二次函数与几何图形动点问题--答案
二次函数的动点问题(含答案)
72x =B(0,4)A(6,0)EFxyO 二次函数与四边形一.二次函数与四边形的形状例1.(浙江义乌市) 如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平 行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.练习1.(河南省实验区) 23.如图,对称轴为直线72x =的抛物线经过点 A (6,0)和 B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.练习 2.(四川省德阳市)25.如图,已知与x 轴交于点(10)A ,和(50)B ,的抛物线1l 的顶点为(34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '.(1)求抛物线2l 的函数关系式;(2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运动到何处时,以点D O P P ',,,为顶点的四边形是平行四边形?(3)在2l 上是否存在点M ,使ABM △是以AB 为斜边且一个角为30的直角三角形?若存,求出点M 的坐标;若不存在,说明理由.A5-4- 3-2-1- 1 2 3 455 4 3 2 1 A EBC '1- O 2l 1lx y练习3.(山西卷)如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,. (1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.二.二次函数与四边形的面积例1.(资阳市)25.如图10,已知抛物线P :y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点(点A 在x 轴的正半轴上),与y 轴交于点C ,矩形DEFG 的一条边DE 在线段AB 上,顶点F 、G 分别在线段BC 、AC 上,抛物线P 上部分点的横坐标对应的纵坐标如下:x … -3 -2 1 2 … y…-52-4-52…(1) 求A 、B 、C 三点的坐标;(2) 若点D 的坐标为(m ,0),矩形DEFG 的面积为S ,求S 与m 的函数关系,并指出m 的取值范围;(3) 当矩形DEFG 的面积S 取最大值时,连接DF 并延长至点M ,使FM=k ·DF ,若点M 不在抛物线P 上,求k 的取值范围.练习1.(辽宁省十二市第26题).如图,平面直角坐标系中有一直角梯形OMNH ,点H 的坐标为(-8,0),点N 的坐标为(-6,-4).(1)画出直角梯形OMNH 绕点O 旋转180°的图形OABC ,并写出顶点A ,B ,C 的坐标(点M 的对应点为A , 点N 的对应点为B , 点H 的对应点为C );(2)求出过A ,B ,C 三点的抛物线的表达式;(3)截取CE =OF =AG =m ,且E ,F ,G 分别在线段CO ,OA ,AB 上,求四边形BEFG 的面积S 与m 之间的函数关系式,并写出自变量m 的取值范围;面积S 是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情况下,四边形BEFG 是否存在邻边相等的情况,若存在,请直接写出此时m 的值,并指出相等的邻边;若不存在,说明理由.图10练习3.(吉林课改卷)如图,正方形ABCD 的边长为2cm ,在对称中心O 处有一钉子.动点P ,Q 同时从点A 出发,点P 沿A B C →→方向以每秒2cm 的速度运动,到点C 停止,点Q 沿A D →方向以每秒1cm 的速度运动,到点D 停止.P ,Q 两点用一条可伸缩的细橡皮筋联结,设x 秒后橡皮筋扫过的面积为2cm y .(1)当01x ≤≤时,求y 与x 之间的函数关系式; (2)当橡皮筋刚好触及钉子时,求x 值;(3)当12x ≤≤时,求y 与x 之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时POQ ∠的变化范围;(4)当02x ≤≤时,请在给出的直角坐标系中画出y 与x 之间的函数图象.练习4.(四川资阳卷)如图,已知抛物线l 1:y =x 2-4的图象与x 轴相交于A 、C 两点,B 是抛物线l 1上的动点(B 不与A 、C 重合),抛物线l 2与l 1关于x 轴对称,以AC 为对角线的平行四边形ABCD 的第四个顶点为D .(1) 求l 2的解析式;(2) 求证:点D 一定在l 2上;(3) □ABCD 能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由. 注:计算结果不取近似值.三.二次函数与四边形的动态探究例1.(荆门市)28. 如图1,在平面直角坐标系中,有一张矩形纸片OABC ,已知O (0,0),A (4,0),C (0,3),点P 是OA 边上的动点(与点O 、A 不重合).现将△PAB 沿PB 翻折,得到△PDB ;再在OC 边上选取适当的点E ,将△POE 沿PE 翻折,得到△PFE ,并使直线PD 、PF 重合.(1)设P (x ,0),E (0,y ),求y 关于x 的函数关系式,并求y 的最大值;(2)如图2,若翻折后点D 落在BC 边上,求过点P 、B 、E 的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否存在点Q ,使△PEQ 是以PE 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.B CPO D QA BPCO DQ A y321 O1 2 x例2.已知抛物线y =ax2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.例3..(湖南省郴州)如图,矩形ABCD 中,AB =3,BC =4,将矩形ABCD 沿对角线A 平移,平移后的矩形为EFGH (A 、E 、C 、G 始终在同一条直线上),当点E 与C 重时停止移动.平移中EF 与BC 交于点N ,GH 与BC 的延长线交于点M ,EH 与DC 交于点P ,FG 与DC 的延长线交于点Q .设S 表示矩形PCMH 的面积,S '表示矩形NFQC 的面积.(1) S 与S '相等吗?请说明理由.(2)设AE =x ,写出S 和x 之间的函数关系式,并求出x 取何值时S 有最大值,最大值是多少? (3)如图11,连结BE ,当AE 为何值时,ABE ∆是等腰三角形.练习1.如图12, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)点 (填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自 变量t 的取值范围,当t 为何值时,S 的值最大;(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标,图2 OC A Bxy DPE F 图1 FE PD y xBA C OxN MQ PHGFEDCBA图11QPN M HGFED CBA图10图12yxP QBCNMOA若不存在,说明理由.练习2..(江西省) 25.实验与探究(1)在图1,2,3中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),写出图1,2,3中的顶点C 的坐标,它们分别是(52),, , ;(2)在图4中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),求出顶点C 的坐标(C 点坐标用含a b c d e f ,,,,,的代数式表示);归纳与发现(3)通过对图1,2,3,4的观察和顶点C 的坐标的探究,你会发现:无论平行四边形ABCD 处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a b B c d C m n D e f ,,,,,,,(如图4)时,则四个顶点的横坐标a c m e ,,,之间的等量关系为 ;纵坐标b d n f ,,,之间的等量关系为 (不必证明);运用与推广(4)在同一直角坐标系中有抛物线2(53)y x c x c =---和三个点15192222G c c S c c ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,,,,(20)H c ,(其中0c >).问当c 为何值时,该抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形?并求出所有符合条件的P 点坐标.yC()A(40)D ,(12)B ,O x图1yC()A(0)D e ,()B c d ,O x图2yC()A a b , ()D e b ,()B c d ,Ox图3yC()A a b ,()D e f ,()B c d ,Ox图472x =B(0,4)A(6,0)EFxyO答案:一.二次函数与四边形的形状例1.解:(1)令y=0,解得11x =-或23x =∴A (-1,0)B (3,0);将C 点的横坐标x=2代入223y x x =--得y=-3,∴C (2,-3)∴直线AC 的函数解析式是y=-x-1 (2)设P 点的横坐标为x (-1≤x ≤2)则P 、E 的坐标分别为:P (x ,-x-1), E (2(,23)x x x --∵P 点在E 点的上方,PE=22(1)(23)2x x x x x -----=-++ ∴当12x =时,PE 的最大值=94(3)存在4个这样的点F ,分别是1234(1,0),(3,0),(470),(47,0)F F F F -+-, 练习 1.解:(1)由抛物线的对称轴是72x =,可设解析式为27()2y a x k =-+.把A 、B 两点坐标代入上式,得227(6)0,27(0) 4.2a k a k ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解之,得225,.36a k ==- 故抛物线解析式为22725()326y x =--,顶点为725(,).26-(2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725()326y x =--,∴y<0,即 -y>0,-y 表示点E 到OA 的距离.∵OA 是OEAF 的对角线, ∴2172264()2522OAES SOA y y ==⨯⨯⋅=-=--+.因为抛物线与x 轴的两个交点是(1,0)的(6,0),所以,自变量x 的 取值范围是1<x <6. ①根据题意,当S = 24时,即274()25242x --+=.化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4). 点E 1(3,-4)满足OE = AE ,所以OEAF 是菱形; 点E 2(4,-4)不满足OE = AE ,所以OEAF 不是菱形. ② 当OA ⊥EF ,且OA = EF 时,OEAF 是正方形,此时点E 的 坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E , 使OEAF 为正方形.5-4- 3- 2- 1- 12 3 4 554321 A EBC '1- O 2l1lxy5-4-3-2-1-12 3D554 32 1 ACEM BC '1-O 2l 1l xy练习2.解:(1)由题意知点C '的坐标为(34)-,.设2l 的函数关系式为2(3)4y a x =--. 又点(10)A ,在抛物线2(3)4y a x =--上,2(13)40a ∴--=,解得1a =.∴抛物线2l 的函数关系式为2(3)4y x =--(或265y x x =-+).(2)P 与P '始终关于x 轴对称, PP '∴与y 轴平行.设点P 的横坐标为m ,则其纵坐标为265m m -+,4OD =,22654m m ∴-+=,即2652m m -+=±.当2652m m -+=时,解得36m =±.当2652m m -+=-时,解得32m =±.∴当点P 运动到(362)-,或(362)+,或(322)--,或(322)+-,时, P P OD ' ∥,以点D O P P ',,,为顶点的四边形是平行四边形.(3)满足条件的点M 不存在.理由如下:若存在满足条件的点M 在2l 上,则90AMB ∠=,30BAM ∠=(或30ABM ∠=),114222BM AB ∴==⨯=.过点M 作ME AB ⊥于点E ,可得30BME BAM ∠=∠=.112122EB BM ∴==⨯=,3EM =,4OE =. ∴点M 的坐标为(43)-,. 但是,当4x =时,246451624533y =-⨯+=-+=-≠-.∴不存在这样的点M 构成满足条件的直角三角形.练习3. [解] (1)点(40)A -,,点(20)B -,,点(08)E ,关于原点的对称点分别为(40)D ,,(20)C ,,(08)F -,. 设抛物线2C 的解析式是2(0)y ax bx c a =++≠,则16404208a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,.解得168a b c =-⎧⎪=⎨⎪=-⎩,,.所以所求抛物线的解析式是268y x x =-+-.(2)由(1)可计算得点(31)(31)M N --,,,. 过点N 作NH AD ⊥,垂足为H .当运动到时刻t 时,282AD OD t ==-,12NH t =+.根据中心对称的性质OA OD OM ON ==,,所以四边形MDNA 是平行四边形.所以2ADN S S =△.所以,四边形MDNA 的面积2(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.所以,所求关系式是24148S t t =-++,t 的取值范围是04t <≤. (3)781444S t ⎛⎫=--+ ⎪⎝⎭,(04t <≤). 所以74t =时,S 有最大值814. 提示:也可用顶点坐标公式来求.(4)在运动过程中四边形MDNA 能形成矩形. 由(2)知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形MDNA 是矩形.所以OD ON =.所以2222OD ON OH NH ==+.所以22420t t +-=.解之得126262t t =-=--,(舍). 所以在运动过程中四边形MDNA 可以形成矩形,此时62t =-.[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。
二次函数的动点问题(等腰、直角三角形的存在性问题)
_ Q_ G_P_ O二次函数中的动点问题 三角形的存在性问题一、技巧提炼1、利用待定系数法求抛物线解析式的常用形式〔1〕、【一般式】抛物线上任意三点时,通常设解析式为,然后解三元方程组求解; 〔2〕、【顶点式】抛物线的顶点坐标和抛物线上另一点时,通常设解析式为求解;2、二次函数y=ax 2+bx+c 与x 轴是否有交点,可以用方程ax 2+bx+c = 0是否有根的情况进展判定;判别式ac b 42-=∆ 二次函数与x 轴的交点情况一元二次方程根的情况 △ > 0与x 轴交点 方程有的实数根△ < 0 与x 轴交点 实数根 △ = 0与x 轴交点方程有的实数根3、抛物线上有两个点为A 〔x 1,y 〕,B 〔x 2,y 〕 (1)对称轴是直线2x 21x x +=(2)两点之间距离公式: 两点()()2211y ,x Q ,y ,x P , 那么由勾股定理可得:221221)()(y y x x PQ -+-=练一练:A 〔0,5〕和B 〔-2,3〕,那么AB =。
4、 常见考察形式1〕A 〔1,0〕,B 〔0,2〕,请在下面的平面直角坐标系 坐标轴上找一点C ,使△ABC 是等腰三角形; 总结:两圆一线方法规律:平面直角坐标系中一条线段,构造等腰三角形,用的是“两圆一线〞:分别以线段的两个端点为圆心,线段长度为半径作圆,再作线段的垂直平分线;2〕A 〔-2,0〕,B 〔1,3〕,请在平面直角坐标系中坐标轴 上找一点C ,使△ABC 是直角三角形;总结: 两线一圆方法规律{平面直角坐标系中一条线段,构造直角三角形,用的是“两线一圆〞:分别过线段的两个端点作线段的垂线,再以线段为直径作圆; 5、求三角形的面积:〔1〕直接用面积公式计算;〔2〕割补法;〔3〕铅垂高法; 如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫△ABC 的“水平宽〞〔a 〕,中间的 这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高〞〔h 〕. 我们可得出一种计算三角形面积的新方法:S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半。
专题05 二次函数与实际应用(图形动态问题)-2022年中考数学二次函数重点题型(全国通用版)解析版
专题05 二次函数与实际应用(图形动态问题)1.(2021—2022江苏苏州九年级月考)如图所示,已知ABC 中,12BC =,BC 边上的高6h =,D 为BC 上一点,//EF BC ,交AB 于点E ,交AC 于点F ,设点E 到边BC 的距离为x ,则DEF 的面积y 关于x 的函数图象大致为( )A .B .C .D .【答案】D【分析】可过点A 向BC 作AH ⊥BC 于点H ,所以根据相似三角形的性质可求出EF ,进而求出函数关系式,由此即可求出答案.【详解】解:如图,过点A 向BC 作AH ⊥BC 于点H ,∵//EF BC ,∴△AEF ∽△ABC , ∴EF h x BC h -=,即6126EF x -=, ∴()26EF x =-,∴y =12×2(6-x )x =-x 2+6x (0<x <6),∴该函数图象是抛物线y =-x 2+6x (0<x <6)的部分,故选:D .【点睛】此题考查相似三角形的判定和性质,二次函数的图象,解题的关键是综合运用相关知识解题.2.(2021·山东邹城·中考二模)如图,四边形ABCD 是边长为1的正方形,点E 是射线AB 上的动点(点E 不与点A ,点B 重合),点F 在线段DA 的延长线上,且AF AE =,连接ED ,将ED 绕点E 顺时针旋转90︒得到EG ,连接,,EF FB BG .设AE x =,四边形EFBG 的面积为y ,下列图象能正确反映出y 与x 的函数关系的是( )A .B .C .D .【答案】B【分析】分两种情况求出函数的解析式,再由函数解析式对各选项进行判断.【详解】解:∵四边形ABCD 是边长为1的正方形,∴∠DAB =90°,AD =AB ,在△ADE 和△ABF 中,AD AB DAE BAF AE AF =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ABF (SAS ),∴∠ADE =∠ABF ,DE =BF ,∵∠DEG =90°,∴∠ADE +∠AED =∠AED +∠BEG ,∴∠BEG =∠ADE ,∴∠BEG =∠ABF ,∴EG //BF ,∵DE =BF ,DE =GE ,∴EG =BF ,∴四边形BFEG 是平行四边形,∴四边形EFBG 的面积=2△BEF 的面积=2⨯12BE •AF ,设AE =x ,四边形EFBG 的面积为y ,当0≤x ≤1时,y =(1-x )•x =-x 2+x ;当x >1时,y =(x -1)•x =x 2-x ;综上可知,当0≤x ≤1时,函数图象是开口向下的抛物线;当x >1时,函数图象是开口向上的抛物线,符合上述特征的只有B ,故选:B .【点睛】本题综合考查了正方形的性质和二次函数图象及性质,分段求出函数的解析式是解题的关键.3.(2021·山东威海·中考真题)如图,在菱形ABCD 中,2cm AB =,60D ∠=︒,点P ,Q 同时从点A 出发,点P 以1cm /s 的速度沿A ﹣C ﹣D 的方向运动,点Q 以2cm /s 的速度沿A﹣B ﹣C ﹣D 的方向运动,当其中一点到达D 点时,两点停止运动.设运动时间为x (s ),APQ的面积为y (cm 2),则下列图象中能大致反映y 与x 之间函数关系的是( )A .B .C .D .【答案】A【分析】先证明∠CAB =∠ACB =∠ACD =60°,再分0≤x ≤1、1<x ≤2、2<x ≤3三种情况画出图形,求出函数解析式,根据二次函数、一次函数图象与性质逐项排除即可求解.【详解】解:∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,∠B =∠D =60°,∴△ABC ,ACD 都是等边三角形,∴∠CAB =∠ACB =∠ACD =60°.如图1,当0≤x ≤1时,AQ =2x ,AP =x ,作PE ⊥AB 于E ,∴sin PE AP PAE x =∠=, ∴21332222y x x =⨯=, 故D 选项不正确;如图2,当1<x ≤2时,CP =2-x ,CQ =4-2x ,BQ =2x -2,作PF ⊥BC 与F ,作QH ⊥AB 于H ,∴)sin 2PF CP PCF x =∠=-,))sin 221QH BQ B x x =∠=-=-,∴)()()22113221422222y x x x x =-⨯--⨯--=, 故B 选项不正确;当2<x ≤3时,CP =x -2,CQ =2x -4,∴PQ =x -2,作AG ⊥CD 于G ,∴sin 2AG AC ACD =∠==∴()132322y x x =⨯-= 故C 不正确.故选:A【点睛】本题考查了菱形性质,等边三角形性质,二次函数、一次函数图象与性质,利用三角函数解三角形等知识,根据题意分类讨论列出函数解析式是解题关键.4.(2021—2022福建厦门市九年级期中)如图,将矩形OABC 置于平面直角坐标系xOy 中,A ,(0,2)C .抛物线y =﹣x 2+bx +c 经过点B ,C ,顶点为D .将矩形OABC 绕原点顺时针旋转一个角度θ(0°<θ<360°),得到矩形OA 'B 'C ',记A 'C '的中点E ,连结DE ,线段DE 的长度最大值为 ___.【答案】2##【分析】由A 0),(0,2)C ,得B ,2),用待定系数法可得抛物线解析式为22y x =-++,即得顶点D 5),可得27OD ,根据E 为A C ''的中点,得11222OE A C AC ''===,当D 、O 、E 不构成三角形,即E 在DO 的延长线上时,DE 的长度最大,此时2DE OD OE =+=. 【详解】 解:如图:四边形OABC 是矩形,A 0),(0,2)C ,B ∴2),4AC =,将B ,2),(0,2)C 代入2y x bx c =-++得:2122c c ⎧=-++⎪⎨=⎪⎩,解得2b c ⎧=⎪⎨=⎪⎩∴抛物线解析式为22y x =-++,∴顶点D 5),OD ∴=E 为A C ''的中点,11222OE A C AC ''∴===,在DOE ∆中,DE OD OE <+,∴当D 、O 、E 构成三角形时,2DE <,当D 、O 、E 不构成三角形,即E 在DO 的延长线上时,DE 的长度最大,如图:此时2DE OD OE =+=,故答案为:2.【点睛】本题考查二次函数的综合应用,涉及待定系数法、矩形的性质、三角形三边关系等知识,解题的关键是掌握E 在DO 的延长线上时,DE 的长度最大.5.(2021·浙江·温州市实验中学九年级月考)如图,四边形ABCD 中,AD ∥BC ,AB =10,CD =P 从点A 沿着A -B -C 运动,同时点Q 从点D 沿着D -A 运动,它们同时到达终点,设点P 运动的路程为x ,AQ 的长度为y ,且2163y x =-+. (1)求AD ,BC 的长和四边形ABCD 的面积.(2)连接PQ ,设△APQ 的面积为S ,在P ,Q 的运动过程中,S 是否存在最大值,若存在,求出S 的最大值;若不存在,请说明理由.(3)当PQ与四边形ABCD其中一边垂直时,求所有满足要求的x的值.【答案】(1)120;(2)存在,最大值为1123;(3)24043x=或487x=或12x=【分析】(1)当x=0时,当y=0时,分别求解得出对应线段的长度,过点B作BM⊥AD,过点D作DN⊥BC,求出高,即可求解;(2)分情况讨论(点P在线段AB上、当P在BC上时),得出△APQ的面积的函数表达式,根据函数性质求解即可;(3)分三种情况讨论,利用三角形相似的性质求解即可.【详解】解(1):由题意:∵P,Q两点同时到达终点,所以,当x=0时,y=16,即AD=16;当y=0时,x=24,所以BC=14过点B作BM⊥AD,过点D作DN⊥BC,如下图:又∵AD∥BC,可知四边形BMDN为矩形设AM=m,∴MD=16-m,即BN=16-m,∴CN=m-2,根据BM=DN,可得:102-m2=2-(m-2)2,解得m=6.即BM=8,4CN=∴四边形ABCD 的面积为:(16+14)×8÷2=120(2)当点P 在线段AB 上时,010x <≤,作PE AD ⊥,如下图,则//PE BM ,∴APE ABM △∽△ ∴AP PE AE AB BM AM ==,即45PE x =,35AE x = 21124432(16)2235155APQ S AQ PE x x x x =⨯=-+⨯=-+△ 对称轴为12x =,0a <又∵010x <≤∴10x =时,APQ S 最大,为1123当P 在BC 上时,1024x ≤≤, 186423APQ S AQ BM x =⨯=-+△ 0k <,APQ S 随x 的增大而减小,综上所述,APQ S 的最大值为1123(3)当PQ AB ⊥时,如下图:∴APQ AMB △∽△ ∴AP AQ AM AB =,即2163610x x -+=,解得487x = 当PQ BC ⊥时,可得BP MQ =,即2101663x x -=-+- 解得12x =当PQ CD ⊥时,如下图:∵//AD BC ,∴C QDH ∠=∠又∵90H CND PEQ ∠=∠=∠=︒,PQE DQH ∠=∠∴PEQ DHQ CND △∽△∽△ ∴PE CN EQ DN= 由(1)(2)得45PE x =,35AE x =,4CN =,8DN = ∴231635EQ x x =-+- ∴4452381635x x x =-+-,解得24043x = 综上所得24043x =或487x =或12x = 【点睛】 本题考查了一次函数图象和性质,二次函数最值问题,三角形面积,勾股定理,相似三角形的判定和性质等,是一道关于四边形的综合题,解题关键是熟练掌握并运用二次函数性质、相似三角形的判定和性质等相关知识,并应用数形结合思想、方程思想和分类讨论思想解决问题.6.(2021·吉林·中考真题)如图,在矩形ABCD 中,3cm AB =,AD =.动点P 从点A 出发沿折线AB BC -向终点C 运动,在边AB 上以1cm/s 的速度运动;在边BC的速度运动,过点P 作线段PQ 与射线DC 相交于点Q ,且60PQD ∠=︒,连接PD ,BD .设点P 的运动时间为()s x ,DPQ 与DBC △重合部分图形的面积为()2cm y .(1)当点P 与点A 重合时,直接写出DQ 的长;(2)当点P 在边BC 上运动时,直接写出BP 的长(用含x 的代数式表示); (3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.【答案】(1)1;(2))3PB x =-;(3)222)3)(34)x x y x x x ≤≤⎪⎪⎪=<≤⎨⎪⎪<≤⎪⎪⎩ 【分析】(1)在Rt PDQ中,由tan 60ADDQ︒== (2)点P 在AB 上运动时间为()313s ÷=,则点P 在BC上时)3PB x -.(3)分类讨论①:点P 在AB 上,点Q 在CD 上;②:点P 在AB 上,点Q 在DC 延长线上;③:点P 在BC 上. 【详解】 解:(1)如图,在Rt PDQ中,AD =60PQD ∠=︒,∴tan 60ADDQ︒==∴1DQ AD ==. (2)点P 在AB 上运动时间为()313s ÷=, ∴点P 在BC上时:)3PB x -.(3)当03x ≤≤时,点P 在AB 上,作PM CD ⊥于点M ,PQ 交AB 于点E ,作EN CD ⊥于点N ,同(1)可得1MQ AD ==. ∴1DQ DM MQ AP MQ x =+=+=+, 当13x +=时2x =,①∴02x ≤≤时,点Q 在DC 上,∵tan BC BDC CD ∠==∴30DBC ∠=︒, ∵60PQD ∠=︒, ∴90DEQ ∠=°. ∵1sin 302EQ DQ ︒==, ∴1122x EQ DQ +==,∵sin 60EN EQ ︒==,∴)1EN x ==+,∴()))21111122y DQ EN x x x =⋅=++=+)202x x =≤≤.②当23x <≤时,点Q 在DC 延长线上,PQ 交BC 于点F ,如图, ∵132CQ DQ DC x x =-=+-=-,tan 60CFCQ︒=,∴)tan 602CF CQ x =⋅︒-,∴211(2)2)22CQF S CQ CF x x =⋅=--=-+△∴22DEQ CQF y S S =-=+-+⎝△△23)x x x =<≤.③当34x <≤时,点P 在BC 上,如图,∵3)CP CB BP x =--=,∴11(34)22y DC CP x x =⋅=⨯=<≤.综上所述:222)3)(34)x x y x x x x ≤≤⎪⎪⎪=<≤⎨⎪⎪<≤⎪⎪⎩. 【点睛】题目主要考察运用三角函数解三角形求出相应边的长度,然后利用三角形面积公式确定函数解析式,同时也对二次函数在几何动点问题进行考察,难点是在进行分类讨论时,作出对应图形并作出相应辅助线,同时确定相应的自变量范围.7.(2021·湖北天门·中考真题)如图1,已知45RPQ ∠=︒,ABC 中90ACB ∠=︒,动点P 从点A出发,以的速度在线段AC 上向点C 运动,,PQ PR 分别与射线AB 交于E ,F 两点,且PE AB ⊥,当点P 与点C 重合时停止运动,如图2,设点P 的运动时间为s x ,RPQ ∠与ABC 的重叠部分面积为2cm y ,y 与x 的函数关系由15(0)C x <≤和2()5C x n <≤两段不同的图象组成.(1)填空:①当5s x =时,EF =______cm ; ②sin A =______;(2)求y 与x 的函数关系式,并写出x 的取值范围; (3)当236cm y ≥时,请直接写出....x 的取值范围.【答案】(1)①10;(2)222(05)34360900(56)x x y x x x ⎧<≤=⎨-+-<≤⎩;(3)6x ≤≤. 【分析】(1)①先根据等腰直角三角形的判定与性质可得EF PE =,再根据5x =时,50y =即可得; ②先根据运动速度和时间求出AP 的长,再根据正弦三角函数的定义即可得;(2)先求出当点P 与点C 重合时,n 的值,再分05x <≤和5x n <≤两种情况,解直角三角形求出PE 的长,然后利用三角形的面积公式即可得;(3)分05x <≤和56x <≤两种情况,分别利用二次函数的性质即可得. 【详解】解:(1)①,45PE AB RPQ ∠=︒⊥,Rt EFP ∴是等腰直角三角形, EF PE ∴=,由图可知,当5x =时,2115022y EF PE EF =⋅==, 解得10EF =或10EF =-(不符题意,舍去), 故答案为:10;②由题意得:当5x =时,5AP ==则sinPE EF A AP AP ==(2)由函数图象可知,当5x =时,点F 与点B 重合,如图所示:10cm AP PE EF ===,20cm AE ∴=,30cm AB AE BE AE EF ∴=+=+=,在Rt ABC 中,sin BC AB A =⋅=,AC ∴=,则当点P 与点C 重合时,6()n s ==,①当05x <≤时,cm AP =,sin 2cm EF PE AP A x ==⋅=, 则2211222RtEFPy S EF PE EF x ==⋅==; ②当56x <≤时,如图,设PR 交BC 于点N ,过点F 作FM AC ⊥,交AC 延长线于点M ,连接BP ,2cm AP =,sin 2cm EF PE AP A x ==⋅=,4cm AE x ∴==,)cm CP AC AP =-=, (304)cm BE AB AE x ∴=-=-,6cm AF EF AE x =+=,在Rt AFM △中,sin cm FM AF A x =⋅=,cm AM ∴,cm PM AM AP ∴=-=, ,90FM AC ACB ∠=︒⊥,//BC FM ∴, PCN PMF ∴~,CN CP FM PM ∴==,解得(cm)CN =,BN BC CN ∴=-=-,则1122BNP BEPy SSBN CP BE PE =+=⋅+⋅,11)(304)222x x =-+-⋅, 234360900x x =-+-,综上,222(05)34360900(56)x x y x x x ⎧<≤=⎨-+-<≤⎩; (3)①当05x <≤时,22y x =,令2236x =,解得x =x =-, 在05x <≤内,y 随x 的增大而增大,∴当36y ≥时,5x ≤;②当56x <≤时,234360900x x y =-+-, 此二次函数的对称轴为3609034217x =-=-⨯,则由二次函数的性质可知,当90517x <≤时,y 随x 的增大而增大;当90617x <≤时,y 随x 的增大而减小,当5x =时,2345360590050y -⨯+⨯-==, 当6x =时,234636069003650y -⨯+⨯-=<=, 则当6x =时,y 取得最小值,最小值为36, 即在56x<≤内,都有36y ≥,综上,当236cm y ≥时,x 的取值范围为6x ≤. 【点睛】本题考查了二次函数的图象与性质、解直角三角形、相似三角形的判定与性质等知识点,较难的是题(2),正确分两种情况讨论,并通过作辅助线,构造相似三角形和直角三角形是解题关键.8.(2021·内蒙古·包头市第四十八中学九年级月考)在矩形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1cm /s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2cm /s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:BQ = ,PB = (用含t 的代数式表示); (2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于26cm 2?若存在,请求出此时t 的值;若不存在,请说明理由.(4)是否存在t 的值,使△BPQ 的面积最大,若存在,请直接写出此时t 的值;若不存在,请说明理由.【答案】(1)2t ,(5)t -;(2)2;(3)存在.1t =时,使得五边形APQCD 的面积等于26 2cm ;(4)存在, 52t =时,使得PBQ ∆的面积最大,等于2542cm .【分析】(1)根据路程与速度的关系解决问题即可;(2)利用勾股定理得到方程222(5)(2)5t t -+=,求解即可得到结果;(3)根据长方形ABCD 的面积减去PBQ ∆的面积等于五边形APQCD 的面积,列出方程,然后求解即可得到结果;(4)根据(3)可知PBQ ∆的面积为252524t ⎛⎫--+ ⎪⎝⎭,据此求解即可.【详解】解:(1)由题意:2BQ t = cm ,(5)PB t cm =-, 故答案为2t ,(5)t -.(2)由题意得:222(5)(2)5t t -+=, 解得10t =(不合题意,舍去),22t =, ∴当t=2秒时,PQ 的长度等于5cm . (3)存在.理由如下:长方形ABCD 的面积是:25630()cm ⨯=,使得五边形APQCD 的面积等于26 2cm , 则PBQ ∆的面积为230264()cm -=, 即有:11(5)2422PB BQ t t =-=, 解得14t =,21t =.当4t =时,28BQ t BC ==>,不合题意,舍去, 即当1t =时,使得五边形APQCD 的面积等于262cm . (4)存在,理由如下:由(3)可知PBQ ∆的面积为2211525(5)252224PB BQ t t t t t ⎛⎫=-=-+=--+ ⎪⎝⎭,即当52t =时,使得PBQ ∆的面积最大,等于2542cm .【点睛】本题考查四边形综合题,考查了矩形的性质,多边形的面积,最值等知识,利用参数构建方程解决问题是解题的关键.9.(2021·广东佛山·九年级月考)如图1,在Rt △ABC 中,∠C =90º,AC =4cm ,BC =3cm ,点P 由点B 出发沿BA 方向向点A 匀速运动,速度为1cm /s ;点Q 由点A 出发沿AC 方向向点C 匀速运动,速度为2cm /s ;连结PQ .若设运动时间为t (s )(0<t <2),解答下列问题: (1)当t 为何值时?PQ //BC ?(2)设△APQ 的面积为y (cm 2),求y 与t 之间的函数关系?(3)是否存在某一时刻t ,使线段PQ 恰好把△ABC 的周长和面积同时平分?若存在求出此时t 的值;若不存在,说明理由.(4)如图2,连结PC ,并把△PQC 沿AC 翻折,得到四边形PQP 'C ,那么是否存在某一时刻t ,使四边形PQP 'C 为菱形?若存在求出此时t 的值;若不存在,说明理由.【答案】(1)t =107;(2)y =-235t +3t (0<t <2);(3)不存在,理由见解析;(4)存在,t =109【分析】(1)当PQ ∥BC 时,我们可得出△APQ 和△ABC 相似,那么可得出关于AP ,AB ,AQ ,AC 的比例关系,我们观察这四条线段,已知的有AC,根据P,Q的速度,可以用时间t表示出AQ,BP的长,而AB可以用勾股定理求出,这样也就可以表示出AP,那么将这些数值代入比例关系式中,即可得出t的值.(2)过点P作PD⊥AC于D,则有△APD∽△ABC,由相似三角形的性质构建二次函数即可解决问题.(3)如果将△ABC的周长和面积平分,那么AP+AQ=BP+BC+CQ,那么可以用t表示出CQ,AQ,AP,BP的长,那么可以求出此时t的值,我们可将t的值代入(2)的面积与t的关系式中,求出此时面积是多少,然后看看面积是否是△ABC面积的一半,从而判断出是否存在这一时刻.(4)过P作PD⊥AC于点D,若QD=CD,则PQ=PC,四边形PQP'C就为菱形,同(2)的方法求出AD的表达式,再根据QD=CD即可求出t的值.【详解】解:(1)连接PQ,4,3,90,AC BC C==∠=︒5,AB∴==若APAB=AQAC时,PQ//BC,即55t-=24t,∴t=10 7(2)过P作PD⊥AC于点D,则有APAB=PDBC,即55t-=3PD,∴PD=35(5-t)∴y=12·2t·35(5-t)=-235t+3t(0<t<2)(3)若平分周长则有:AP+AQ=12(AB+AC+BC),即:5-t +2t =6, ∴t =1当t =1时,y =3.4;而三角形ABC 的面积为6,显然不存在.(4)过P 作PD ⊥AC 于点D ,若QD =CD ,则PQ =PC ,四边形PQP 'C 就为菱形.同(2)方法可求AD =45(5-t ),所以: 45(5-t )-2t =4-45(5-t ); 解之得:t =109. 即t =109时,四边形PQP 'C 为菱形.【点睛】本题考查四边形综合题、相似三角形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会由参数构建方程解决问题. 10.(2021·天津·中考真题)在平面直角坐标系中,O 为原点,OAB 是等腰直角三角形,90,OBA BO BA ∠=︒=,顶点()4,0A ,点B 在第一象限,矩形OCDE 的顶点7,02E ⎛⎫- ⎪⎝⎭,点C 在y 轴的正半轴上,点D 在第二象限,射线DC 经过点B .(Ⅰ)如图①,求点B 的坐标;(Ⅰ)将矩形OCDE 沿x 轴向右平移,得到矩形O C D E '''',点O ,C ,D ,E 的对应点分别为O ',C ',D ,E ',设OO t '=,矩形O C D E ''''与OAB 重叠部分的面积为S .①如图②,当点E '在x 轴正半轴上,且矩形O C D E ''''与OAB 重叠部分为四边形时,D E ''与OB 相交于点F ,试用含有t 的式子表示S ,并直接写出t 的取值范围; ②当5922t ≤≤时,求S 的取值范围(直接写出结果即可). 【答案】(Ⅰ)点B 的坐标为()2,2;(Ⅰ)①21717228S t t =-+-, t 的取值范围是1142t ≤<;②2363816S ≤≤. 【分析】(I )过点B 作BH OA ⊥,垂足为H ,由等腰三角形的“三线合一”性质得到122OH OA ==,再由∠BOH =45°得到△OBH 为等腰直角三角形,进而2BH OH ==,由此求得B 点坐标; (II )①由平移知,四边形O C D E ''''是矩形,得790,2O E D O E OE '''''∠=︒==,进而得到72FE OE t '==-',再由重叠部分面积OABFOE S S S'=-即可求解;②画出不同情况下重叠部分的图形,分5722t ≤≤和7922t <≤两种情况,将重叠部分的面积表示成关于t 的二次函数,再结合二次函数的最值问题求解. 【详解】解:(I )如图,过点B 作BH OA ⊥,垂足为H .由点()4,0A ,得4OA =. ∵,90BO BA OBA =∠=︒,∴122OH OA ==.又∠BOH =45°,∴△OBH 为等腰直角三角形,∴2BH OH ==. ∴点B 的坐标为()2,2.(II )①由点7,02E ⎛⎫- ⎪⎝⎭,得72OE =.由平移知,四边形O C D E ''''是矩形,得790,2O E D O E OE '''''∠=︒==. ∴72OE OO O E t '''='=--,90FE O ∠='︒.∵BO BA =,90OBA ∠=︒, ∴45BOA BAO ∠=∠=︒. ∴9045OFE BOA ∠=︒-∠='︒ ∴FOE OFE ∠=∠''. ∴72FE OE t '==-'. ∴2117222FOE SOE FE t '⎛⎫=⋅=- ⎪⎝'⎭'. ∴211742222OABFOE S S St '⎛⎫=-=⨯⨯-- ⎪⎝⎭. 整理后得到:21717228S t t =-+-.当'O 与A 重合时,矩形O C D E ''''与OAB 重叠部分刚开始为四边形,如下图(1)所示:此时4OO t '==,当'D 与B 重合时,矩形O C D E ''''与OAB 重叠部分为三角形,接下来往右平移时重叠部分一直为三角形直到'E 与A 点重合,如下图(2)所示:此时''711222t OO DD ===+=, ∴t 的取值范围是1142t ≤<, 故答案为:21717228S t t =-+-,其中:1142t ≤<;②当5722t ≤≤时,矩形O C D E ''''与OAB 重叠部分的面积如下图3所示:此时'4AO t =-,∠BAO =45°,'AO F 为等腰直角三角形, ∴''4AO FO t , ∴22'111''(4)48222AO FSAO FO t t t , ∴重叠部分面积22'114(48)4422AOBAO FS SSt t t t , ∴S 是关于t 的二次函数,且对称轴为4t =,且开口向下, 故自变量离对称轴越远,其对应的函数值越小, 故将72t =代入, 得到最大值217731()442228S , 将52t =代入, 得到最小值215523()442228S, 当7922t <≤时,矩形O C D E ''''与OAB 重叠部分的面积如下图4所示:此时''4'AO OA OO t FO =-=-=,7'''2OE EE EO t ME =-=-= 'AO F 和'OE M 均为等腰直角三角形, ∴22'111''(4)48222AO FSAO FO t t t , 22'1171749''()222228OE MSOE ME t t t , ∴重叠部分面积222''1174915814(48)()222828AOBOE MAO FS SSSt t t t t t , ∴S 是关于t 的二次函数,且对称轴为154t =,且开口向下, 故自变量离对称轴越远,其对应的函数值越小,故将154t =代入,得到最大值21515158163()424816S , 将92t =代入, 得到最小值291598127()22288S , ∵272388,6331168, ∴S 的最小值为238,最大值为6316, 故答案为:2363816S ≤≤. 【点睛】本题考查了矩形的性质、坐标与图形性质、平移的性质、直角三角形的性质、二次函数的最值等问题,属于综合题,需要画出动点不同状态下的图形求解,本题难度较大,需要分类讨论. 11.(2021·安徽·中考一模)如图,直线443y x =+与x 轴、y 轴分别交于点A ,B ,过点()40C ,的直线恰好与y 轴交于点B ,点P 为线段AC 上的一动点(点P 与点A ,C 不重合),过点P 作//PQ BC 交AB 于点Q ,点A 关于PQ 的对称点为点D ,连接PD QD BD ,,.(1)当点D 恰好落在BC 上时,求点P 的坐标;(2)设点P 的坐标为()0m ,,若PDQ 和ABC 重叠部分的面积S 与点P 的横坐标m 之间的函数解析式为221(3)326161 4772a m m S m bm m ⎧⎛⎫+-<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-++<< ⎪⎪⎝⎭⎩,,其图象如图②所示,请结合图①、②,求出a ,b 的值;(3)当BDQ △为直角三角形时,求出点P 的坐标.【答案】(1)1,02⎛⎫ ⎪⎝⎭;(2)27a =,207b =;(3)点P 的坐标为3,07⎛⎫ ⎪⎝⎭或4,07⎛⎫⎪⎝⎭【分析】(1)由直线AB 与y 轴交于点B ,即可得出()04B ,,再由()40C ,,易得直线BC 的解析式为4y x =-+.设点P 的坐标为()0x ,,由题意可知4OB OC PQ BC ==,∥,即可求出290APD QPA ∠=∠=︒,所以可知点D 的坐标为()4x x -+,,最后由AP PD =,即可得出34x x +=-+,解x 即可得出点P 的坐标;(2)设直线PQ 的解析式为y x n =-+,即得y x m =-+.联立443y x y x m⎧=+⎪⎨⎪=-+⎩,可求出Q 点坐标为31241277m m -+⎛⎫⎪⎝⎭,.当231m -<≤时,点D 在ABC 内, 即PQDAPQS SS==,即可列出等式,求出a .再由函数图象可知点3227⎛⎫⎪⎝⎭,在267671m S bm ++=-的图象上,即3261642777b =-⨯++,解出b 即可. (3)由(2)可知312412(04)(3)77m m B D m m Q -+⎛⎫+ ⎪⎝⎭,,,,,.由于BQD ∠不可能为90︒,所以分类讨论①当BDQ ∠为直角时,过点Q ,B 作PD 的垂线,分别交PD 及其延长线于点M ,N ,连接BD .由余角的性质可推出MDQ NBD ∠=∠,即tan tan MDQ NBD ∠=∠,所以MQ NDMD BN=,由题意可知3124124123934(3)17777m m m m MQ m MD m BN m ND m m -+++=-==+-===-+=-,,,,即41217397m m m m+-=+,解出m 即可求出P 点坐标.②当QBD ∠为直角时,即BD QB ⊥,由此可得直线BD 的解析式为344y x =-+,将()3D m m +,代入,即3344m m +=-+,解出m即可求出P 点坐标. 【详解】 (1)对于直线443y x =+,令x =0,则y =4;令y =0,则x =-3. ∴B 点坐标为()04,,A 点坐标为()30-,. 设经过点B 、C 的直线解析式为y kx b =+,则404bk b =⎧⎨=+⎩,解得:14k b =-⎧⎨=⎩,∴设经过点B 、C 的直线解析式为4y x =-+.设点P 的坐标为()0x ,, ∵4OB OC PQ BC ==,∥, ∴45QPA BCO ∠=∠=︒, ∴290APD QPA ∠=∠=︒,∴点D 的坐标为()4x x -+,, ∵AP PD =,∴34x x --=-+(), 解得12x =, ∴点P 的坐标为102⎛⎫⎪⎝⎭,; (2)设直线PQ 的解析式为y x n =-+,将点()0P m ,代入得直线PQ 的解析式的得:y x m =-+, 联立443y x y x m ⎧=+⎪⎨⎪=-+⎩,解得31274127m x m y -⎧=⎪⎪⎨+⎪=⎪⎩.∴31241277m m Q -+⎛⎫⎪⎝⎭,.当231m -<≤时,点D 在ABC 内, ∴重叠部分的面积即为PQD △的面积, ∴[]()()221133224122(3)77PQDAPQQ S S SAP y m a m m m +-===⋅=+=-⋅=+, ∴27a =, ∵由函数图象可得,当2m =时,327S =, ∴将3227⎛⎫⎪⎝⎭,代入267671m S bm ++=-,得3261642777b =-⨯++, 解得207b =. (3)由(2)得,312412(04)(3)77m m B D m m Q -+⎛⎫+ ⎪⎝⎭,,,,,.分析题目可知BQD ∠不可能为90︒,∴①当BDQ ∠为直角时,过点Q 、B 作PD 的垂线,分别交PD 及其延长线于点M 、N ,连接BD .∵9090NDB NBD NDB MDQ ∠+∠=︒∠+∠=︒,, ∴MDQ NBD ∠=∠, ∴tan tan MDQ NBD ∠=∠,即MQ NDMD BN=, ∵3124124123934(3)17777m m m m MQ m MD m BN m ND m m -+++=-==+-===-+=-,,,,∴41217397m m m m+-=+,解得37m =或3m =-(舍去),∴点P 的坐标为307⎛⎫⎪⎝⎭,; ②当QBD ∠为直角时,即BD QB ⊥,由此可得直线BD 的解析式为344y x =-+,将()3D m m +,代入,得3344m m +=-+,解得:47=m , ∴407P ⎛⎫⎪⎝⎭,. 综上,当BDQ △为直角三角形时,点P 的坐标为307⎛⎫ ⎪⎝⎭,或407⎛⎫⎪⎝⎭,. 【点睛】本题为一次函数与二次函数综合题.考查利用待定系数法求解析式,平行线的性质,两直线的交点问题,解直角三角形,两垂直直线的比例系数的关系,综合性强,很难.正确的作出辅助线和利用分类讨论的思想是解答本题的关键.12.(2021·江苏·淮安市中考模拟预测)如图1,已知在平面直角坐标系xOy 中,四边形OABC 是矩形,点,A C 分别在x 轴和y 轴的正半轴上,连接,3,30AC OA OAC =∠=︒,点D 是BC 的中点.(1)OC =_________;点D 的坐标为_________;(2)若在矩形边BC 上存在点E 满足2CE =,如图2,动点P 从点C 出发,沿C O A --以每秒1个单位长度匀速运动,到达点A 后停止运动.点P 在运动过程中,记点C 关于直线PE 的对称点为点C ',求当t 为何值时,点C '落在矩形的一边上.(3)过,,O B D 三点的抛物线记为1C ,点F 为直线OB 上方的抛物线1C 上一点,已知点()1,1M ,点()3,1N ,过,M N 两点的抛物线记为()22:0C y ax bx c a =++<①当FBO BAD ∠=∠时,求点F 的坐标;②过点O 作OG BF ⊥交直线BF 于点G ,记m =,若直线y mx =与抛物线2C 恰好有3个交点,请直接写出实数a 的值.【答案】(132⎛ ⎝;(2),1s ;(3)①⎛ ⎝;②91,.22-- 【分析】(1)由四边形OABC 是矩形,3,30OA OAC =∠=︒,利用锐角三角函数与中点的含义可得答案;(2)分两种情况讨论,如图,当P 在CO 上时,则0t ≤≤ 由,C C '关于PE 对称,则,,,PC PC t OP t CC PE ''===⊥ 再表示32CP OC tOC CE '== 再由勾股定理列方程)222,t t=+⎝⎭解方程可得答案,如图,当P 在AO 上时,3,t ≤≤ 由,C C '关于PE 对称,则2,CE C E '== 此时,A C '重合,同理可得:(3,OP t PC PA t PC '===-= 而(222,PC t =+ 再列方程解方程可得答案;(3)①先求解过,,O B D 抛物线的解析式为:2,y = 如图,作DAB 的外接圆K ,过D 作//,DP OB 与外接圆交于点,P 连接BP 与抛物线的交点为,F 外接圆与OB 交于,H 连接,,,DH FH DA 当//,DP OB 证明,BHD BAD FBO ∠=∠=∠则满足条件,再求解DP 为y = P 的坐标为15,8P ⎛ ⎝⎭同理可得:BP 的解析式为:y = 再解方程组可得答案;②由()1,1M ,点()3,1N ,求解抛物线为()22:4310C y ax ax a a =-++<如图,延长BF 交y 轴于,Q 过O 作OG BF ⊥于,G 过G 作GT y ⊥轴于,T 再求解OG ==可得3,m === 正比例函数为:3y x =或3,y x =- 显然:3y x =-与抛物线记为()22:4310C y ax ax a a =-++<有两个交点,所以:3y x =与抛物线记为()22:4310C y ax ax a a =-++<只有一个交点,从而可得答案.【详解】解:(1)四边形OABC 是矩形,3,30OA OAC =∠=︒,113tan 30,222OC OA CD BC OA ∴=︒=== 3.2D ⎛∴ ⎝(2)如图,当P 在CO 上时,则0t ≤≤ 由,C C '关于PE 对称,则,,,PC PC t OP t CC PE ''===⊥90,PCC CPE CPE CEP '∴∠+∠=︒=∠+∠ ,PCC CEP '∴∠=∠ tan tan ,PCC CEP '∴∠=∠,CP OC CE OC'∴= 32CP OC tOC CE '∴==)222,t t∴=+⎝⎭(30,t t ∴--=解得:t =t =,如图,当P 在AO 3,t ≤ 由,C C '关于PE 对称, 则2,CE C E '== 此时,A C '重合,同理可得:(3,OP t PC PA t PC '===-=而(222,PC t =+((2233,t t ⎡⎤∴+=-⎣⎦66,t ∴=1,t ∴=综上:当t =或)1t s =时,点C '落在矩形的一边上.(3)①设过()(30,0,,2O B D ⎛ ⎝的抛物线为2,y ax bx =+939342a b a b ⎧+=⎪∴⎨+=⎪⎩解得:a b ⎧=⎪⎨⎪=⎩所以抛物线的解析式为:2,y x = 如图,作DAB 的外接圆K ,过D 作//,DP OB 与外接圆交于点,P 连接BP 与抛物线的交点为,F 外接圆与OB 交于,H 连接,,,DH FH DA当//,DP OB 则,DPH PHB ∠=∠∴ ,DH BP = ,BD PH ∴=,BHD BAD FBO ∴∠=∠=∠满足条件,设OB 为,y kx =则3k =k ∴=∴ 设DP为,y b + 3,3,2D ⎛⎝b = b ∴= ∴DP 为y x = ()390,,3,0,2ABD D A ⎛∠=︒⎝9,44K DK AK ⎛∴=== ⎝⎭设,P x ⎛ ⎝⎭由PK DK =可得,2229,4x ⎫⎛⎫∴-+=⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()()815230,x x ∴--=12153,,82x x ∴== 当158x =时,158y =15,8P ⎛∴ ⎝⎭同理可得:BP的解析式为:y =2,y y ⎧=⎪⎪∴⎨⎪=⎪⎩解得:2x y =⎧⎪⎨=⎪⎩3x y =⎧⎪⎨=⎪⎩ ()3,3,B.F ⎛∴ ⎝ ②由()1,1M ,点()3,1N ,过,M N 两点的抛物线记为()22:0C y ax bx c a =++<1931a b c a b c ++=⎧∴⎨++=⎩可得:431b a c a =-⎧⎨=+⎩ ∴ 抛物线为()22:4310C y ax ax a a =-++<如图,延长BF 交y 轴于,Q 过O 作OG BF ⊥于,G 过G 作GT y ⊥轴于,T90,QGT OGT TOG OGT ∴∠+∠=︒=∠+∠,QGT TOG ∴∠=∠tan tan ,QGT TOG ∴∠=∠,QT TG TG TO∴= 则2,TG QT TO =:BF y = 则,Q ⎛ ⎝⎭ 设,,G x x ⎛ ⎝⎭2,x ⎛∴= ⎝⎭G 在第一象限,则x >0,3,7x ∴= 则OG =3,m ∴=== 3,m ∴=±∴ 正比例函数为:3y x =或3,y x =-显然:3y x =-与抛物线()22:4310C y ax ax a a =-++<有两个交点,所以:3y x =与抛物线()22:4310C y ax ax a a =-++<只有一个交点,∴ 24313ax ax a x -++=有两个相等的实数根,()243310ax a x a ∴-+++=时,=0,242090,a a ∴++=1291,,22a a ∴=-=- 【点睛】本题考查的矩形与二次函数的综合题,考查了矩形与折叠,锐角三角函数的应用,利用待定系数法求解二次函数的解析式,二次函数与一元二次方程的关系,难度大,灵活选择解题方法是解题的关键.。
二次函数动点问题专题练习答案
二次函数动点问题专题练习答案1. 运用二次函数知识解决问题(1)当自变量 x 取何值时,二次函数 y = ax²+ bx +c 的值达到最小值(或最大值)?答:当自变量 x 取 -b/2a 时,二次函数 y = ax²+ bx +c 的值达到最小值(或最大值)。
(2)若已知抛物线上两点坐标为(x1, y1), (x2, y2), 试写出该抛物线二次函数的一般式,并求出该抛物线的解析式。
答:设抛物线二次函数为y=ax²+bx+c则有以下方程组:ax1²+bx1+c =y1ax2²+bx2+c =y2-可列出-x1²·a + x1·b + c - y1 = 0x2²·a + x2·b + c - y2 = 0x3²·a + x3·b + c - y3 = 0-即-| x1² x1 1 || x2² x2 1 | = 0| x3² x3 1 |由于已知 2 个点,可以得到3个方程组代入高斯消元法得到a、b、c三个系数,因此解析式y=ax²+bx+c2. 解决实际问题的应用题以一个具体问题为例,说明如何解决动点问题。
【例题】马路边缘水坑中心挖开,呈抛物面,最深处为4m、直径10m。
现在要在中心位置挖一道V字形沟渠,宽5m,深2m,请问水从沟渠可以流多少吨?若要确保塌方风险不会增加,每日流出水量不得超过150m³?解:先画出示意图假设某一时刻水位高度为 h,抛物线面积为 S,则有S = πr² + 2·(2·h)·(πr/2)因为题目已知直径为10m,则半径为 5m,即 r=5所以,S = 25π + 10h设 h = -x² + 4 (因为最深处为4m),并且将 V 字形沟渠截面看作若干个矩形的叠加,则矩形面积为:A = (5 - x) · 2 = 10 - 2x而矩形面积与水位高度 h 存在联系,即:S = A + πx²代入 h = -x² + 4 和S = 25π + 10h,解得:x ≈ 2.036因此,此时的流量为:V = A · x ≈ 20.364 m³/s即使每日流出水量达到最大 150m³,也可以满足问题的需求。
二次函数与四边形的动点问题(含答案)
中考数学《二次函数与四边形》一.二次函数与四边形的形状1如图,抛物线223y x x=--与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B 两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.二.二次函数与四边形的面积2如图10,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A 在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:x …-3 -2 1 2 …y …-52-4 -520 …(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围.三.二次函数与四边形的动态探究3如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.(1)设P(x,0),E(0,y ),求y关于x的函数关系式,并求y的最大值;(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.图2OCABxyDPE F图1FEPDyxBACOA图10答案: 1.解:(1)令y=0,解得11x =-或23x =∴A (-1,0)B (3,0);将C 点的横坐标x=2代入223y x x =--得y=-3,∴C (2,-3)∴直线AC 的函数解析式是y=-x-1(2)设P 点的横坐标为x (-1≤x ≤2)则P 、E 的坐标分别为:P (x ,-x-1),E (2(,23)x x x --∵P 点在E 点的上方,PE=22(1)(23)2x x x x x -----=-++∴当12x =时,PE 的最大值=94(3)存在4个这样的点F ,分别是1234(1,0),(3,0),(470),(47,0)F F F F -+-,所以2AD NS S =△.所以,四边形MDNA 的面积2(82)(12)4148S t t tt =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.2. 解:(1)解法一:设)0(2≠++=a c bx axy ,任取x,y 的三组值代入,求出解析式2142y x x =+-,令y=0,求出124,2x x =-=;令x=0,得y=-4,∴ A 、B 、C 三点的坐标分别是A(2,0),B(-4,0),C(0,-4) .解法二:由抛物线P 过点(1,-52),(-3,52-)可知,抛物线P 的对称轴方程为x=-1,又∵ 抛物线P 过(2,0)、(-2,-4),则由抛物线的对称性可知,点A 、B 、C 的坐标分别为 A(2,0),B(-4,0),C(0,-4) .(2)由题意,A D D G A O O C =,而AO=2,OC=4,AD=2-m ,故DG=4-2m ,又 B E E FB O O C=,EF=DG ,得BE=4-2m ,∴ DE=3m ,∴D EFGs =DG·DE=(4-2m) 3m=12m-6m 2(0<m <2) .(3)∵SDEFG=12m-6m 2(0<m <2),∴m=1时,矩形的面积最大,且最大面积是6 .当矩形面积最大时,其顶点为D(1,0),G(1,-2),F(-2,-2),E(-2,0),设直线DF 的解析式为y=kx+b ,易知,k=23,b=-23,∴2233y x =-,又可求得抛物线P 的解析式为:2142y x x =+-,令2233x -=2142x x +-,可求出3611--=x . 设射线DF 与抛物线P 相交于点N ,则N 的横坐标为1613--,过N 作x 轴的垂线交x 轴于H ,有F N H E D FD E==161233----=5619-+,点M 不在抛物线P 上,即点M 不与N 重合时,此时k 的取值范围是 k≠5619-+且k >0. 3.解:(1)由已知PB 平分∠APD ,PE 平分∠OPF ,且PD 、PF 重合,则∠BPE =90°.∴∠OPE +∠APB =90°.又∠APB +∠ABP =90°,∴∠OPE =∠PBA ∴Rt △POE ∽Rt △BPA .∴PO BA OEAP=.即34x yx=-.∴y =2114(4)333x x x x -=-+(0<x <4).且当x =2时,y 有最大值13.(2)由已知,△PAB 、△POE 均为等腰三角形,可得P (1,0),E (0,1),B (4,3).设过此三点的抛物线为y =ax 2+bx +c ,则1,0,164 3.c a b c a b c =⎧⎪++=⎨⎪++=⎩∴1,23,21.a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩ y =213122x x -+.(3)由(2)知∠EPB =90°,即点Q 与点B 重合时满足条件.直线PB 为y =x -1,与y 轴交于点(0,-1).将PB 向上平移2个单位则过点E (0,1),∴该直线为y =x +1.由21,131,22y x y x x =+⎧⎪⎨=-+⎪⎩得5,6.x y =⎧⎨=⎩∴Q(5,6). 故该抛物线上存在两点Q (4,3)、(5,6)满足条件.。
二次函数与几何的动点及最值、存在性问题(解析版)
二次函数与几何的动点及最值、存在性问题目录题型01平行y轴动线段最大值与最小值问题题型02抛物线上的点到某一直线的距离问题题型03已知点关于直线对称点问题题型04特殊角度存在性问题题型05将军饮马模型解决存在性问题题型06二次函数中面积存在性问题题型07二次函数中等腰三角形存在性问题题型08二次函数中直角三角形存在性问题题型09二次函数中全等三角形存在性问题题型10二次函数中相似三角形存在性问题题型11二次函数中平行四边形存在性问题题型12二次函数中矩形存在性问题题型13二次函数中菱形存在性问题题型14二次函数中正方形存在性问题二次函数常见存在性问题:(1)等线段问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再利用点到点或点到直线的距离公式列出方程或方程组,然后解出参数的值,即可以将线段表示出来.【说明】在平面直角坐标系中该点在某一函数图像上,设该点的横坐标为m,则可用含m字母的函数解析式来表示该点的纵坐标,简称“设横表纵”或“一母式”.(2)平行y轴动线段最大值与最小值问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再用纵坐标的较大值减去较小值,再利用二次函数的性质求出动线段的最大值或最小值.(3)求已知点关于直线对称点问题:先求出直线解析式,再利用两直线垂直的性质(两直线垂直,斜率之积等于-1)求出已知点所在直线的斜率及解析式,最后用中点坐标公式即可求出对称点的坐标.(4)“抛物线上是否存在一点,使其到某一直线的距离为最值”的问题:常常利用直线方程与二次函数解析式联立方程组,求出切点坐标,运用点到直线的距离公式进行求解.(5)二次函数与一次函数、特殊图形、旋转及特殊角度综合:图形或一次函数与x 轴的角度特殊化,利用与角度有关知识点求解函数图像上的点,结合动点的活动范围,求已知点与动点是否构成新的特殊图形.2.二次函数与三角形综合(1)将军饮马问题:本考点主要分为两类:①在定直线上是否存在点到两定点的距离之和最小;②三角形周长最小或最大的问题,主要运用的就是二次函数具有对称性.(2)不规则三角形面积最大或最小值问题:利用割补法将不规则三角形分割成两个或以上的三角形或四边形,在利用“一母式”将动点坐标表示出来,作线段差,用线段差来表示三角形的底或高,用面积公式求出各部分面积,各部分面积之和就是所求三角形的面积.将三角形的面积用二次函数的结构表示出来,再利用二次函数的性质求出面积的最值及动点坐标.(3)与等腰三角形、直角三角形的综合问题:对于此类问题,我们可以利用两圆一线或两线一圆的基本模型来进行计算.问题分情况找点画图解法等腰三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为等腰三角形以AB为腰分别以点A ,B 为圆心,以AB 长为半径画圆,与已知直线的交点P 1,P 2,P 4,P 5即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标以AB 为底作线段AB 的垂直平分线,与已知直线的交点P 3即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标问题分情况找点画图解法直角三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为直角三角形以AB为直角边分别过点A ,B 作AB 的垂线,与已知直线的交点P 1,P 4即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB 2=BP 2+AP 2;②BP 2=AB 2+AP 2;③AP 2=AB 2+BP 2列方程解出坐标以AB 为斜边以AB 的中点Q 为圆心,QA 为半径作圆,与已知直线的交点P 2,P 3即为所求注:其他常见解题思路有:①作垂直,构造“三垂直”模型,利用相似列比例关系得方程求解;②平移垂线法:若以AB 为直角边,且AB 的一条垂线的解析式易求(通常为过原点O 与AB 垂直的直线),可将这条直线分别平移至过点A 或点B 得到相应解析式,再联立方程求解.(4)与全等三角形、相似三角形的综合问题:在没有指定对应点的情况下,理论上有六种情况需要讨论,但在实际情况中,通常不会超过四种,要注意边角关系,积极分类讨论来进行计算.情况一探究三角形相似的存在性问题的一般思路:解答三角形相似的存在性问题时,要具备分类讨论思想及数形结合思想,要先找出三角形相似的分类标准,一般涉及动态问题要以静制动,动中求静,具体如下:①假设结论成立,分情况讨论.探究三角形相似时,往往没有明确指出两个三角形的对应点(尤其是以文字形式出现求证两个三角形相似的题目),或者涉及动点问题,因动点问题中点的位置的不确定,此时应考虑不同的对应关系,分情况讨论;②确定分类标准.在分类时,先要找出分类的标准,看两个相似三角形是否有对应相等的角,若有,找出对应相等的角后,再根据其他角进行分类讨论来确定相似三角形成立的条件;若没有,则分别按三种角对应来分类讨论;③建立关系式,并计算.由相似三角形列出相应的比例式,将比例式中的线段用所设点的坐标表示出来(其长度多借助勾股定理运算),整理可得一元一次方程或者一元二次方程,解方程可得字母的值,再通过计算得出相应的点的坐标.情况二探究全等三角形的存在性问题的思路与探究相似三角形的存在性问题类似,但是除了要找角相等外,还至少要找一组对应边相等.3.二次函数与四边形的综合问题特殊四边形的探究问题解题步骤如下:①先假设结论成立;②设出点坐标,求边长;③建立关系式,并计算.若四边形的四个顶点位置已确定,则直接利用四边形边的性质进行计算;若四边形的四个顶点位置不确定,需分情况讨论:a.探究平行四边形:①以已知边为平行四边形的某条边,画出所有的符合条件的图形后,利用平行四边形的对边相等进行计算;②以已知边为平行四边形的对角线,画出所有的符合条件的图形后,利用平行四边形对角线互相平分的性质进行计算;③若平行四边形的各顶点位置不确定,需分情况讨论,常以已知的一边作为一边或对角线分情况讨论.b.探究菱形:①已知三个定点去求未知点坐标;②已知两个定点去求未知点坐标,一般会用到菱形的对角线互相垂直平分、四边相等的性质列关系式.c.探究正方形:利用正方形对角线互相垂直平分且相等的性质进行计算,一般是分别计算出两条对角线的长度,令其相等,得到方程再求解.d.探究矩形:利用矩形对边相等、对角线相等列等量关系式求解;或根据邻边垂直,利用勾股定理列关系式求解.题型01平行y轴动线段最大值与最小值问题1(2023·广东东莞·一模)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC =3,顶点为D.(1)求此函数的关系式;(2)在AC 下方的抛物线上有一点N ,过点N 作直线l ∥y 轴,交AC 与点M ,当点N 坐标为多少时,线段MN 的长度最大?最大是多少?(3)在对称轴上有一点K ,在抛物线上有一点L ,若使A ,B ,K ,L 为顶点形成平行四边形,求出K ,L 点的坐标.(4)在y 轴上是否存在一点E ,使△ADE 为直角三角形,若存在,直接写出点E 的坐标;若不存在,说明理由.【答案】(1)y =x 2+2x -3(2)当N 的坐标为-32,-154 ,MN 有最大值94(3)K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12(4)存在,点E 的坐标为0,32 或0,-72或0,-1 或0,-3【分析】(1)由OA =OC =3求得A -3,0 ,C 0,-3 ,再分别代入抛物线解析式y =x 2+bx +c ,得到以b ,c 为未知数的二元一次方程组,求出b ,c 的值即可;(2)求出直线AC 的解析式,再设出M 、N 的坐标,把MN 表示成二次函数,配方即可;(3)根据平行四边形的性质,以AB 为边,以AB 为对角线,分类讨论即可;(4)设出E 的坐标,分别表示出△ADE 的平分,再分每一条都可能为斜边,分类讨论即可.【详解】(1)∵抛物线y =x 2+bx +c 经过点A ,点C ,且OA =OC =3,∴A -3,0 ,C 0,-3 ,∴将其分别代入抛物线解析式,得c =-39-3b +c =0,解得b =2c =-3 .故此抛物线的函数表达式为:y =x 2+2x -3;(2)设直线AC 的解析式为y =kx +t ,将A -3,0 ,C 0,-3 代入,得t =-3-3k +t =0 ,解得k =-1t =-3 ,∴直线AC 的解析式为y =-x -3,设N 的坐标为n ,n 2+2n -3 ,则M n ,-n -3 ,∴MN =-n -3-n 2+2n -3 =-n 2-3n =-n +32 +94,∵-1<0,∴当n =-32时,MN 有最大值,为94,把n =-32代入抛物线得,N 的坐标为-32,-154,当N 的坐标为-32,-154 ,MN 有最大值94;(3)①当以AB 为对角线时,根据平行四边形对角线互相平分,∴KL 必过-1,0 ,∴L 必在抛物线上的顶点D 处,∵y =x 2+2x -3=x +1 2-4,∴K -1,4 ,L -1,-4②当以AB 为边时,AB =KL =4,∵K 在对称轴上x =-1,∴L 的横坐标为3或-5,代入抛物线得L -5,12 或L 3,12 ,此时K 都为-1,12 ,综上,K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12 ;(4)存在,由y =x 2+2x -3=x +1 2-4,得抛物线顶点坐标为D -1,-4 ∵A -3,0 ,∴AD 2=-3+1 2+0+4 2=20,设E 0,m ,则AE 2=-3-0 2+0-m 2=9+m 2,DE 2=-1-0 2+-4-m 2=17+m 2+8m ,①AE 为斜边,由AE 2=AD 2+DE 2得:9+m 2=20+17+m 2+8m ,解得:m =-72,②DE 为斜边,由DE 2=AD 2+AE 2得:9+m 2+20=17+m 2+8m ,解得:m =32,③AD 为斜边,由AD 2=ED 2+AE 2得:20=17+m 2+8m +9+m 2,解得:m =-1或-3,∴点E 的坐标为0,32 或0,-72或0,-1 或0,-3 .【点睛】本题主要考查待定系数法求二次函数解析式,二次函数图象与性质,平行四边形的判定与性质以及勾股定理等知识,会运用待定系数法列方程组,两点间距离公式求MN 的长,由平行四边形的性质判定边相等,运用勾股定理列方程.2(2023·河南南阳·统考一模)如图,抛物线与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴的交于点C 0,-4 ,点P 是第三象限内抛物线上的一个动点,设点P 的横坐标为m ,过点P 作直线PD ⊥x 轴于点D ,作直线AC 交PD 于点E .已知抛物线的顶点P 坐标为-3,-254.(1)求抛物线的解析式;(2)求点A 、B 的坐标和直线AC 的解析式;(3)求当线段CP =CE 时m 的值;(4)连接BC ,过点P 作直线l ∥BC 交y 轴于点F ,试探究:在点P 运动过程中是否存在m ,使得CE =DF ,若存在直接写出m 的值;若不存在,请说明理由.【答案】(1)y =14x 2+32x -4(2)A -8,0 ,B 2,0 ,y =-12x -4(3)-4(4)存在,m =2-25或m =-4【分析】(1)运用待定系数法即可求得抛物线的解析式;(2)令y =0,解方程即可求得点A 、B 的坐标,再运用待定系数法即可求得直线AC 的解析式;(3)过点C 作CF ⊥PE 于点F ,根据等腰三角形的性质可得点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,可得F m ,18m 2+12m -4 ,再由点F 与点C 的纵坐标相同建立方程求解即可;(4)过C 作CH ⊥PD 于H ,设P m ,14m 2+32m -4 ,由PF ∥BC ,可得直线PF 解析式为y =2x +14m 2-12m -4,进而可得OF =14m 2-12m -4 ,再证得Rt △CHE ≅Rt △DOF HL ,得出∠HCE =∠FDO ,进而推出∠FDO =∠CAO ,即tan ∠FDO =tan ∠CAO ,据此建立方程求解即可.【详解】(1)解:∵抛物线的顶点坐标为-3,-254∴设抛物线的解析式为y =a x +3 2-254,把点C 0,-4 代入,得:-4=9a -254,解得:a =14,∴y =14x +3 2-254=14x 2+32x -4,∴该抛物线的解析式为y =14x 2+32x -4.(2)解:令y =0,得14x 2+32x -4=0,解得:x 1=-8,x 2=2,∴A -8,0 ,B 2,0 ,,设直线AC 的解析式为y =kx +b ,则-8k +b =0b =-4 ,解得:k =-12b =-4 ,∴直线AC 的解析式为y =-12x -4.(3)解:如图,过点C 作CF ⊥PE 于点F ,∵CP =CE ,∴EF =PF ,即点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,∴F m ,18m 2+12m -4 ,∵PE ∥y 轴,CF ⊥PE ,∴CF ∥x 轴,∴18m 2+12m -4=-4,解得:m =-4或m =0(不符合题意,舍去),∴m =-4.(4)解:存在m ,使得CE =DF ,理由如下:如图:过C 作CH ⊥PD 于H ,设P m,14m2+32m-4,由B2,0,C0,-4,由待定系数法可得直线BC解析式为y=2x-4,根据PF∥BC,设直线PF解析式为y=2x+c,将P m,14m2+32m-4代入得:1 4m2+32m-4=2m+c,∴c=14m2-12m-4,∴直线PF解析式为y=2x+14m2-12m-4,令x=0得y=14m2-12m-4,∴F0,14m2-12m-4,∴OF=14m2-12m-4,∵∠CHD=∠PDO=∠COD=90°,∴四边形CODH是矩形,∴CH=OD,∵CE=DF,∴Rt△CHE≅Rt△DOF HL,∴∠HCE=∠FDO,∵∠HCE=∠CAO,∴∠FDO=∠CAO,∴tan∠FDO=tan∠CAO,∴OF OD =OCOA,即14m2-12m-4-m=48=12,∴1 4m2-12m-4=-12m或14m2-12m-4=12m,解得:m=-4或m=4或m=2-25或m=2+25,∵P在第三象限,∴m=2-25或m=-4.【点睛】本题属于二次函数综合题,主要考查了待定系数法求函数解析式、二次函数综合应用、等腰三角形性质、矩形判定及性质、相似三角形判定及性质、解直角三角形等知识点,解题的关键是用含m的代数式表示相关点坐标和相关线段的长度.3(2023·山东聊城·统考三模)抛物线y=-x2+bx+c与x轴交于点A3,0,与y轴交于点C0,3,点P 为抛物线上的动点.(2)若P 为直线AC 上方抛物线上的动点,作PH ∥x 轴交直线AC 于点H ,求PH 的最大值;(3)点N 为抛物线对称轴上的动点,是否存在点N ,使直线AC 垂直平分线段PN ?若存在,请直接写出点N 的纵坐标;若不存在,请说明理由.【答案】(1)b =2,c =3(2)PH 取得最大值为94(3)存在,2-2或2+2【分析】(1)将坐标代入解析式,构建方程求解;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,则PM =m ;待定系数法确定直线AC 的解析式为y =-x +3,从而确定PH =m -m 2-2m =-m 2+3m =-m -32 2+94,解得PH 最大值为94;(3)如图,设PN 与AC 交于点G ,可设直线PN 的解析式为y =x +p ,设点N (1,n ),求得y =x +(n -1);联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1,所以点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n2+1 -n =2,由二次函数解析式构建方程-(-n +3)2+2(-n +3)+3=2,解得n =2±2;【详解】(1)∵抛物线y =-x 2+bx +c 与x 轴交于点A 3,0 ,与y 轴交于点C 0,3 ,∴-9+3b +c =0c =3,解得:b =2c =3 ,∴b =2,c =3;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,∴PM =m ,∵PH ∥x 轴,∴点H 的纵坐标为-m 2+2m +3,设直线AC 的解析式为y =kx +n ,∴3k +n =0n =3 ,解得:k =-1n =3 ,∴直线AC 的解析式为y =-x +3.∴-m 2+2m +3=-x +3,∴x =m 2-2m ,∴H m 2-2m ,-m 2+2m +3 ,∴PH =m -m 2-2m =-m 2+3m =-m -322+94,∴当m =32时,PH 取得最大值为94(3)存在点N ,使直线AC 垂直平分线段PN ,点N 的纵坐标为2-2或2+2如图,设PN 与AC 交于点G ,∵AC 垂直平分PN ,直线AC 的解析式为y =-x +3∴可设直线PN 的解析式为y =x +p 设点N (1,n ),则n =1+p ∴p =n -1,∴y =x +(n -1)联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1∴点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n 2+1 -n =2∴-(-n +3)2+2(-n +3)+3=2,解得n =2±2∴点N 的纵坐标为2-2或2+2.【点睛】本题考查利用二次函数解析式及点坐标求待定参数、待定系数法确定函数解析式、二次函数极值及其它二次函数综合问题,利用直线间的位置关系、点线间的位置关系,融合方程的知识求解坐标是解题的关键.题型02抛物线上的点到某一直线的距离问题1(2023·广东梅州·统考二模)探究求新:已知抛物线G 1:y =14x 2+3x -2,将抛物线G 1平移可得到抛物线G 2:y =14x 2.(1)求抛物线G 1平移得到抛物线G 2的平移路径;(2)设T 0,t ,直线l :y =-t ,是否存在这样的t ,使得抛物线G 2上任意一点到T 的距离等于到直线l 的距离?若存在,求出t 的值;若不存在,试说明理由;(3)设H 0,1 ,Q 1,8 ,M 为抛物线G 2上一动点,试求QM +MH 的最小值.参考公式:若点M x 1,y 1 ,N x 2,y 2 为平面上两点,则有MN =x 1-x 22+y 1-y 2 2.【答案】(1)将G 1向左平移-6个单位,向上平移11个单位(2)存在,1(3)9【分析】(1)设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,列方程组即可求解;(2)设P x 0,x 204为抛物线G 2上的一点,根据题意列方程即可;(3)点H 坐标与(2)中t =1时的T 点重合,过点M 作MA ⊥l ,垂足为A ,如图所示,则有MH =MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值.【详解】(1).解:设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,由平移法则可知14(x +a )2+3(x +a )-2+b =14x 2,整理可得14x 2+3+12a x +14a 2+3a -2+b =14x 2,可得方程组3+12a =014a 2+3a -2+b =0,解得a =-6b =11 ;∴平移路径为将G 1向左平移-6个单位,向上平移11个单位;(2)解:存在这样的t ,且t =1时满足条件,设P x 0,x 204为抛物线G 2上的一点,则点P 到直线l 的距离为x 204+t ,点P 到点T 距离为(x 0-0)2+x 204-t2,联立可得:x 204+t =(x 0-0)2+x 204-t2,两边同时平方合并同类项后可得x 20-x 20t =0解得:t =1;(3)解:点H 坐标与(2)中t =1时的T 点重合,作直线l :y =-1,过点M 作MA ⊥直线l ,垂足为A ,如图所示,则有MH =MA ,此时QM +MH =QM +MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值即QM +MA =QA =8-(-1)=9∴QM +MH 的最小值为9;【点睛】本题考查二次函数综合题,涉及到线段最小值、平移性质等,灵活运用所学知识是关键.2(2023·湖北宜昌·统考一模)如图,已知:点P 是直线l :y =x -2上的一动点,其横坐标为m (m 是常数),点M 是抛物线C :y =x 2+2mx -2m +2的顶点.(1)求点M 的坐标;(用含m 的式子表示)(2)当点P 在直线l 运动时,抛物线C 始终经过一个定点N ,求点N 的坐标,并判断点N 是否是点M 的最高位置?(3)当点P 在直线l 运动时,点M 也随之运动,此时直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),A ,B 两点到y 轴的距离之和为d .①求m 的取值范围;②求d 的最小值.【答案】(1)M -m ,-m 2-2m +2(2)N (1,3),点N 是点M 的最高位置(3)①m ≤-52或m ≥32;②d 取得最小值为2【分析】(1)将抛物线解析式写成顶点式即可求解;(2)根据解析式含有m 项的系数为0,得出当x =1时,y =3,即N (1,3),根据二次函数的性质得出-m 2-2m +2=-m +1 2+3的最大值为3,即可得出点N 是点M 的最高位置;(3)①根据直线与抛物线有交点,联立方程,根据一元二次方程根的判别式大于等于0,求得m 的范围,即可求解;②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,根据x 1+x 2=-2m +1,分情况讨论,求得d 是m 的一次函数,进而根据一次函数的性质即可求解.【详解】(1)解:y =x 2+2mx -2m +2=x +m 2-m 2-2m +2,∴顶点M -m ,-m 2-2m +2 ,(2)解:∵y =x 2+2mx -2m +2=x 2+2+2m x -1 ,∴当x =1时,y =3,抛物线C 始终经过一个定点1,3 ,即N (1,3);∵M -m ,-m 2-2m +2 ,-m 2-2m +2=-m +1 2+3,∴M 的纵坐标最大值为3,∴点N 是点M 的最高位置;(3)解:①联立y =x -2y =x 2+2mx -2m +2 ,得x 2+2mx -x -2m +4=0,∵直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),∴Δ=b 2-4ac =2m -1 2-4-2m +4 ,=4m 2+4m -15≥0,∵4m 2+4m -15=0,解得m 1=-52,m 2=32,∴当4m 2+4m -15≥0时,m ≤-52或m ≥32,②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,∴x1+x 2=-2m +1,当m =-3时,如图所示,y A =0,当-3≤m ≤-52时,y 1≥0,y 2≥0,则d =x 1+x 2 =-2m +1 ,∵-2<0,∴当m =-52时,d 取得最小值为-2×-52 +1=5+1=6,当m ≥32时,d =-x 1+x 2 =--2m +1 =2m -1,∴当m =32时,d 取得最小值为2×32-1=2,综上所述,d 取得最小值为2.【点睛】本题考查了二次函数的性质,一元二次方程与二次函数的关系,熟练掌握二次函数的性质是解题的关键.3(2023·云南楚雄·统考一模)抛物线y =x 2-2x -3交x 轴于A ,B 两点(A 在B 的左边),C 是第一象限抛物线上一点,直线AC 交y 轴于点P .(1)直接写出A ,B 两点的坐标;(2)如图①,当OP =OA 时,在抛物线上存在点D (异于点B ),使B ,D 两点到AC 的距离相等,求出所有满足条件的点D 的横坐标;(3)如图②,直线BP 交抛物线于另一点E ,连接CE 交y 轴于点F ,点C 的横坐标为m ,求FP OP 的值(用含m 的式子表示).【答案】(1)A (-1,0),B (3,0)(2)0或3-41或3+41(3)13m 【分析】(1)令y =0,解方程可得结论;(2)分两种情形:①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线交抛物线于点D 2,D 3,D 2,D 3符合条件.构建方程组分别求解即可;(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3 ,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,推出x A ⋅x C =x B ⋅x E =-3-b 可得n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q 推出q =-mn -3,推出q =-(3+b )-1-b 3 -3=13b 2+2b ,推出OF =13b 2+b ,可得结论.【详解】(1)解:令y =0,得x 2-2x -3=0,解得:x =3或-1,∴A (-1,0),B (3,0);(2)∵OP =OA =1,∴P (0,1),∴直线AC 的解析式为y =x +1.①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.∵B (3,0),BD 1∥AC ,∴直线BD 1的解析式为y =x -3,由y =x -3y =x 2-2x -3,解得x =3y =0 或x =0y =-3 ,∴D 1(0,-3),∴D 1的横坐标为0.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线l 交抛物线于点D 2,D 3,D 2,D 3符合条件.直线l 的解析式为y =x +5,由y =x +5y =x 2-2x -3 ,可得x 2-3x -8=0,解得:x =3-412或3+412,∴D 2,D 3的横坐标为3-412,3+412,综上所述,满足条件的点D 的横坐标为0,3-412,3+412.(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,∴x A ⋅x C =x B ⋅x E =-3-b∵x A =-1,∴x C =3+b ,∴m =3+b ,∵x B =3,∴x E =-1-b 3,∴n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q∴q =-mn -3,∴q =-(3+b )-1-b 3 -3=13b 2+2b ,∴OF =13b 2+2b ,∴FP OP=13b +1=13(m -3)+1=13m .【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,一元二次方程的根与系数的关系等知识,解题的关键是学会构建一次函数,构建方程组确定交点坐标,学会利用参数解决问题,属于中考压轴题.题型03已知点关于直线对称点问题1(2023·辽宁阜新·统考中考真题)如图,在平面直角坐标系中,二次函数y =-x 2+bx -c 的图象与x 轴交于点A (-3,0)和点B (1,0),与y 轴交于点C .(1)求这个二次函数的表达式.(2)如图1,二次函数图象的对称轴与直线AC :y =x +3交于点D ,若点M 是直线AC 上方抛物线上的一个动点,求△MCD 面积的最大值.(3)如图2,点P 是直线AC 上的一个动点,过点P 的直线l 与BC 平行,则在直线l 上是否存在点Q ,使点B 与点P 关于直线CQ 对称?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)y =-x 2-2x +3;(2)S △MCD 最大=98;(3)Q 1-5,-5 或1+5,5 .【分析】(1)根据抛物线的交点式直接得出结果;(2)作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,先求出抛物线的对称轴,进而求得C ,D 坐标及CD 的长,从而得出过M 的直线y =x +m 与抛物线相切时,△MCD 的面积最大,根据x +m =-x 2-2x +3的△=0求得m 的值,进而求得M 的坐标,进一步求得CD 上的高MQ 的值,进一步得出结果;(3)分两种情形:当点P 在线段AC 上时,连接BP ,交CQ 于R ,设P (t ,t +3),根据CP =CB 求得t 的值,可推出四边形BCPQ 是平行四边形,进而求得Q 点坐标;当点P 在AC 的延长线上时,同样方法得出结果.【详解】(1)解:由题意得,y =-(x +3)(x -1)=-x 2-2x +3;(2)解:如图1,作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,∵OA =OC =3,∠AOC =90°,∴∠CAO =∠ACO =45°,∴∠MEQ =∠AEF =90°-∠CAO =45°,抛物线的对称轴是直线:x =-3+12=-1,∴y =x +3=-1+3=2,∴D (1,2),∵C (0,3),∴CD =2,故只需△MCD 的边CD 上的高最大时,△MCD 的面积最大,设过点M 与AC 平行的直线的解析式为:y =x +m ,当直线y =x +m 与抛物线相切时,△MCD 的面积最大,由x +m =-x 2-2x +3得,x 2+3x +(m -3)=0,由△=0得,32-4(m -3)=0得,m -3=94,∴x 2+3x +94=0,∴x 1=x 2=-32,∴y =--32 2-2×-32 +3=154,y =x +3=-32+3=32,∴ME =154-32=94,∴MQ =ME ⋅sin ∠MEQ =ME ⋅sin45°=94×22=928,∴S △MCD 最大=12×2×928=98;(3)解:如图2,当点P 在线段AC 上时,连接BP ,交CQ 于R ,∵点B 和点Q 关于CQ 对称,∴CP =CB ,设P (t ,t +3),由CP 2=CB 2得,2t 2=10,∴t 1=-5,t 2=5(舍去),∴P -5,3-5 ,∵PQ ∥BC ,∴CR =BR =1,∴CR =QR ,∴四边形BCPQ 是平行四边形,∵1+(-5)-0=1-5,0+(3-5)-3=-5,∴Q 1-5,-5 ;如图3,当点P 在AC 的延长线上时,由上可知:P 5,3+5 ,同理可得:Q 1+5,5 ,综上所述:Q 1-5,-5 或1+5,5 .【点睛】本题考查了二次函数及其图象的性质,一元二次方程的解法,平行四边形的判定和性质,轴对称的性质等知识,解决问题的关键是分类讨论.2(2023·四川甘孜·统考中考真题)已知抛物线y =x 2+bx +c 与x 轴相交于A -1,0 ,B 两点,与y 轴相交于点C 0,-3 .(1)求b ,c 的值;(2)P 为第一象限抛物线上一点,△PBC 的面积与△ABC 的面积相等,求直线AP 的解析式;(3)在(2)的条件下,设E 是直线BC 上一点,点P 关于AE 的对称点为点P ,试探究,是否存在满足条件的点E ,使得点P 恰好落在直线BC 上,如果存在,求出点P 的坐标;如果不存在,请说明理由.【答案】(1)b =-2,c =-3.(2)y =x +1(3)存在,点P 的坐标为1+21,-2+21 或1-21,-2-21【分析】(1)由待定系数法即可求解;(2)S △PBC =S △ABC 得到AP ∥BC ,即可求解;(3)由题意的:∠AEP =∠AEP ,P E =PE ,即可求解.【详解】(1)由题意,得1-b +c =0,c =-3.∴b =-2,c =-3.(2)由(1)得抛物线的解析式为y =x 2-2x -3.令y =0,则x 2-2x -3=0,得x 1=-1,x 2=3.∴B 点的坐标为3,0 .∵S △PBC =S △ABC ,∴AP ∥BC .∵B 3,0,C 0,-3 ,∵AP∥BC,∴可设直线AP的解析式为y=x+m.∵A(-1,0)在直线AP上,∴0=-1+m.∴m=1.∴直线AP的解析式为y=x+1.(3)设P点坐标为m,n.∵点P在直线y=x+1和抛物线y=x2-2x-3上,∴n=m+1,n=m2-2m-3.∴m+1=m2-2m-3.解得m1=4,m2=-1(舍去).∴点P的坐标为4,5.由翻折,得∠AEP=∠AEP ,P E=PE.∵AP∥BC,∴∠PAE=∠AEP '.∴∠PAE=∠PEA.∴PE=PA=4+12=52.2+5-0设点E的坐标为t,t-3,则PE2=t-42.2+t-3-52=52∴t=6±21.当t=6+21时,点E的坐标为6+21,3+21.设P (s,s-3),由P E=AP,P E=PE=52得:s-6-212,2=522+s-3-3-21解得:s=1+21,则点P 的坐标为1+21,-2+21.当t=6-21时,同理可得,点P 的坐标为1-21,-2-21.综上所述,点P 的坐标为1+21,-2+21.或1-21,-2-21【点睛】本题是二次函数的综合题,主要考查了用待定系数法求一次函数、二次函数的解析式,二次函数的性质,此题题型较好,综合性比较强,用的数学思想是分类讨论和数形结合的思想.3(2023·江苏连云港·连云港市新海实验中学校考二模)如图,“爱心”图案是由抛物线y=-x2+m的一部分及其关于直线y=-x的对称图形组成,点E、F是“爱心”图案与其对称轴的两个交点,点A、B、C、D是该图案与坐标轴的交点,且点D的坐标为6,0.(1)求m 的值及AC 的长;(2)求EF 的长;(3)若点P 是该图案上的一动点,点P 、点Q 关于直线y =-x 对称,连接PQ ,求PQ 的最大值及此时Q 点的坐标.【答案】(1)m =6,AC =6+6(2)52(3)2542,Q -234,-12【分析】(1)用待定系数法求得m 与抛物线的解析式,再求出抛物线与坐标轴的交点坐标,进而求得A 的坐标,根据对称性质求得B ,C 的坐标,即可求得结果;(2)将抛物线的解析式与直线EF 的解析式联立方程组进行求解,得到E ,F 的坐标,即可求得结果;(3)设P (m ,-m 2+6),则Q (m 2-6,-m ),可得PQ =2×m -12 2-252 ,即求m -12 2-252的最值,根据二次函数的最值,即可得到m 的值,即可求得.【详解】(1)把D 6,0 代入y =-x 2+m 得0=-6+m解得m =6∴抛物线的解析式为:y =-x 2+6∴A 0,6根据对称性可得B -6,0 ,C 0,-6∴AC =AO +OC =6+6(2)联立y =-x y =-x 2+6解得x =3y =-3 或x =-2y =2 ∴E -2,2 ,F 3,-3∴EF =-2-3 2+2+3 2=52(3)设P (m ,-m 2+6),则Q (m 2-6,-m )∴PQ =m -m 2-6 2+-m 2+6--m 2整理得PQ =2×m -12 2-254 ∵m -12 2≥0∴当m -12 2=0时,即m =12时,m -12 2-254 有最大值为254∴PQ 的最大值为2542∴12 2-6=-234故Q -234,-12【点睛】本题考查二次函数综合应用,涉及待定系数法求函数解析式,两点间的距离公式,求抛物线与一次函数的交点坐标,二次函数的最值等知识,解题的关键是掌握关于直线y =-x 对称的点坐标的关系.题型04特殊角度存在性问题1(2023·山西忻州·统考模拟预测)如图,抛物线y =18x 2+34x -2与x 轴交于A ,B 两点,与y 轴交于点C .P 是直线AC 下方抛物线上一个动点,过点P 作直线l ∥BC ,交AC 于点D ,过点P 作PE ⊥x 轴,垂足为E ,PE 交AC 于点F .(1)直接写出A ,B ,C 三点的坐标,并求出直线AC 的函数表达式;(2)当线段PF 取最大值时,求△DPF 的面积;(3)试探究在拋物线的对称轴上是否存在点Q ,使得∠CAQ =45°?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)A -8,0 ,B 2,0 ,C 0,-2 .y =-14x -2(2)85(3)存在,-3,3 或-3,-253【分析】(1)对于直线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 即求出三个点的坐标,设直线AC 的表达式为y =kx +b ,利用待定系数法求解即可;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,表示出PF =-18m 2-m ,求出PF max =2,再表示出点D 到直线PF 的距离d =85,利用S △DPF =12⋅PF ⋅d 进行求解即可;(3)由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,用解直角三角形的方法求出QH =174,即可求出Q 点坐标,当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,即可求解.【详解】(1)解:对于抛物线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 ,即点A ,B ,C 三点的坐标分别为-8,0 ,2,0 ,0,-2 ,设直线AC 的表达式为y =kx +b ,则-8k +b =0b =-2 ,解得k =-14b =-2 ,∴直线AC 的函数表达式为y =-14x -2;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,PF =-14m -2 -18m 2+34m -2 =-18m 2-m ,当m =--12×-18 =-4时,PF 最大,PF max =-18×(-4)2--4 =2,此时,P -4,-3 ,由B 2,0 ,C 0,-2 ,可得直线BC 的函数表达式为y =x -2,设直线l 的函数表达式为y =x +p ,将P -4,-3 代入可得p =1,∴直线l 的函数表达式为y =x +1,由y =-14x -2y =x +1 ,解得x =-125y =-75,∴D -125,-75 ,点D 到直线PF 的距离d =-125--4 =85,∴S △DPF =12⋅PF ⋅d =12×2×85=85.(3)存在,理由:由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,如下图:设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,则∠ACO =∠QHA ,则tan ∠ACO =tan ∠QHA =4,当x =3时,y =-14x -2=-54,则点H -3,-54 ,由点A ,H 的坐标得,AH =5174,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,设TH =x ,则QT =4x ,则QH =17x ,则AH =AT +TH =5x =5174,则x =174,则QH =17x =174,则174-54=3,则点Q -3,3 ;当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,则直线AQ 的表达式为y =-53x +8 ,当x =-3时,y =-5x +8 =-25,。
【中考数学压轴题专题突破02】二次函数中的动点问题
【中考压轴题专题突破】二次函数中的动点问题1.已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点B 在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OBvOC)是方程x2 -10x+16= 0的两个根,且A点坐标为(-6, 0).(1)求此二次函数的表达式;(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF // AC交BC 于点F,连接CE,设AE的长为m, △ CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;2.如图是二次函数y= ( x+m) 2+k的图象,其顶点坐标为M (1, -4).(1)求出图象与x轴的交点A, B的坐标;(2)在二次函数的图象上是否存在点P,使S APAB=—S;AMAB?若存在,求出P点的坐标,4若不存在,请说明理由;(3)点C在x轴上一动点,以BC为边作正方形BCDE ,正方形BCDE还有一个顶点(除点B外)在抛物线上,请写出满足条件的点E的坐标;(4)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b与此图象至少有三个公共点时,请直接写出b的取值范围是 .即圄2 邺3.如图,二次函数图象的顶点为坐标系原点O,且经过点A (3, 3), 一次函数的图象经过点A和点B (6, 0).(1)求二次函数与一次函数的解析式;(2)如果一次函数图象与y轴相交于点C,点D在线段AC上,与y轴平行的直线DE 与二次函数图象相交于点巳/ CDO = / OED ,求点D的坐标;(3)当点D在直线AC上的一个动点时,以点O、C、D、E为顶点的四边形能成为平行四边形吗?请说明理由.4.如图,二次函数y=ax2+bx+c (a^0)的图象与x轴交于A (- 3, 0)、B (1, 0 与y轴相交点C (0,近).(1)求该二次函数解析式;(2)连接AC、BC,点M、N分别是线段AB、BC上的动点,且始终满足BM = 接MN.①将4BMN沿MN翻折,B点能恰好落在AC边上的P处吗?若能,请判断四边形的形状并求出PN的长;若不能,请说明理由.②将^ BMN沿MN翻折,B点能恰好落在此抛物线上吗?若能,请直接写出此时于MN的对称点Q的坐标;若不能,请说明理由.两点,BN,连BMPNB点关5.如图,在平面直角坐标系中,抛物线y=』!x2-2F3x-代与x轴交于A、B两点(点3 3(1)判断△ ABC的形状,并说明理由;(2)如图(1),点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点p作Y轴的平行线交X轴于点E.当△ PBC面积的最大值时,点F为线段BC 一点(不与点BC重合),连接EF,动点G从点E出发,沿线段EF以每秒1个单位的速度运动到点F,再沿FC以每秒2工3个单位的速度运动到点C后停止,当点F的坐标| 3是多少时,点G在整个运动过程中用时最少?(3)如图2,将4ACO沿射线CB方向以每秒个单位的速度平移,记平移后的△ ACO 为AA l C l O l连接AA1,直线AA1交抛物线与点M,设平移的时间为t秒,当^ AMC 1为等腰三角形时,求t的值.6.如图,二次函数y=—x2+bx- -的图象与x轴交于点A (-3, 0)和点B,以AB为边在2 2x轴上方作正方形ABCD ,点P是x轴上一动点,连接DP ,过点P作DP的垂线与y轴交于点E.(1)b=;点D的坐标:;(2)线段AO上是否存在点P (点P不与A、。
二次函数动点问题解答方法技巧(含例解答案)
函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标.需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号.或由二次函数中a,b,c 的符号判断图象的位置.要数形结合;⑷ 二次函数的图象关于对称轴对称.可利用这一性质.求和已知一点对称的点坐标.或已知与x 轴的一个交点坐标.可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式.二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例.揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形.考查问题也是特殊图形.所以要把握好一般与特殊的关系;分析过程中.特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点.近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍.解题方法、关键给以点拨。
二、 抛物线上动点5、(湖北十堰市)如图①. 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1.0)和点B (-3.0).与y 轴交于点C .(1) 求抛物线的解析式;(2) 设抛物线的对称轴与x轴交于点M .问在对称轴上是否存在点P.使△CMP为等腰三角形?若存在.请直接写出所有符合条件的点P的坐标;若不存在.请说明理由.(3) 如图②.若点E为第二象限抛物线上一动点.连接BE、CE.求四边形BOCE面积的最大值.并求此时E点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时.以C为圆心CM为半径画弧.与对称轴交点即为所求点P.②M为顶点时.以M为圆心MC为半径画弧.与对称轴交点即为所求点P.③P为顶点时.线段MC的垂直平分线与对称轴交点即为所求点P。
专题:二次函数中的动点问题(平行四边形存在性问题)
二次函数中的动点问题(二)平行四边形的存在性问题一.技巧提炼如图1,点人(召,开)、3(忑,儿)、C(X3Os)是坐标平面内不在同一直线上的三点。
平面直角坐标系中是否存在点D,使得以A、B、C、D四点为顶点的四边形为平行四边形,如果存在,请求出点D的坐标。
如图2,过A、B、C分别作BC、AC、AB的平行线,则以不在同一直线上的三点为顶点的平行四边形有三个。
由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。
3、平面直角坐标系中直线和直线12:当h时k尸k2;当h丄I2时ki-k2=-14、二次函数中平行四边形的存在性问题:解题思路:(1)先分类(2)再画图(3)后计算二、精讲精练1、已知抛物线y=ax-+bx+c与x轴相交于A、E两点(A、B分别在原点的左右两侧),与y轴正半轴相交于C点,且OA:OB:OC=1:3:3,AABC的面积为6,(如图1)(1)求抛物线的解析式:(2)坐标平面内是否存在点M,使得以点M、A、B、C为顶点四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由;(3)如图2,在直线BC±方的抛物线上是否存在一动点P,ABCP面枳最大?如果存在,求出最人面积,2、如图,己知抛物线经过A(-2,0),B(・3,3)及原点6顶点为C(1)求抛物线的函数解析式:(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标。
【变式练习】7如图,对称轴为直线x二一的抛物线经过点A(6,0)和B(0,4)・2(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四彖限,四边形0EAF是以0A为对角线的平行四边形, 求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;①当平行四边形OEAF的面积为24时,请判断平行四边形0EAF是否为菱形?②是否存在点E,使平行四边形0EAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.、方法规律1、平行四边形模型探究如图1,点&(內,开)、3(七,儿)、C(X3,”)是坐标平面内不在同一直线上的三点。
二次函数的动点问题
二次函数的动点问题模式1.平行四边形分类标准,讨论对角线例如,请在抛物线上找一点P.使得A,B,C,P构成平行四边形,则可分成以下几种情况1,当AB是对角线时,那么有AP∥BC2,当AC是对角线时,那么有AB∥CP3,当BC是对角线时,那么有AC∥CB例题1,在平面直角坐标系中,已知,抛物线经过(-4,0) ,B(0,-4),C(2,0)三点,(1)求抛物线的解析式(2)若点M在第三象限内的抛物线上一动点,点M的横坐标为m,△ABM的面积为S,求S关于m的函数解析式,并求出S的最大值。
(3)若点P是抛物线上的一动点,点Q 是直线Y=-X上的一动点,判断有几个位置能使点,P,Q,B,O为顶点的四边形是平行四边形,直接写出相应的点Q的坐标。
练习:抛物线y=-x2+2x+3与x轴相交于点A、B两点(点A在点B的左侧),与y轴相交于点c,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称点;(2)连接BC,与抛物线的对称轴相交于点E,点P为线段BC上的一动点,过点P[作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF是平行四边形?②设△BCF的面积为S,求S与m的函数关系。
模式2;梯形分类标准:讨论上下底例如:请在抛物线上找一点p使得A、B、C、P四点构成梯形,则可分成以下几种情况(1)当边AB是底时,那么有AB∥PC(2)当边AC是底时,那么有AC∥BC(3)当边BC是底时,那么有BC∥AP例题:已知矩形OABC在平面直角坐标系中位置如图所示,点A的坐标为(4,0),点C的坐标为(0,-2),直线y=-2/3x与边BC相交于点D.(1)求点D的坐标;(2)抛物线y=ax2+bx+c经过点A、D、O,求此抛物线的解析式;(3)在这个抛物线上是否存在点M,使O、D、A、M为顶点的四边形是梯形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由。
二次函数动点问题压轴题专题汇编(含答案)
二次函数动点问题压轴题专题汇编(含答案)二次函数的动态问题(动点)1.如图①,正方形ABCD 的顶点 A B ,的坐标分别为()()01084,,,,顶点C D ,在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点()40E ,出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P Q ,两点同时停止运动,设运动的时间为t 秒.(1)求正方形ABCD 的边长.(2)当点P 在AB 边上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分(如图②所示),求P Q ,两点的运动速度.(3)求(2)中面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点P 的坐标.(4)若点P Q ,保持(2)中的速度不变,则点P 沿着AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,使90OPQ =∠的点P 有个.[解] (1)作BF y ⊥轴于F .()()01084A B ,,,,86FB FA ∴==,.10AB ∴=.(2)由图②可知,点P 从点A 运动到点B 用了10秒.又1010101AB =÷=,.P Q ∴,两点的运动速度均为每秒1个单位.图①图②(3)方法一:作PG y ⊥轴于G ,则PG BF ∥.GA AP FA AB ∴=,即610GA t=.35GA t ∴=.3105OG t ∴=-.4OQ t =+,()113410225S OQ OG t t ?∴==+- ??.即231920105S t t =-++. 19195323210b a -=-=-,且190103≤≤,∴当193t =时,S 有最大值.此时4763311051555GP t OG t ===-=,,∴点P 的坐标为7631155??,.(8分)方法二:当5t =时,1637922OG OQ S OG OQ ====,,.设所求函数关系式为220S at bt =++.抛物线过点()63102852?,,,,1001020286325520.2a b a b ++=??∴?++=??,31019.5a b ?=-??∴??=??,231920105S t t ∴=-++. 19195323210b a -=-=-,且190103≤≤,∴当193t =时,S 有最大值.此时7631155GP OG ==,,∴点P 的坐标为7631155??,.(4)2.[点评]本题主要考查函数性质的简单运用和几何知识,是近年来较为流行的试题,解题的关键在于结合题目的要求动中取静,相信解决这种问题不会非常难。
二次函数动点问题压轴题专题汇编(含答案)
二次函数动点问题压轴题专题汇编(含答案)二次函数的动态问题(动点)正方形ABCD的顶点A,B的坐标分别为(0,10),(8,4),顶点C,D在第一象限。
点P从点A出发,沿正方形按逆时针方向匀速运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动。
当点P到达点C时,P,Q两点同时停止运动,设运动的时间为t秒。
1) 求正方形ABCD的边长。
解:作BF⊥y轴于F。
则FB=8,FA=6,AB=10.2) 当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分。
求P,Q两点的运动速度。
解:由图可知,点P从点A运动到点B用了10秒。
又AB=10,故P,Q两点的运动速度均为每秒1个单位。
3) 求(2)中面积S(平方单位)与时间t(秒)的函数关系式及面积S取最大值时点P的坐标。
解:方法一:作PG⊥y轴于G,则PG∥BF。
由相似三角形可得:GA/AP=FA/AB,即6/10=t/AP,故GA=3/5t。
又OG=10-3/5t,OQ=4+t。
则S=1/2×OQ×OG=1/2×(t+4)×(10-3/5t)=-3/10t²+19/5t+20.对XXX求导得:S'=(-6/5)t+19/5,令其为0,解得t=19/3.此时S有最大值。
此时GP=76/15,OG=31/5,P的坐标为(76/15,31/5)。
方法二:当t=5时,OG=7,OQ=9,S=63/2.设所求函数关系式为S=at²+bt+20.抛物线过点(5,63/2),则a=-3/10,b=19/2.代入可得S=-3/10t²+19/2t+20.同样可得最大值时t=19/3,P的坐标为(76/15,31/5)。
4) 若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,∠XXX的大小随着时间t的增大而增大;沿着BC边运动时,∠XXX的大小随着时间t的增大而减小。
二次函数动点问题解答方法技巧(含例解答案)
函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、 抛物线上动点5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。
初中数学二次函数动点问题
动点问题1:相似三角形问题例1:如图①,在△ABC 中,AB=AC ,BC=acm ,∠B=30°.动点P 以1cm/s 的速度从点B 出发,沿折线B ﹣A ﹣C 运动到点C 时停止运动.设点P 出发x s 时,△PBC 的面积为y cm 2.已知y 与x 的函数图象如图②所示.请根据图中信息,解答下列问题:(1) 试判断△DOE 的形状,并说明理由;(2) 当a 为何值时,△DOE 与△ABC 相似?例2:矩形OABC 在平面直角坐标系中位置如图所示,A 、C 两点的坐标分别为A (6,0),C (0,-3),直线y =-43x 与BC 边相交于D 点. (1) 求点D 的坐标; (2) 若抛物线y =ax 2-49x 经过点A ,试确定此抛物线的表达式; (3) 设(2)中的抛物线的对称轴与直线OD 交于点M ,点P 为对称轴上一动点,以P 、O 、M 为顶点的三角形与△OCD例3.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;(3)连结OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标作业1.如图,已知抛物线y =x 2-1与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标.(2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积.(3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与△PCA 相似?若存在,请求出M 点的坐标;否则,请说明理由.2.如图,已知抛物线y =43x 2+bx +c 与坐标轴交于A 、B 、C 三点,A 点的坐标为(-1,0),过点C 的直线y =t43x -3与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且0<t <1.(1)填空:点C 的坐标是___________,b =_______,c =_______;(2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有t3.已知,如图1,过点B (0,-1)作平行于x 轴的直线l ,抛物线y =41x2上的两点A 、B 的横坐标分别为-1和4,直线AB 交y 轴于点F ,过点A 、B 分别作直线l 的垂线,垂足分别为点C 、D ,连接CF 、DF .(1)求点A 、B 、F 的坐标;(2)求证:CF ⊥DF ; (3)点P 是抛物线y =41x 2对称轴右侧图象上的一动点,过点P 作PQ ⊥OP 交x 轴于点Q ,是否存在点P 使得△OPQ 与△CDF 相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(备用图)(图1)。
二次函数动点问题解答方法技巧(含例解标准答案)
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、抛物线上动点
5、(湖北十堰市)如图①,已知抛物线 (a≠0)与 轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)设抛物线的对称轴与 轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)当 为何值时,四边形 的面积 有最大值,并求出此最大值;
(4)在运动过程中,四边形 能否形成矩形?若能,求出此时 的值;若不能,请说明理由.
[解](1)点 ,点 ,点 关于原点的对称点分别为 , , .
设抛物线 的解析式是
,
则
解得
所以所求抛物线的解析式是 .
(2)由(1)可计算得点 .
过点 作 ,垂足为 .
⑶ 根据图象的位置判断二次函数ax²+bx+c=0中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.
⑸ 与二次函数有关的还有二次三项式,二次三项式ax²+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
当运动到时刻 时, , .
根据中心对称的性质 ,所以四边形 是平行四边形.
所以 .
所以,四边形 的面积 .
因为运动至点 与点 重合为止,据题意可知 .
所以,所求关系式是 , 的取值范围是 .
(3) ,( ).
二次函数动点问题解答方法技巧(含详细答案)外国语
外国语学校专用函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数ax2+bx+c=0 中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标 .⑸ 与二次函数有关的还有二次三项式,二次三项式ax2+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0 时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点 ----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、抛物线上动点5、(湖北十堰市)如图①,已知抛物线y ax2bx 3 (a≠0)与 x 轴交于点A(1, 0)和点 B ( - 3, 0),与 y 轴交于点 C.(1)求抛物线的解析式;(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P,使△ CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3) 如图②,若点 E 为第二象限抛物线上一动点,连接BE、 CE,求四边形BOCE 面积的最大值,并求此时 E 点的坐标.注意:第( 2 )问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标 ---- ① C 为顶点时,以 C 为圆心 CM 为半径画弧,与对称轴交点即为所求点P ,② M 为顶点时,以M 为圆心 MC 为半径画弧,与对称轴交点即为所求点P,③ P 为顶点时,线段MC 的垂直平分线与对称轴交点即为所求点P 。
中考数学《二次函数-动态几何问题》专项练习及答案
中考数学《二次函数-动态几何问题》专项练习及答案一、单选题1.如图1,在△ABC中,△B=90°,△C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P恰好为AC的中点时,PQ的长为()A.2B.4C.2 √3D.4 √32.如图,在四边形DEFG中,△E=△F=90°,△DGF=45°,DE=1,FG=3,Rt△ABC的直角顶点C与点G重合,另一个顶点B(在点C左侧)在射线FG上,且BC=1,AC=2,将△ABC沿GF方向平移,点C与点F重合时停止.设CG的长为x,△ABC在平移过程中与四边形DEFG重叠部分的面积为y,则下列图象能正确反映y与x函数关系的是()A.B.C.D.3.点C是线段AB上的一点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是()A.当C是AB的中点时,S最小B.当C是AB的中点时,S最大C.当C为AB的三等分点时,S最小D.当C是AB的三等分点时,S最大4.下列函数属于二次函数的是()A.y=5x+3B.y=1x2C.y=2x2+x+1D.y=√x2+15.在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是()A.y=3(x+1)2+2B.y=3(x+1)2﹣2C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣26.如图,直线l1:y=−x+4与x轴和y轴分别相交于A、B两点,平行于直线l1的直线l2从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴和y轴分别相交于C、D两点,运动时间为t秒(0≤t≤4).以CD为斜边作等腰直角ΔCDE(E、O两点分别在CD两侧),若ΔCDE和ΔOAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.7.如图,菱形ABCD的边长为2,△A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH△BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.8.把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.y=﹣2(x+1)2+2B.y=﹣2(x+1)2﹣2C.y=﹣2(x﹣1)2+2D.y=﹣2(x﹣1)2﹣29.如图,AC=BC,点D是以线段AB为弦的圆弧的中点,AB=4,点E是线段CD上任意一点,点F 是线段AB上的动点,设AF=x,AE2﹣FE2=y,则能表示y与x的函数关系的图象是()A.B.C.D.10.如图,在△ABC中,△ACB=90°,AC=4,BC=2.P是AB边上一动点,PD△AC于点D,点E 在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小11.将抛物线y=-2x2先向左平移1个单位,再向上平移3个单位,两次平移后得到的抛物线的解析式为()A.y=-2(x+1)2+3 B.y=-2(x+1)2-3C.y=-2(x-1)2+3 D.y=-2(x-1)2-312.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且△APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A.B.C.D.二、填空题13.如图,在Rt△ABC中,△C=90°,BC=4,BA=5,点D在边AC上的一动点,过点D作DE△AB 交边BC于点E,过点B作BF△BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE 和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE和矩形HEBF的面积和最小时,则EF 的长度为.14.已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线y=ax2+bx+2(a≠0)对称轴上的一个动点。
中考数学《二次函数-动态几何问题》专项练习题(带答案)
中考数学《二次函数-动态几何问题》专项练习题(带答案)一、单选题1.如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是()A.6<t≤8B.6≤t≤8C.10<t≤12D.10≤t≤122.在同一平面直角坐标系内,将函数y=2x2+4x﹣3的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是()A.(﹣3,﹣6)B.(1,﹣4)C.(1,﹣6)D.(﹣3,﹣4)3.下列函数中是二次函数的为()A.y=3x﹣1B.y=3x2﹣1C.y=(x+1)2﹣x2D.y=x3+2x﹣34.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度大小不变,则以点A为圆心,线段AP长为半径的圆的面积S与点P的运动时间t之间的函数图象大致为()A.B.C.D.5.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x-m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为-3,则点D的横坐标最大值为( )A.-3 B.1C.5D.86.抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c>0的解集是()A.x<2B.x>﹣3C.﹣3<x<1D.x<﹣3或x>17.如图,边长为2的正△ABC的边BC在直线l上,两条距离为l的平行直线a和b垂直于直线l,a 和b同时向右移动(a的起始位置在B点),速度均为每秒1个单位,运动时间为t(秒),直到b到达C点停止,在a和b向右移动的过程中,记△ABC夹在a和b之间的部分的面积为s,则s关于t 的函数图象大致为()A.B.C.D.8.两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC = DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的是()A.小红的运动路程比小兰的长B.两人分别在1.09秒和7.49秒的时刻相遇C.当小红运动到点D的时候,小兰已经经过了点DD.在4.84秒时,两人的距离正好等于⊙O的半径9.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A .B .C .D .10.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为( )A .B .C .D .11.如图,抛物线 y =−12x 2+32x +2 与x 轴交于A 、B 两点与y 轴交于点C .若点P 是线段BC 上方的抛物线上一动点,当 △BCP 的面积取得最大值时,点P 的坐标是( )A .(2,3)B .(32,258)C .(1,3)D .(3,2)12.已知点A (0,2),B (2,0),点C 在y=x 2的图象上,若△ABC 的面积为2,则这样的C 点有( ) A .1 个B .2个C .3个D .4个二、填空题13.如图,抛物线与轴交于点C,点D(0,1),点P是抛物线上在第一象限的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.14.如图,已知直线y=﹣34 x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣12 x2+2x+5上的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣34 x+3于点Q,则当PQ=BQ时,a的值是.15.已知抛德物线y=14x2 +1有下性质:该抛物线上任意一点到定点F(0,2)的距离与到轴的距离始终相等,如图,点M的坐标为(√2,3),P是抛物线y=14x2 +1上一个动点,则△PMF周长的最小值是.16.把抛物线y=2x2先向左平移3个单位,再向下平移4个单位,所得的抛物线的解析式是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与几何图形模式1:平行四边形 分类标准:讨论对角线例如:请在抛物线上找一点p 使得P C B A 、、、四点构成平行四边形,则可分成以下几种情况 (1)当边AB 是对角线时,那么有BC AP // (2)当边AC 是对角线时,那么有CP AB // (3)当边BC 是对角线时,那么有BP AC //1、本题满分14分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值;(3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.2、如图1,抛物线322++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D .(1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴;(2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m .①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形?②设△BCF 的面积为S ,求S 与m 的函数关系.模式2:梯形分类标准:讨论上下底例如:请在抛物线上找一点p 使得P C B A 、、、四点构成梯形,则可分成以下几种情况 (1)当边AB 是底时,那么有PC AB // (2)当边AC 是底时,那么有BP AC // (3)当边BC 是底时,那么有AP BC //3、已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线x y 32-=与边BC 相交于点D .(1)求点D 的坐标;(2)抛物线c bx ax y ++=2经过点A 、D 、O ,求此抛物线的表达式;(3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.4、已知二次函数的图象经过A(2,0)、C(0,12) 两点,且对称轴为直线x=4,设顶点为点P,与x轴的另一交点为点B.(1)求二次函数的解析式及顶点P的坐标;(2)如图1,在直线y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒2个单位长度的速度由点P向点O 运动,过点M作直线MN//x轴,交PB于点N.将△PMN沿直线MN对折,得到△P1MN.在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒,求S关于t的函数关系式.模式3:直角三角形分类标准:讨论直角的位置或者斜边的位置例如:请在抛物线上找一点p 使得P B A 、、三点构成直角三角形,则可分成以下几种情况 (1)当A ∠为直角时,AB AC ⊥ (2)当B ∠为直角时,BA BC ⊥ (3)当C ∠为直角时,CB CA ⊥5、如图1,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C (0,-3),对称轴是直线x =1,直线BC 与抛物线的对称轴交于点D .(1)求抛物线的函数表达式;(2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限.①当线段34PQ AB =时,求tan ∠CED 的值; ②当以C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标.6:如图1,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.模式4:等腰三角形分类标准:讨论顶角的位置或者底边的位置例如:请在抛物线上找一点p 使得P B A 、、三点构成等腰三角形,则可分成以下几种情况 (1)当A ∠为顶角时,AB AC = (2)当B ∠为顶角时,BA BC = (3)当C ∠为顶角时,CB CA =7:已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E . (1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.8、已知抛物线y=ax2+bx+c(a>0)经过点B(12,0)和C(0,-6),对称轴为x=2.(1)求该抛物线的解析式.(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一个动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若存在,请说明理由.(3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?若存在,请求出所有点M的坐标;若不存在,请说明理由.模式5:相似三角形突破口:寻找比例关系以及特殊角9、在梯形ABCD中,AD∥BC,BA⊥AC,∠B = 450,AD = 2,BC = 6,以BC所在直线为x轴,建立如图所示的平面直角坐标系,点A在y轴上。
(1)求过A、D、C三点的抛物线的解析式。
(2)求△ADC的外接圆的圆心M的坐标,并求⊙M的半径。
(3)E为抛物线对称轴上一点,F为y轴上一点,求当ED+EC+FD+FC最小时,EF的长。
(4)设Q为射线CB上任意一点,点P为对称轴左侧抛物线上任意一点,问是否存在这样的点P、Q,使得以P、Q、C为顶点的△与△ADC相似?若存在,直接写出点P、Q的坐标,若不存在,则说明理由。
模拟题汇编之动点折叠问题1.(本题12分)已知二次函数c bx x y ++=2与x 轴交于A (-1,0)、B (1,0)两点. (1)求这个二次函数的关系式;(2)若有一半径为r 的⊙P ,且圆心P 在抛物线上运动,当⊙P 与两坐标轴都相切时,求半径r 的值. (3)半径为1的⊙P 在抛物线上,当点P 的纵坐标在什么范围内取值时,⊙P 与y 轴相离、相交?2.如图,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点.(1)分别求出图中直线和抛物线的函数表达式;(2)连结PO 、PC ,并把△POC 沿C O 翻折,得到四边形POP ′C , 那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.解:将B 、C 两点的坐标代y=kx+b, 0=3k-3, k=1,∴y=x-3…………1分将B 、C 两点的坐标代入得:⎩⎨⎧-==+303c c b ,解得:⎩⎨⎧-=-=32c b所以二次函数的表达式为:322--=x x y .…………………3分(2)存在点P ,使四边形POP /C 为菱形.设P 点坐标为(x ,322--x x ), PP /交CO 于E.若四边形POP /C 是菱形,则有PC =PO .…………………5分 连结PP /则PE ⊥CO 于E ,∴OE=EC =23∴y =23-.∴322--x x =23- .………………………………6分解得1x =2102+,2x =2102-(不合题意,舍去) ∴P 点的坐标为(2102+,23-).…………………………9分3.(2012江西模拟)已知抛物线234y x x =-++交y 轴于点A ,交x 轴于点B ,C (点B 在点C 的右侧).过点A 作垂直于y 轴的直线l. 在位于直线l 下方的抛物线上任取一点P ,过点P 作直线PQ 平行于y 轴交直线l 于点Q .连接AP . (1)写出A ,B ,C 三点的坐标; (2)若点P 位于抛物线的对称轴的右侧:①如果以A ,P ,Q 三点构成的三角形与△AOC 相似,求出点P 的坐标;②若将△APQ 沿AP 对折,点Q 的对应点为点M .是否存在点P ,使得点M 落在x 轴上.若存在,求出点P 的坐标;若不存在,请说明理由.4.(2012安庆模拟)在直角梯形ABCD 中,∠B =90°,AD =1,AB =3,BC =4,M 、N 分别是底边BC 和腰CD 上的两个动点,当点M 在BC 上运动时,始终保持AM ⊥MN 、NP ⊥BC . (1)证明:△CNP 为等腰直角三角形;(2)设NP =x ,当△ABM ≌△MPN 时,求x 的值;(3)设四边形ABPN 的面积为y ,求y 与x 之间的函数关系式,并指出x 取何值时,四边形ABPN 的面积最大,最大面积是多少.解:(1)过D 作DQ ⊥BC 于Q ,则四边形ABQD 为平行四边形 DQ=AB=3,BQ=AD=1 ∴QC=DQ △DQC 中∠C=∠QDC =45° ∴Rt △NPC 为等腰Rt △ ………………(4分) (2)∵ABM ≌MPN MP=AB=3, BM=NP ∵△NPC 为等腰Rt △∴PC=NP= x ∴BM=BC -MP -PC=1-x ∴1- x= x ∴ x=21∴当ABM ≌MPN 时,x =21………………(8分) (3)ABPN S 四边形=21(AB+NP ) BP=21(3+ x )(4-x )=-212x +21 x+ 6=-21( x-21)+6.125(11分) ∴当x 取21时,四边形ABPN 面积最大,最大面积为6.125. ………………(14分) 5.(2012宝应模拟)在直角坐标系中,O 为坐标原点,点A 的坐标为(2,2),点C 是线段OA 上的一个动点(不运动至O ,A 两点),过点C 作CD ⊥x 轴,垂足为D ,以CD 为边在右侧作正方形CDEF. 连接AF 并延长交x 轴的正半轴于点B ,连接OF,设OD =t. ⑴ 求tan ∠FOB 的值;⑵用含t 的代数式表示△OAB 的面积S ;⑶是否存在点C, 使以B ,E ,F 为顶点的三角形与△OFE 相似,若存在,请求出所有满足要求的B 点的坐标;若不存C DN在,请说明理由.(1)作AH ⊥x 轴于H ,交CF 于P ∵A(2,2) ∴AH=OH=2 ∴∠AOB=45° ∴CD=OD=DE=EF=t ∴1tan 22t FOB t ∠== ……………………3分 (2)∵CF ∥OB ∴△ACF ∽△AOB ∴AP CF AH OB = 即22t tOB-=∴22t OB t =- ∴12(02)22OAB tS OB AH t t∆=⋅=<<- ………………6分 (3)要使△BEF 与△OFE 相似,∵∠FEO=∠FEB=90° ∴只要OE EF EB EF =或OE EF EF EB= 即:2BE t =或12EB t =① 当2BE t =时, 4BO t =, ∴242t t t=- ∴0t =(舍去)或32t = ∴B(6,0) ……………………8分② 当12EB t =时, (ⅰ) 当B 在E 的右侧时,52OB OE EB t =+=, ∴2522t t t =- ∴0t =(舍去)或65t = ∴B(3,0) …………………10分(ⅱ) 当B 在E 的左侧时,如图,32OB OE EB t =-=, ∴2322t t t =- ∴0t =(舍去)或23t = ∴B(1,0) ……………………12分6.(2012广东预测)(本小题满分12分)如图,抛物线的顶点坐标是⎪⎭⎫ ⎝⎛8925,-,且经过点) 14 , 8 (A . (1)求该抛物线的解析式;(2)设该抛物线与y 轴相交于点B ,与x 轴相交于C 、D 两点(点C 在点D 的左边), 试求点B 、C 、D 的坐标;(3)设点P 是x 轴上的任意一点,分别连结AC 、BC . 试判断:PB PA +与BC AC +的大小关系,并说明理由.解:(1)(4分)设抛物线的解析式为89252-⎪⎭⎫ ⎝⎛-=x a y ………………………1分∵抛物线经过)14,8(A ,∴89258142-⎪⎭⎫ ⎝⎛-a =,解得:21=a …………2分∴8925212-⎪⎭⎫ ⎝⎛-=x y (或225212+-=x x y ) …………………………1分(2)(4分)令0=x 得2=y ,∴)2,0(B ……………………………………1分 令0=y 得0225212=+-x x ,解得11=x 、42=x ………………………2分 ∴)0 , 1(C 、) 0, 4(D …………………………………………………………1分 (3)(4分)结论:BC AC PB PA +≥+ …………………………………1分理由是:①当点C P 与点重合时,有BC AC PB PA +=+ ………………………………1分②当时异于点点C P ,∵直线AC 经过点)14,8(A 、)0,1(C ,∴直线AC 的解析式为22-=x y ………3分 设直线AC 与y 轴相交于点E ,令0=x ,得2-=y , ∴)2,0(-E ,则)2,0()2,0(B E 与点-关于x 轴对称 ∴EC BC =,连结PE ,则PB PE =, ∴AE EC AC BC AC =+=+, ∵在APE ∆中,有AE PE PA >+∴BC AC AE PE PA PB PA +=>+=+…………………………………1分 综上所得BC AC BP AP +≥+………………………………………………1分 7..如图,已知二次函数y =-x 2+bx +c 的图象经过A (-2,-1),B (0,7)两点.(第24题图)(1)求该抛物线的解析式及对称轴; (2)当x 为何值时,y >0?(3)在x 轴上方作平行于x 轴的直线l ,与抛物线交于C 、D 两点(点C 在对称轴的左侧),过点C 、D 作x 轴的垂线,垂足分别为F 、E .当矩形CDEF 为正方形时,求C 点的坐标.解:解:(1)把A (-2,-1),B (0,7)两点的坐标代入 y =-x 2+bx +c ,得⎩⎪⎨⎪⎧ -4-2b +c =-1c =7,解得⎩⎪⎨⎪⎧b =2c =7. 所以,该抛物线的解析式为y =-x 2+2x +7,又因为y =-x 2+2x +7=-(x -1)2+8,所以对称轴为直线x =1. (2)当函数值y =0时,-x 2+2x +7=0的解为x =1±2 2,结合图象,容易知道1-2 2<x <1+2 2时,y >0. (3)当矩形CDEF 为正方形时,设C 点的坐标为(m ,n ), 则n =-m 2+2m +7,即CF =-m 2+2m +7. 因为C 、D 两点的纵坐标相等, 所以C 、D 两点关于对称轴x =1对称, 设点D 的横坐标为p ,则1-m =p -1, 所以p =2-m ,所以CD =(2-m )-m =2-2m . 因为CD =CF ,所以2-2m =-m 2+2m +7, 整理,得m 2-4m -5=0,解得m =-1或5. 因为点C 在对称轴的左侧,所以m 只能取-1. 当m =-1时,n =-m 2+2m +7=-(-1)2+2×(-1)+7=4. 于是,点C 的坐标为(-1,4).8.如图,在△ABC 中,已知AB =BC =CA =4cm ,AD ⊥BC 于D ,点P 、Q 分别从B 、C 两点同时出发,其中点P 沿BC 向终点C 运动,速度为1cm/s ;点Q 沿CA 、AB 向终点B 运动,速度为2cm/s ,设它们运动的时间为x(s)。