红外解码程序详解

合集下载

红外遥控原理及解码程序

红外遥控原理及解码程序

红外遥控系统原理及单片机红外线遥控是目前使用最广泛的一种通信和遥控手段。

由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。

工业设备中,在高压、辐射、有毒气体、粉尘等环境下,采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰。

1红外遥控系统通用红外遥控系统由发射和接收两大部分组成。

应用编/解码专用集成电路芯片来进行控制操作,如图1所示。

发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、解调、解码电路。

图1红外线遥控系统框图2遥控发射器及其编码遥控发射器专用芯片很多,根据编码格式可以分成两大类,这里我们以运用比较广泛,解码比较容易的一类来加以说明,现以日本NEC 的UPD6121G组成发射电路为例说明编码原理(一般家庭用的DVD VCD 音响都使用这种编码方式)。

当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。

这种遥控码具有以下特征:采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms 的组合表示二进制的0” 以脉宽为0.565ms 、间隔1.685ms 、周期为2.25ms 的组合表示二进制的1 ”,其波形如图2所示。

图2遥控码的0”和1 ” (注:所有波形为接收端的与发射相反)上述0”和1 ”组成的32位二进制码经38kHz 的载频进行二次调制以提高发射效率,达到降低电源功耗的目的。

然后再通过红外发射二极 管产生红外线向空间发射,如图3示。

图3遥控信号编码波形图UPD6121G 产生的遥控编 码是连续 的32位二进制 码组,其中前16 位为用户识别码,能区别不同的电器设备,防止不同机种遥控码互相干 扰。

该芯片的用户识别码固定为十六进制01H ;后16位为8位操作码(功 能码)及 其反 码。

UPD6121G 最多额128种不同组 合的编码。

最简单详细的红外解码程序

最简单详细的红外解码程序

#include<reg52.h> //包含头文件名sbit IRIN=P3^2; //定义红外接收头的外部接口,即外部中断0sbit BEEP=P1^5; //定义蜂鸣器接口,我的在P1^5unsigned char IRCOM[7]; //定义数组,用来存储红外接收到的数据void delay(unsigned char x){ //延时子程序unsigned char i; //延时约x*0.14mswhile(x--) //不同遥控器应设置不同的参数{for(i=0;i<13;i++){}} //参数的选择咱们先不管,先看这个}void beep(){unsigned char i; //蜂鸣器发声子程序for(i=0;i<100;i++){delay(4); //这个得看你的蜂鸣器内部是否有振荡源BEEP=~BEEP;} //如果没有振荡源就应该输入脉冲信号BEEP=1;}void IR_IN() interrupt 0 using 0 //外部中断0程序{unsigned char j,k,n=0; //先定义变量,记住n=0EX0=0; //禁止中断,以免再次进入中断delay(15); //延时0.14ms*15=2.1msif(IRIN==1) //如果在这期间有高电平说明{ //信号不是来自遥控的,返回主程序EX0=1;return;}while(!IRIN){delay(1);} //死循环,等待9ms前导低电平信号的结束for(j=0;j<4;j++) //一共有4组数据{for(k=0;k<8;k++) //每组数据有8位{while(IRIN){delay(1);} //死循环,等待4.5ms前导高电平的结束while(!IRIN){delay(1);} //等待0.56ms低电平的结束,准备采集数据,while(IRIN) //开始采集数据{delay(1); //延时0.14ms,每过0.14ms时n就加1n++; //用n记录一共有多少个0.14msif(n>=30) //如果超过0.14ms*30=4.2ms{ //说明是乱码,放弃不要EX0=1;return;}}IRCOM[j]=IRCOM[j]>>1; //右移1位,xxxx xxxx变成0xxx xxx//我们先认为这一位数据是0,现在已经送入一位数据了/*你肯定知道_cror_(x,1)和x>>1的区别吧*/if(n>=8){IRCOM[j]=IRCOM[j]|0x80;}//但是如果不是0呢,//0xxx xxxx和0x80相或后变成了1xxx xxxx//这样这一们数据就被记录为1了/*想一下这里为什么是8呢,0.14ms*8=1.12ms,知道了吧*//*这样反复执行8次,8位数据就存在IRCOM[j]中了*//*外层再循环4次,4*8=32位数据码全都在IRCOM[0],IRCOM[1],IRCOM[2],IRCO M[3]中了*/n=0; //n计数后一定要记得清0,否则下一次就不能准确计数了}}if(IRCOM[2]!=~IRCOM[3]) //这里我们判断数据码和数据反码是不是相反{ //因为相反才是正确的,否则就放弃EX0=1;return;}beep();EX0=1; //记得开中断,你可以去掉这句话试一试}void main(){IE=0x81;TCON=0X01;BEEP=1;IRIN=1;while(1);}怎么样,你看懂了吗?作者:任杰。

红外解码方法简述

红外解码方法简述

红外解码方法简述1 引言低速的红外无线传输是一种廉价的无线通讯/控制方案,在家电领域已经广泛使用。

在嵌入式领域,只要工作环境比较优良,数据量小,传输距离较近(5米以内),同样可以采用红外无线传输。

本站的A Tmega16学习板上设计了红外发射管与接收管,配合站长家中闲置的“HITACHI VM101”型电视遥控器,详细分析一下此遥控器的红外编解码原理与单片机解码方法。

2 红外数据序列采集“HITACHI VM101”型电视遥控器结构非常简单,主芯片是M50560-123FP ,外围配有455kHZ 晶体做为主时钟源,一个红外发射管,一个发射管的驱动三极管以及若干阻容器件。

考虑到此芯片为专用芯片,就算找到芯片资料去啃E 文也对以后没有多大帮助,所以站长采用了最直接的方法——软件采集输出电平变化时间间隔。

按照学习板的红外接收管连接方法,当接收到红外数据时,在A Tmega16的INT0脚上电平为高,电平的上升沿变化可以做为数据接收的开始。

普通使用的红外管载波频率为38kHz-40kHz 之间,这样可以先设计一个n 倍于载波频率的定时器计时,在中断触发以后对INT0脚上的高低电平计时,就可以得到一个完整的红外数据序列。

站长首先采用了110kHz 的定时器来采集数据,计时用了一个16位的变量,得到的一个数据序列如下:922 1384 1440 1498 1555 1613 1669 1727 1784 1842 1899 2072 2129 2187 2243 2416 2473 2531 2588 2761 2818 2991 3047 3221 3277 3451 3507 3565 3622 3795 3852 3910 3966 4140 4196 4369 4426 4484 4541 4714 4771 4944 5000 5058 5115 5173 5230 5288 5344 5402 5459 5517 5573 5747 5803 5861 5918 5976 6033 6206 6262 6436 6492 6666 6722 6895 6952 序列一 110kHz 定时采集序列其中相邻两个数的差值即为电平维持时间。

一文教会你红外线遥控器软件解码程序

一文教会你红外线遥控器软件解码程序

一文教会你红外线遥控器软件解码程序
红外线一开始发送一段13.5ms的引导码,引导码由9ms的高电平和4.5ms的低电平组成,跟着引导码是系统码,系统反码,按键码,按键反码,如果按着键不放,则遥控器则发送一段重复码,重复码由9ms的高电平,2.25ms的低电平,跟着是一个短脉冲。

#includeat89x52.h
#defineNULL0x00//数据无效
#defineRESET0X01//程序复位
#defineREQUEST0X02//请求信号
#defineACK0x03//应答信号,在接收数据后发送ACK信号表示数据接收正确,
也位请求信号的应答信号
#defineNACK0x04//应答信号,表示接收数据错误
#defineBUSY0x05//忙信号,表示正在忙
#defineFREE0x06//空闲信号,表示处于空闲状态
#defineREAD_IR0x0b//读取红外
#defineSTORE_IR0x0c//保存数据
#defineREAD_KEY0x0d//读取键值
#defineRECEIVE0Xf400//接收缓冲开始地址
#defineSEND0xfa00//发送缓冲开始地址
#defineIR0x50//红外接收缓冲开始地址
#defineHEAD0xaa//数据帧头
#defineTAIL0x55//数据帧尾
#defineSDAP1_7
#defineSCLP1_6
unsigned char xdata *buf1;//接受数据缓冲。

红外解码及超声测距程序

红外解码及超声测距程序

lcden= 0; lcdrs = 1; lcdwr = 0; P0 = date; delay(5); lcden = 1; delay(5); lcden = 0; }
//使能 //选择发送命令 //选择写入 //放入命令 //等待数据稳定 //写入时序 //保持时间
void LCD1602_init() { write_com(0x38);//设置 16X2 显示,5X7 点阵,8 位数据接口 write_com(0x0c);//设置开显示,不显示光标 write_com(0x06);//写一个字符后地址指针加 1 write_com(0x01);//显示清零,数据指针清零 } void ShowString(uchar line,uchar * str) { uchar addr; if(line==0) addr=0x80; if(line==1) addr==0xc0; write_com(addr); while(*str!=’\0’) { write_data(*str++); } } /*-----------------------------------------------主函数-----------------------------------------------*/ main() {
IT0 = 1; EX0 = 1; EA = 1; }
//指定外部中断 0 下降沿触发,INT0 (P3.2)
/*------------------------------------------红外码值处理-----------------------------------------------*/ void Ircordpro(void) { uchar i, j, k; uchar cord,value; k=1; for(i=0;i<4;i++) { for(j=1;j<=8;j++) { cord=irdata[k]; value>>=1; if(cord>7) value|=0x80; k++; } IRcord[i]=value; value=0; } irpro_ok=1; } uint Get_KeyValue() { uint KeyValue; TIM0init(); EX0init(); Ircordpro(); If(irpro_ok) { KeyValue=(IRcode[2]/100)*100+(IRcode[2]%100/10)*10+IRcode[2]%10; //处理完毕标志位置 1 //大于某值为 1,这个和晶振有绝对关系,这里使用 12M 计算,此值可以有一定误差 //处理 1 个字节 8 位 //处理 4 个字节

红外解码程序详解

红外解码程序详解

红外遥控解码程序设计——————基于uPD6121红外编码制式红外传感系统是目前应用最为广泛的遥控系统,一个红外遥控系统可分为发射和接收两部分组成,发射端称之为红外遥控器,一般由矩阵键盘,红外编码调制芯片和红外发射管组成;接收端用一体化红外接收头即可,这个东东内置光电放大器和解调部分,信号接收之后一般很微弱须放大后才可解码,为有效发射出去得先托付在载波上所以需经历调制、解调的过程,其实对于发射部分主要工作在于编码,而对于编码方式只有几种主流方式,而目前国内大部分均为uPD6121编码方式(日本NEC公司搞出来的。

),所以我们只须弄清楚这种编码的时序,即可写出万能的红外解码程序,只要是基于这种编码方式的遥控器(家里的电视、空调、电扇遥控器)都可以用该程序来解码(这点也充分证明了C语言的高移植性啊。

)这种编码的格式其实很简单,开头是一个引导码,人家芯片在编码时将其设计成9ms的高电平和4.5ms的低电平,也就是说你必须跳过这段引导码之后才会接收到数据,第一个问题来了:为什么要加这段引导码?因为红外传感是非常容易受到干扰的,如果直接传送数据很可能并非发送端的信号,很可能来自其他辐射,后面设计程序时会遇到这个问题。

所以我们在写程序时在引导码时可以加入检测代码,如果是引导码则继续接收,否则跳出。

第二个问题就是:接收数据时我们用外部中断接收,这是考虑到CPU 的执行效率,如果你在主函数里接收数据,就好比CPU一直在问:你接收到数据没?你接收到没?..很明显不靠谱,和串口通信一样,接收数据用中断这是经验,有利于单片机的执行效率。

第三个要注意的就是红外接收端和编码发送的数据是反向的!这点很重要,我看很多资料没有写明这点,让很多童鞋疑惑不解,也就是说引导码编码时确实是9ms高电平和4.5ms 的低电平,但是到了接收端是9ms的低电平和4.5ms的高电平,所以我们在解码时就得注意引导码高电平出现的顺序。

对于编码格式,引导码后接了4个字节的数据,前两个字节为用户码和用户反码,简单点说就是器件地址;后两字节为操作码和操作反码,就是我们真正需要的数据。

红外遥控解码程序

红外遥控解码程序

红外遥控解码程序红外接收头的型号有很多HS0038 VS838等功能⼤致相同,只是引脚封装不同。

红外接收有⼏种统⼀的编码⽅式,采样哪种编码⽅式取决于遥控器使⽤的芯⽚,接收头收到的都是⼀样的。

电视遥控器使⽤的是专⽤集成发射芯⽚来实现遥控码的发射,如东芝TC9012,飞利浦AA3010T等,通常彩电遥控信号的发射,就是将某个按键所对应的控制指令和系统码(由0和1组成的序列),调制在38KHz的载波上,然后经放⼤、驱动红外发射管将信号发射出去。

不同公司的遥控芯⽚,采样的遥控码格式也不⼀样,较普遍的有两种,⼀种NEC标准,⼀种是PHILIPS标准。

NEC标准:遥控载波的频率为38KHz(占空⽐1:3)当某个键按下时,系统⾸先发射⼀个完整的全码,如果按键超过108ms仍未松开,接下来发射的代码(连发代码)将由起始码(9ms)和结束码(2.5ms)组成。

⼀个完整的全码 = 引导码 +⽤户码 +⽤户码 + 数据码 + 数据码 + 数据反码。

其中,引导码⾼电平9ms,低电平4.5ms;系统码8位,数据码8位,共32位;其中前16位为⽤户识别码,能区别不同的红外遥控设备,以防⽌不同的机种遥控码互相⼲扰。

后16位为8位的操作码和8位的操作反码,⽤于核对数据是否接收准确。

收端根据数据码做出应该执⾏上⾯动作的判断。

连发代码是在持续按键时发送的码。

它告知接收端。

某键是在被连续的按着。

NEC标准下的发射码表⽰发射数据0时⽤”0.56ms⾼电平 + 0.565ms低电平 = 1.125ms”表⽰;数据1⽤”⾼电平0.56ms + 1.69ms = 2.25ms”表⽰。

遥控器发射信号:需要注意的是:当⼀体化接收头收到38kHz红外信号时,输出端输出低电平,否则为⾼电平。

所以⼀体化接收头输出的波形和发射波形是反向的PHILIPS标准:载波频率38KHz:没有筒,点按键时,控制码1和0之间切换,若持续按键,则控制码不变。

⼀个全码 = 起始码’11’ +控制码 + ⽤户码 + ⽤户码数据0⽤“低电平1.778ms + ⾼电平1.778ms”表⽰;数据1⽤“⾼电平1.778ms + 低电平1.778ms”表⽰。

红外解码程序

红外解码程序

红外解码程序本篇介绍红外解码的原理和程序的写法。

下面来看一下,红外线是如何编码的。

下面来具体说一下,解码的原理,每按一下遥控器的一个按键,遥控器就会发出32个“0”“1”代码(当然是通过高低电平的占空比来判断是0还是1的),具体是0,1是如何编码的上面图片中有介绍,和一个引导码,引导码的作用是告诉处理器,接下来将要开始发送代码,我们在编写程序时,当检测到引导码时,就应该准备接受数据了。

32位代码中的前16位是用户识别码,不同的遥控器不相同,防止互相干扰的,后16是8为数据码,和8位数据反码。

接下来开始介绍如何解码程序的编写。

程序中用到了两个中断,一个是定时器中断,一个是外部中断。

定时器中断用来准确计时,判断接受的代码是0还是1,外部中断用来准确确定定电平到来的时刻,然后开始计时。

/*********************************************************函数功能:红外解码,用八位数码管显示红外线的按键码,便于红外控制测试环境:hot 51学习板编译环境:keil4整理人:张家越QQ:435835181整理时间:2011-04-03************************************************************/#include<reg51.h>#define uchar unsigned char#define uint unsigned intuchar code seg_du[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0 x6f,0x77,0x7c,0x39,0x5E,0x79,0x71 };//0-f的段选码unsigned char code seg_we[]={0,1,2,3,4,5,6,7};uchar irtime,startflag,bitnum,irreceok;uchar irdata[33];uchar irprosok;uchar display[8];uchar ircode[8] ;sbit led1=P0^1;sbit led2=P0^2;/******************************************************************** ****函数功能:延时函数,在数码管显示时使用,不需要很精确********************************************************************* ****/void delay_50us(uint t){uchar j;for(;t>0;t--)for(j=19;j>0;j--);}/******************************************************************** ******函数的功能:定时器0的初始化********************************************************************* *****/void timer0init(){TMOD=0x02; //设置定时器工作在方式2TH0=0x00; //TL0=0x00; //设置定时器的初值ET0=1; //开定时器中断TR0=1; // 打开定时器EA=1; //开总中断}/******************************************************************** ****外部中断1的初始化********************************************************************* **/void int1init(){IT1=1; //设置触发方式为上升沿EX1=1; //开外部中断1EA=1; //开总中断}/******************************************************************** **定时器0的功能函数,每中断一次irtime++,用于计时********************************************************************* **/void timer0() interrupt 1{irtime++; //定时器中断一次irtime++,用于计时}/******************************************************************** ***外部中断0的处理函数,每当有低电平数据过来时,中断一次,(使用次中断的前提是,信号线必需接在外部中断0上面,也就是P3^2口),函数功能是,把信号从高低电平变成时间的代码放入irdata【】中********************************************************************* ***/void int1() interrupt 2{if(startflag){if(irtime>32) //一组代码检测完毕{bitnum=0;}irdata[bitnum]=irtime; //把检测到的时间送到数组irdata【】中去irtime=0;bitnum++;if(bitnum==33) //如果检测到bitnum=33,说明32位用户码已经检测完毕{bitnum=0; //将bitnum清零以便重新计数irreceok=1; //接收完毕标志位置一}}else //(此函数先进入else语句,跳过引导码的检测){startflag=1; //将开始标志位置一irtime=0; //设置时间初值为零irreceok=1; //接收完毕标志位置一}}/******************************************************************** *****函数功能:把irdata【】中的时间代码转换成二进制代码存放在ircode【】中********************************************************************* *****/void irpros(){uchar k=1,value,j,i;for(j=0;j<4;j++){for(i=0;i<8;i++){value=value>>1; //右移7次(第一次是00,相当于没有移位)if(irdata[k]>6) //循环8次{value=value|0x80;}k++;}ircode[j]=value;}irprosok=1;}/******************************************************************** ********函数的功能是:将ircode【】中的二进制代码转换成为16进制代码便于在数码管上显示******************************************************************* ********/void irwork(){display[0]=ircode[0]/16;display[1]=ircode[0]%16;display[2]=ircode[1]/16;display[3]=ircode[1]%16;display[4]=ircode[2]/16;display[5]=ircode[2]%16;display[6]=ircode[3]/16;display[7]=ircode[3]%16;}/******************************************************************** ****函数功能:用数码管显示解码结果********************************************************************* ***/void display1(){uchar i;for(i=0;i<8;i++){P2=seg_we[i];P0=seg_du[display[i]];delay_50us(40);}}void main(){timer0init(); //定时器初始化int1init(); //外部中断初始化while(1){if(irreceok) //判断数据接收完毕(数组中存储的是高低电平的时间){irpros(); //执行处理函数,将高低电平时间转化成16进制的0,1代码,存放在数组中irreceok=0; //标志清零}if(irprosok) //处理函数执行完毕,{irwork(); //将存储的16进制代码分离,便于数码管显示irprosok=0; //标志清零}display1();}}//在最后我再分析一下程序的编写思路,便于大家理解,一旦有按键按下,接受管接收到引导码,进入外部中断,并将高低电平的时间放入irdata【】数组中,接受完毕标志位置一,判断接受标志位,为1,进行处理函数,将高低电平转换成16进制数,处理标志位置一,判断处理标志位,为1,执行分离函数,将16进制数分离,便于数码管显示,分离完毕后显示。

51单片机红外遥控解码,很详细(汇编语言,C语言等)

51单片机红外遥控解码,很详细(汇编语言,C语言等)
//k[i]=TH0;
//i++;
if(TH0<3)
b=1;
else b=0;
TH0=0;
TL0=0;
}
uchar hw_key()
{
uchar j,m;
//i=0;
hw_start(); //等待低电平到来
hw_pulse();
for(j=0;j<24;j++) //测试用户码脉冲宽度
{
hw_pulse();
}
for(j=0;j<8;j++) //测试键码脉冲宽度
{
hw_pulse();
if(b==1)
m=(m<<1)|1;
else
m<<=1;
}
return m; //键码
}
while(in==0); //高电平到了,
TR0=0; //关闭定+;
TH0=0;
TL0=0;
TR0=1; //高电平到了,启动定时器1,测试高电平宽度
while(in==1); //低电平到了,
TR0=0; //关闭定时器1,高电平宽度测试完
请注意甄别内容中的联系方式诱导购买等信息谨防诈骗
51单片机红外遥控解码,很详细(汇编语言,C语言等)
单片机源程序如下:
#include
#define hw_hs0038_ENTITY
#include "hw_hs0038.h"
sbit in=P3^2;
//uchar i=0;
//uchar k[2];
bit bdata b=0;
/*
void timer0(void) interrupt 1 using 1

51单片机红外接收解码程序(详细解析)

51单片机红外接收解码程序(详细解析)

51单片机红外接收解码程序接收以S52单片机作为接收系统。

以S52的P3.3口作为接收端口,该端口是外部中断1。

这个接受程序是以XC866作为红外发送控制系统,接收程序如下:#include<reg52.h>//头文件#include<intrins.h>#define uchar unsigned char//宏定义#define uint unsigned intsbit HWRx=P3^3;//位声明code uchar Table[]=//共阴数码管0-9 a-f - 表{0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0x40};uchar Table_Data[8]={0,0,0,0,0,0,0,0};//用于显示的数组uchar Table_Rx[67];//用于存储判断接收是1或0的参数void Delay();//延时子函数void Display(uchar *lp,uchar lc)//显示{uchar i;//定义变量P2=0;//端口2为输出,关闭P1=P1&0xF8;//将P1口的前3位输出0,对应138译门输入脚,全0为第一位数码管for(i=0;i<lc;i++)//循环显示,采用动态扫描{P2=Table[lp[i]]; //查表法得到要显示数字的数码段if(lp[i]>0x7f)P2+=0x80;Delay();//延时P2=0;//清0端口,准备显示下位if(i==7)//检测显示完8位否,完成直接退出,不让P1口再加1,否则进位影响到第四位数据break;P1++;//点亮下一位数码管}}void main()//主函数{EA=1;//首先开启总中断EX1=1;//开启外部中断1IT1=1;//设置成下降沿触发方式while(1)//一直显示,其它由中断处理{Display(Table_Data,8);}}void Delay()//延时时间大约为31us,晶振12M{uchar i=13;while(i)i--;}void Delay_ms(uint z) //延时时间约为1ms*X晶振为12M{uint x=0,y=0;for(x=z;x>0;x--)for(y=54;y>0;y--);}void hongwai()interrupt 2//外部中断1 ,INT1(P3^3)连接红外线接收IC数据脚{uchar i,j,tmp;EX1=0;//关闭中断j=33;//传送一组数包括引导码1位,4个八位数据,总共33位i=0;//从第一维数组开始Delay_ms(10);if(HWRx){//然后再检测红线接收脚是有数据招收,有继续,没有则退出EX1=1;return;}while(j--){//循环接收33位数据,为何我们用到66位数组,我们可以不接收高电平时间常数,只接低电平常数就//可以判断1或0了,在这里我们都接收,还有一点要知道,接收波形是反向,在没有接收时端口为高电平tmp=0;Table_Rx[i]=1;//时间量从1开始while(!HWRx) //检测高低电平的变化,这里检测的是高电平{Table_Rx[i]++;//没变继续加1Delay();//家一个延时防止,计数值一下子就加满了tmp++;//加1if(tmp==250)break;}i++;tmp=0;Table_Rx[i]=1;//时间量从1开始while(HWRx)//检测高低电平的变化,这里检测的是低电平{Table_Rx[i]++; //没变继续加1Delay();//同上tmp++;//加1,用于判断是1还是0的,低电平来了if(tmp==250)break;}i++;}P1=0xf8;i=200;//加入循环延时,抗干扰while(i)//在有接收数据的时候显示一个H{tmp=255;while(tmp){tmp--;P2=0x76;}i--;}tmp=0;for(i=3;i<19;i++,i++)//处理发送的数据{tmp>>=1;//右移一位,接收低位在前if(Table_Rx[i]>30)//检测低电平时间超过30就确认为1 tmp+=0x80;}Table_Data[0]=tmp/16;//分开2位以16进制显示,用显示发送的数据Table_Data[1]=tmp%16;tmp=0;for(i=19;i<35;i++,i++)//同上{tmp>>=1;if(Table_Rx[i]>30)tmp+=0x80;}Table_Data[2]=tmp/16;Table_Data[3]=tmp%16;tmp=0;for(i=35;i<51;i++,i++){tmp>>=1;if(Table_Rx[i]>30)tmp+=0x80;}Table_Data[4]=tmp/16;Table_Data[5]=tmp%16;tmp=0;for(i=51;i<67;i++,i++){tmp>>=1;if(Table_Rx[i]>30)tmp+=0x80;}Table_Data[6]=tmp/16;Table_Data[7]=tmp%16;EX1=1;//刚进中断时关闭了分控,现在要打开}。

红外解码讲解

红外解码讲解

红外解码一直是单片机中应用较多的,需要设备加装专用解码芯片,这就大大减轻了单片机的负担。

需要单片机样例使用延时做红外解码,比较容易理解,但是由于在主程序中使用,当存在许多中断时就可能造成误码,很多时候误码率较高,成品中则一般使用中断方式。

下面通过TC9012和uPD6121芯片为例大致讲解解码原理:先看一些遥控器发射波形图从上图可以看出 4.5ms高电平+4.5ms低电平称为头码,用于识别是否遥控码开始,uPD6121的头码是9ms+4.5ms,其他的一样,一些datasheet会提及连续发射码的波形图(就是一直按下某一遥控器按键),这里我们不做分析,仅分析单次按键发射的正个码的波形图。

头码过后可以看到4个8位的数据,我们最终目的就是要把这个 32位(4x8)从一体化红外接收头提取出来,并转换成16进制数,用于区分不同按键按下得出的不同数值。

在遥控器发射波形中,可以看出,8位数中的0或者1不是用高低电平表示,而是用不同的低电平的宽度表示,0.565ms表示0,1.69ms表示1,2个位中间还会有一个0.56ms的高电平(上图阴影部分)。

这个是红外遥控器发射的波形,图中看到的阴影高电平表示载波,一般使用38KHz,遥控器发射出去的含有载波的红外信号通过一体化红外接收头处理后得到的是含有载波的反向的波形,也就是没有上图中的阴影部分。

大致如下图一体化红外接收头内部集成了选频放大(38KHz左右频率增益最大),检波(把38KHz的载波滤除),放大整形(变成容易检测的矩形波)。

看到如上图波形,表示单片机引脚可以接收到的波形,我们只要通过单片机读取波形并分析波形的宽度,然后分辨出是头码,还是0或者1,最后整理出这组码的16进制组合。

正确的解码结果是按同一个按键得出的16进制数值是不变化的。

通过这个原理,我们可以分辨出每个按键的键值。

mini80/mini80e样例程序中使用的红外解码程序,应用了外部中断,平时从书上或者网络上看到的解码一般是单纯解码,整个程序不做其他工作,这种方式可以使用普通io口,用延时等待的方法判断接收到的是高电平还是低电平,从而判断码值。

红外遥控器解码程序

红外遥控器解码程序

//===================================================================== //// 红外遥控器解码程序演示//// 本程序主要将现在比较常用TX1300遥控器进行解码,将解码后的数据通过P2端////口的数码管显示出来,为了更好的看到运行过程,特加了三个指示灯用来指示当////前运行状态.P10主要用来闪亮,表示程序正在运行,P11则用来表示接收到数据, ////P12表示触发内部的定时器操作.P13的闪亮表示正确接收完一个数据. //// 程序运行效果: 打开本机电源开关,可以看到P10不停的闪动,按下遥控器的数////字键,数码管则显示相应的数字键(1-9).可以看到P11,P12在显示后呈亮状态.则////可以接收下一个数据,在上面过程中可以看到P13闪亮了一下.表明上次正确接收////到数据. ////---------------------------------------------------------------------//// 开发日期: 2009/01/30 研发单位:上海腾芯实业有限公司//#include <reg52.h> //包含51单片机相关的头文件#define uint unsigned int //重定义无符号整数类型#define uchar unsigned char //重定义无符号字符类型uchar code LedShowData[]={0x03,0x9F,0x25,0x0D,0x99, //定义数码管显示数据0x49,0x41,0x1F,0x01,0x19};//0,1,2,3,4,5,6,7,8,9uchar code RecvData[]={0x07,0x0A,0x1B,0x1F,0x0C,0x0D,0x0E,0x00,0x0F,0x19};uchar IRCOM[7];static unsigned int LedFlash; //定义闪动频率计数变量unsigned char RunFlag=0; //定义运行标志位bit EnableLight=0; //定义指示灯使能位/***********完成基本数据变量定义**************/sbit S1State=P1^0; //定义S1状态标志位sbit S2State=P1^1; //定义S2状态标志位sbit B1State=P1^2; //定义B1状态标志位sbit IRState=P1^3; //定义IR状态标志位sbit RunStopState=P1^4; //定义运行停止标志位sbit FontIRState=P1^5; //定义FontIR状态标志位sbit LeftIRState=P1^6; //定义LeftIR状态标志位sbit RightIRState=P1^7; //定义RightIRState状态标志位/*************完成状态指示灯定义*************/sbit S1=P3^2; //定义S1按键端口sbit S2=P3^4; //定义S2按键端口/*************完成按键端口的定义*************/sbit LeftLed=P2^0; //定义前方左侧指示灯端口sbit RightLed=P0^7; //定义前方右侧指示灯端口/*************完成前方指示灯端口定义*********/sbit LeftIR=P3^5; //定义前方左侧红外探头sbit RightIR=P3^6; //定义前主右侧红外探头sbit FontIR=P3^7; //定义正前方红外探头/*************完成红外探头端口定义***********/sbit M1A=P0^0; //定义电机1正向端口sbit M1B=P0^1; //定义电机1反向端口sbit M2A=P0^2; //定义电机2正向端口sbit M2B=P0^3; //定义电机2反向端口/*************完成电机端口定义***************/sbit B1=P0^4; //定义话筒传感器端口sbit RL1=P0^5; //定义光敏电阻端口sbit SB1=P0^6; //定义蜂鸣端口/*********完成话筒,光敏电阻,蜂鸣器.端口定义**/sbit IRIN=P3^3; //定义红外接收端口/*********完成红外接收端口的定义*************/#define ShowPort P2 //定义数码管显示端口extern void ControlCar(uchar CarType); //声明小车控制子程序void delayms(unsigned char x) //0.14mS延时程序{unsigned char i; //定义临时变量while(x--) //延时时间循环{for (i = 0; i<13; i++) {} //14mS延时}}void Delay() //定义延时子程序{ uint DelayTime=30000; //定义延时时间变量while(DelayTime--); //开始进行延时循环return; //子程序返回}void IR_IN() interrupt 2 using 0 //定义INT2外部中断函数{unsigned char j,k,N=0; //定义临时接收变量EX1 = 0; //关闭外部中断,防止再有信号到达delayms(15); //延时时间,进行红外消抖if (IRIN==1) //判断红外信号是否消失{EX1 =1; //外部中断开return; //返回}while (!IRIN) //等IR变为高电平,跳过9ms 的前导低电平信号。

红外遥控器解码程序

红外遥控器解码程序

红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。

1.红外线的特点人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。

由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。

红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。

红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。

电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。

2.红外线发射和接收人们见到的红外遥控系统分为发射和接收两部分。

发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示。

常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5mm发光二极管相同,只是颜色不同。

一般有透明、黑色和深蓝色等三种。

判断红外发光二极管的好坏与判断普通二极管一样的方法。

单只红外发光二极管的发射功率约100mW。

红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。

接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。

红外接收二极管一般有圆形和方形两种。

由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。

然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示。

红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。

所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。

图3是常用两种红外接收头的外形,均有三只引脚,即电源正VDD、电源负(GND)和数据输出(Out)。

接收头的引脚排列因型号不同而不尽相同,图3列出了因接收头的外形不同而引脚的区别。

红外线遥控解码原理

红外线遥控解码原理

红外线遥控解码原理一、引言红外线遥控解码是一种常见的电子技术应用,广泛用于电视、空调、音响等家电产品中。

通过红外线遥控解码技术,可以实现遥控器与设备之间的无线通信,方便人们对设备进行远程操控。

本文将介绍红外线遥控解码的原理和实现方式。

二、红外线遥控解码原理红外线遥控解码的原理是利用红外线信号的特点进行解码。

遥控器通过按键操作产生一系列的红外信号,这些信号被红外发射器发射出去,然后被接收器接收并解码。

下面将详细介绍红外线遥控解码的原理。

1. 红外线信号的特点红外线是一种电磁波,波长在0.75微米到1000微米之间。

在这个波长范围内,红外线具有较好的穿透性,能够穿透一些物体,比如空气、玻璃等。

同时,红外线的波长也决定了它能够被人眼所感知。

2. 红外线遥控信号的编码方式红外线遥控信号一般采用脉冲宽度编码(Pulse Width Encoding)的方式进行编码。

即通过调节红外线信号的脉冲宽度来表示不同的信息。

通常会将一个编码周期分为若干个时间单位,每个时间单位内的脉冲宽度决定了信号的状态,比如高电平表示1,低电平表示0。

3. 红外线遥控信号的解码方式红外线遥控信号的解码一般分为两个步骤:解调和解码。

解调是指将接收到的红外线信号转换为电信号,解码是指将解调后的电信号转换为对应的按键信息。

解调通常采用红外线接收头来完成,红外线接收头是一种能够感知红外线信号并将其转换为电信号的传感器。

红外线接收头内部含有一个光电二极管,当红外线信号照射到光电二极管上时,会产生一个电压信号。

通过对这个电压信号进行放大和滤波处理,可以得到解调后的电信号。

解码是将解调后的电信号转换为对应的按键信息。

解码一般采用红外线遥控解码芯片来完成,这些芯片内部包含了一系列的逻辑电路和存储器,能够根据输入的电信号解码出对应的按键信息。

不同的遥控器厂商和设备类型会使用不同的解码协议,因此解码芯片需要根据具体的解码协议来进行解码。

三、红外线遥控解码的实现方式红外线遥控解码可以通过硬件电路和软件算法两种方式来实现。

红外遥控解码原理

红外遥控解码原理

感谢观看
汇报人:XX
红外遥控解码技 术能够提高智能 家居系统的稳定 性和可靠性
红外遥控解码技 术能够实现智能 家居系统的自动 化控制
红外遥控解码技 术能够提高智能 家居系统的安全 性和隐私保护
04
红外遥控解码的发展趋势
提高解码的准确性和稳定性
采用更先进的 算法和编码技 术,提高解码 的准确性和稳
定性
增加抗干扰能 力,降低外界 因素对解码的
影响
优化硬件设计, 提高接收器的 灵敏度和稳定

结合人工智能 技术,实现自 适应学习和优
化解码效果
实现多通道解码和多协议兼容
红外遥控解码技术不断发展,未来将实现多通道解码,提高解码效率和稳定性。 随着不同品牌和型号的红外遥控器不断涌现,多协议兼容将成为解码技术的重要发展方向。 解码芯片厂商将不断推出支持更多协议和通道的解码芯片,以满足市场需求。 未来红外遥控解码技术将更加智能化和人性化,为用户带来更加便捷的使用体验。
灯光:红外遥控解码技术也可以 用于控制灯光,如调节亮度、色 温等,实现智能照明。
在工业控制中的应用
实现远程控制:通过红外遥控解码技术, 工业控制中可以实现设备的远程启动、 停止、调节等功能,提高生产效率。
自动化监控:红外遥控解码技术可以用 于工业控制中的自动化监控,例如对温 度、湿度、压力等参数的实时监测和调 节。
无线通信:红外遥控解码技术可以实现工 业控制中的无线通信,避免了布线的繁琐 和成本,提高了系统的灵活性和可靠性。
安全性:红外遥控解码技术可以用于工 业控制中的安全保护,例如对设备的锁 定、解锁等操作,保证生产过程的安全 可控。
在智能家居系统中的应用
红外遥控解码技 术能够实现智能 家居系统的远程 控制

单片机的红外遥控器解码原理与实现

单片机的红外遥控器解码原理与实现

单片机的红外遥控器解码原理与实现红外遥控器是我们日常生活中常见的电子设备,它通过使用红外线信号与接收器进行通信。

而在这个过程中,单片机起到了解码的重要作用。

本文将介绍单片机解码红外遥控器的原理以及实现方法。

一、红外遥控器的工作原理红外遥控器是一种使用红外线进行通信的设备,它主要由发送器和接收器两部分组成。

发送器将指令数据转换为红外脉冲信号并发送出去,接收器通过接收红外线信号并将其转换为电信号,进而解码为可识别的指令。

而单片机则负责接收并解码红外信号,将其转化为具体的操作。

二、单片机解码红外信号的原理单片机解码红外信号主要分为两个步骤:红外信号的接收和信号的解码处理。

1. 红外信号的接收单片机通过外部的红外接收器接收红外信号。

红外接收器可以通过外部电路将接收到的红外信号转换为电压信号,然后通过单片机的IO 口输入。

2. 信号的解码处理接收到的红外信号经过IO口输入后,单片机需要对信号进行解码处理。

解码的过程涉及到红外信号的标准化和解析。

对于常见的红外遥控器协议,单片机需要能够识别其编码方式,确定其协议格式。

这些协议通常包含了引导码、地址码和指令码等信息。

在解析红外信号时,单片机首先需要识别引导码。

引导码是红外信号的起始标志,通常由高、低电平组成,表示编码的开始。

单片机通过判断引导码的时间长度来确定信号的开始。

接下来,单片机需要识别地址码和指令码。

地址码是用来区分不同的红外遥控器设备,指令码则表示具体的操作指令。

单片机通过判断地址码和指令码的高、低电平时间长度来确定具体的操作。

三、单片机解码红外信号的实现方法单片机解码红外信号有多种实现方法,以下是一种简单的实现示例。

首先,需要连接红外接收器到单片机的IO口,将接收到的信号输入到单片机。

接收到的信号可以通过外部中断的方式触发单片机的中断服务程序。

然后,在中断服务程序中,单片机需要根据红外协议的规则,判断引导码、地址码和指令码的时间长度。

利用计时器或延时函数可以实现对信号时间的测量。

(完整)简单的红外解码程序

(完整)简单的红外解码程序

简单的红外解码程序(不用中断)#ifndef __IR_H__#define __IR_H__#include <reg52.h>#include ”delay。

h"#define uchar unsigned char//8位#define uint unsigned int//16位sbit IR_IN=P3^2;//信号接收IR_JS();//无线接收程序#endif#include "IR.h”uchar data dat_IR[3]; //写缓存//==========红外接收程序=================IR_JS()//{uchar r1,r2,dat,dat1,dat2;if(IR_IN!=0){return 0;}//无信号退出delay_ms(1);if(IR_IN!=0){return 0;}//干扰退出r2=0;while(IR_IN ==0)//等高电平{delay_ms(1);r2++;}if(r2〈5){return 0;}//检测是否有同步头//delay_ms(4);//跳过同步码的高电平do{delay_100us(1);r2++;if(r2〉20){return 0;}}//防卡死while(IR_IN ==1);//开始解码for(r1=0;r1〈8;r1++)//接收8位数(系统码1){r2=0;while(IR_IN ==0);delay_100us(6);dat=dat<〈1;if(IR_IN ==1)dat=dat+1; //读数据位,接收的数据位放入retc中do{delay_100us(1);r2++;if(r2>20){return 0;}}//防卡死while(IR_IN ==1);}for(r1=0;r1〈8;r1++)//接收8位数(系统码2){r2=0;while(IR_IN ==0);delay_100us(6);//dat1=dat1<<1;if(IR_IN ==1)dat1=dat1+1; //读数据位,接收的数据位放入retc中 do{delay_100us(1);r2++;if(r2>20){return 0;}}//防卡死while(IR_IN ==1);}for(r1=0;r1〈8;r1++)//接收8位数(键值){r2=0;while(IR_IN ==0);delay_100us(6);//dat2=dat2<<1;if(IR_IN ==1)dat2=dat2+1; //读数据位,接收的数据位放入retc中 do{delay_100us(1);r2++;if(r2〉20){;return 0;}}//防卡死while(IR_IN ==1);}for(r1=0;r1<8;r1++)//接收8位数(键值反码){r2=0;while(IR_IN ==0);delay_100us(6);//dat=dat<〈1;if(IR_IN ==1)dat=dat+1; //读数据位,接收的数据位放入retc中 do{delay_100us(1);r2++;if(r2〉20){return 0;}}//防卡死while(IR_IN ==1);}//接收完32位数据if(dat2!= ~dat){return 0;}//检测键值和键值反码,出错退出//解码完成,保存数据dat_IR[0]=dat;dat_IR[1]=dat1;dat_IR[2]=dat2;//P2显示数据P2=dat2;delay_ms(1000);//显示一秒P2=0xFF;return 1; //解码成功}。

红外解码完全解析

红外解码完全解析

1、红外遥控系统通用红外遥控系统由发射和接收两大部分组成,应用编/解码专用集成电路芯片来进行控制操作,如图1所示。

发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、解调、解码电路。

下面,我们将使用下面两种设备:另外,使用51单片机进行解码。

2、原理图从原理图看出,IR的data脚与51的PD2(P3.2)相连。

2、红外发射原理要对红外遥控器所发的信号进行解码,必须先理解这些信号。

a) 波形首先来看看,当我们按下遥控器时,红外发射器是发送了一个什么样的信号波形,如下图:由上图所示,当一个键按下超过22ms,振荡器使芯片激活,将发射一组108ms的编码脉冲(由位置1所示)。

如果键按下超过108ms仍未松开,接下来发射的代码(连发代码由位置3所示)将仅由起始码(9ms)和结束码(2.5ms)组成。

下面把位置1的波形放大:由位置1的波形得知,这108ms发射代码由一个起始码(9ms),一个结果码(4.5ms),低8位地址码(用户编码)(9ms~18ms),高8位地址码(用户编码)(9ms~18ms),8位数据码(键值数据码)(9ms~18ms)和这8位数据的反码(键值数据码反码)(9ms~18ms)组成。

b) 编码格式遥控器发射的信号由一串0和1的二进制代码组成.不同的芯片对0和1的编码有所不同。

通常有曼彻斯特编码和脉冲宽度编码。

XS-091遥控板的0和1采用PWM方法编码,即脉冲宽度调制。

下图为一个发射波形对应的编码方法:放大0和1的波形如下图:这种编码具有以下特征:以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的“1”。

3、红外接收原理a) 波形红外接收头将38K载波信号过虑,接收到的波形刚好与发射波形相反:放大,位定义0和位定义1波形如下:4、解码原理及算法注:代码宽度算法:16位地址码的最短宽度:1.12×16=18ms 16位地址码的最长宽度:2.24ms×16=36ms可以得知8位数据代码及其8位反代码的宽度和不变:(1.12ms+2.24ms)×8=27ms所有32位代码的宽度为(18ms+27ms)~(36ms+27ms)对于红外线遥控对于很多电子爱好者来讲,都感觉到非常神奇,看不到,摸不着,但能实现无线遥控,其实控制的关键就是我们要用单片机芯片来识别红外线遥控器发出红外光信号,即我们通常所说的解码。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

//此程序为网上下载后修改,要弄懂的话,可以去看看HT6221的时序图。

当然也欢迎在这里留言。

///C51的红外解码程序,可以根据需要自己修改:
//11.0592Mhz
#include<reg51.h>
//根据自己的接线来改
sbit IRIN = P3^2; //红外接收器数据线
sbit led = P3^7; //指示灯
////////////////////////////////////////////
//定义数组IRCOM,分别装解码后得到的数据
//IRCOM[0] 低8位地址码
//IRCOM[1] 高8位地址码
//IRCOM[2] 8位数据码
//IRCOM[3] 8位数据码的反码
/////////////////////////////////////////////
#define uchar unsigned char
#define uint unsigned int
uchar IRCOM[4]=0;
bit flag=0;
/********************/
void delay014ms(unsigned char x); //x*0.14MS
void IR_init(void);
void delay014ms(unsigned char x) //x*0.14MS STC10F04延时约0.15MS {
unsigned char i;
while(x--)
{
for (i = 0; i<125; i++) //13
{;}
}
}
///////////////
//初始化
////////////
void IR_init(void)
{
EA=1;
EX0=1; //允许总中断中断,使能 INT0 外部中断
IT0=1; //触发方式为脉冲负边沿触发
IRIN=1; //I/O口初始化
}
//////////
//解码过程
//////////////
void IR_CODE(void) interrupt 0 //在外部中断子程序中解码
{
unsigned char j,k,N=0;
EX0 = 0;
delay014ms(15);
if (IRIN==1)
{ EX0 =1;
return;
} //确认IR信号出现
while (!IRIN) //等IR变为高电平,跳过9ms的前导低电平信号。

{delay014ms(1);}
for (j=0;j<4;j++) //收集四组数据
{
for (k=0;k<8;k++) //每组数据有8位
{
while (IRIN) //等 IR 变为低电平,跳过4.5ms的前导高电平信号。

{delay014ms(1);}
while (!IRIN) //等 IR 变为高电平
{delay014ms(1);}
while (IRIN) //计算IR高电平时长
{
delay014ms(1);
N++;
if (N>=30)
{ EX0=1;
return;} //0.14ms计数过长自动离开。

} //高电平计数完毕
IRCOM[j]=IRCOM[j] >> 1; //数据最高位补"0"
if (N>=8) {IRCOM[j] = IRCOM[j] | 0x80;} //数据最高位补"1"
N=0;
}
}
if (IRCOM[2]!=~IRCOM[3]) //不等的话表示解码失败
{
IRCOM[4]=0;
EX0=1;
return;
}
flag = !flag;//pro();//解码成功后运行的程序
//如果解码成功,flag就取一次,在主程序中,就根据flag的值来闪灯,EX0=1;
return;
}
//主程序
void main(void)
{
IR_init( ); //初始化外部中断0
flag = 0;
while(1)
{
led=flag; //正确接收后的led闪灯的现像。

//if(flag)
// {
// led =!led;
// delay014ms(1);
// }
// else led=1;
}
}。

相关文档
最新文档