纯金属的凝固

合集下载

第五章 纯金属的凝固

第五章 纯金属的凝固

r*
体积自由能
r
2 16 2Tm A* 4 (r*)2 2 Lm T 2
1 G * A * 3
2 16 3Tm 1 G* A 2 3( Lm T ) 3
说明:
① 形核功△G*与(△T )2成反比,△T↑,△G*↓; ② 形成临界晶核时自由能仍是增高的(△G*>0),其增 值相当于其表面能的1/3,即L→S体积自由能差值只补 偿形成临界晶核表面所需的能量的2/3,而不足的1/3则 另需他法;
(1)非均匀形核时的能量变化及形核功
设一曲率半径为r的球冠的晶胚依附于型壁W上形成。
接触角为θ (又称浸润角)。
G GVV A
GVV AL L AM ( M L M )
LM L cos M
AL 2r (1 cos )
非均匀形核的形核功:
* G非 2 16 3Tm * f ( ) =f ( )G均 3( Lm T ) 2
* G非
2 16 3Tm * f ( ) =f ( )G均 3( Lm T ) 2
讨论: ① θ=0°, f(θ)=0,ΔG*非=0,基底和晶核结构相同,直接 长大,称外延生长;杂质本身即为晶核;
undulation
液态的结构特征:原子排列长程无序,动态短程有序。
5.1.2 纯金属结晶的过冷现象
过冷:
(Supercooling或 Undercooling )
液态材料在理论结晶温度以下仍保持液 态的现象。
理论凝固温度Tm与实际开始凝固温度Tn 之差,即ΔT= Tm - Tn 。
过冷度 ΔT:
5.3.1 均匀形核(homogeneous nucleation)

纯金属的凝固习题与答案

纯金属的凝固习题与答案

纯金属的凝固习题与答案1 说明下列基本概念凝固、结晶、过冷、过冷度、结构起伏、能量起伏、均匀形核、非均匀形核、临界晶核半径、临界晶核形核功、形核率、生长线速度、光滑界面、粗糙界面、动态过冷度、柱状晶、等轴晶、树枝状晶、单晶、非晶态、微晶、液晶。

2 当球状晶核在液相中形成时,系统自由能的变化为σππ23344r G r G V +∆=∆,(1)求临界晶核半径c r ;(2)证明V V c c G A G c ∆-==∆231σ(c V 为临界晶核体积);(3)说明上式的物理意义。

3 试比较均匀形核与非均匀形核的异同点,说明为什么非均匀形核往往比均匀形核更容易进行。

4 何谓动态过冷度?说明动态过冷度与晶体生长的关系。

在单晶制备时控制动态过冷度的意义?5 分析在负温度梯度下,液态金属结晶出树枝晶的过程。

6 在同样的负温度梯下,为什么Pb 结晶出树枝状晶而Si 的结晶界面却是平整的?7 实际生产中怎样控制铸件的晶粒大小?试举例说明。

8 何谓非晶态金属?简述几种制备非晶态金属的方法。

非晶态金属与晶态金属的结构和性能有什么不同。

9 何谓急冷凝固技术?在急冷条件下会得到哪些不同于一般晶体的组织、结构?能获得何种新材料?. 计算当压力增加到500×105Pa 时锡的熔点的变化,已知在105Pa 下,锡的熔点为505K ,熔化热7196J/mol ,摩尔质量为118.8×10-3kg/mol ,固体锡的体积质量7.30×103kg/m 3,熔化时的体积变化为+2.7%。

2. 考虑在一个大气压下液态铝的凝固,对于不同程度的过冷度,即:ΔT=1,10,100和200℃,计算: (a)临界晶核尺寸;(b)半径为r*的团簇个数;(c)从液态转变到固态时,单位体积的自由能变化ΔGv ; (d)从液态转变到固态时,临界尺寸r*处的自由能的变化 ΔGv 。

铝的熔点T m =993K ,单位体积熔化热ΔH f =1.836×109J/m 3,固液界面自由能γsc =93J/m 2,原子体积V 0=1.66×10-29m 3。

第三章纯金属的凝固

第三章纯金属的凝固

3.3.1 均匀形核
均匀形核(均质形核)是指在均匀单一的母相中形 成新相结晶核心的过程。
1.均匀形核的能量条件
在过冷的液态金属中,晶胚形成的同时,体系自由 能的变化包括转变为固态的那部分体积引起的自由能下 降和形成晶胚新表面引起的自由能的增加。假设单位体
积自由能的下降为 ΔGv(ΔGv<0) ,比表面能为σ,晶 胚假设为球体,其半径为r ,则晶胚形成时体系自由能
3.2.2 结晶的热力学条件
根据液固金属自由能
G与温度关系曲线如图 3-3可知,GL=Gs 所对 应的温度Tm即理论平衡 结晶温度,当T<Tm时, Gs<GL两者之差值即为结
晶的驱动力。过冷度越 大,结晶的驱动力也越 大,过冷是结晶的热力 学条件。
第三节 形核规律
形核方式有两种:一种是均匀形核,即新 相晶核在母相内自发地形成;另一种是非均匀 形核,即新相晶核在母相与外来夹杂的相界面 处优先形成。工程实际中材料的凝固主要以非 均匀形核方式进行,但均匀形核的基本规律十 分重要,它不仅是研究晶体材料凝固问题的理 论基础,而且也是研究固态相变的基础。
假定固相晶胚α以球冠状形成于 基底B的平面上,如图3-8所示,设 固相晶核表面的曲率半径为r,晶
核与基体面的接触角为θ,球冠底
圆半径为R..
当晶核形成时,体系增加的表面能 为ΔGs ,
ΔGs=AαLσαL+AαwσαW-AαwσLW
式中 AαL,Aαw 分别为晶核α 与液相L 及B之间的界面积 ;σαL , σαW , σLW 分别为各相应界面的表面能,在其 相交点处,表面张力达到平衡。
3.1.2 纯金属的结晶过程
液态金属的结晶过程是一个形核及核长大的过程。 当液态金属冷却至熔点以下,经过一定时间的孕育,就 会涌现一批小晶核,随后这些晶核按原子规则排列的各 自取向长大,与此同时又有另一批小晶核生成和长大, 直至液体全部耗尽为止。

第四章纯金属的凝固

第四章纯金属的凝固

(二)临界晶核 设晶胚为半径r的球形,形核时总能量变化为: ΔG=-ΔG体积+ΔG表面 =-433GV42
ΔGV-单位体积自由能,σ-比表面能 ΔG是r的函数。
由 Gf(r) 的函数作图可知,在r=rc时△G取 得极大值。
讨论: 1.当r<rk则晶胚生长 ,将导致体系 ΔG ,晶胚重新熔化而消失。 2.若r>rk 晶胚r ,体系的ΔG,结晶 自发进行,此时的晶胚就成为晶核
2.金属熔化时的体积变化:大多数金属熔化时体积变化仅为
3%-5%,熔化前后原子间距变化不大,熔化前后原子间结 合力较为接近。
3.金属熔化熵值变化小:
金属熔化时结构变化小,只是相对“无序度”增加.
液态金属结构与固态相似存在近程有序,近程密堆, 远程无序.
二.材料凝固的过冷现象
过冷现象-实际结晶温度低于理论结 晶温度的现象。
假设:晶核是依附过冷液相现成基底B上形成晶核S;
设晶核为半径为r的球缺体;S1为球冠面积; S2为晶核与基底接触的面积; θ为晶核与基体的润湿角。
晶核形成稳定存在的瞬间(不 熔化、长大),三相交点处, 表面张力应达到平衡:
σLB=σSB+σLScosθ
非均匀形核示意图
σLB、σsB、σLs分别为L/B、S/B、L/S间的表面张力
均为自发过程.
结论:过冷是结晶的必要条件, 而 ΔT≥ΔTc是结晶的充分必要条件。
过冷度对临界晶核与 最大相起伏的影响
(五)临界晶核的形核功
ΔG=-ΔG体积+ΔG表面 =-433GV42

k
2 GV
代入上式可得:
3
2
G k4 3 L 2 m T T m G 4 L 2 m T T m 化简得

材料科学基础重点知识

材料科学基础重点知识

材料科学基础重点知识第5章纯金属的凝固1、金属结晶的必要条件:过冷度-理论结晶温度与实际结晶温度的差;结构起伏-大小不一的近程有序排列的此起彼伏;能量起伏-温度不变时原子的平均能量一定,但原子的热振动能量高低起伏的现象;成分起伏-材料内微区中因原子的热运动引起瞬时偏离熔液的平均成分,出现此起彼伏的现象。

结晶过程:形核和长大过程交错重合在一起展开2、过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。

从热力学看,没有过冷度结晶就没有趋动力。

根据rk?1?t所述当四氟肼度?t=0时临界晶核半径r*为无穷大,临界形核功(?g?1?t2)也为无穷大,无法形核,所以液态金属不能结晶。

晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。

孕育期:过冷至实际结晶温度,晶核并未立即产生,结晶开始前的这段停留时间3、光滑形核和非光滑形核均匀形核:以液态金属本身具有的能够稳定存在的晶胚为结晶核心直接成核的过程。

非光滑形核:液态金属原子依附于固态杂质颗粒上灶性的方式。

临界晶核半径:δg达至最大值时的晶核半径r*=-2γ/δgv物理意义:r0,晶核不能自动形成。

r>rc时,δgv占优,故δg<0,晶核可以自动构成,并可以平衡生长。

临界形核功:δgv*=16πγ3/3δgv3形核率:在单位时间单位体积母相中形成的晶核数目。

受形核功因子和原子扩散机率因子控制。

4、正的温度梯度:靠近型壁处温度最低,凝固最早发生,越靠近熔液中心温度越高。

在凝固结晶前沿的过冷度随离界面距离的增加而减小。

纯金属结晶平面生长。

正数的温度梯度:四氟肼度随其距界面距离的减少而减少。

氢铵金属结晶树枝状生长。

5、光滑界面即小平面界面:液固两相截然分开,固相表面为基本完整的原子密排面,微观上看界面光滑,宏观上看由不同位向的小平面组成故呈折线状的界面。

坚硬界面即非小平面界面:固液两相间界面微观来看高低不平,存有很厚的过渡阶段层,故从宏观来看界面反而弯曲,不发生坎坷小平面的界面。

第三章__纯金属的凝固答案

第三章__纯金属的凝固答案

第三章纯金属的凝固本章主要内容:液态金属的结构;金属结晶过程:金属结晶的条件,过冷,热力学分析,结构条件晶核的形成:均匀形核:能量分析,临界晶核,形核功,形核率,非均匀形核:形核功,形核率晶体的长大:动态过冷度(晶体长大的条件),固液界面微观结构,晶体长大机制,晶体长大形态:温度梯度,平面长大,树枝状长大、结晶理论的应用实例:铸锭晶粒度的控制,单晶制备,定向凝固,非晶态金属一、填空1..在液态金属中进行均质形核时,需要__结构_起伏和____能量起伏。

1.金属凝固的必要条件是__________过冷度和能量起伏_____________。

2.细化铸锭晶粒的基本方法是:(1)___控制过冷度_,(2)___变质处理__,(3)____振动、搅拌等____。

5、形成临界晶核时体积自由能的减小只能补偿新增表面能的____2/3____。

6、液态金属均质形核时,体系自由能的变化包括(体积自由能)和(表面自由能)两部分,其中__表面_____自由能是形核的阻力,____体积___自由能是形核的动力;临界晶核半径r K与过冷度△T呈__反比_TLTrmm∆-=σ2_关系,临界形核功△G K等于____()223316TLTGmmk∆∙=∆σπ表面能的1/3___。

7 动态过冷度是______晶核长大时固液界面(前沿)的过冷度___。

8 在工厂生产条件下,过冷度增大,则临界晶核半径__减小___,金属结晶冷却速度越快,N/G比值___越大_____,晶粒越细_小。

9 制备单晶的基本原理是__保证一个晶核形成并长大__,主要方法有____尖端成核法和___垂直提拉法。

10. 获得非晶合金的基本方法是_____快速冷却___________。

11 铸锭典型的三层组织是______细晶粒区________, ___柱状晶区____, _____等轴晶区____。

12 纯金属凝固时,其临界晶核半径的大小、晶粒大小主要决定于_______过冷度_______________。

材料科学基础习题库第章凝固

材料科学基础习题库第章凝固

第三章纯金属的凝固(一) 填空题1.金属结晶两个密切联系的基本过程是和2 在金属学中,通常把金属从液态向固态的转变称为,通常把金属从一种结构的固态向另一种结构的固态的转变称为。

3.当对金属液体进行变质处理时,变质剂的作用是4.铸锭和铸件的区别是。

5.液态金属结晶时,获得细晶粒组织的主要方法是6.金属冷却时的结晶过程是一个热过程。

7.液态金属的结构特点为。

8.如果其他条件相同,则金属模浇注的铸件晶粒比砂模浇注的,高温浇注的铸件晶粒比低温浇注的,采用振动浇注的铸件晶粒比不采用振动的,薄铸件的晶粒比厚铸件。

9.过冷度是。

一般金属结晶时,过冷度越大,则晶粒越。

(二) 判断题1 凡是由液态金属冷却结晶的过程都可分为两个阶段。

即先形核,形核停止以后,便发生长大,使晶粒充满整个容积。

2.凡是由液体凝固成固体的过程都是结晶过程。

3.近代研究表明:液态金属的结构与固态金属比较接近,而与气态相差较远。

( )4.金属由液态转变成固态的过程,是由近程有序排列向远程有序排列转变的过程。

( )5.当纯金属结晶时,形核率随过冷度的增加而不断增加。

( ) 6.在结晶过程中,当晶核成长时,晶核的长大速度随过冷度的增大而增大,但当过冷度很大时,晶核的长大速度则很快减小。

( )7.金属结晶时,冷却速度愈大,则其结晶后的晶粒愈细。

( )8.所有相变的基本过程都是形核和核长大的过程。

( )9.在其它条件相同时,金属模浇注的铸件晶粒比砂模浇注的铸件晶粒更细( )10.在其它条件相同时,高温浇注的铸件晶粒比低温浇注的铸件晶粒更细。

( )11.在其它条件相同时,铸成薄件的晶粒比铸成厚件的晶粒更细。

( )12. 金属的理论结晶温度总是高于实际结晶温度。

( )13.在实际生产条件下,金属凝固时的过冷度都很小(<20℃),其主要原因是由于非均匀形核的结果。

( )14.过冷是结晶的必要条件,无论过冷度大小,均能保证结晶过程得以进行。

( )15.在实际生产中,评定晶粒度方法是在放大100倍条件下,与标准晶粒度级别图作比较,级数越高,晶粒越细。

纯金属的凝固(结晶)

纯金属的凝固(结晶)

纯金属的凝固(结晶)
2非均匀形核 浸润角对形核影响
G非*
G均* ( 2
3cos
4
cos3
)
纯金属的凝固(结晶)
2非均匀形核 浸润角对形核影响
0o
G非*
G均* ( 2
3cos
4
cos3
)
G非 * 0 晶核在固相质点上直接长大。
180o G非 * G均 * 固相质点不起作用。
越小,G非 * 越小,临界晶核体积越小,N越高。
特点: ①所需过冷度低。 ②在ΔT相同时,形核率高,结晶后晶粒细小。
纯金属的凝固(结晶)
2非均匀形核 1.临界晶核半径与形核功。
ΔG=V•ΔGV +A•σ
假设在平面基底(W)上形成球冠晶核α,晶核 形成时,增加的表面能为:
GS =AL L +AW W AW LW L、W、 LW:分别为晶核与液相、晶核与
纯金属的凝固(结晶) 结晶概念:金属由液态转变为固态的过程。 金属原子由短程有序变为长程有序的过程。 为何研究结晶:
结晶时,希望获得均匀细小的晶粒→ 强度、硬度高,塑性、韧性好。
纯金属的凝固(结晶) 结晶概念:金属由液态转变为固态的过程。 为何研究结晶:
a.金属生产: 熔炼—浇注—结晶—其它加工。
S Lm Tm
在T≠Tm 时
GV =
-Lm
TS
=
-L m
+
T
Lm Tm
=-L m
Tm Tm
T
=
-Lm
T Tm
GV
LmT Tm
纯金属的凝固(结晶)
2金属结晶的热力学条件
GV
LmT Tm
当ΔT=0时,ΔGV=0 即不结晶也不熔化

纯金属的凝固

纯金属的凝固
引言



多数金属制品的生产都需要经历熔炼和铸造两 个工艺过程。熔炼是为了获得符合要求的液态 金属。铸造是将液态金属注入铸模中使之凝固 成一定形状,尺寸的固态金属件或金属锭。 结晶:液态金属转变为固态金属晶体的过程。 结晶是铸锭,铸件,金属焊接生产的主要过程。 是材料制备的最主要工艺。 广义结晶定义:聚集态,晶态,非晶态—晶体 的过程。

铸锭中产生收缩孔,分为五类:缩管,均匀收 缩,缩穴,分散缩孔,表面疏松(表面最后凝 固,或有气体疏松)
缩管
单向收缩
缩穴
分散疏松 表面疏松

气泡:一是脱溶出气泡,二是化学反应气泡 1,气泡长大速度比界面生长速度快,则长大 上浮. 2,气泡长大速度和界面生长速度相当则呈蜂 窝状气泡 3,气泡长大速度比界面生长速度慢,则成内 部气泡
1 1 P ( ) r1 r2

该压力会导致固溶体吉布斯自由能增加,


2 尔体积。 r1 r2 纯组元固液两相平衡时,两相的吉布斯自由能 差为: H T S 2 kV 0
S
k
1 1 G ' VS P VS ( ) 2k VS r1 r2 1 1 1
一,液态金属的某些模型



1,准晶体模型:接近熔点时,液态金属中部 分原子的排列方式与固体金属相似,有许多晶 态小集团,可以称为晶胚。大小不等,取向各 异,此起彼伏,瞬息万变,瞬时形成,又瞬时 散开,消失-称为近程排列组态。在液体中出 现的这种结构状态称为结构起伏。 2,非晶体模型:液体金属中的原子相当于紊 乱的密堆球,当中,有着被称为“伪晶核”的 高致密区--晶胚。 晶核:那些几何尺寸大到一定程度可以稳 定长大而不消失的晶胚。 第一个模型已被X射线衍射分析证实。

纯金属凝固知识点总结

纯金属凝固知识点总结

纯金属凝固知识点总结1. 凝固的基本原理在纯金属凝固的过程中,金属离子从液态状态转变为晶态状态,这一过程主要包括两个方面的变化:(1) 原子排列的变化。

在液态金属中,金属原子是无序排列的,而在凝固过程中,金属原子开始有序排列,形成不同的晶体结构。

(2) 基本结构的变化。

不同的金属具有不同的晶体结构,如立方晶体、六方晶体等,这种基本结构的变化是凝固过程中的重要特征。

在金属凝固的过程中,除了原子排列的变化和基本结构的变化外,还会同时涉及到晶体的生长、演变和凝固温度等因素的影响。

因此,要深入了解纯金属凝固的过程,需要综合考虑上述多个因素的作用。

2. 凝固过程中的晶体生长晶体生长是在凝固过程中最基本的现象之一。

在金属凝固的过程中,晶体生长是从液态金属中形成晶体的过程,其过程主要包括以下几个方面:(1) 传质与传热。

在晶体生长的过程中,溶质从液相向固相迁移,而热量也是从熔体向冷凝物质迁移的过程。

这种传质与传热是晶体生长的基础。

(2) 晶体核的形成。

在凝固过程中,晶体核的形成是晶体生长的关键。

晶体核的形成是通过原子或离子以一定的方式排列而形成的,这是晶体生长过程中的起始点。

(3) 晶体生长的机制。

晶体的生长可以通过表面扩散、体积扩散、界面扩散等不同方式进行。

这种不同的生长机制将直接影响晶体的形态和晶体结构。

(4) 晶体生长速率的控制因素。

晶体生长速率受到诸多因素的影响,如温度、凝固速率、溶质浓度等因素都将对晶体生长速率产生显著的影响。

综上所述,要理解纯金属凝固过程中的晶体生长过程,首先需要了解晶体核的形成、晶体生长的机制以及晶体生长速率的控制因素。

这将有助于深入理解凝固过程中的晶体生长现象。

3. 影响凝固过程的因素在金属凝固的过程中,有多种因素会对凝固过程产生影响。

主要包括以下几个方面:(1) 温度。

温度是影响金属凝固的最主要因素之一。

凝固温度的高低不仅会直接影响凝固过程的速率,也会对晶体结构的形成产生重要影响。

材料科学基础——纯金属的凝固

材料科学基础——纯金属的凝固

度 温 Tm Ts
无限缓慢
时间
整理课件
2 晶体凝固的热力学条件
GHTS
dG S dT
SL SS
液体和晶体自由能随温度变化
G H TS dG S dT SL SS
ΔT
T1 T0
整理课件
GL=GS时,Tm称平衡熔点。
单位体积自由能的变化ΔGv与过冷度ΔT的关系:
G VG LG SH LTLS (H STSS ) H LH ST(SLSS) HT S
整理课件
2.1.2 结晶的条件
1. 结晶的过冷现象
整理课件
a. 过冷现象(undercooling)
实际结晶温度
低于理论结晶温度 度温
的现象。
Tm
ΔT
ΔT=Tm-Ts
无限缓慢
称:
Ts
ΔT为过冷度
时间
金属纯度↑ΔT↑,冷却速度↑ΔT↑
整理课件
b. 结晶潜热
1mol物质从一个相转变为另一个相时,伴 随着放出或吸收的热量称为相变潜热。
整理课件
r 2 2 T '
L
L m
k G LT
V
m
163
G
L
3(G) 非均匀
2
G均匀 23co4sco3s
rk' rk
G
' k
Gk
整理课件
整理课件
b. 非均匀形核的形核率
G非 * G均 * ,较小的过冷度下可获得较高的 形核率,但非均匀形核的最大形核率小于最大 的均匀形核率
核均
核非

整理课件
2.2 晶核形成规律
晶核的形成分为均匀形核和非均匀形核。 ✓ 形核率(nucleation ratio):单位时间内,单位

第五章 纯金属的凝固

第五章 纯金属的凝固

非均匀形核的形核功:
* G非 2 16 3Tm * f ( ) =f ( )G均 3( Lm T ) 2
* G非
2 16 3Tm * f ( ) =f ( )G均 3( Lm T ) 2
讨论: ① θ=0°, f(θ)=0,ΔG*非=0,基底和晶核结构相同,直接 长大,称外延生长;杂质本身即为晶核;
(1)非均匀形核时的能量变化及形核功
设一曲率半径为r的球冠的晶胚依附于型壁W上形成。
接触角为θ (又称浸润角)。
G GVV A
GVV AL L AM ( M L M )
LM L cos M
AL 2r (1 cos )
第五章 纯金属的凝固
物质从液态到固态的转变过程。若凝固后的物 (solidification) 质为晶体,则称该过程为结晶(cystallization) 。 凝固: 铸造:将金属熔炼成符合要求的液体并浇进铸型,冷却凝固、 得到有预定形状、尺寸和性能的铸件的工艺过程。 ① 最早的成型手段; ② 生产的第一个环节;
Tk Tm Tk 0.15 ~ 0.25 Tm Tm
ΔTk称有效形核过冷度 ΔTk≈0.2Tm(Tm用绝对温度表示) 。 ② 对于高粘滞液体,均匀形核速率很 小,基本不存在有效形核温度。
图5-6 金属的形核率N与过冷度ΔT的关系
实验测得的成核温度
汞 锡 铅 铝 银 金 Tm/K 234.3 505.7 600.7 931.7 1233.7 1336 Tk/K 176.3 400.7 520.7 801.7 1006.7 1106
△Tk/Tm
0.247 0.208 0.133 0.140 0.184 0.172
铜 铁 铂 NaF NaCl

材料科学基础重点知识

材料科学基础重点知识

第5章 纯金属的凝固1、金属结晶的必要条件:过冷度-理论结晶温度与实际结晶温度的差;结构起伏-大小不一的近程有序排列的此起彼伏;能量起伏-温度不变时原子的平均能量一定,但原子的热振动能量高低起伏的现象;成分起伏-材料内微区中因原子的热运动引起瞬时偏离熔液的平均成分,出现此起彼伏的现象。

结晶过程:形核和长大过程交替重叠在一起进行2、过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。

从热力学看,没有过冷度结晶就没有趋动力。

根据T R k ∆∝1可知当过冷度T ∆=0时临界晶核半径R *为无穷大,临界形核功(21T G ∆∝∆)也为无穷大,无法形核,所以液态金属不能结晶。

晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。

孕育期:过冷至实际结晶温度,晶核并未立即产生,结晶开始前的这段停留时间3、均匀形核和非均匀形核均匀形核:以液态金属本身具有的能够稳定存在的晶胚为结晶核心直接成核的过程。

非均匀形核:液态金属原子依附于固态杂质颗粒上形核的方式。

临界晶核半径:ΔG 达到最大值时的晶核半径r *=-2γ/ΔGv 物理意义:r<rc 时, ΔGs 占优势,故ΔG>0,晶核不能自动形成。

r>rc 时, ΔGv 占优势,故ΔG<0,晶核可以自动形成,并可以稳定生长。

临界形核功:ΔGv *=16πγ3/3ΔGv 3 形核率:在单位时间单位体积母相中形成的晶核数目。

受形核功因子和原子扩散机率因子控制。

4、正的温度梯度:靠近型壁处温度最低,凝固最早发生,越靠近熔液中心温度越高。

在凝固结晶前沿的过冷度随离界面距离的增加而减小。

纯金属结晶平面生长。

负的温度梯度:过冷度随离界面距离的增加而增加。

纯金属结晶树枝状生长。

5、光滑界面即小平面界面:液固两相截然分开,固相表面为基本完整的原子密排面,微观上看界面光滑,宏观上看由不同位向的小平面组成故呈折线状的界面。

粗糙界面即非小平面界面:固液两相间界面微观上看高低不平,存在很薄的过渡层,故从宏观上看界面反而平直,不出现曲折小平面的界面。

纯金属的凝固习题与答案

纯金属的凝固习题与答案

纯金属的凝固习题与答案1 说明下列基本概念凝固、结晶、过冷、过冷度、结构起伏、能量起伏、均匀形核、非均匀形核、临界晶核半径、临界晶核形核功、形核率、生长线速度、光滑界面、粗糙界面、动态过冷度、柱状晶、等轴晶、树枝状晶、单晶、非晶态、微晶、液晶。

2 当球状晶核在液相中形成时,系统自由能的变化为σππ23344r G r G V +∆=∆,(1)求临界晶核半径c r ;(2)证明V V c c G A G c ∆-==∆231σ(c V 为临界晶核体积);(3)说明上式的物理意义。

3 试比较均匀形核与非均匀形核的异同点,说明为什么非均匀形核往往比均匀形核更容易进行。

4 何谓动态过冷度说明动态过冷度与晶体生长的关系。

在单晶制备时控制动态过冷度的意义5 分析在负温度梯度下,液态金属结晶出树枝晶的过程。

6 在同样的负温度梯下,为什么Pb 结晶出树枝状晶而Si 的结晶界面却是平整的7 实际生产中怎样控制铸件的晶粒大小试举例说明。

8 何谓非晶态金属简述几种制备非晶态金属的方法。

非晶态金属与晶态金属的结构和性能有什么不同。

9 何谓急冷凝固技术在急冷条件下会得到哪些不同于一般晶体的组织、结构能获得何种新材料. 计算当压力增加到500×105Pa 时锡的熔点的变化,已知在105Pa 下,锡的熔点为505K ,熔化热7196J/mol ,摩尔质量为×10-3kg/mol ,固体锡的体积质量×103kg/m 3,熔化时的体积变化为+%。

2. 考虑在一个大气压下液态铝的凝固,对于不同程度的过冷度,即:ΔT=1,10,100和200℃,计算: (a)临界晶核尺寸;(b)半径为r*的团簇个数;(c)从液态转变到固态时,单位体积的自由能变化ΔGv ; (d)从液态转变到固态时,临界尺寸r*处的自由能的变化 ΔGv 。

铝的熔点T m =993K ,单位体积熔化热ΔH f =×109J/m 3,固液界面自由能γsc =93J/m 2,原子体积V 0=×10-29m 3。

第三章 纯金属(晶体)的凝固

第三章 纯金属(晶体)的凝固
形核率可表示为: N= KN1. N2 ,
K为比例常数。
形核率与温度(或过冷度)之间的关系如图3-5所示。
过冷度较小时,形核率 主要受形核功因子控制; 当过冷度继续增大时, 形核率受扩散的几率因 子所控制。
图3-5 形核率与温度的关系
有效形核温度:
有些易流动的液体,形 核率随温度下降至某值T*突 然显著增大,该温度就称为 均匀形核的有效形核温度。
a.连续长大 粗糙界面,由于界面上约有一半的原子位置空着,
故液相的原子可以进入这些位置与晶体结合起来,晶体 便连续地向液相中生长,这种生长方式为垂直生长。垂 直生长的生长速率较高。
图3-10’ 粗糙界面
b. 二维形核 二维晶核是指一定大小的单分子或单原子的平面薄
层。如图3-11所示。这种生长机制主要是在光滑界面上进 行。形成二维晶核需要形核功,这种机制下晶体的生长 速率很慢。a.swf
实验结果表明,有效形
核过冷度△T*≈0.2 Tm(Tm用 绝 对 温 度 表 示 , △ T* = Tm-
T*),如图3-6表示。
图3-6 金属的形核率N与过 冷度△T的关系。
二、 非均匀形核 除非在特殊的试验条件下,液态金属的凝固大都是非
均匀形核。
非均匀形核体系自由能的变化也由体积自由能和表面 自由能两部分组成。如图3-7所示。
图3-12 螺型位错台阶机制 示意图
图3-13 螺型位错台阶机制示意图
三、纯金属的生长形态
纯金属凝固时的生长形态不仅与液-固界面的微观结 构有关,而且取决于界面前沿液相中的温度分布情况,温 度分布可有两种情况:正的温度梯度和负的温度梯度。
a.在正的温度梯度下 dT/dx>0,结晶潜热只能通过固相而散出,相界面的

纯金属与固溶体合金平衡凝固的异同

纯金属与固溶体合金平衡凝固的异同

纯金属与固溶体合金平衡凝固的异同纯金属和固溶体合金是凝固过程中常见的两种材料。

虽然它们都是由金属元素组成,但在凝固过程中存在一些异同。

本文将从凝固行为、晶体结构、性质等方面对纯金属和固溶体合金进行比较,以探讨它们的异同之处。

一、凝固行为纯金属在凝固过程中呈现出明显的凝固点,即在一定温度下由液态转变为固态。

凝固点是纯金属的特征性参数,可以通过实验测定得到。

而固溶体合金的凝固行为相对复杂,通常不存在明确的凝固点。

这是由于固溶体合金是由两种或多种金属元素组成的混合物,其成分和比例会影响凝固过程的温度范围和行为。

二、晶体结构纯金属的凝固过程中会形成紧密堆积的晶体结构,晶体中的金属原子排列有序,具有规则的晶胞结构。

这种晶体结构使得纯金属具有良好的塑性和导电性。

而固溶体合金的晶体结构则取决于其成分和比例。

不同的成分和比例会导致不同的晶体结构,如面心立方、体心立方等。

这种晶体结构的变化会直接影响固溶体合金的力学性能和化学性质。

三、性质纯金属具有良好的导电性、热传导性和塑性,而固溶体合金的性质则受到成分和比例的影响。

固溶体合金的导电性和热传导性可能会受到成分的改变而发生变化,而塑性则受到晶体结构和成分的共同影响。

此外,固溶体合金还可能具有一些特殊的性质,如形状记忆效应、超弹性等,这些性质的实现往往依赖于特定的成分和比例。

四、应用领域纯金属由于其良好的导电性和塑性,在电子、航空、汽车等领域有广泛应用。

而固溶体合金由于其丰富的性质和调控能力,在材料科学、能源领域等有重要的应用价值。

例如,镍基高温合金在航空发动机中具有优异的耐热性能;钛合金由于其良好的比强度和耐腐蚀性能,广泛应用于航空航天领域。

纯金属和固溶体合金在凝固行为、晶体结构、性质和应用领域等方面存在一些异同。

纯金属具有明确的凝固点和规则的晶体结构,其性质受固有的金属元素决定。

而固溶体合金则受到成分和比例的影响,其凝固行为相对复杂,晶体结构和性质的变化较为多样。

纯金属的凝固答案

纯金属的凝固答案

第三章纯金属的凝固本章主要内容:液态金属的结构;金属结晶过程:金属结晶的条件,过冷,热力学分析,结构条件晶核的形成:均匀形核:能量分析,临界晶核,形核功,形核率,非均匀形核:形核功,形核率晶体的长大:动态过冷度(晶体长大的条件),固液界面微观结构,晶体长大机制,晶体长大形态:温度梯度,平面长大,树枝状长大、结晶理论的应用实例:铸锭晶粒度的控制,单晶制备,定向凝固,非晶态金属一、填空仁在液态金属中进行均质形核时,需要结构起伏和_______ 能量起伏。

1. 金属凝固的必要条件是______________ 过冷度和能量起伏 _________________ 。

2. 细化铸锭晶粒的基本方法是:(1)—控制过冷度,(2)变质处理,(3)振动、搅拌等_______5、形成临界晶核时体积自由能的减小只能补偿新增表面能的____________ 2/3 ____ 。

6、液态金属均质形核时,体系自由能的变化包括(体积自由能)和(表面自由能)两部分,其中一表面 ____-2;九r = 自由能是形核的阻力,体积—自由能是形核的动力;临界晶核半径「K与过冷度厶T呈—反比_ L m.I T _关系,临界形核功△ G K等于—3(Lm也T)表面能的1/3—。

7动态过冷度是_________ 晶核长大时固液界面(前沿)的过冷度___。

8在工厂生产条件下,过冷度增大,则临界晶核半径—减小—,金属结晶冷却速度越快,N/G比值—越大_____________________ ,晶粒越纟旺_小。

9 制备单晶的基本原理是—保证一个晶核形成并长大一—,主要方法有_尖端成核法和—垂直提拉法。

10.获得非晶合金的基本方法是___________ 快速冷却 _____________ 。

11铸锭典型的三层组织是__________ 细晶粒区___________ ,—柱状晶区_______ , 等轴晶区_____ 。

12纯金属凝固时,其临界晶核半径的大小、晶粒大小主要决定于过冷度___________________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章纯金属的凝固
1名词解释
过冷度,临界晶核,临界晶核半径,自发形核,能量起伏,形核功,形核率,变质处理,柱状晶带,等轴晶,异质形核,非晶态金属
2判断
1 纯金属中含有少量杂质在热力学上是稳定的。

()
2 临界半径r
K
大小仅与过冷度有关。

()
3 液态金属凝固时,临界晶核半径与过冷度成反比。

()
4 在液态金属中形成临界晶核时,体系自由能的变化为零。

()
5 任何温度下液态金属中出现最大结构起伏是晶胚。

()
6 任何过冷度下液态金属中出现的最大结构起伏却是晶核。

()
7 湿润角θ =180e时,异质形核最容易进行。

()
8 枝臂间距是指相邻两树枝晶一次轴之间的距离。

()
9 为了细化晶粒,工艺上采用增大过冷度的方法,这只对小件或薄件有效,而对较大厚壁铸件并不适用。

()
10 从非均匀形核计算公式:A
非均匀=A
均匀
(2-3cosθ+cos3θ)/4看出当θ=00时固相杂质相当于
现成的大晶核。

()
11 理论凝固温度与固/液界面处温度之差,称为动态过冷度。

()
12 动态过冷度是指结晶过程中实际液相温度熔点之差。

()
13 液态金属结晶时,其临界晶粒半径rK是不变的恒定值。

()
14液态金属结晶时,其理论结晶温度与固/液界面处温度之差称为临界过冷度。

()
3问答
1 根据凝固理论,试述细化晶粒的基本途径。

2 试根据凝固理论,分析通常铸锭组织的特点。

3 试说明在铸锭中获得细等轴晶组织可以采取的措施。

4 回答液态金属凝固时均质形核的有关问题:
(1)写出临界晶核半径γ
k
的表达式;
(2)画出γ
k
与过冷度∆T的关系曲线示意图;
(3)写出形核功∆G
k
与临界晶核界面能的关系式;
(4)简述均质形核的必要条件。

5 简述液态金属结晶时,过冷度与临界晶粒半径,形核功及形核率的关系。

6 简述湿润角θ,杂质粒子的晶体结构和表面形态对异质形核的影响。

7 铜的熔点Tm=1356K,熔化热v Hm=1628J/cm2,σ=177erg/cm2,点阵常数a=0.3615nm。

求铜v T=100e时均匀形核的临界核心半径和每个临界核心的原子数目。

8 欲获得铸锭整个断面为细等轴晶或整个断面为柱状晶,各需要采取哪些措施?
9:何谓过冷,过冷度,动态过冷度,它们对结晶过程有何影响?
10:根据冷却速度对金属组织的影响,现要获得微晶,非晶,亚稳相,请指出其凝固时如何控制。

相关文档
最新文档