陶瓷基复合材料增韧技术的研究进展_何柏林

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第19卷第4期2009年8月 粉末冶金工业

POWDER MET ALLURGY INDUST RY Vo l .19No .4A ug .2009

收稿日期:2009-03-23

基金项目:江西省教育厅科研基金项目(编号:赣教技字[2007]426号)

作者简介:何柏林(1962-),男(汉),河南安阳人,教授,硕士生导师,主要从事复合材料表面强化研究。

陶瓷基复合材料增韧技术的研究进展

何柏林,孙 佳

(华东交通大学载运工具与装备省部共建教育部重点实验室,江西南昌 330013)

摘 要:本文综述了陶瓷基复合材料的纤维增韧、晶须增韧、相变增韧、颗粒增韧、纳米复合陶瓷增韧、自增韧陶瓷增韧补强的方法、增韧效果及相关的增韧机理。最后,指出了陶瓷基复合材料增韧技术的研究现状和今后的发展方向。

关键词:陶瓷基复合材料;增韧机理;研究进展中图分类号:TQ174.1 文献标识码:A 文章编号:1006-6543(2009)04-0048-06

PROGRESS IN CERAM IC M AT RIX COM POSITE TOUGH ENING TECH NOLOGY

HE Bo -lin ,SUN Jia

(K ey L abo ra to ry of Convey ance and Equipment ,M inistry o f Education ,East China Jiaotong

U niver sity ,Nanchang ,Jiang xi 330013,China )

Abstract :Several methods of toughening ce ramic co mposite such as fibe r to ug hening ,w hisker toughening ,phase transform ation to ug hening ,pa rticle toughening ,ceramic nano -composites toughening and self -toughening are review ed .The related toughening effects and mechanisms are also discussed .Finally ,the research status and direction are pointed out .Key words :ceramic m atrix composite ;toughening m echanism ;research status 现代陶瓷材料具有耐高温、硬度高、耐磨损、而腐蚀及相对密度轻等许多优良的性能。但它同时也具有致命的弱点,即脆性,这一弱点正是目前陶瓷材料的使用受到很大限制的主要原因。因此,陶瓷材料的强韧化问题便成了研究的一个重点问题。陶瓷不具备像金属那样的塑性变形能力,在断裂过程中除了产生新的断裂表面需要吸收表面能以外,几乎没有其它吸收能量的机制,这就是陶瓷脆性的本质原因。人们经过多年努力,已探索出若干韧化陶瓷的途径,包括纤维增韧、晶须增韧、相变增韧、颗粒增韧、纳米复合陶瓷增韧、自增韧陶瓷等。这些增韧方法的实施,使陶瓷材料的韧性得到了较大的提高,使陶瓷材料在高温结构材料领域显示出强劲的竞争潜力。

1 陶瓷基复合材料增韧技术

1.1 纤维增韧

为了提高复合材料的韧性,必须尽可能提高材料断裂时消耗的能量。任何固体材料在载荷作用下(静态或冲击),吸收能量的方式无非是两种:材料变形和形成新的表面。对于脆性基体和纤维来说,允许的变形很小,因此变形吸收的断裂能也很少。为了提高这类材料的吸能,只能是增加断裂表面,即增加裂纹的扩展路径。

纤维的引入不仅提高了陶瓷材料的韧性,更重要的是使陶瓷材料的断裂行为发生了根本性变化,由原来的脆性断裂变成了非脆性断裂。纤维增强陶

瓷基复合材料的增韧机制包括基体预压缩应力、裂纹扩展受阻、纤维拔出、纤维桥联、裂纹偏转、相变增韧等[1,2]。

能用于增强陶瓷基复合材料的纤维种类较多,包括氧化铝系列(包括莫来石)、碳化硅系列、氮化硅系列、碳纤维等,除了上述系列纤维外,目前正在开发的还有BN、TiC、B4C等复相纤维[3]。韩桂芳等[4]用浆料法结合真空浸渗工艺,制备了二维(2D)石英纤维增强多孔Si3N4-SiO2基复合材料,增加浸渗次数虽不能有效提高复合材料强度,但却使裂纹偏转因子变小,断裂模式由韧性断裂向脆性断裂转变,断口形貌由纤维成束拔出变为多级拔出。尹洪峰等[5]利用LPCV I技术制备了三维连续纤维增韧碳化硅基复合材料,实验表明当复合材料界面相厚度为0.19μm时,体积密度为2.01~2.05g/cm3时,用碳纤维T300增韧后的复合材料的弯曲强度为459M Pa,断裂韧性为20.0MPa·m1/2,断裂功为25170J·m-2。国外学者[6,7]也研究了纤维增强陶瓷材料,并显著的提高了其断裂韧性。

纤维拔出是纤维复合材料的主要增韧机制,通过纤维拔出过程的摩擦耗能,使复合材料的断裂功增大,纤维拔出过程的耗能取决于纤维拔出长度和脱粘面的滑移阻力,滑移阻力过大,纤维拔出长度较短,增韧效果不好,如果滑移阻力过小,尽管纤维拔出较长,但摩擦做功较小,增韧效果也不好,反而强度较低。纤维拔出长度取决于纤维强度分布、界面滑移阻力。因此,在构组纤维增韧陶瓷基复合材料时,应该考虑:纤维的强度和模量高于基体,同时要求纤维强度具有一定的Weibull分布;纤维与基体之间具有良好的化学相容性和物理性能匹配;界面结合强度适中,既能保证载荷传递,又能在裂纹扩展中适当解离,又能有较长的纤维拔出,达到理想的增韧效果。

1.2 晶须增韧

陶瓷晶须是具有一定长径比且缺陷很少的陶瓷小单晶,因而具有很高的强度,是一种非常理想的陶瓷基复合材料的增韧增强体[8]。陶瓷晶须目前常用的有SiC晶须,Si3N4晶须和A l2O3晶须。基体常用的有ZrO2,Si3N4,SiO2,Al2O3和莫来石等。黄政人等[9]采用30%(体积分数)β-SiC晶须增强莫来石,在SPS烧结条件下材料强度比热压高10%左右,为570MPa,断裂韧性为4.5M Pa·m1/2比纯莫来石提高100%以上。王双喜等[10]研究发现,在2%(摩尔分数)Y2O3-超细料中加入30%(体积分数)的SiC晶须,可以细化2Y-ZrO2材料的晶粒,并且使材料的断裂方式由沿晶断裂为主变为穿晶断裂为主的混合断裂,从而显著提高了复合材料的刚度和韧性。

晶须增韧陶瓷基复合材料的主要增韧机制包括晶须拔出、裂纹偏转、晶须桥联、其增韧机理与纤维增韧陶瓷基复合材料相类似。晶须增韧效果不随温度而变化,因此,晶须增韧被认为是高温结构陶瓷复合材料的主要增韧方式。晶须增韧陶瓷复合材料主要有2种方法[11]:(1)外加晶须法:即通过晶须分散、晶须与基体混合、成形、再经煅烧制得增韧陶瓷。如加入到氧化物、碳化物、氮化物等基体中得到增韧陶瓷复合材料,此法目前较为普遍;(2)原位生长晶须法:将陶瓷基体粉末和晶须生长助剂等直接混合成形,在一定的条件下原位合成晶须,同时制备出含有该晶须的陶瓷复合材料,这种方法尚未成熟,有待进一步探索。

晶须增韧陶瓷基复合材料与很多因素有关,首先晶须与基体应选择得当,二者的物理、化学相容性要匹配才能使陶瓷复合材料在韧性上得到提高。其次晶须的含量存在临界含量和最佳含量。Be-cher[12]研究表明:复合材料的断裂韧性随晶须含量Vf(Vf是晶须的体积含量)的增加而增大。但是,随着晶须含量的增加,由于晶须的桥联作用,使复合材料的烧结致密化困难。邓建新等[13]从Al2O3与SiCw热膨胀失配分析入手,得出了晶须的极限含量为43%(体积分数),通过实验证明:当晶须含量为20%~30%时,Al2O3-SiCw陶瓷材料能获得最佳增韧补强效果。再者,加入陶瓷基体中的晶须必须有一定的长径比,这样才能通过剪切作用把载荷由基体传递到晶须上,其临界长径比经验值为15~30[14]。宋桂明等[15]系统研究了晶须的长度、半径和长径比对材料韧性的影响,研究表明:晶须尺寸对增韧影响仅用长径比来表征是不够的,应采用长度、半径和长径比中的2个指标来衡量。晶须在基体中的排布方向对增韧效果影响很大。Wang Chang an[16]等对SiC晶须的氮化硅基复合材料中晶须取向的研究表明,当晶须方向基本一致且晶须与基体界面弱连接时,此方向中的断裂韧性具有极大值,抗弯强度和断裂韧性分别为1038MPa和10.7M Pa·m1/2。此外,抗弯强度和断裂韧性还与晶须的强度、界面的性质等有关。

·

49

·

第4期 何柏林等:陶瓷基复合材料增韧技术的研究进展

相关文档
最新文档