大家整理的三角函数公式大全:(一)任意角的三角函数及诱导公式1.任意角概念:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角α。
旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫α的顶点。
为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。
如果一条射线没有做任何旋转,我们称它形成了一个零角。
2.象限角、终边相同的角、区间角角的顶点与原点重合,角的始边与x轴的非负半轴重合。
那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。
要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角。
终边相同的角是指与某个角α具有同终边的所有角,它们彼此相差2kπ(k∈Z),即β∈{β|β=2kπ+α,k∈Z},根据三角函数的定义,终边相同的角的各种三角函数值都相等。
区间角是介于两个角之间的所有角,如α∈{α|6π≤α≤65π}=[6π,65π]。
3.弧度制长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写)。
正余弦函数图像
第14页
人教版 高中数学必修4 三角函数
小结
体会推导新知识时的数形结合思想; 理解解决类三角函数图像的整体思想; 对比理解正弦函数和余弦函数的异同。
第15页
y 1
● ●
o
-1
● π
π
●
2
3π 2
●
2π
x
第11页
人教版 高中数学必修4 三角函数
例1:画出y=1+sinx , x∈[0,π ]的简图 画出y=1+sinx x∈[0, 2π π 3π x 0 2π π 2 2
sinx
0 1
1 2
0 1
-1 0
0
1 + sinx
2 y 1. o -1
.
π 2
1
π -4
π -3
π -2
-π
-1
o
π/2 π 3π/2 2 π
3 π
4 π
x
函数y=sinx, x∈R的图象 函数 ∈ 的图象
正弦曲线
第6页
函数 y = sin x, x∈[0,2π]与 y = cos x, x∈[0,2π]的图象 上的关键点: 上的关键点:
像作二次函数图象那样为了快速用描点法作出正弦曲线 与余弦曲线。下面我们通过观察函数图象寻找图象上起关键 作用的点:
人教版 高中数学必修4 三角函数
“五点作图法 “五点作图法” 五点作图法”
图象与x轴的交点(0,0)(π,0)(2π,0) y = sin x, x∈[0,2π] 图象的最低点( ,−1)
3π 2
第7页
图象的最高点 (π , ) 2 1
人教版 高中数学必修4 三角函数
x∈[0 ]的简图 二.用五点法作y=sinx , x∈[0,2π ]的简图 用五点法作y=sinx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本初等函数幂函数(1)
幂函数(2)
指数函数(1)指数函数(2)
指数函数(3)对数函数(1)
对数函数(2)三角函数(1)
三角函数(2)三角函数(3)
三角函数(4)三角函数(5)
反三角函数(1)反三角函数(2)
反三角函数(3)反三角函数(4)
反三角函数(5)反三角函数(6)
反三角函数(7)反三角函数(8)
双曲函数(1)双曲函数(2)
双曲函数(3)双曲函数(4)
双曲函数(5)双曲函数(6)
双曲函数(7)反双曲函数(1)
反双曲函数(2)反双曲函数(3)
反双曲函数(4)反双曲函数(5)
反双曲函数(6)y=sin(1/x) (1)
y=sin(1/x) (2) y=sin(1/x) (3)
y=sin(1/x) (4) y = [1/x](1)
y = [1/x](2) y=21/x
y=21/x (2) y=xsin(1/x)
y=arctan(1/x)
y=e1/x
y=sinx (x->∞)
绝对值函数y = |x| 符号函数y = sgnx 取整函数y= [x]
极限的几何解释(1)
极限的几何解释(2) 极限的几何解释(3)
极限的性质(1) (局部保号性) 极限的性质(2) (局部保号性)
极限的性质(3) (不等式性质) 极限的性质(4) (局部有界性)
极限的性质(5) (局部有界性) 两个重要极限
y=sinx/x (1)
y=sinx/x (2)
limsinx/x的一般形式
y=(1+1/x)^x (1) y=(1+1/x)^x (2)
lim(1+1/x)^x 的一般形式(1) lim(1+1/x)^x 的一般形式(2)
lim(1+1/x)^x 的一般形式(3) e的值(1)
e的值(2) 等价无穷小
(x->0)
sinx等价于x arcsinx等价于x
arctanx等价于x
1-cosx等价于x^2/2
数列的极限的几何解释海涅定理
渐近线
水平渐近线铅直渐近线
y=(x+1)/(x-1)
y=sinx/x (x->∞)
夹逼定理(1)
夹逼定理(2)
数列的夹逼性(1)
数列的夹逼性(2)。